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Nowadays,  vast  amounts  of data  on building  operation  and  management  have  been  collected  and  stored.
However,  the  data  is  rarely  translated  into  useful  knowledge  about  building  energy  performance  improve-
ment, due  mainly  to  its  extreme  complexity  and  a lack of  effective  data  analysis  techniques.  This  paper
reports  the  development  of a new  methodology  for examining  all  associations  and  correlations  between
building  operational  data,  thereby  discovering  useful  knowledge  about  energy  conservation.  The method
is based  on  a basic  data  mining  technique  (association  rule  mining).  To  take  full advantage  of  building
operational  data,  both  daily  and  annual  time  periods  should  be mined.  Moreover,  data  from  two  differ-
ssociation
orrelation
nowledge discovery
uilding operational data
nergy conservation
nfluencing factors

ent years  should  be  mined,  and  the obtained  associations  and  correlations  in the two  years  should  be
compared.  In  order  to demonstrate  the applicability  of  the  proposed  method,  the  method  was  applied  to
the operational  data  of the  air-conditioning  system  in  a  building  located  in  Montreal.  The results  show
energy  waste  in  the  air-conditioning  system  as  well  as  equipment  faults.  A  low/no  cost  strategy  for  saving
energy in  the system  operation  was  also  proposed.  The  results  obtained  could  help  to better  understand
building  operation  and  provide  opportunities  for energy  conservation.
. Introduction

Energy consumption in the building sector contributes substan-
ially to the global energy consumption and to the production of
reenhouse gas emissions. Furthermore, building industry is not
nly energy-intensive, but also knowledge-intensive. Hence, it is
ighly desirable that useful information hidden in building oper-
tion be discovered to help reduce its energy consumption. An
ffective method to achieve this goal is to extract such informa-
ion from the measured building-related data and translate this
nformation into useful knowledge to be used in the daily build-
ng operation. Note that the real data of a building contains the
ctual information of building operation; and thus can reflect the
uilding performance accurately. Moreover, vast amounts of data
n building operation and management have been collected and
tored, since building automation systems become a part of build-
ng design. In general, building-related data includes:
1) Climatic data, such as outdoor air temperature and relative
humidity

∗ Corresponding author. Tel.: +1 514 848 2424x3192; fax: +1 514 848 7965.
E-mail address: haghi@bcee.concordia.ca (F. Haghighat).

378-7788/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.enbuild.2011.12.018
© 2011  Elsevier  B.V.  All  rights  reserved.

(2) Building operational data, mainly operational data of HVAC sys-
tems (e.g. supply air temperature and fresh air flow rates), IEQ
data (e.g. indoor air temperature and human thermal comfort),
and energy data (e.g. monthly electricity consumption and end-
use loads of household appliances)

(3) Building physical parameters, such as floor area and window-
to-wall-ratio

These data (climatic data, building operational data, building phys-
ical parameters) may  have a direct/indirect influence on each
other, considering they are closely related to the operation of
that specific building. Specifically, there may  exist strong associ-
ations (i.e. connections or relationships) and correlations between
them that should be identified and used by the building man-
agers to develop energy efficient building operation strategies. For
example, the association/correlation between building energy con-
sumption and climatic parameters (e.g. outdoor air temperature)
generally reflects how building operation is affected by weather
conditions. All these possible associations/correlations between
building-related data need to be identified in order to develop an
effective energy conserving strategy and operation. Note that the

energy consumption of HVAC systems could account for over 25%
of the total building energy consumption.

A number of studies have been conducted to identify the
associations and correlations between measured building-related

dx.doi.org/10.1016/j.enbuild.2011.12.018
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
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Nomenclature

TA air temperature (◦C)
TG glycol temperature (◦C)
H relative humidity (kg/kg)
Q flow rate (L/S)
F frequency of variable-speed drives on fans (Hz)

Subscripts and superscripts
I, II, III, IV, V fresh air handling unit 1 (FHU1), FHU2, FHU3,

FHU4, FHU5
VI, VII return air handling unit 1 (RHU1), RHU2
VIII, IX exhaust air handling unit 1 (EHU1), EHU2
ac after cooling coil
ah after heating coil
br before recuperation
ar after recuperation
1, 2, 3 fan1, fan2, fan3
i, ii, iii recuperation1, recuperation2, recuperation3
o outdoor
VA VA part

d
n
t
i
o
s
[
a
e
b
e
o
d
a
a
a
t
p
a

w
c
a
a
F
i
“
i
d
t
i
e
a
c
a
C
l
o
a
m
a

ENCS ENCS part

ata. Traditionally, researchers utilized statistical analysis tech-
iques, in particular regression equations, and mainly focused on
he relationships between building energy consumption and the
nfluencing factors, such as building physical parameters [1–3],
ccupancy patterns [4,5], building operation and management [6],
ocial and economic factors [7],  indoor air quality requirements
8], and weather conditions [9].  However, few of them examined
ssociations and correlations between building operational data,
specially operational data of HVAC systems, to better understand
uilding operation in order to improve building performance. For
xample, the associations/correlations between operational data
f different AHUs, such as air flow rates, or between operational
ata of the same AHU, such as air temperature after cooling coils
nd heating coils, are seldom analyzed. This is mainly due to the
mount and complexity of such data and a lack of effective data
nalysis techniques. This is caused by a large number of HVAC sys-
em parameters and huge amounts of operational data. Moreover,
oor quality of measured data (e.g. outliers and missing values) can
lso greatly add to the complexity.

The strength of statistical techniques lies in their simplicity and
idespread familiarity. However, most statistical techniques, espe-

ially correlation analysis, are utilized with the premise that data
nalysts, based on their domain knowledge, “believe” that strong
ssociations and correlations exist among two or more parameters.
or example, one performs correlation analyses between build-
ng energy consumption and outdoor air temperature since s/he
believes” that outdoor air temperature may  have a significant
nfluence on the building energy consumption. The analyses mainly
epend on the prior knowledge of the analyst and adopted statis-
ical methods. As a result, a lot of useful information, particularly
ndirect influences between the data could be missed (e.g. param-
ters A and B do not have a direct impact on C, but they may  have
n indirect impact through parameters D and E). At the same time,
ommonly a large number of parameters are monitored and huge
mounts of operational data from the HVAC system are collected.
onsequently, it is very difficult and often infeasible for data ana-

ysts to conduct statistical analyses, say the correlation analyses,

n every combination of the parameters so as to discover all of the
ssociations and correlations that are crucial for achieving the opti-
um  building performance. In this regard, consider, for example,

 database with n parameters. A data analyst employs traditional
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correlation analysis to identify the associations/correlations
between each pair of the parameters in this database. The num-
ber of possible combinations is C(n,2). Suppose n = 100, then the
analyst has to conduct 4950 correlation tests, which is, however,
impractical in practice. This paper reports the development of a
methodology for examining all these associations and correlations
between the building operational data in order to achieve a better
understanding of the building operation and to provide opportuni-
ties to conserve energy.

2. Methodology

2.1. Data mining

Considering the limitations of the statistical analysis techniques,
we propose data mining to analyze measured building-related data.
Data mining techniques lead the way to automatically analyzing
huge amounts of data. They can be used to extract interesting, use-
ful, and previously unknown knowledge from data, and therefore
fit well into the purpose of this study.

In the past decade, different definitions of data mining have been
given by various researchers. For example, Hand et al. [10] define
data mining as “the analysis of large observational data sets to find
unsuspected relationships and to summarize the data in novel ways
so that data owners can fully understand and make use of the data.”
As defined by Cabena [11], data mining is “an interdisciplinary
field bringing together techniques from machine learning, pattern
recognition, statistics, databases, and visualization to address the
issue of information extraction from large databases.” Based on
these statements, it can be concluded that data mining is essentially
a combination of multi-disciplinary approaches. It is often used to
extract “interesting,” hidden, but useful patterns from a large vol-
ume  of data and to transform the data into knowledge that could
benefit further work.

A basic data mining technique, association rule mining, pro-
vides a feasible solution to identify all interesting relations between
data values even for large datasets. Therefore, in this study it was
employed to help examine all the associations and correlations
between the building operational data.

2.2. Association rule mining

In data mining, association rules are often used to represent
the patterns of parameters that are frequently associated together.
An example is given to illustrate the concept of association rules.
Assume that 100 occupants live in 100 different rooms in the same
building and each room has both a window and a door. Moreover,
40 occupants open the windows and 20 occupants open the doors.
If 10 occupants open both the windows and doors during the same
period of time, it can be calculated that these 10 occupants account
for 10% of all the building occupants, and 25% of the occupants
who open windows. Then, the information that occupants who
open windows also tend to open doors at the same time can be
represented in the following association rule:

open windows → open doors[support = 10% confidence = 25%]

In this statement, support and confidence are employed to indi-
cate the validity and certainty of this association rule. Different
users or domain experts can set different thresholds for support
and confidence according to their own requirements, in order to

discover useful knowledge eventually. Accordingly, the association
rule mining (ARM) can be defined as finding out association rules
that satisfy the predefined minimum support and confidence from
a given database.
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Fig. 1. Proposed methodology to examine all the assoc

Mathematically, support and confidence can be calculated by
robability, P(X∪Y), and conditional probability, P(Y|X), respectively
X denotes the premise and Y denotes the consequence in the
equence). That is,

upport(X → Y) = P(X ∪ Y)

onfidence(X → Y) = P(Y |X)

nother concept, lift, which is similar to confidence, is commonly
sed to demonstrate the correlation between the occurrence of X
nd Y when conducting the ARM. Mathematically,

ift(X → Y) = P(X ∪ Y)
P(X)P(Y)

= P(Y |X)
P(Y)

articularly, a lift value greater than 1 represents a positive corre-
ation (the higher this value is, the more likely that X coexists with
, and there is a certain relationship between X and Y [12]) while a

ift value less than 1 represents a negative correlation. If the value
s equal to 1, i.e. P(X ∪ Y) = P(X)P(Y), the occurrence of X is inde-
endent of the occurrence of Y, and there is no correlation between

 and Y.
Commonly used ARM algorithms include the Apriori algorithm

nd the frequent-pattern growth (FP-growth) algorithm [13]. In
his study, we employed the FP-growth algorithm, along with the
pen-source data mining software RapidMiner [14], to mine asso-
iation rules due to its high efficiency and wide applicability. The
P-growth algorithm adopts a ‘divide-and-conquer’ strategy to fur-
her improve the efficiency of examining association rules in a
atabase. A frequent-pattern tree is first constructed to represent
he database. Based on this tree, the database is divided into a set
f sub-databases that will be mined separately. For the specific
lgorithm of the FP-growth the reader can refer to [13].

Additionally, in order to perform the ARM, the value of quan-
itative attributes generally needs to be classified into categorical
alues. Given that building operational data, such as supply air tem-
erature and monthly energy consumption, is normally described
s either high or low by occupants in practice, a two-interval scale,
.e. HIGH and LOW, was applied in this study. Specifically, for each
uantitative attribute, data ranged from the average of the max-

mum and minimum to the maximum value is ‘HIGH’, and data
anged from the minimum value to the average of the maximum
nd minimum is ‘LOW’.

.3. Proposed methodology
A new methodology is proposed for examining all associations
nd correlations between building operational data and leading to
nowledge discovery. The methodology is based on a basic data
ining technique: association rule mining (ARM). In order to find
s and correlations between building operational data.

and take advantage of more complete associations and correlations,
building operational data in two  different time periods (i.e. both
a day and a year) is mined, considering associations/correlations
between operational data in different time periods could signifi-
cantly be different. Moreover, data in two different years is mined,
and obtained associations and correlations in the two  years are
compared between each other. The comparison can assist in identi-
fying marked changes in associations/correlations and also building
operation, thereby uncovering useful knowledge. The proposed
methodology is given in Fig. 1, and it can be divided into 8 steps
and is explained as follows:

Step 1 Data collection. Two-year building operational data need to
be collected and stored in a database.
Step 2 Data pre-processing. Measured data is often noisy (espe-
cially containing outlier values whose values are grossly different,
i.e. much higher or lower, from others in databases), which will
lead to low-quality mining results. Hence, the collected data
should be processed to remove outliers.
Step 3 Perform the ARM in a typical day (e.g. the coldest or hottest
day) data in the 1st year. Obtained rules are stored in rule set 1.
Step 4 Select parameters having associations in the typical day data
in the 1st year; and perform the ARM in the typical day data in the
2nd year within the selected parameters, in order to remove time
effects and reduce other influences, such as the change of occupant
behavior and weather conditions. Obtained rules are stored in rule
set 2.
Step 5 Perform the ARM in the 1st year data. Obtained rules are
stored in rule set 3.
Step 6 Select parameters having associations in the 1st year data;
and perform the ARM in the 2nd year data within the selected
parameters. Obtained rules are stored in rule set 4.
Step 7 Compare the rule sets 1 and 2, and the rule sets 3 and 4; and
highlight the similarity and difference in associations between the
two different time periods (i.e. the typical day in the1st year and
2nd year, the 1st year and the 2nd year).
Step 8 Extract useful knowledge from the comparison between
these rules.

3. Data collection

The EV pavilion located in Montreal, a complex building that
mainly includes offices and chemical labs, was selected as data
source in this study. This building consists of two  parts: the ENCS
part (17 floors) and the VA part (12 floors), as shown in Fig. 2.
Both of these two  buildings have their own VAV air-conditioning
systems. In the ENCS part, the air handling units (AHUs) are
installed in the mechanical rooms on each floor except for the
17th floor (the mechanical floor), where various equipment, such
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Table 1
The monitored parameters of the air-conditioning systems.

No. Parameter No. Parameter No. Parameter No. Parameter

1 QI1 21 TAIVac 41 TAIXari 61 FIX3

2 QI2 22 TAVac 42 TAIXarii

3 QII1 23 TAIah 43 TAIXariii

4 QII2 24 TAIIah 44 TAoENCS

5 QIII1 25 TAIVah 45 HoENCS

6 QIII2 26 TAVah 46 TAoVA

7 QIV1 27 TAIIbr 47 HoVA

8 QIV2 28 TAIVbr 48 TGENCSar

9 QV1 29 TAVbr 49 TGVAar

10 QV2 30 TAIar 50 FI

11 QIII 31 TAIIar 51 FII

12 QVI 32 TAIVar 52 FIII

13 QVII 33 TAVar 53 FIV

14 QVIII1 34 TAVIIIbri 54 FV

15 QVIII2 35 TAVIIIbrii 55 FVI

16 QVIII3 36 TAIXbri 56 FVII

17 QIX1 37 TAIXbrii 57 FVIII1

18 QIX2 38 TAIXbriii 58 FVIII2

19 TAIac 39 TAVIIIari 59 FIX1

20 TAIIac 40 TAVIIIarii 60 FIX2
Fig. 2. EV Pavilion at Concordia University.

s the chillers and fresh air handling units (FHUs), are installed. On
he 17th floor, two identical FHUs (i.e. the FHU 1 and FHU 2) are
mployed to process fresh air and each has two variable speed fans
n parallel, as shown in Fig. 3. Due to the existence of chemical labs
n the ENCS part, the fresh air is separated into two  parts: part 1 is
ent to the local mechanical rooms in each floor and mixed with the
eturn air from that floor’s rooms other than chemical labs. Then
he mixed air is conditioned by the AHUs in that floor’s mechan-
cal room and supplied to those rooms again. Meanwhile, part 2
s mixed with the return air from the atriums in the ENCS part.
hen the mixed air is conditioned by the FHU 3, which also has two
ariable speed fans in parallel, and sent to the chemical labs. The
xhaust air from both the chemical labs and other rooms is dis-
harged outside directly by the EHU 1, which contains two variable
peed fans, as shown in the dash line square. Moreover, the dash
ot line in Fig. 3 indicates a recuperation loop installed between
he fresh air and the exhaust air to exchange heat in both cooling
nd heating seasons.

The flowchart of air-conditioning system in the VA part is shown
n Fig. 4. Similarly, air handling units (AHUs) are installed in the

echanical rooms on each floor except for the 12th floor (the
echanical floor), where various equipment, such as the chillers

nd fresh air handling units, are installed. On the 12th floor, two

dentical FHUs (i.e. the FHU 4 and FHU 5) are employed to process
resh air and each of them has two variable speed fans in parallel.
iven that there is no chemical lab in the VA part, the fresh air is
ixed with the return air from all the VA part directly. The mixed

Fig. 3. Flow chart of air-conditioni
air is sent to the local mechanical rooms in each floor to be con-
ditioned by the AHUs, and then sent to various rooms in the same
floor. Two  RHUs (i.e. the RHU 1 and RHU 2) are employed to return
air, and each of them has two variable speed fans in parallel. The
exhaust air in the VA part is discharged to outside by the EHU 2,
which contains three variable speed fans, as shown in the dash line
square. Also, the dash dot line in Fig. 4 indicates a recuperation loop
installed between the fresh air and exhaust air to exchange heat in
both cooling and heating seasons.

In order to conduct the case study, the historical data of the air-
conditioning systems in both parts were collected from December
2006 to May  2009. However, since the online monitoring program
was updated from November 2007 to January 2008, data reports
were not generated during this period. In total, 61 parameters
were monitored in the two  air-conditioning systems and data of

each parameter was  trended at a 15-min interval. The monitored
parameters are given in Table 1.

ng system in the ENCS part.
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Fig. 4. Flow chart of air-con

. Data pre-processing

Outliers are data objects whose values are grossly different (i.e.
uch higher or lower) from others in the database. Outliers reg-

larly occur in building energy consumption measurement and
hey are often indicative of measurement errors, and thus must be
emoved. Removal of outliers plays a crucial role in preparing for
he ARM, since the outliers will skew and thus alter the grouping
f data. For example, suppose an attribute ranges from 0 to 10, and
an be discretized into two intervals, [0,5) and [5,10] (or LOW and
IGH), by using the methods mentioned previously. If there exists
n outlier (e.g. 30), then the two intervals are [0,15) and [15,30]
or LOW and HIGH) by using the same method. Accordingly, all the
ata are defined as LOW except the outlier, which is not actually
rue.

Various methods can be used for effective detection and removal
f the outliers. In this study, a method based on the lower quar-
ile (Q1) and the upper quartile (Q3) of the standard boxplot was
sed due to its simplicity [15]. Specifically, outlying values can be
istinguished using the following two rules:

Rule 1: Data values that are less than Q1 − 1.5 × (Q3 − Q1) are
defined as outliers
Rule 2: Data values that are larger than Q3 + 1.5 × (Q3 − Q1) are
defined as outliers

ith consideration of the seasonality of building energy consump-
ion, the ARM was performed based on the seasonal data instead
f the annual data in this study (refer to steps 5 and 6 in Section
.3). Given that the EV building is located in Montreal which has
old winters, the winter data in both 2007 and 2009 was  mined to
enerate association rules (as mentioned earlier, the winter data

n 2008 was unavailable). Furthermore, only the data in work-
ng days/hours were used when mining seasonal data, considering
hat building energy consumption is significantly different between
orking days/hours and non-working days/hours due to occupant
ing system in the VA part.

behavior (for the EV building, non-working days include weekends
and holidays; and working hours are from 8 AM to 5 PM). The result-
ing data in 2007 and 2009 were stored in dataset 1 and dataset 2,
respectively. Fig. 5 shows the distribution of two  intervals of the
entire ARM attributes in the dataset 1after the removal of outliers
and discretization. Note that the numbers in the abscissa repre-
sent the ARM attributes, and correspond to the numbers in Table 1.
Clearly, it can be observed that most of the percentages range from
30% to 70%, indicating roughly a uniform distribution.

5. Results and discussion

5.1. ARM on the coldest day in the dataset 1 and dataset 2

The initial rule mining was  carried out with the dataset 1 and
dataset 2 on the coldest day in both 2007 and 2009. After exper-
imenting with various combinations of support and confidence
values, a support of 80% and a confidence of 95% were set as min-
imum thresholds. The thresholds mean that, for each generated
association rule, at least 80% of all the data records under analy-
sis contain both premise and conclusion; and the probability that
a premise’s emergence leads to a conclusion’s occurrence is 95% or
more. In addition, the minimum threshold of lift value was set 1
to find positive correlations. The mining in the dataset 1 generated
476 rules (i.e. the rule set 1) and 43 parameters were involved. Then,
the association rules were mined in the dataset 2 and only the data
records of these 43 parameters were used. Such mining generated
169 rules (i.e. the rule set 2). Among the generated rules, many
of them are obvious and uninteresting; and truly interesting rules
need to be further identified based on domain knowledge. Also, the
two rule sets (i.e. the rule sets 1 and 2) were compared with each
other. As a result, three potentially useful association rules were

found and they are given in Table 2.

Clearly, the premise and conclusion of the first two rules are
reversed, and thus shows that the following four facts frequently
occurred at the same time in winter 2007:



Z. Yu et al. / Energy and Buildings 47 (2012) 430–440 435

Fig. 5. Distribution of two intervals of all monitored parameters in the dataset 1.

Table 2
Three best rules generated.

No. Premise Conclusion Sup Conf Lift Dataset

Rule
1

TAIVah [high] FIV [high],
0.81 0.99 1.21 1TAIVac [low] TAVac [low]

Rule FIV [high] TAIVah [high]
0.81 0.99 1.21 1

0.78 1.00 1.12 2
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2 TAVac [low] TAIVac [low]

Rule 3 TAIVac [low] TAIVah [high] 

1) The fresh air temperature after the heating coil in the FHU 4
was ‘HIGH’

2) The fresh air temperature after the cooling coil in the FHU 4 was
‘LOW’

3) The fresh air fan frequency of the FHU 4 in the VA side was
‘HIGH’

4) The fresh air temperature after the cooling coil in the FHU 5 was
‘LOW’

lso, Rule 3 shows that the following two facts frequently occurred
t the same time in winter 2009:

5) The fresh air temperature after the cooling coil in the FHU 4 was
‘LOW’

6) The fresh air temperature after the heating coil in the FHU 4
was ‘HIGH’

ased on facts 1, 2, 5, and 6, it was observed that, in winter, the
resh air temperature in the FHU 4 usually increased first and then
ignificantly decreased, which indicates a possible waste of energy.
n order to illustrate this observation clearly, the screenshot of the
HU 4 control panel is shown in Fig. 6. In this diagram, the com-
onents in �, �, ©,  � are the heat recovery (recuperation), heating
oil, humidifier and cooling coil system, respectively.

The heating coil system was always on while the cooling coil
ystem was always shut down in winter1. Hence, after the heat-
ng coil system, the temperature of fresh air drops only because of
he humidification system that uses municipal water at about 2 ◦C.
ite visit confirmed that this water was drained directly to sewage

fter humidification process. The heating and humidifying process
s plotted in Fig. 7 (left).

As seen in the left diagram of Fig. 7, outdoor air is at state point
. Process A–B represents sensible pre-heating and heat recovery,

1 Information provided by the building operators.
Fig. 6. Screenshot of the FHU 4 control panel.

which can be characterized by a horizontal line. After this, the
heating and humidification processes are carried out successively,
shown as processes B–C and C–D. Based on the monitored data, the
actual air temperature after the heating coil system (point C) and
the air temperature after the humidification system (point D) are
plotted in Fig. 8.

Fig. 8 indicates that the air temperature after the heating coil
system is around 14 ◦C higher than that after the humidification
system. Clearly it is the low temperature of municipal water that
caused the dramatic temperature drop (from state C to state D) in
the conditioned fresh air, and such temperature drop can lead to a
significant energy waste. That means the heat added to the fresh air
during A–B and B–C processes is simply discharged with exhaust

municipal water after the humidification process.

One possible remedy for such an issue would be decreasing the
air temperature after the heating coil system. More specifically,
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explained.
In order to provide an insight into the association opposition,

the air flow rates of fan 1 in the FHUs 4 and 5 in these two  years
are plotted in Figs. 12 and 13,  respectively. Considering that fan 1

Table 3
Fig. 8. Air temperature after heating coil (state C) and humidifier (state D).

hift point C to the left (to point E), as shown in the right diagram
f Fig. 7. Correspondingly, one possible method in reality could be
ecycling and reusing (instead of discharging) the municipal water
fter it is warmed up after passing through the humidifier. In order
o describe this process clearly, based on the monitored data and
eat transfer theory, two schemas of hypothetical air/water tem-
erature in the FHU 4 in winter before and after the remedy are
iven in Figs. 9 and 10.

In Fig. 9, the outdoor air temperature, air temperature after the
eat recovery, air temperature after the heating coil, and air tem-
erature after the humidifier are assumed to be −9 ◦C, 3 ◦C, 28 ◦C
nd 15 ◦C, respectively. At the same time, municipal water before
nd after the humidifier are assumed to be 2 ◦C and 12 ◦C.

In Fig. 10,  the recycled high temperature municipal water (at
5 ◦C) and fresh municipal water (at 2 ◦C) could be mixed and then
upplied to the humidifier again, considering the water loss during
umidifying. The temperature of the mixed water is assumed to be
t 8 ◦C and the water left the humidifier at 12 ◦C (or even higher).
ith this method, it would be enough to heat the fresh air up to a

ower temperature (e.g. 21 ◦C as shown in Fig. 10)  instead of 28 ◦C
n the heating coil. Accordingly, a huge amount of energy can be
aved in the heating coil. However, it should be mentioned that it
ould be necessary to treat the water before it is reused2 to prevent
icrobial issues.

.2. ARM in winter in the dataset 1 and dataset 2
Association rule mining was also carried out in winter for the
ataset 1 and dataset 2. After experimenting with various combi-
ations of support and confidence values, a support of 50% and a

2 Through discussion with the building operators, this energy waste was con-
rmed and they planned to fix this problem using an appropriate method.
Dry bulb temperature
ocesses in psychrometric chart.

confidence of 80% were set as minimum thresholds. In addition,
the minimum threshold of lift value was  set 1 to find positive
correlations. Specifically, association rules were first mined in the
dataset 1. Such mining generated 461 rules (i.e. the rule set 3), and
32 parameters were involved in these rules. Then, association rules
were mined in the dataset 2 and only the data records of these 32
parameters were used. Such mining generated 262 rules (i.e. the
rule set 4). After that, the two  sets of generated rules were com-
pared with each other to further identify truly interesting rules.
As a result, the obtained interesting rules were grouped into three
categories in order to discover useful knowledge, as follows:

Category 1: same rules generated in the both datasets
From Rules 1 and 2, it can be observed that, the air flow rates

of fan 1 in the FHU 1 and FHU 2 have a strong association and
correlation. At the same time, Rules 3 and 4 show that the air flow
rates of fan 2 in the FHU 1 and FHU 2 also have a strong association
and correlation (this is reasonable since the two  fans in the same
FHU are identical and controlled by one VSD). Therefore, it can be
inferred that the total air flow rates of the FHU 1 and FHU 2 are
strongly associated and correlated (Table 3).

The air flow rates of the FHUs 1 and 2 in both dataset 1 and
dataset 2 are plotted in Fig. 11.  It can be seen that the variation
of air flow rates of these two  FHUs follows the same trend. Fur-
thermore, the values of air flow rates between these two FHUs are
close to each other in both datasets. This indicates that the total air
flow rates of the FHU 1 and FHU 2 are always strongly associated
and correlated. Accordingly, if a continuous significant difference
between them is observed, it can be inferred that either of the FHUs
could have a fault. Therefore, the rules can help to understand FHU
operation and also be applied to online fault detection.

Category 2: similar rules generated in both the datasets but are
opposite in premise/conclusion

Six potentially useful rules in Category 2 are found and given in
Table 4. Rules 1 and 2 show that between these two years, the
air flow rates of fan 1 in the FHU 4 and FHU 5 have opposite
associations and correlations. Similarly, Rules 3 and 4 can also be
Four rules in Category 1.

No. Premise Conclusion Sup Conf Lift Dataset

Rule 1 QI1 [low] QII1 [low] 0.52 0.98 1.70 1
Rule  2 QI1 [low] QII1 [low] 0.55 1.00 1.63 2

Rule  3 QI2 [low] QII2 [low] 0.52 0.97 1.70 1
Rule  4 QI2 [low] QII2 [low] 0.57 0.95 1.65 2
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Fig. 10. Hypothetical air/water temperature in the FHU 4 after the remedy.

Fig. 9. Hypothetical air/water temperatu

Table  4
Six rules in Category 2.

No. Premise Conclusion Sup Conf Lift Dataset

Rule 1 QV1 [low] QIV1 [low] 0.59 0.92 1.49 1
Rule 2 QV1 [high] QIV1 [low] 0.51 0.81 1.31 2

Rule 3 QV2 [low] QIV2 [low] 0.57 0.91 1.50 1
Rule 4 QV2 [high] QIV2 [low] 0.54 0.99 1.31 2

Rule 5 QIX3 [low] TAIXbri [high] 0.60 0.82 1.12 1
Rule 6 QIX3 [high] TAIXbri [high] 0.52 0.90 1.51 2

Fig. 11. Air flow rates of the FHUs 1 and 2 in the dataset 1 and dataset 2.
re in the FHU 4 before the remedy.

and fan 2 in the same FHU are identical and controlled by the same
VSD, their air flow rates are approximately the same, and thus only

the air flow rate of the fan 1 is plotted.

Clearly, Fig. 12 shows that the values of air flow rates of fan 1
in these two FHUs are very close in 2007. This is reasonable since

Fig. 12. Air flow rates of fan 1 in the FHUs 4 and 5 in dataset 1.

Fig. 13. Air flow rates of fan 1 in the FHUs 4 and 5 in dataset 2.
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Table 6
One rule in Category 3.

No. Premise Conclusion Sup Conf Lift Dataset

1 FVI [high] FVII [high] 0.60 0.97 1.60 1

Fig. 15. Frequency of VSD on the fan in the RHU1 and RHU2 in dataset 1.
Fig. 14. Screenshot of the EHU 2 control panel.

these two FHUs are identical, and clearly their air flow rates should
always be almost the same. However, Fig. 13 shows that, in 2009,
the air flow rates of fan1 in the FHU 5 are much larger than that
in the FHU 4 most of the time. Accordingly, it can be inferred that
a fan fault occurred in the FHU 4 in 2009. Therefore, the rules can
be used as a guide of fault diagnosis on the fans and FHUs.

Based on Rules 5 and 6, it can be found that these two rules’
premises (i.e. the air flow rate of fan 3 in the EHU 2) are opposite.

Fig. 14 shows the screenshot of the EHU 2 control panel. Clearly,
the three exhaust air ducts (refer to 1, 2 and 3 in this diagram) are
connected to each other. Furthermore, exhaust air from different
parts of the VA part will be mixed in duct 4 before being distributed
to the three fans (refer to three yellow circles in this diagram). A
further analysis of operational data on these three fans in both
years shows that two of them were always turned on to extract
exhaust air while the other one was turned off. Moreover, two
different control strategies were implemented in the two different
years respectively: in 2007, the fans 1, 2, and 3 were turned off
alternatively; in 2009, the fan 2 was always turned off while the
fans 1 and 3 were always turned on. However, from the point of
view of energy consumption, there is no difference between these
two strategies, and it is highly desirable that a new control strategy
can be proposed to save energy. Given that these three fans are
identical and controlled by individual VSD, one possible energy-
saving method is to use all these three fans instead of two of them.
A comparison between the current and proposed strategy is made
to show the energy conservation. For current strategy, assume the
actual air flow rate of each fan is M,  the actual fan speed is V,
and the actual power required by each fan is P. Table 5 shows the
results of comparison between the two strategies.

From Table 5, it is obvious that (2P − 8P/9) = 10P/9 can be saved
if the proposed strategy is used. However, before this strategy is
adopted in practice, it should be checked whether the fans will
operate in the range of high efficiency, but not the dangerous
unstable (surge) region at low air flow rates.Category 3: rules gen-
erated in only one dataset (either dataset 1 or dataset 2)

One potentially useful rule in Category 3 was found and given
in Table 6. The rule shows that the fan frequency in the RHU 1

and RHU 2 has a strong association and correlation. The frequency
of the two fans is plotted in Fig. 15,  and it can be seen that FVI is
almost equal to FVII all the time. Given that the RHU 1 and RHU 2

able 5
omparison between the two control strategies.

Strategy Number of fans used Air flow rate of each fan Total air flow r

Current 2 M 2 M 

Proposed 3 2 M/3  2 M 

a According to the fan laws, the capacity is directly proportional to the fan speed.
b According to the fan laws, the power required is proportional to the cube of fan speed
Fig. 16. Air flow rates of the fan in the RHUs 1 and 2 in dataset 1.

are identical, it can be inferred that these two  RHUs’ air flow rates
(i.e. QVI and QVII) should be approximately identical. Accordingly,
there should exist a strong association and correlation between QVI
and QVII. However, no rule between QVI and QVII has been found
in both dataset 1 and dataset 2. For this reason, air flow rates of
the fan in the RHUs 1 and 2 in the dataset 1 are plotted in Fig. 16.
Clearly, a significant difference can be found between QVI and QVII,
which indicates that either RHU 1 or RHU 2 has a fault. Further,
data shows that the RHU 1 did not operate in 2009 (QVI is zero in
the dataset 2). Therefore, it can be concluded that the RHU 1 has
a fault.

5.3. Association map

Besides association rules in the form of text, RapidMiner also
provides a graphical view of an association map, representing all
generated association rules. For simplicity, the association map in
the dataset 2 instead of the dataset 1 is given in Fig. 17,  considering
ate Fan speed Power required by each fan Total power required

V P 2P
2V/3a 8P/27b 8P/9

.

that only the parameters showing up in both the rule set 3 and the
rule set 4 are involved.

In this map, each line represents one association rule, and
thus the amount of lines quantitatively indicates the amount of
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Fig. 17. Association map  in the dataset 2 provided by RapidMiner.
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Fig. 18. Air flow rates of fans 1 and 2 in the FHU4 in the dataset 2.

ssociations between various parameters. Moreover, an arrow
owards the parameter shows that this parameter appears in the
onclusion of the association rule, and vice versa.

The map  provides a holistic pattern of associations between var-
ous parameters. Clearly it can be seen that there exists a significant
ifference between the parameters on the amount of associations
ith other parameters. For example, TAIar and TAIIar (i.e. fresh air

emperature after the recuperation glycol in the FHUs 1 and 2)
as only one association with other parameters and both of them
ppear in the premise. This indicates that these two  parameters’
alues may  be purely random or remain relatively stable through-
ut the whole winter and thus no association with other parameters
an be found. It may  have occurred since these two  parameters are
artly decided by outdoor air temperature, which is uncontrollable
nd relatively irregular. On the contrary, QIV2 (i.e. the fresh air flow
ate of fan 2 in the FHU 4) has the most associations with other
arameters, and appears in both premises and conclusions. This

ndicates the parameter has the highest possibility of influencing
r being influenced by other parameters and thus deserves extra
ttention.

In addition, between similar parameters (e.g. air flow rates of
wo fans in the same FHU), difference in the amount of associations
ith other parameters should not be huge. However, it is noticed

hat, between TAIVac and TAVac (i.e. the fresh air temperature after
he cooling coil in the FHUs 4 and 5), such difference is significant:
AIVac only has one association with other parameters while TAVac
as eight. This implies that the FHU 4 may  have a fault. Accordingly,

ata analysis was performed on various parameters of the FHU 4;
nd the air flow rates of fans 1 and 2 in the FHU 4 are plotted in
ig. 18.  Clearly, the air flow rates between these two  fans are com-
letely different most of the time. Considering fan 1 and fan 2 in
ngs 47 (2012) 430–440 439

the same FHU are identical and controlled by the same VSD, it can
be inferred that, either the fan 1 or the fan 2 (or both of them) in
the FHU 4 have a fault. This conclusion is in accordance with the
conclusion drawn from Rules 1–4 in Category 2 (Section 5.2).

The acquired knowledge could help building operators and own-
ers better understand HVAC system operation and detect faults.

6. Summary and conclusions

In this paper, a new methodology is proposed for examining
all the associations and correlations between building opera-
tional data. Accordingly, useful knowledge will be uncovered to
help improve HVAC system performance and reduce energy con-
sumption. The methodology is based on a basic data mining
technique: association rule mining. In order to use this methodol-
ogy, two-year building operational data needs to be collected. Data
pre-processing should be performed before the ARM to remove out-
liers, so as to improve the quality of data and, consequently, the
mining results. Furthermore, to take complete advantage of build-
ing operational data, data in different period length (e.g. both a day
and a year) should be mined. Also, the obtained associations and
correlations in different years should be compared between each
other.

In order to demonstrate its applicability, this methodology was
applied to the EV building located in Montreal, which is very cold in
winter. Accordingly, the winter data of the air-conditioning system
in this building in both 2007 and 2009 was mined. A waste of energy
in the air-conditioning system was  identified through mining asso-
ciation rules for the coldest day. Also, based on the comparison
between winter association rules in the different years, possible
faults in equipment were detected, and a low/no cost strategy for
saving energy in system operation was  proposed. Moreover, the
association map  was used to provide a holistic view of all the gen-
erated rules. This map  could help explain how various parameters
associate one with each other, and detect faults in equipment.

The proposed methodology allows for addressing the special
challenges caused by the complexity of large volume of building
operational data. By using this methodology, building operators
and owners can discover all the useful associations and correlations
between building operational data. Based on domain expertise,
they can translate the obtained associations and correlations into
useful knowledge, thereby better understanding building opera-
tion, identifying energy waste, detecting faults in equipment, and
proposing low/no cost strategies for saving energy.

The main focus of future research should be placed on applying
the proposed methodology to building operational data collected
in different building sectors, climates, and building automation
systems, in order to further evaluate its effectiveness and help
understand the impact of different elements influencing building
energy consumption. Once the methodology is generally accepted,
it can be integrated into online data analysis and online fault
detection to reduce building energy consumption efficiently. The
software RapidMiner can be employed to perform the ARM and
to help realize this methodology. Moreover, it can serve as a data
mining engine for the integration and can automatically report
interesting rules/patterns without requiring human intervention.
However, data analysts are still necessary to compare obtained
association rules to discover useful knowledge about building
energy performance improvement.
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