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a b s t r a c t 

A reliable occupancy prediction model plays a critical role in improving the performance of energy simulation 

and occupant-centric building operations. In general, occupancy and occupant activities differ by season, and 

it is important to account for the dynamic nature of occupancy in simulations and to propose energy-efficient 

strategies. The present work aims to develop a data mining-based framework, including feature selection and the 

establishment of seasonal-customized occupancy prediction (SCOP) models to predict the occupancy in buildings 

considering different seasons. In the proposed framework, the recursive feature elimination with cross-validation 

(RFECV) feature selection was first implemented to select the optimal variables concerning the highest predic- 

tion accuracy. Later, six machine learning (ML) algorithms were considered to establish four SCOP models to 

predict occupancy presence, and their prediction performances were compared in terms of prediction accuracy 

and computational cost. To evaluate the effectiveness of the developed data mining framework, it was applied to 

an apartment in Lyon, France. The results show that the RFECV process reduced the computational time while im- 

proving the ML models’ prediction performances. Additionally, the SCOP models could achieve higher prediction 

accuracy than the conventional prediction model measured by performance evaluation metrics of F-1 score and 

area under the curve. Among the considered ML models, the gradient-boosting decision tree, random forest, and 

artificial neural network showed better performances, achieving more than 85% accuracy in Summer, Fall, and 

Winter, and over 80% in Spring. The essence of the framework is valuable for developing strategies for building 

energy consumption estimation and higher-resolution occupancy level prediction, which are easily influenced by 

seasons. 
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. Introduction 

.1. Research background 

Buildings account for 30–40% of total energy consumption and con-
ribute to approximately 19% of greenhouse gas emissions [ 1 , 2 ]. The
U’s Energy Department revealed that buildings account for more than
0% of primary energy consumption. Of that, 28% and 14% are con-
umed in residential and commercial buildings, respectively [3] . More
han 80% of building energy consumption in the world occurs during the
peration phase of the building’s life cycle [4] . Heating, ventilation, and
ir conditioning (HVAC) systems account for nearly 40% of total elec-
ricity consumption in residential buildings. However, due to climate
hange, the global average temperature will rise 1°C by 2050 compared
o today, which will lead to more households buying air conditioners
nd increasing the air conditioning load. The population growth trend
s another important driver of heating and cooling demand. From 2016
o 2030, the populations of the world, EU, and the US could increase
y 1.0%, 0.1%, and 0.7%, respectively [5] . These two factors can drive
nergy use of cooling and finding ways to enhance building energy effi-
iency is an urgent need. To achieve this aim, building energy demand
hould be simulated accurately for energy planning, peak load shifting
trategies and accordingly, building service systems could avoid energy
astage and provide timely services [6] . 

Occupant-centric control (OCC) is a prevalent control technique that
cquires data from indoor environmental and human–building interac-
ion, and this information can be fed into building control systems to
mprove energy efficiency without sacrificing occupants’ comfort [7] .
ccupant’s presence information is critical for optimizing HVAC oper-
tions, avoiding energy waste, and significantly contributes to building
nergy simulation performance without any cost investments. One of the
ain challenges in simulating representative building energy demand is

ssigning appropriate data regarding occupancy information [ 8 , 9 ]. Oc-
upancy is stochastic in nature and differs based on many factors, one
f which is the season of the year. Previous studies did not consider the
eason changes effect on occupancy prediction [10–12] . This not only
auses energy wastages but also lowers the thermal comfort of the oc-
upants [13] . Therefore, obtaining reliable and precise occupancy pre-
iction results requires additional investigation. 

.2. Occupancy resolution levels 

Occupancy-related information is useful for different applications,
uch as building energy management systems (BEMS), parking manage-
ent, space management, and emergency response. Different applica-

ions require different occupancy resolution levels [14] . The concept of
occupant information ” does not have a standardized definition, mean-
ng that the OCC can be operated from a wide range of different data
ollection ranges, each with its own characteristics [15] . Labeodan et al.
16] proposed six occupancy resolution levels in commercial building
nd arranged them according to importance regarding building energy
onsumption. The six occupancy resolution levels are defined as follows:
1) Level 1 means occupancy presence. A traditional passive infrared
ensor (PIR) can be used to record a binary value indicating whether
ccupants appear in a particular zone. (2) Level 2 focuses on where the
erson in the building is. Li et al. [17] used the tacking label from radio
requency identification (RFID) to indicate the location of the occupants.
nother component, a reference label, is attached to the environment

o provide a reference for occupant location estimation to know which
pecific thermal zone the occupants are in the building. This level is sig-
ificant to HAVC control in commercial or office buildings with more
han one thermal zone. (3) Level 3 represents how many people are in
 zone. Traditional occupancy sensing technologies, such as PIR and ul-
rasonic sensors, can only detect an occupant’s motions. However, some

i-Fi devices and camera sensors could obtain the number of tenants
nd record binary (occupied or unoccupied) occupancy information. (4)
2 
evel 4 represents activity (what are they doing), which is commonly
sed for determining the acceptability of indoor thermal environment
18] , and it is more advanced than the levels of occupancy presence
nd occupant number [19] . (5) Level 5 refers to identity and focuses on
ho people are. Occupancy identity is high-level occupancy informa-

ion [18] , and each occupant has a different identity, including facial
eatures, personal computer addresses, and mobile accounts. (6) Level

 indicates where the person has been. The occupant track provides
nformation about the occupant’s movement trajectory across different
ones in the building by recording their moving-to or moving-from. This
nformation is usually used in the design of proactive comfort systems
20] . Since the occupant’s activities scope and room areas are limited
r do not change much in a residential building compared to a commer-
ial building, it is sufficient to predict occupancy presence/absence state
level 1) and the number of occupants in the building (level 3). These
wo can provide necessary occupant-related inputs for energy simulation
nd to explore the energy-saving opportunities in the residential build-
ng. With that, predicting occupancy presence or occupant numbers is
he best option for residential buildings. 

.3. Occupancy monitoring techniques 

To predict the likelihood of an event (e.g., occupants being present
n a space), occupants’ motion detection data should be collected over a
easonable period [21] . As something that plays a significant role in the
ata collection phase, occupancy data collection is mainly categorized
nto two major groups: survey and sensor collection. Surveys are usu-
lly used to identify occupants’ schedules and determine the activities
hat significantly affect human–building interactions, such as window
linds and lighting, heating, ventilation, and air conditioning control
L-HVAC) system operations [21] . Using surveys could help collect reli-
ble occupancy information and understand occupants’ preferences re-
ated to these equipment and system settings. The common questions
n surveys include occupants’ personal information (e.g., gender, age,
nd sex), arrival/ departure time, and users’ habits of building system
ontrols [ 22 , 23 ]. Yun et al. [22] applied questionnaires to reveal how
 building system was affected by occupants during July to September
n Seoul, Korea. In their study, 60 staffs participated in the survey, and
hey were asked to fill out the questionnaires five times per day (twice
n the morning, twice in the afternoon, and once in the evening). The
esults showed that the average occupancy time of investigated office
as nearly 16 hours on a typical working day, which was longer than

he expected occupancy time of the office used for building energy con-
umption design prediction. 

Another way to collect occupancy data is to use various sensors to de-
ect indoor occupancy presence, occupant numbers, occupant identities,
nd occupant activities. Different sensors are used to collect occupancy
ata in different resolution levels. Motion detectors are widely utilized
o detect the movements of occupants in specific spaces. Typical mo-
ion sensors include PIR, ultrasonic detectors, and pressure sensors. The
lacement of a motion detector is vital because motion sensors require
 direct line-of-sight to detect occupant presence [24] . Although the
otion sensor could detect occupancy presence, some applications may
ot be enough. For example, the motion sensors cannot provide high-
evel resolution occupancy data to predict the number of occupants or
ccupant’s movement. Vision-based techniques for detecting occupant
umbers, locations, and activities are promising to bridge this gap [11] .
uthors in previous studies developed camera-based machine learning

ML) models to predict occupancy presence and occupants’ activities
 11 , 25 , 26 ], and the accuracy range is from 80% to 97%. In addition,
ith the development of sensor technology, radiofrequency-based sen-

ors have been used by many researchers in recent studies, and there are
any types of radiofrequency sensors, such as RFID, Wi-Fi technology,
ireless local area network (WLAN), Bluetooth, and Zigbee [ 17 , 23 , 27 ].

However, the concerns over occupants’ privacy, high installation
ost, and high computational complexity are still the main reasons for
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the correlations between variables. 
estricting the usage of vision and radiofrequency-based sensors. Alter-
atively, some indirect environmental sensors, such as sensors of in-
oor/outdoor CO 2 , temperature, humidity, are frequently used to col-
ect indoor environmental data to estimate occupancy status. More-
ver, energy- (light, plug, and HVAC energy consumption data) and
ime-related (time of the day, weekday/weekend) parameters were also
onsidered in previous studies and successfully predicted occupancy
 8 , 28 , 29 ]. 

.4. Occupancy prediction 

Occupancy prediction models are developed using occupancy and
nvironmental data collected by various sensors. These models are usu-
lly utilized to predict the occupancy probability, occupant numbers,
ccupant activities, and occupant movements in different applications.
he methods for forecasting occupancy information can be divided into
wo major groups: stochastic models and data mining (DM) approaches.
he stochastic models use real-time data to estimate the probability of
 presence event [10] or an activity event (e.g., lamps switch on/off be-
avior). Markov chain (MC), hidden Markov model (HMM), and inho-
ogeneous Markov chain (IMC) are three common stochastic models for
redicting occupancy. The fundamental point of MC is that the current
tate depends only on the previous state. Huchuk et al. [28] used MC
nd HMM models to predict future occupancy status three hours ahead
ith the parameters of time of the day, previous occupancy status, and
eekdays/weekends. Solely applying stochastic models may not guar-
ntee the robustness of the occupancy prediction models [10] since the
tochastic models pay attention to many uncertainty estimates (e.g., con-
dence intervals), and must consider that all assumptions must be met to
rust the results of a particular algorithm. Therefore, they have a lower
olerance for uncertainty and flexibility. However, both efficiency and
obustness can be achieved when combining stochastic methods (e.g.,
MM, standard MC) and statistical methods (e.g., Bayesian probability,
ime-series) [21] . ML, also widely known as a data-driven method, is a
ombination of statistical and stochastic techniques to ensure prediction
obustness when there is not much randomness in the outcome to be pre-
icted [21] . To tackle the low accuracy of the MC model, Huchuk et al.
28] also considered the ML methods of logistic regression (LR), random
orest (RF), and recurrent neural network (RNN) into the occupant pre-
iction model. They found that the RF algorithm model outperformed
ther methods [28] , and the stochastic models did not show the best
rediction performance (MC and HMM models are slightly low than 0.8
verage accuracies). Chen et al. [30] compared the stochastic models
nd data mining approaches and used the IMC model and multivari-
te Gaussian to compare two ML techniques (artificial neural network
ANN) and support vector machine (SVM)) to predict occupancy level
n a commercial building. Even though the performance of stochastic
odels was acceptable, the prediction capability was limited compared

o DM approaches. 
DM techniques were developed to learn and predict occupancy in

hree main formats in previous studies: binary occupancy (i.e., occu-
ied or unoccupied) [31] , numerical values (i.e., occupant numbers)
12] , and continuous occupancy (i.e., the probability distribution of oc-
upancy) [29] . ML is an important principle embodying DM [32] , al-
owing computers to learn from historical data and predict target val-
es. Two major ML types are used frequently in building engineering
esearch areas: supervised and unsupervised learning algorithms [33] .
upervised learning is a traditional learning method with training data
nd target labels [32] , and It can be divided into two categories: clas-
ification and regression. Classification is used to predict the data cate-
ories (e.g., fruit breed prediction), while regression is utilized to predict
ontinuous value based on previously observed data (e.g., housing price
rediction and height estimation). Unlike supervised learning methods,
nsupervised methods use data with no labels [34] , and the primary
oal of unsupervised learning is to explore the data and hidden struc-
ure among them [34] . Supervised learning algorithms mainly include
3 
NN, LR, SVM, RF, decision tree (DT), and k-nearest neighbor (KNN).
nsupervised learning algorithms mainly include the principal compo-
ent analysis, K-mean clustering, Gaussian mixture model, and support
ector data description. 

Although previous research has made significant progress, there are
till some challenges. The existing data collection durations in previous
tudies are too short (most of them are less than four months) to testify
he robustness of their occupancy prediction models [35–38] . There are
ot too many studies investigating the impact of seasons on the perfor-
ance of occupancy prediction models. Occupant activities could be dif-

erent in different seasons. Therefore, the correlation between the two
ariables could change based on the seasonality effect. For example,
FECV-GBDT selected 12, 13, 10, 13 features in Spring, Summer, Fall,
nd Winter, respectively. With that, there are no fixed optimal variables
o predict occupancy presence in all seasons. More details about opti-
al feature numbers selection and feature combinations can be found

n Section 2.4.1 and Appendix E. Furthermore, whether it is feasible
nd possible to maintain accuracy under seasonal changes needs fur-
her studies. To this end, it is expected to develop a data mining-based
ccupancy prediction framework (DM-OPF) to select optimal features
o ensure the robustness of the prediction models. 

.5. Research objectives 

This study aimed to develop a DM-OPF to establish seasonal-
ustomized occupancy prediction (SCOP) models that consider seasonal
nfluence to improve the prediction accuracy of occupancy presence. To
evelop the DM-OPF, two specific research objectives are: 

1) Implementing recursive feature elimination with cross-validation
(RFECV) feature selection and feature importance to select the opti-
mal variables and rank the most critical parameters among the se-
lected features for each season. 

2) Comparing the performances of six ML algorithms (LR, SVM, DT,
gradient-boosting decision tree (GBDT), RF, and ANN) in terms of
prediction accuracy and computational time to study the algorithms’
abilities. 

The first objective is important as the number of features and the
eature combinations affect the prediction accuracy significantly. Con-
idering the interaction between two variables is the biggest advantage
f the RFECV method, and it could improve the prediction accuracy and
educe overfitting. 

The paper is organized as follows. Section 2 describes the methodol-
gy framework, data preprocessing steps, and the main stages of devel-
ping DM-OPF. In Section 3 , data collection, data cleaning, and data
ransformation are explained. The results from the exploratory data
nalysis (EDA), feature selection, and prediction performance are found
n Section 4 . Finally, Section 5 discusses the conclusions and future
orks. 

. Methodology 

.1. Developed data mining framework and its uniqueness 

The overall methodology framework includes three steps, as shown
n Fig. 1 . In step 1, the collected data (explained in Section 3 ) was
leaned by processing the missing values and removing outliers to guar-
ntee the quality of the data. Successively, data transformation was em-
loyed to scale the features by centering the mean with standard devi-
tion since features with large units could outweigh smaller units and
ause prediction inaccurately. More details regarding data cleaning and
ransformation can be found in Section 3 . In Step 2, EDA was performed
o better understand the data correlations between variables, and the
airwise scatter plot with correlations coefficients was used to study
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Fig. 1. Proposed framework. 
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The development of DM-OPF is the novelty of this study, which oc-
urred in step 3 and included two steps. After dividing the whole year’s
ata into four datasets (Spring, Summer, Fall, and Winter). Take the
ataset Spring as an example; first, RFECV was utilized in this frame-
ork to select the optimal features for different predictive algorithms in
pring, based on prediction accuracy results. Then, six ML algorithms
ere applied to develop SCOP models to predict the real-time occupancy

tatus based on the results from RFECV. The selection of these algo-
ithms is mainly based on two considerations, i.e., popularity and diver-
ity. Predicting occupancy presence (occupied = 1 or unoccupied = 0) is a
ypical classification problem [39] , and the selected algorithms are ben-
ficial to this problem since they have been widely used to solve classifi-
ation tasks and have achieved encouraging results. In other words, the
L models including the logistic regression model, are widely used for

rediction than exploring the relationship between the variables [28] .
oreover, model parameters are optimized through cross-validation to
aximize the prediction accuracy. The same strategy is applied to the
ataset of Summer, Fall, and Winter. 
h  

4 
The uniqueness of the proposed framework is that it considers the
easonal influence on occupancy prediction and develops four SCOP
odels to improve the prediction accuracy than the traditional occu-
ancy prediction model. Fig. 2 shows the difference between the SCOP
odels and the conventional occupancy prediction model. The first dif-

erence between these two is the features. In the conventional prediction
odel, the feature selection is based on the whole year dataset, while

n the SCOP models, the feature selection is based on each season. The
econd difference is parameters settings. Take the DT algorithm as an
xample. The conventional model only has one setting for the whole
ear, but the SCOP models have four DT models for each season. The
ustomizable feature selection and parameter setting can improve the
rediction accuracy, and the results can be found in Section 4.3.3 . 

.2. Step 1: Data preparation 

Data is not always perfect. Sometimes some data are missing due to
uman or sensor errors, such as noisy, missing, or inconsistent data [8] .
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Fig. 2. The difference between seasonal occupancy prediction and conventional prediction model. 
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ata preprocessing is a significant step for removing noise and incorrect
ata before applying ML techniques. The raw and original data may
ontain missing values and outliers. Having many outliers and missing
alues could decrease the prediction accuracy. Moreover, since the raw
ata variables have different scales, using features with different scales
oes not contribute equally to the analysis. Thus, data cleaning was the
rst step in data preparation, and then data transformation was utilized
o achieve uniformity of different features’ values. The details of data
reparation are presented in Sections 3.2 and 3.3 . 

.3. Step 2: Exploratory data analysis 

EDA is an essential step in data analysis. The primary goal of EDA
s to use data visualization to test hypotheses and obtain a deep un-
erstanding of the dataset [40] . The main objectives of EDA can be
ummarized as follows: (1) outlier detection; (2) understand the struc-
ure of the database; (3) preliminary selection of appropriate models;
4) uncover the relationship between variables and extract the essen-
ial parameters; (5) visualize potential relationships between variables
nd outcome [41] . Scatter plots analysis is a common plotting tool [42] ,
hich usually plots pairwise parameters against each other to reveal the

orrelation and linear/non-linear or monotonic dependencies between
wo variables [42] 

.4. Step 3: Data mining-based occupancy prediction framework 

evelopment 

.4.1. Feature selection and importance 

To remove redundant features and test how many variables are op-
imal to maximize accuracy, the RFECV has been widely used to eval-
ate the combinations of the input features and determine the optimal
eatures to achieve the maximum accuracy prediction result [43] . The
undamental behind RFECV is to add cross-validation to the principle
f recursive feature elimination (RFE). RFECV initially works on all fea-
ures, and the least important feature is eliminated in each iteration
ased on the model’s cross-validation score [44] . Using cross-validation
an retain the best performance characteristics by providing a criterion
or RFE to determine the best number of features. 

In the feature selection process, first, a wrapper feature selection
ethod named RFECV was used to select optimal features, and then an

mbedded feature selection technique named feature importance was
mployed to rank the importance among the selected features obtained
5 
rom RFECV. The process of the feature selection analysis is shown in
ig. 3 . 

.4.2 Machine learning algorithms 

This section provides the brief overview of six ML algorithms, which
re LR, SVM, DT, GBDT, RF, and ANN. These algorithms were selected
ased on two main considerations: popularity and diversity [45] . Dif-
erent mathematical fundamentals behind them contribute to their di-
ersity to apply different studies and solve various problems, and each
elected algorithm has its own unique advantages and weaknesses. For
xample, the DT is simple to understand and interpret, while the LR is
ell known for avoiding overfitting [46] . In this study, all ML techniques
ere implemented using the Scikit-learn library via Python [47] . 

Logistic regression: LR is commonly utilized for binary and multi-
omial classification problems. The former is only used to predict two
lassifications while the latter accounts for more than two categories
48] . In this study, binary LR was used to predict the real-time occu-
ancy presence, occupied or unoccupied specifically. The occupied sta-
us refers to the occupants’ behaviors, such as cooking, exercising, and
alking around. The strengths of LR are simple to understand and can
e regularized. However, it does not perform well for non-linear and
omplex relationships [46] . 

Support vector machine: SVM is a supervised learning algorithm
hat can be used for both classification and regression. It has been found
o provide robust prediction performance concerning predicting occu-
ancy information [49] without using a large training sample. In the
ontext of classification, SVM searches for the optimal hyperplane that
an best separate data into two categories for the occupied and unoc-
upied state. Unlike LR, there is no probability for output in each class
50] . 

Decision tree: The classification and regression tree (CART), a type
f the DT method, was selected to predict occupancy status using in-
oor/outdoor environment and energy consumption data [51] . The
ART can construct binary trees, so each internal node has two edges.
 notable advantage of CART is that it can deal with numerical and cat-
gorical variables and can easily handle outliers. The classification tree
ses the Gini index to calculate impurity in order to determine which
eature should be located at the root and create non-leaf nodes. 

Gradient boosting decision tree: GBDT is an iterative DT algorithm
onsisting of multiple decision trees and using weighted voting to make
he final decision. As a typical ensemble learning algorithm, GBDT has a
igher prediction efficiency and lower computational cost than a single
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Fig. 3. Process of the feature selection and feature importance analysis. 
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T algorithm. The basic idea behind GBDT is to combine a set of “weak
earners ” to create one “stronger learner ” [52] . The GBDT, through mul-
iple rounds of iteration, each iteration produces a weak classifier, and
ach classifier is trained based on the residual of the previous round of
lassifier to obtain better results. 

Random forest: RF is a type of ensemble ML technique called bag-
ing, containing multiple decision trees [53] . The RF operates by build-
ng a multitude of weak CART classifiers. The results utilize voting for
lassification or averaging for regression, so the overall model results
ave higher accuracy and generalization performance. In addition, the
F adds additional randomness when building each tree independently
there is no correlation between each decision tree in the RF) to reduce
he prediction model’s variance. Thus, RF does not need extra pruning
o obtain better generalization anti-overfitting ability. 

Artificial neural network: The multi-layer perceptron (MLP) model
s an ANN model widely used in building engineering to estimate oc-
upancy presence [54] . The general structure of MLP consists of three
ypes of neuron layers [55] : an input layer, one or more hidden layers,
nd an output layer. Nodes from one layer are connected to all nodes in
he following layers, each connection corresponds to a different weight,
nd there can be no lateral connections in any layers or feedback con-
ections [56] . In the input layer, 18 input neurons are used, and each
ne represents a variable. The hidden layer contains all input variables,
ach variable multiplied by its weight, and a bias is also considered. 

.4.3. Model performance evaluation 

The model performance metrics used are F1-score and area under
he curve (AUC), respectively. The metrics are calculated from the con-
usion matrix, which is a table with two dimensions and can output
wo or more classes defined as true positive (TP), true negative (TN),
alse positive (FP), and false negatives (FN). F1-score is a measure of
est prediction accuracy, and it is a harmonic average of precision and
ecall [57] . The following equations ( Eqn 1-3 ), respectively, give the
quations of precision, recall, and F1-score: 

 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑃 
(1)

𝑒𝑐𝑎𝑙𝑙 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

(2) 

 1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(3)

Meanwhile, the AUC was also applied. AUC is created by the ratio
f TP against the FP rate and calculating the area under this plot. AUC
anges from 0 and 1, with 0.5 indicating that the model performs no
etter than random guessing, while 1.0 represents a perfect classification
odel. 

. Data collection and processing 

.1. Data collection 

To verify the effectiveness of the proposed framework, it is applied
o a one-year dataset collected from a high-performance building named
HIKARI’ located in Lyon, France [58] . HIKARI is a mixed-use building
6 
ontaining apartments, offices, and shops. In total, there are 32 apart-
ents in the building with different floor areas and numbers of rooms.
he present case study apartment is a three-bedroom apartment with a
oor area of 97.6 m 

2 . The selected apartment has more occupants (4
ccupants, during the year 2016) than other apartments. Accordingly, a
elatively more number of occupant movements were detected for each
our during the daytime compared to other apartments. This means the
ctivity level of the occupants is relatively higher than other apartments,
nd this can improve the robustness of occupancy prediction models.
aving more data on occupancy helped in exploring the correlation be-

ween the variables in different seasons and increased the robustness
in terms of training and testing data) of the ML models. Therefore, in
eneral, the results obtained in this study are applicable to other apart-
ents to predict the occupancy in different seasons. The floor plan of

he apartment is given in Fig. 4 . The case study apartment has a home
nergy management system (HEMS) with various sensors that could col-
ect the data of the indoor environment, occupant movement detection
0 or 1), and energy use (plug power consumption and lighting power
sage) at 1-min resolution. The details and measurement resolution of
he sensors is given in Table 2 . Each plug variable belongs to a specific
oom, but the specific location is unknown due to privacy issues. 

The monitored data includes meteorological (i.e., outdoor temper-
ture, outdoor humidity, solar irradiance, wind velocity, outdoor illu-
ination, and rain/no_rain), indoor environmental (i.e., indoor temper-

ture, indoor humidity, indoor CO 2 concentration, thermostat setpoint
emperature, indoor luminosity, window blind status, window auto-lock
tatus), time-related (i.e., time of the day, weekday/weekend, and day
eriod (peak time: 6:00 am-9:50 pm, off-peak: 10:00 pm-5:50 am)), and
nergy-related (i.e., lighting load and plug power energy consumption)
ata. The data selected as the inputs in this study, see Table 1 . 

.2. Data cleaning 

Missing values is a serious issue that needs to be addressed in the data
leaning process. To tackle long-term missing values (i.e., lacking data
or several hours in one day and the data is missing continuously for a
ong time), that day is removed from the dataset. To deal with the short-
erm missing data (i.e., missing values at a particular time step, not con-
inuously missing), the missing values are replaced by the average of the
revious two values in the dataset. Since the occupant movement data
s a binary value, no abnormal value is detected in the entire dataset.
imilarly, the missing values of the motion detection are filled in with
heir previous data as well [ 8 , 59 ]. Furthermore, the quantile method is
sed to detect the outliers in the dataset of the meteorological, indoor
nvironment, time-related, and appliances energy consumption [60] . 

.3. Data transformation 

Since the very high-resolution data is not required for building en-
rgy management, inspired from Ref. [61] , the data in this study were
caled to a 10-min time step, which is enough to provide a sufficient
ime horizon to make a decision without increasing computational time.
he parameters of the dataset have different ranges. In general, using
 smaller unit to represent an attribute leads to a larger range of the
ttribute, so it tends to give such an attribute a more significant in-
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Fig. 4. Floor plan of the case study apartment. 

Table 1 

List of input features. 

Features Abbreviation Type Unit 

Time of the day 𝐻 Numerical 1,2,3, …, 143,144 

Weekday_weekend 𝑊 Categorical Weekday = 1; weekend = 0 
Day period 𝐷 Categorical Peak period = 1; off peak = 0 
Outdoor temperature 𝑇 𝑜𝑢𝑡 Numerical ◦C 

Outdoor humidity 𝑅 𝐻 𝑜𝑢𝑡 Numerical % 

Solar irradiance 𝑆 𝐼 𝑜𝑢𝑡 Numerical W/m 

2 

Wind velocity 𝑉 𝑜𝑢𝑡 Numerical m/s 

Outdoor illumination 𝐼 𝑜𝑢𝑡 Numerical Lux 

Rain_no rain 𝑅 Categorical Rain = 1; no rain = 0 
Indoor temperature 𝑇 𝑖𝑛 Numerical ◦C 

Indoor humidity 𝑅 𝐻 𝑖𝑛 Numerical % 

Indoor CO 2 𝐶 𝑖𝑛 Numerical ppm 

Thermal setpoint temperature 𝑇 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 Numerical ◦C 

Indoor luminosity 𝐼 𝑖𝑛 Numerical Lux 

Window blind 𝑊 𝐵 Numerical Fully open = 0; fully closed = 100 

Window auto-lock status 𝑊 𝐴𝑆 Categorical Auto-lock = 1; normal = 0 
Lighting energy consumption 𝐸 𝐶 𝑙𝑖𝑔ℎ𝑡 Numerical Wh 

Plug energy consumption 𝐸 𝐶 𝑝𝑙𝑢𝑔 Numerical Wh 

fl  

s  

f  

d  

s  

c  

o  

m  

t  

o
 

o  

m  

i  
uence or “weight ” [62] . Therefore, values should be scaled into the
ame range to prevent the features with large ranges (e.g., indoor CO 2 )
rom outweighing those with small ranges (e.g., wind speed) using stan-
ardization. Besides, attribute construction is also a data-transformation
trategy to create a new feature [62] . A motion detector can detect oc-
upants’ presence, and a movement detection could guarantee residents’
ccupancy, but “no motion is detected ” does not imply absence because
7 
otion detectors fail to detect stationary objectives [63] . In this case, a
ime delay is required to interpret the motion detection data concerning
ccupancy status. 

In this study, a time delay is required to interpret the assumption of
ccupied or unoccupied based on the motion detection. If there is no
ovement within the time frame greater than the time delay, the zone

s assumed to be “0 ” (unoccupied) [64] . The time delay was set at 10
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Table 2 

Specification of sensors installed in case study apartment 

Sensor Manufacturer Type Detection range Measurement resolution 

Motion detector Theben PlanoCentro A-KNX 64 m 

2 if seated100m 

2 if moving Event-based a 

Light and plug load ABB KNX Energy Module: EM/S 3.16.1 —— 1 min 

Indoor CO 2 and relative humidity Theben AMUN 716 CO 2 :0–9999 ppmRH: 1–100% 1 min 

Thermostat Theben AG Varia -5 ◦C–45 ◦C 1 min 

a Note that the event-based sensor can be triggered at any time. Occupants’ movement collected by motion detector was transformed into 

the structured data at 1-min resolution, which means, if one or more movements are detected within one minute, it is recognized as one. 
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ins, which was aligned with prior studies [ 33 , 63 , 64 ]. However, case
tudies of prior research were all office buildings, and time delay value
ould be used all day since the officers or students depart the office
nd go home at the end of the day. Residential buildings differ from
ffice buildings in terms of occupant schedules. Motion detectors cannot
onitor stationary occupants when they sleep (i.e., the motion sensor

ecords “0 ”). Therefore, the time delay strategy cannot be applied to a
esidential building when occupants sleep. In this case, before midnight,
he time delay strategy is used, and if there is at least one movement
ithin a time delay, the space is assumed to be occupied. After midnight,

he time delay strategy is ditched. During the midnight to the morning
until the motion is detected when the occupants get up), if there are at
east two movements, it is considered that the apartment is occupied.
fter converting motion detection to occupancy status, each occupancy
tatus was transformed to either 0 or 1, representing unoccupied and
ccupied, respectively. 

. Results and discussions 

.1. Exploratory data analysis 

Seasonality could affect the accuracy of occupancy presence estima-
ion and occupant profiles [61] . Therefore, it is crucial to consider the
easonal variations in pairwise scatter plots analysis. In this section, the
esults of the EDA are presented, and this indicates that the whole year
ata is broken down into four datasets due to the seasonality effect. In
his research, the year was categorized into four seasons based on the
nternational season calendar [65] . Spring lasts from March 19 th to June
9 th ; Summer is from June 20 th to September 21 st , Fall is from Septem-
er 22 nd to December 20 th , and finally, Winter is the combination of
wo periods (January 1 st to March 18 th and December 21 st to December
1 st ). In pairwise scatter plots analysis, the time-related data was not
nvolved. 

A pairwise scatter plot with correlation was used to display the rela-
ionship between two variables. Fig. 5 shows three information groups:
1): the diagonal shows the variables’ names with distribution histogram
lots. (2): the upper triangle displays the correlation coefficients be-
ween two variables by performing Spearman correlation. A correlation
f 1 is a total positive correlation, -1 is total negative, and 0 means
o correlation between two variables [66] . (3): to detect the monotonic
ependencies, the lower triangle shows pairwise scatter plots of the vari-
bles where the moving average curve is added. 

Appendix D describes all correlations between two variables for the
hole year. Some variables do not have strong relationships with any
ther variables, such as outdoor solar irradiance, wind velocity, outdoor
llumination, rain/no rain, and thermostat setpoint temperature because
heir Spearman correlation coefficients are less than |0.6|. Therefore
hese variables were not analyzed in pairwise scatter plots analysis. Even
hough the window blind and window shade have a very strong positive
elationship, the fact that the window blind causes window shade makes
hese two variables the same in some way, and window shade is a quasi-
onstant feature. In this case, the window shade was removed. 

Fig. 5 and Appendices A-C reveal the phenomenon that the corre-
ation coefficients are significantly different regarding different seasons
etween two variables, even if they are positively or negatively corre-
8 
ated. For instance, although the window blind always negatively cor-
elates with occupancy information in all seasons, the correlation co-
fficients are notably different. There is a strong negative correlation
etween window blind and occupancy in Summer and Winter, with the
trongest correlation reaching -0.53 in Summer and -0.66 in Winter.
evertheless, there is no correlation between these two features in Fall.

In Fig. 5 and Appendix A-C. Based on the Spearman correlation anal-
sis, the following patterns can be recognized in the lower triangle: oc-
upancy ratio is monotonically related to indoor CO 2 , light load, and
lug load in all seasons because these three features are easily affected
y residents and their values can reflect the occupancy status. For ex-
mple, the appliance energy consumption of a household at home is
igher than when no one is at home. However, the strong correlation
oes not imply causation, which means which features can be used for
redicting cannot decide from the results in EDA. Features that do not
trongly correlate with the output does not imply they cannot offer use-
ul information because combining them with other features may be-
ome a promising combined feature. Hence, considering the interaction
etween various features is also a vital step in feature engineering. 

Except for indoor CO 2 , light load, and plug load, window blind has
 moderate relationship with occupancy ratio in general, but there is
 strong correlation between them in Winter. Thus, window blind may
ave a great potential for predicting occupancy presence. Considering
he correlations between features and occupancy could change in dif-
erent seasons, one feature may provide valuable information to predict
ccupancy in some seasons and may not be informative in other seasons
ince it cannot offer any insight during their training process. 

.2. Feature selection analysis 

Although pairwise plot analysis reveals the correlations between all
ariables, it does not involve considering the interactions between vari-
bles and tell us the optimal feature combinations for developing pre-
iction models. Unlike filter and embedded feature selection methods,
he RFECV provides significant advantages in considering the interac-
ions between variables, which helps to reduce the risk of overfitting,
mprove prediction accuracy, and has greater flexibility in practical ap-
lications [45] . As inspired from Ref. [45] , RFECV-ML models are suf-
xed by “-1 ”, “-2 ”, “-3 ”, “-4 ”, “-5 ” represent the models are developed in
pring, Summer, Fall, Winter, and a year, respectively. For example, the
RFECV-RF-1 ” denotes the RFECV-RF model developed for occupancy
rediction in Spring, “RFECV-RF-2 ” is for Summer, and “RFECV-DT-5 ”
eans the RFECV-DT model is used for estimating occupancy in a year.

t is worth noting that the variables selected by an RFECV method can
nly be fed into the corresponding algorithm to tune hyperparameters
e.g., to develop RF models in Spring can only use the features chosen
y RFECV-RF-1). 

Fig. 6 depicts the RFECV-ML in Spring. The dotted line indicates
he optimal number of features, and the error band presents the stan-
ard error during the resampling procedure. As shown in Table 3 , dif-
erent algorithm selection entails that the numbers of optimal variables
ay differ by using different RFECV methods in the same season (e.g.,
FECV-LR-1 selects 18 optimal features, RFECV-DT-1 selects 10). The
ptimal numbers of variables selected by the same RFECV method con-
rast in different seasons (e.g., RFECV-RF selects 14 features in summer
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Fig. 5. Pairwise scatter plots and correlation levels analysis in Summer. 

Table 3 

Optimal features in each season. 

Spring Summer Fall Winter 

RFECV-ML Number of features RFECV-ML Number of features RFECV-ML Number of features RFECV-ML Number of features 

LR-1 18 LR-2 17 LR-3 18 LR-4 18 

SVM-1 18 SVM-2 17 SVM-3 18 SVM-4 18 

DT-1 10 DT-2 10 DT-3 10 DT-4 14 

GBDT-1 12 GBDT-2 13 GBDT-3 10 GBDT-4 11 

RF-1 15 RF-2 14 RF-3 9 RF-4 14 
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nd 9 features in Fall). The detailed optimal number of features and
eature combinations can be found in Appendix D. 

After RFECV feature selection, feature importance is utilized to ana-
yze which features are important among the selected variables. Feature
mportance based on LR and SVM returns the attribute of coef_ to map
he significance of features to the label’s prediction, and the feature im-
ortance based on DT, GBDT, and RF returns feature_importances_ to rank
he importance of each variable, which is calculated by computing Gini
ndex in this study. Fig. 7 shows the feature importance for DT in each
eason and concludes that the feature importance of an input variable
ay vary significantly in different seasons. For example, the window

lind is a significant variable in Summer and Fall, while its feature im-
ortance value is nominal in Spring and Winter. Because residents may
end to adjust the window blind frequently in sunny seasons, they do
ot regulate the window blind much in Winter when it is often cloudy
nd rainy in France. 

Moreover, some meteorological variables, such as outdoor temper-
ture, outdoor humidity, and outdoor illumination, have low feature
mportance rankings, and these variables also show weak correlations
ith the output in pairwise scatter plot analysis which confirms the im-
 w

9 
ortance ranking is reasonable. As mentioned in Ref. [67] , the variables
elected by RFECV may not be the most relevant features to the out-
ut alone, but as a whole feature combination, they would become a
romising option for predicting occupancy presence. 

.3. Prediction performance 

.3.1. With vs. without using feature selection 

Table 4 introduces two comparisons between with and without the
FECV feature selection method, with F-1 and AUC evaluation metrics.
ccording to the tables below, one can notice that most models benefit

rom the RFECV feature selection process because their prediction ac-
uracies increase compared to feeding all variables into the prediction
odels. In particular, DT in Spring could achieve an increase of up to
% using the F-1 score metric and improve 6% performance under the
UC metric. Since this study solves a binary problem, the accuracy im-
rovement is difficult compared to the regression issues. Therefore, the
mprovement of using feature selection is acceptable. Furthermore, RF
esulted in the highest F-1 score, of 0.909, and AUC of 0.907 in Summer

ith feature selection. 
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Fig. 6. RFECV for five machine learning algorithms in Spring. 

Table 4 

Comparison between with and without feature selection using F-1 score and AUC evaluation. 

Model Spring Summer Fall Winter Whole year 

With Without With Without With Without With Without With Without 

F1-score LR 0.785 0.785 0.858 0.862 0.840 0.840 0.850 0.839 0.814 0.814 

SVM 0.763 0.763 0.858 0.877 0.846 0.846 0.850 0.850 0.817 0.817 

DT 0.841 0.809 0.884 0.863 0.858 0.843 0.898 0.876 0.859 0.836 

GBDT 0.834 0.833 0.903 0.896 0.870 0.864 0.893 0.877 0.869 0.868 

RF 0.851 0.839 0.909 0.903 0.879 0.864 0.904 0.894 0.873 0.869 

AUC Model Spring Summer Fall Winter Whole year 

With Without With Without With Without With Without With Without 

LR 0.723 0.723 0.859 0.862 0.790 0.790 0.828 0.816 0.789 0.789 

SVM 0.698 0.698 0.857 0.876 0.789 0.789 0.813 0.813 0.783 0.783 

DT 0.805 0.760 0.883 0.863 0.818 0.785 0.879 0.851 0.820 0.802 

GBDT 0.791 0.802 0.903 0.896 0.829 0.823 0.873 0.850 0.848 0.850 

RF 0.794 0.773 0.907 0.901 0.832 0.805 0.878 0.867 0.839 0.835 
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.3.2. Performance comparison between machine learning algorithms 

Two evaluation metrics, F-1 score and AUC, were also used to eval-
ate the occupancy prediction performances. All of these algorithm
arameters were adjusted based on a grid search with 10-fold cross-
alidation of the training data. For instance, the number of hidden neu-
ons of the ANN algorithm needed to be tuned, with from 10 to 100
elected to find the optimal hidden neurons. The same strategy was also
10 
pplied for other ML approaches. It is worth mentioning that the ANN
chieved better performances in many previous studies [ 28 , 30 , 33 , 68 ].
herefore, the ANN used all features in this study to predict occupancy
resence. 

The comparison results of the six ML models are shown in Fig. 8 .
BDT, RF, and ANN produce prediction results with the highest accu-

acy, which could have risen above 85% in most seasons under two
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Fig. 7. Feature importance based on DT for each season. 
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valuation criteria. Comparing to a similar study, the RF models in this
tudy have a prediction accuracy of nearly 10% higher in all seasons
han the RF models in Ref. [28] . Although many studies showed that
he ANN usually outperformed other classifiers [33] , it does not stand
ut very much among these three algorithms. Since this study was de-
oted to estimating a binary value, ANN would produce the best possible
ower when the problem seems to be complicated, such as in the case
f multiclass classification (e.g., thermal comfort prediction [69] ) and
egression problems (e.g., building energy prediction [66] ). 

Classifiers’ abilities are different in different seasons, and all algo-
ithms show the highest overall performance score in Summer and the
owest performance in Spring. In Section 4.1.2, pairwise scatter plots
nalysis explored the holistic variables that have strong and weak corre-
ations with occupancy information in Summer and Spring, respectively.
ndoor CO 2 has the strongest correlation with occupancy information,
ut the correlation coefficient is only 0.52 in Spring. One reason may
e the low prediction accuracy of occupancy presence in Spring. The
ccupancy data is more complicated than other seasons, which means
he residents’ activities are more stochastic in Spring. Thus, the complex
ata pattern is rigid for simple classifiers, such as LR and SVM, to easily
earn and get accurate estimation results. 

.3.3. Performance comparison between seasonal and consecutive 

ccupancy prediction 

Table 5 compares the short-term and long-term occupancy estima-
ion performance scores for each season, and the optimal numbers of fea-
ures are shown in the brackets. Most customized occupancy prediction
odels show a higher performance score than the consecutive predic-

ion model. In addition, both seasonal and consecutive occupancy pre-
iction models have higher prediction accuracy in Summer and lower
stimation performance in Spring. The significant advantages of the DM-
PF are the following: 

1) As an important step in the proposed framework, RFECV could pro-
vide the optimal feature combinations to maximize the prediction
accuracy based on different seasons. 
11 
2) All ML prediction accuracies were compared for each season to study
their prediction abilities. 

Even though most SCOP models show higher accuracy than the
onsecutive model, the difference is sometimes slight. For example, in
pring, the accuracy of DT of the SCOP model is only 0.014 higher than
T that of the consecutive model. In order to ensure that a small im-
rovement is unlikely to occur randomly or accidentally, a more rigor-
us technique is to adopt a statistical hypothesis test to tackle this issue.
12] . In this study, 𝑡 -test was conducted to analyze the statistical differ-
nce between the accuracies obtained from SCOP models and from the
onsecutive model. A P-value smaller than the significance level (usually
efined as 0.05) indicates that the difference is statistically significant
i.e., not due to random chance) [70] . Since the performance scores of
R and SVM in each season are low, the 𝑡 -test is not applied to these
wo algorithms. Table 6 shows the results of 𝑡 -test with cross-validation
nd indicates that only the DT and RF in SCOP models can stably pro-
ide higher performance than DT and RF in consecutive model, since
ost of their P-values are smaller than 0.05 in all seasons, which means

he higher performances of DT and RF in SCOP models are statistically
ignificant. 

Although the SCOP models’ improvement is limited because this
tudy is devoted to solving a binary classification problem (where the
omplexity is more diminutive than those of multi-classification and re-
ression problems), some models can still reduce seasonality’s influence
n the results of forecasting occupancy presence. If the whole year’s data
s used for training using fixed features, this may decrease prediction
ccuracy. Furthermore, the proposed models are also worth applying
o other studies, such as occupant numbers, movement, and building
nergy consumption predictions, because they are all affected by the
easons. 

.3.4. Computational efficiency 

Concerning time efficiency, the computational requirements were
ompared between using feature selection versus without using feature
election, and the time efficiency was studied on each RFECV and pre-
iction model. This research computation was performed on a laptop
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Fig. 8. Prediction performance comparison in each season. 

Table 5 

Comparison between seasonal and consecutive prediction models. 

Method Algorithms Spring Summer Fall Winter Whole year 

F1-score Seasonal 

Prediction 

Model 

LR 0.785 (18) 0.858 (17) 0.840 (18) 0.850 (16) 0.833 

SVM 0.763 (18) 0.858 (17) 0.846 (18) 0.850 (18) 0.829 

DT 0.841 (10) 0.884 (10) 0.858 (10) 0.898 (9) 0.870 

GBDT 0.834 (12) 0.903 (13) 0.870 (10) 0.893 (13) 0.875 

RF 0.851 (15) 0.909 (14) 0.879 (9) 0.904 (14) 0.886 

ANN 0.856 (18) 0.902 (18) 0.876 (18) 0.920 (18) 0.889 

Consecutive 

Prediction 

Model 

LR 0.781 (18) 0.860 (18) 0.826 (18) 0.846 (18) 0.814 (18) 

SVM 0.774 (18) 0.874 (18) 0.828 (18) 0.841 (18) 0.817 (18) 

DT 0.827 (14) 0.870 (14) 0.847 (14) 0.872 (14) 0.859 (14) 

GBDT 0.826 (11) 0.898 (11) 0.860 (11) 0.875 (11) 0.869 (11) 

RF 0.843 (14) 0.906 (14) 0.872 (14) 0.895 (14) 0.873 (14) 

ANN 0.854 (18) 0.900 (18) 0.863 (18) 0.912 (18) 0.875 (18) 

AUC Method Algorithms Spring Summer Fall Winter Whole year 

Seasonal 

Prediction 

Model 

LR 0.723 (18) 0.859 (17) 0.790 (18) 0.828 (16) 0.800 

SVM 0.698 (18) 0.857 (17) 0.789 (18) 0.813 (18) 0.789 

DT 0.805 (10) 0.883 (10) 0.818 (10) 0.879 (9) 0.846 

GBDT 0.791 (12) 0.903 (13) 0.829 (10) 0.873 (13) 0.849 

RF 0.794 (15) 0.907 (14) 0.832 (9) 0.878 (14) 0.853 

ANN 0.834 (18) 0.901 (18) 0.842 (18) 0.919 (18) 0.874 

Consecutive 

Prediction 

Model 

LR 0.711 (18) 0.859 (18) 0.773 (18) 0.827 (18) 0.789 (18) 

SVM 0.706 (18) 0.873 (18) 0.766 (18) 0.803 (18) 0.783 (18) 

DT 0.771 (14) 0.870 (14) 0.793 (14) 0.858 (14) 0.820 (14) 

GBDT 0.777 (11) 0.897 (11) 0.817 (11) 0.846 (11) 0.848 (11) 

RF 0.772 (14) 0.905 (14) 0.813 (14) 0.865 (14) 0.839 (14) 

ANN 0.826 (18) 0.900 (18) 0.824 (18) 0.901 (18) 0.856 (18) 

12 
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Table 6 

T-test with cross-validation 

Seasons 

Algorithms P–values (significance 

level: 0.05) 
Seasonal Consecutive 

Spring DT 0.036113 

GBDT 0.101076 

RF 0.010564 

ANN 0.056229 

Summer DT 0.025037 

GBDT 0.036405 

RF 0.115958 

ANN 0.619963 

Fall DT 0.001373 

GBDT 0.089703 

RF 0.008545 

ANN 0.775896 

Winter DT 0.022661 

GBDT 0.001912 

RF 0.048038 

ANN 0.377015 
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ith a Windows operating system, a 2.6 GHz processor (Intel Core i7),
nd a memory size of 16 GB. Table 7 compares the required computa-
ion time between with and without the RFECV method. Computational
imes were reduced on most models after using RFECV, especially some
lgorithms requiring higher computational cost (e.g., RF). 

Table 8 shows the time requirements of RFECV and ML algorithms
required time: s). The computational time includes two components:
he computational time of RFECV and model prediction. In general,
FECV is computationally expensive in all seasons, but the expense de-
ends on the algorithms. For example, developing RFECV-LR models
as relatively easy and fast: the calculation time is about 1 minute.
owever, RFECV-RF needs around 3.5 hours to find optimal variables
n average. Model-1 means one classifier used for occupancy prediction
n Spring, Model-2 represents one prediction model used for occupancy
stimation in Summer, and Models- 3, 4, and 5 are similar. Once the
odel has been developed, the time spent on prediction is short, espe-

ially LR requiring effortless tuning. The computation times of LR in all
easons were controlled within 15 seconds. In reality, the additional hy-
erparameter tuning time should be accounted for, in which case the
omputational time of these prediction models would be even longer
han shown. 

Table 7 

Time efficiencies with and without feature selection (s). 

Model 

Spring Summer Fa

With Without With Without W

LR 0.13 0.13 0.06 0.22 0.

SVM 25.80 25.80 17.74 18.85 37

DT 0.05 0.06 0.04 0.04 0.

GBDT 1.60 1.74 1.76 2.45 1.

RF 8.18 8.96 8.86 9.19 8.

Table 8 

Time requirement of RFECV and data mining algorithms (required time: s). 

Model 

Spring Summer Fal

RFECV-1 Model-1 RFECV-2 Model-2 RF

LR 72.0 0.13 64.0 0.06 61

SVM 682.0 25.80 724.0 17.74 14

DT 94.0 0.05 90.0 0.04 84

GBDT 2683.0 1.60 2626.0 1.76 23

RF 12242.0 8.18 11482.0 8.86 10

ANN NA 12.54 NA 9.97 NA
13 
Winter Whole year 

Without With Without With Without 

0.05 0.05 0.06 0.25 0.25 

37.32 25.95 25.95 425.70 425.70 

0.03 0.03 0.03 0.072 0.076 

1.91 1.65 1.90 3.56 5.01 

7.74 8.03 8.03 30.86 31.14 

Winter Whole year 

 Model-3 RFECV-4 Model-4 RFECV-5 Model-5 

0.05 64.0 0.05 298.0 0.25 

37.32 10016.0 25.95 18403.0 425.70 

0.03 77.0 0.03 364.0 0.072 

1.38 2510.0 1.65 9133.0 3.56 

8.05 11259.0 8.03 4863.0 30.86 

15.18 NA 13.28 NA 41.21 

. Conclusions and future works 

This paper presents a DM-OPF based on the four seasons to improve
esidential occupancy status prediction accuracy using the time-related,
ndoor/outdoor environment, and energy related data. EDA was applied
o uncover the correlations between variables. In DM-OPF, the RFECV
eature selection methods were implemented to select the optimal fea-
ures for each season. Then, six ML algorithms (LR, SVM, DT, GBDT,
F, ANN) were deployed to compare the prediction performance. Ad-
itionally, the performance comparisons of using versus without using
eature selection and seasonal versus consecutive occupancy prediction
ere involved. In addition, computational efficiency as a significant per-

ormance index was also considered to determine machine learning al-
orithms’ abilities. 

An experiment was conducted in an apartment to validate the effec-
iveness of the proposed models. The results showed that the correla-
ions between features and occupancy could change based on different
easons (form positive to negative, coefficient from big to small, and vice
ersa), which means there were no fixed optimal variables for predicting
ccupancy status in all seasons. In addition, because different features
ave different importance in different seasons, using the RFECV feature
election method can reduce calculation costs and improve estimation
ccuracy. The DM-OPF was developed and evaluated to reduce the im-
act of seasonality and improve prediction accuracy. The results also
howed that the GBDT, RF, and ANN produced the most accurate pre-
iction results, which could have reached above 85% in most seasons
nder two estimation criteria. ANN could achieve 91.2% accuracy in
redicting occupancy information in Winter. 

This study also has some limitations, and further studies are sug-
ested. First, the proposed framework was applied to only one unit of a
esidential apartment. Whether the DM-OPF can be generalized to other
ypes of buildings, such as offices, and even other fields of research needs
urther discussion. Second, since the DM-OPF was developed based on
easons, they may underperform in some regions that do not have dis-
inct seasons. Third, the accuracy improvement between the proposed
rediction models and the consecutive prediction model was limited. Ex-
ending the DM-OPF to different types of buildings and generalizing the
easonal prediction models to higher occupancy resolution levels (e.g.,
umbers of residents, occupants’ movements) and building energy con-
umption predictions is highly recommended. Additionally, using RNN,
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ong Short-Term Memory (LSTM), and convolutional deep learning
odels to improve the accuracy of occupancy estimation is suggested as

he scope for future work since these methods can provide the best per-
ormance when providing rich and high-quality datasets. Due to the con-
dentiality agreement, data used in this study could not be shared. How-
ver, the code used for this study is freely available in the repository:
ttps://github.com/Bowen219/ML_Occupancy_models_Comparison. 
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ppendix E. Feature combination in each season 

Season Machine Learning 

Algorithms 

Number of 

Features 

Fe

Spring LR-1 18 𝐻

𝑊

SVM-1 18 𝐻

𝑊

DT-1 10 𝐻

GBDT-1 12 𝐻

RF-1 15 𝐻

Summer LR-2 17 𝐻

𝑊

SVM-2 17 𝐻

𝐸 

DT-2 10 𝐻

GBTD-2 13 𝐻

RF-2 14 𝐻

Fall LR-3 18 𝐻

𝑊

SVM-3 18 𝐻

𝑊

DT-3 10 𝐻

GBDT-3 10 𝐻

RF-3 9 𝐻

Winter LR-4 16 𝐻

𝐸 

SVM-4 18 𝐻

𝑊

DT-4 9 𝐻

GBDT-4 13 𝐻

RF-4 14 𝐻

Whole year LR-5 18 𝐻

𝑊

SVM-5 18 𝐻

𝑊

DT-5 14 𝐻

GBDT-5 11 𝐻

RF-5 14 𝐻
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+ 𝐷 + 𝑇 𝑜𝑢𝑡 + 𝑅 𝐻 𝑜𝑢𝑡 + 𝑆 𝐼 𝑜𝑢𝑡 + 𝑉 𝑜𝑢𝑡 + 𝐼 𝑜𝑢𝑡 + 𝑅 + 𝐶 𝑖𝑛 + 𝑇 𝑖𝑛 + 𝑅 𝐻 𝑖𝑛 + 𝑇 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 + 𝐼 𝑖𝑛 + 𝑊 𝐵 + 
𝐸 𝐶 𝑙𝑖𝑔ℎ𝑡 + 𝐸 𝐶 𝑝𝑙𝑢𝑔 
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𝐸 𝐶 𝑙𝑖𝑔ℎ𝑡 + 𝐸 𝐶 𝑝𝑙𝑢𝑔 
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 𝑇 𝑜𝑢𝑡 + 𝑅 𝐻 𝑜𝑢𝑡 + 𝐼 𝑜𝑢𝑡 + 𝐶 𝑖𝑛 + 𝑇 𝑖𝑛 + 𝑅 𝐻 𝑖𝑛 + 𝐼 𝑖𝑛 + 𝑊 𝐵 + 𝐸 𝐶 𝑙𝑖𝑔ℎ𝑡 + 𝐸 𝐶 𝑝𝑙𝑢𝑔 
+ 𝐷 + 𝑇 𝑜𝑢𝑡 + 𝑅 𝐻 𝑜𝑢𝑡 + 𝑆 𝐼 𝑜𝑢𝑡 + 𝑉 𝑜𝑢𝑡 + 𝐼 𝑜𝑢𝑡 + 𝐶 𝑖𝑛 + 𝑇 𝑖𝑛 + 𝑅 𝐻 𝑖𝑛 + 𝐼 𝑖𝑛 + 𝑊 𝐵 + 𝐸 𝐶 𝑙𝑖𝑔ℎ𝑡 + 𝐸 𝐶 𝑝𝑙𝑢𝑔 
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