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Abstract: This study explores the field of software reverse engineering through the lens of code summarization, which
involves generating informative and concise summaries of code functionality. A significant aspect of this re-
search is the application of assembly code summarization in malware analysis, highlighting its critical role
in understanding and mitigating potential security threats. Although there have been recent efforts to develop
code summarization techniques for high-level programming languages, to the best of our knowledge, this
study is the first attempt to generate comments for assembly code. For this purpose, we first built a carefully
curated dataset of assembly function-comment pairs. We then focused on automatic assembly code summa-
rization using transfer learning with pre-trained natural language processing (NLP) models, including BERT,
DistilBERT, RoBERTa, and CodeBERT. The results of our experiments show a notable advantage of Code-
BERT: despite its initial training on high-level programming languages alone, it excels in learning assembly
language, outperforming other pre-trained NLP models.

1 INTRODUCTION

Reverse engineering refers to the process of analyzing
an existing software system to recover its design: to
understand its functionality, design, and implementa-
tion details. This technique involves examining soft-
ware code, system behavior, and dependencies to cre-
ate a representation of the architecture and function-
ality of the system. It is often used to update or
improve existing systems, create documentation, or
build new software applications compatible with the
original system. Reverse engineering can also help
detect malicious software or potential vulnerabilities.

Not all reverse engineering efforts have the lux-
ury of starting with source code, as software source
code may not always be available to reverse engineers
for several reasons, such as the code being proprietary
or protected by copyright laws. In addition, the code
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may be lost or corrupted, making it impossible to an-
alyze it directly. However, when starting with just the
executable, we have effective techniques to recover an
assembly-language representation, so understanding
assembly code is a common task in reverse engineer-
ing. But understanding assembly code is more com-
plicated than understanding high-level programming
languages for several reasons. Assembly code is a
low-level language consisting of complex instructions
that can be challenging to read and understand. It
typically lacks the abstraction and structure found in
high-level programming languages, making it harder
to identify program flow and comprehend the overall
purpose of the code. As a result of the unavailability
of source code and the complexity of assembly code,
there is a greater need for automated assistance to the
reverse engineer trying to understand assembly code.

A valuable tool for reverse engineering is code
summarization. It is also known as “code comment-
ing” and concerns generating a concise and informa-
tive summary of a software code’s functionality or
behavior. Code summarization techniques use natu-
ral language processing and machine learning algo-



rithms to analyze the syntax, structure, and comments
of the code to generate a human-readable and easy-
to-understand summary (Steidl et al., 2013). The gen-
erated summary can provide a rapidly reviewed pro-
posal of the code’s likely functionality, helping the
reverse engineer identify potential flaws and more
rapidly understand the functionality and behavior of
a large and complex software codebase (Tenny, 1988;
Woodfield et al., 1981). Several prior works have in-
dicated effective advances in code summarization, in-
cluding (Allamanis et al., 2016; LeClair et al., 2019;
Ahmad et al., 2020; Kusupati and Ailavarapu, 2022;
Wang et al., 2020).

However, little appears to be known about uti-
lizing such summarization techniques on assembly
language, specifically: about how well transformer
technologies work, whether ML models trained on
non-assembly corpora can effectively be leveraged
through transfer learning, and what qualities are re-
quired of training corpora to yield effective learning
performance. We aimed to explore how pre-trained
NLP models can be trained for the specific task of
summarizing assembly code, leveraging their existing
knowledge and experience with natural language pro-
cessing tasks. By comparing the performance of dif-
ferent pre-trained NLP models, we aimed to identify
which models are most effective for transfer learning
in this context, providing insight into how best to uti-
lize pre-trained models for this specific task.

The contributions of this paper relating to these
research problems are as follows:

• We propose AsmDocGen, a CodeBERT-based so-
lution that generates human-readable comments
for assembly functions. AsmDocGen makes as-
sembly code easier to understand by automati-
cally creating clear comments for it. This is an
important step forward in making complex code
more accessible and easier to work with, espe-
cially in areas like software reverse engineering.
Our experiments show that the comments gener-
ated are accurate and useful. This progress is cru-
cial to improving the way we handle and docu-
ment lower-level programming languages. To the
best of our knowledge, we are the first to report
code summarization techniques applied to assem-
bly code, so the performance results serve as a
baseline for future work in the area.

• We provide a well-curated dataset of 5,084 assem-
bly function comment pairs for training and val-
idating assembly code summarization solutions.
As subject matter experts, we handpicked and
manually edited assembly function comment pairs
to create our dataset. The resulting dataset pro-
vides a valuable resource for future research on

assembly code summarization.
• We provide evidence that NLP models pre-trained

on other corpora can be successfully retrained and
tuned to be applied to assembly code. Specifi-
cally, we show that CodeBERT can be re-trained
to understand assembly language and generate
concise comments, describing the functionality of
a piece of assembly code by leveraging its knowl-
edge of high-level programming languages.
The rest of this paper is organized as follows. Sec-

tion 2 briefly reviews the literature on NLP and code
summarization. In Section 3, we explain our data col-
lection strategy and dataset. Section 4 details our pro-
posed method. In Sections 5 and 6, we outline the
experiments and results we achieved. Finally, Section
7 concludes the article.

2 RELATIONS TO PRIOR WORK

AsmDocGen adapts and extends previous work in the
so-called ’transformer’ architectures for NLP. Trans-
former based approaches have been shown to be ef-
fective in a wide range of NLP tasks, such as text
summarization and chatbots (Vaswani et al., 2017;
Brown et al., 2020; Devlin et al., 2019). Recent ad-
vances, including novel pretraining techniques (Lewis
et al., 2020; Radford et al., 2018), have resulted in
a state-of-the-art where transformer-based solutions
have shown to match or exceed previous language
modeling techniques for many NLP tasks, including
but not limited to text summarization, translation, di-
alogue generation, and code summarization.

2.1 Text Summarization

Sarkar (Sarkar, 2013) proposed a method to summa-
rize a document by extracting its main concepts. This
approach aims to provide an overall understanding of
the content of a document. Similarly, Christian et
al. (Christian et al., 2016) created an automatic text
summarizer using the TF-IDF algorithm. The TF-
IDF algorithm measures the importance of each word
in a document, and the words with the highest TF-
IDF scores are used to construct the summary. Verma
and Om (Verma and Om, 2018) presented a novel
technique for extracting multi-document summaries
based on Shark Smell Optimization (SSO). The ap-
proach is based on graph-based optimization and aims
to produce concise and coherent summaries. Liu and
Lapata (Liu and Lapata, 2019) applied BERT to the
summarization task and showed that it can perform
well for both extractive and abstractive summariza-
tion tasks. Gupta et al. (Gupta et al., 2022) applied



a few pre-trained models such as BERT, GPT, and
RoBERTa for text summarization. Our work is akin
to text summarization in the sense that we generate
text that purposefully omits details to offer a concise
representation of important elements in the original
work; however, it differs from text summarization in
that the language and even language type of the sum-
marization (natural language, English say) is different
from the source language (assembly).

2.2 Translation

The use of transformer models has been widely
adopted in neural machine translation. Researchers
have applied these models for the translation of En-
glish into French, as demonstrated by Sutskever et
al. and Cho et al. (Sutskever et al., 2014; Cho
et al., 2014). Bahdanau et al. (Bahdanau et al.,
2014) expanded the basic encoder-decoder for the
English-to-French translation task. Furthermore, Gao
et al. (Gao et al., 2021) introduced a Scalable Trans-
formers model and demonstrated its effectiveness in
translating English to German and English to French.
Like such prior work, AsmDocGen translates seman-
tic content from one language to another, but unlike
translation, where faithful representation of the con-
tent is expected, we purposefully reduce the content
of the output compared to the input for the purposes
of summarization.

2.3 Dialogue Generation and Grammar

Olabiyi and Mueller (Olabiyi et al., 2020) presented
DLGNet, a transformer-based model for dialogue
modeling. Lee et al. (Lee et al., 2021) used the Trans-
former with Copying Mechanism that outperformed
two commercial grammar checks and other NMT-
based models. Cao et al. (Cao et al., 2020) investi-
gated dialogue models with numerous input sources
modified from the pretrained language model GPT2.
They evaluated several strategies for fusing multiple
sources of attention information. Their experimen-
tal results reveal that correct fusion procedures out-
perform simple fusion baselines in terms of relevance
with the dialogue history.

2.4 Code Summarization

Iyer et al. (Iyer et al., 2016) presented CODE-NN, a
novel method that uses LSTM and an attention proce-
dure to generate summaries of C# code snippets and
SQL queries. Hu et al. (Hu et al., 2018b) presented
DeepCom, a model that examines the structural infor-
mation of Java methods to generate better comments.

Furthermore, Hu et al. (Hu et al., 2018a) developed
TL-CodeSum, an RNN-based model that effectively
used API knowledge in conjunction with source code
to generate code summarization.

Allamanis et al. (Allamanis et al., 2016) pre-
sented a unique convolutional self-attention network
to perform extreme summarization based on source
code where “extreme” denotes the production of ex-
tremely brief messages. LeClair et al. (LeClair et al.,
2019) use an attentional GRU encoder-decoder model
to produce summaries for code. Ahmad et al. (Ah-
mad et al., 2020) showed that relative encoding sig-
nificantly enhances summarization efficiency by us-
ing transformers to generate a comprehensible sum-
mary that represents the functionality of a program.
Similarly, Kusupati and Ailavarapu (Kusupati and
Ailavarapu, 2022) used transformers for code sum-
marization. PYMT5, the PYTHON method text-to-
text transfer transformer, is presented by Clement et
al. (Clement et al., 2020). This model has the ca-
pability to predict complete methods based on natu-
ral language documentation strings (docstrings), and
it can also condense code into docstrings of various
conventional styles.

Some advanced pre-trained language mod-
els, such as BERT (Devlin et al., 2019), XL-
Net (Yang et al., 2019), GPT (Brown et al.,
2020), RoBERTa (Liu and Lapata, 2019), and
CodeBERT (Feng et al., 2020), have seemed promis-
ing for pairing comments with code (Liu and Lapata,
2019; Husain et al., ). This has inspired different
researchers to outperform those state-of-the-art mod-
els by employing pre-trained language models in the
task of code summarization (Barone and Sennrich,
2021; Wang et al., 2020) or natural language-based
code search (Gu et al., 2018).

Our study is distinctive in its focus on generating
comments that summarize the functionality of assem-
bly code, which has received little attention in previ-
ous research on code summarization. Assembly code
can be particularly challenging to comprehend, due to
its high complexity and lack of high-level abstraction.

2.5 Reference Code Corpora

One of our contributions is a reference code corpus
for the purposes of training or validating software en-
gineering tools, such as the CoNaLa (Yin et al., 2018)
and Bellon’s clone detector corpus (Bellon et al.,
2007). Our corpus1, offered with a license of permis-
sive use, is expected to be a valuable result for further
studies in the area.

1https://github.com/McGill-DMaS/AsmDocGen



Table 1: Numbers of functions taken from various online
platforms.

Platforms No. of functions

Github 2428
HackerRank 1505

StackOverflow 574
Codeforces 423
Codechef 154

3 DATASET

The absence of a comprehensive and well-curated
dataset has made it difficult to train machine learning
and deep learning models for assembly code summa-
rization. To overcome this obstacle, we have carefully
curated a dataset of assembly function comment pairs.

To create our dataset, we curated a selection of as-
sembly code functions and their corresponding com-
ments. Initially, we collected a diverse range of C
and C++ source code samples from well-known on-
line sources such as GitHub, Codeforces, StackOver-
flow, HackerRank, and Codechef.

After collecting the source code samples, we man-
ually examined each file to ensure correct match-
ing between functions and their corresponding com-
ments. Once we finished curating the source code
comment pairs, we compiled the source code using
the GCC compiler. Then, we used IDA Pro to dis-
assemble the resulting executables. Finally, we man-
ually correlated assembly functions with their corre-
sponding source code functions to identify the orig-
inal source comments that match the disassembled
functions.

During the matching process, we found many
unexplained functions within the source code, and
among those with comments, we observed that many
comments suffer from poor quality. Thus, we man-
ually eliminated low-quality comments. The charac-
teristics of those comments classified as poor quality
are:

• Stating the obvious without providing additional
insights or details about the functionality.

• Being obsolete and not corresponding to the cur-
rent version of the code.

• Being overly wordy or containing excessively
technical language.

• Having grammatical mistakes.

• Containing irrelevant information.

• Being unclear or ambiguous

• Being misleading or incorrect

Figure 1: Snippet of the dataset.

Overall, the process of building a high-quality
dataset involved four months of work with meticulous
attention to detail. As a result of our effort, we col-
lected 5,084 assembly function comment pairs (see
Table 1); Figure 1 shows an excerpt from our dataset.

4 THE METHOD: AsmDocGen

Given the limited size of our assembly language com-
ment dataset, it is not feasible to train large NLP mod-
els from scratch. Further, it is not clear that con-
structing an extensive-enough dataset of assembly-
comment pairs that alone can be used to train a highly-
performant comment generator is required. Instead,
we hypothesize that transfer learning by using a suit-
able foundation NLP model and retraining on our tar-
geted data set can yield significantly improved per-
formance than using non-assembly-based foundation
models directly or trying to train an NLP model from
scratch using such a limited data set as ours.

We chose CodeBERT (Feng et al., 2020) as our
foundation to build AsmDocGen. CodeBERT is a
state-of-the-art pretrained language model based on
the Transformer architecture. It has been trained on
a vast corpus of English words and source code, in-
cluding Python, Java, and C++, making it one of the
most versatile pre-trained models available and mak-
ing it adept at understanding code structure and func-
tion. CodeBERT’s flexibility stems from its ability
to capture both syntactic and semantic information
from natural language and programming language in-
puts. Therefore, we hypothesize that CodeBERT’s
ability to capture semantic representations for natural
and programming languages is advantageous for un-
derstanding assembly code’s unique grammar for as-



sembly code summarization, making it a more effec-
tive choice for training on small datasets than train-
ing models from scratch. Furthermore, the research
conducted by Zhou et al. (Zhou and Su, 2002) has
confirmed the ability of CodeBERT to adapt beyond
its pre-trained data. This ability makes CodeBERT a
more robust and adaptable model, enabling it to per-
form well on new tasks and domains.

We expect that the semantic representations
learned by CodeBERT are particularly beneficial for
understanding assembly code. Assembly code has
a unique grammar for constructing instructions and
linking operations and operands. CodeBERT’s abil-
ity to capture these structures and their relationships
makes it an effective tool for generating accurate com-
ment representations.

4.0.1 Model Background

CodeBERT is based on the transformer architecture,
similar to the original BERT model. It has a multi-
layer transformer encoder, which takes as input code
and comments. To tokenize the input, CodeBERT
uses the WordPiece tokenization method for both
code and comments (Wu et al., 2016). The input to the
model consists of a sequence of tokens, which are the
individual words and symbols of the code and com-
ments.

CodeBERT’s training objectives include Masked
Language Modeling (MLM) and Replaced Token De-
tection (RTD). MLM involves masking parts of the
text at random and requesting the model to predict
them, while RTD involves replacing tokens in the text
with plausible alternatives and having the model de-
termine which tokens have been replaced. This ap-
proach improves the robustness of the model by al-
lowing it to handle variations in input data.

In addition to MLM and RTD, CodeBERT in-
cludes a Cross-Lingual Language Model (XLM) ob-
jective, which enables it to learn cross-lingual repre-
sentations by jointly training on monolingual and par-
allel data. This feature makes CodeBERT particularly
useful for natural language processing tasks involving
multilingual inputs.

In the pre-training phase, the input is set as the
concatenation of two segments with special separator
tokens. The input format is [CLS], w1, w2, ..., wn,
[SEP], c1, c2, ..., cm, [EOS], where [CLS] is added at
the beginning of each sentence to capture the sentence
representation. The [SEP] token separates the code
and comment tokens, making it easier for BERT to
understand that the input is made up of two parts, code
and comments. The [EOS] token is used to indicate
the end of a sentence.

The input tokens are passed through an embed-

ding layer, where they are transformed into numer-
ical vectors that capture the meaning of the tokens.
These tokens are then combined with three other types
of embeddings to form a single input vector for the
model. The three types of embedding include seg-
mentation embeddings, position embedding, and to-
ken embeddings. Figure 2 demonstrates how the to-
kens are passed through various embedding layers to
form a single input vector. The role of these three
types of embedding involves:

• Segmentation embeddings are used to differenti-
ate between distinct lines of code.

• Position embeddings show the position of each
token inside the line of code.

• Token embeddings refer to the semantics of each
token.

Figure 2: Illustration of the multi-layered process used by
the CodeBERT model to transform individual tokens into
embeddings via various layers.

CodeBERT is pre-trained on a dataset of code
and comment pairs using masked language modelling
and replaced token detection objectives. The train-
ing process involves two neural networks, a gener-
ator G and a discriminator D. The encoder of both
networks, usually a transformer network, converts a
sequence of embedding tokens x = [x1, ...,xn] into
a sequence of contextualized vector representations
h(x) = [h1, ...,hn]. These embeddings are then passed
through the transformer encoder, which consists of
multiple layers of self-attention and feed-forward
neural networks. The self-attention layers enable the
model to focus on distinct segments of the input se-
quence, while the feed-forward layers help the model
acquire a deeper understanding of the relationships
between the individual tokens.

The final output of the transformer encoder is a set
of embeddings for each token in the input sequence,
which captures the meaning of the code and com-
ments in a fixed-length vector representation. These
embeddings are then used to train the model for code
summarization tasks.

In general, the overall structure of CodeBERT
for code summarization is an encoder-decoder struc-
ture, where the encoder is the transformer-based neu-
ral network, and the decoder is the task-specific net-
work that generates the summary of the code based
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Figure 3: Overview of training AsmDocGen. During the test, the comment is removed from the input and appears on the
model’s output.

on the encoded representation. We train this encoder-
decoder model using our dataset, which consists of
assembly functions and their corresponding ground-
truth comments.

4.1 Training AsmDocGen

Dataset Construction. We collected a comprehen-
sive dataset of assembly code functions according to
the description in Section 3. We then tokenized the
dataset using the WordPiece algorithm, which is well
suited for tokenizing both natural language and code
(Gu et al., 2018). Assembly language has its own
unique syntax and vocabulary, and we find that Word-
Piece is the optimal choice for our problem. The al-
gorithm enables the encoding of any unusual words
in the lexicon with suitable subword tokens, without
requiring the addition of any ”unknown” tokens.

To maintain consistency in sentence length, we
utilize padding and truncation techniques to generate
sentences of a uniform length of 100 tokens. We de-
termined this length by conducting experiments with
varying sentence lengths and evaluating the trade-off
between the model’s accuracy and training time.
Training. To generate code summaries, a sequence-
to-sequence pipeline was utilized, where the encoder
was initialized using CodeBERT, which comprises 12
layers, a maximum length of 512, an embedding size
of 768, and 12 attention heads of size 64. For the de-
coder, a randomly initialized Transformer with 6 lay-
ers, hidden states of 768 dimensions, and 12 attention
heads were used.

To update the model parameters, Adam Optimizer
was used with a learning rate of 5e-5 and a batch size
of 32. The hyperparameters were optimized and early
stopping was applied based on the validation dataset.
We partitioned the dataset into training, validation,
and test sets with proportions of 70%, 15%, and 15%,
respectively.
Inference. As illustrated in Figure 3, we pass the
tokenized words through the CodeBERT encoder to

produce fixed-length embeddings. These embeddings
capture the meaning of the code and comments, creat-
ing a contextual vector representation for each token
in the input sequence. This contextual vector is finally
passed to a decoder to generate a code summary.

5 EXPERIMENTAL SETUP

To test our transfer learning hypothesis and evalu-
ate AsmDocGen’s performance, we train a sample of
NLP models to compare their results with AsmDoc-
Gen. The CPU architecture of the code is x86/x64.

5.1 Metrics

We use four widely accepted metrics within this field
to compare the performance of AsmDocGen against
the experimental sample of foundation models that
have not been trained for the assembly language com-
menting task. These metrics provide a quantifiable
means of determining the success of the model in
achieving its objectives.

5.1.1 BLEU

BLEU (Bilingual Evaluation Understudy) is a met-
ric used to evaluate the quality of machine-generated
text, such as machine translation or text summariza-
tion. It measures the similarity between the generated
text and the reference text (usually human-generated)
based on n-gram overlap. The higher the BLEU score,
the better the machine-generated text matches the ref-
erence text. BLEU score ranges from 0 to 1, where
a score of 1 indicates that the machine-generated text
is identical to the reference text. BLEU score is com-
monly used in natural language processing research as
a standard metric to evaluate the quality of machine-
generated text.



5.1.2 ROUGE-1

ROUGE-1 is a metric used to evaluate the quality of
text summarization or machine translation. It mea-
sures the overlap between word unigrams in the refer-
ence summary (or translation) and the generated sum-
mary (or translation). The ROUGE-1 score ranges
from 0 to 1, where 1 indicates a perfect overlap be-
tween the reference summary and the generated sum-
mary in terms of unigrams.

5.1.3 ROUGE-2

ROUGE-2 is an evaluation metric used for auto-
matic summarization tasks that measures the over-
lap of word bigrams between the system-generated
summary and the reference summary. It is similar
to ROUGE-1, but instead of considering individual
words, it looks at pairs of words in the summary and
reference summary. The score is calculated as the
number of overlapping bigrams divided by the total
number of bigrams in the reference summary.

5.1.4 ROUGE-L

ROUGE-L is a metric to evaluate the quality of
text summaries or translations. It stands for Recall-
Oriented Understudy for Gisting Evaluation - Longest
Common Subsequence, and it measures the longest
common subsequence (LCS) of words between the
summary and the reference text. The LCS is the
longest sequence of words that appear in the same
order in both the summary and the reference text.
ROUGE-L considers all such LCS sequences and
takes their length into account to compute a weighted
average of the F1 score. The ROUGE-L score gives
more weight to long sequences of words that are sim-
ilar in the summary and reference text, and it is often
used as a more comprehensive evaluation metric than
ROUGE-1 and ROUGE-2.

5.2 Sample and Procedure

We evaluated the performance of our model by com-
paring it against a convenience sample of four lead-
ing NLP models: RoBERTa, BERT, DistilBERT and
Transformer. Each of the models was trained on our
assembly-comment pair corpus (see Sectoin3), and
then they and AsmDocGen were passed a validation
input set of undocumented assembly language func-
tions to generate English summaries. The metrics of
Section 5.1 were collected for each and for AsmDoc-
Gen.

5.2.1 Transformer

Transformer, introduced by Vaswani et al. (Vaswani
et al., 2017), is a neural network architecture based on
the concept of self-attention, which allows the model
to weigh the importance of different parts of the in-
put sequence when generating output. The Trans-
former consists of an encoder and a decoder, each
containing multiple layers of self-attention and feed-
forward neural networks. Its use of self-attention al-
lows the model to capture long-range dependencies
more effectively than other NLP models and paral-
lelize computations across the input sequence, mak-
ing it more computationally efficient. The Trans-
former has achieved state-of-the-art performance on
a wide range of NLP tasks and has inspired the devel-
opment of other Transformer-based models such as
BERT.

5.2.2 BERT

BERT, introduced by Devlin et al. (Devlin et al.,
2019) in 2019, is an NLP model developed by Google
in 2018. It is based on the transformer architecture
and is pre-trained on a large corpus of unannotated
text using a masked language modeling task and a
next-sentence prediction task. BERT can be trained
or fine-tuned on a variety of NLP tasks, achiev-
ing state-of-the-art performance on many benchmark
NLP datasets with relatively small amounts of task-
specific data. Its ability to handle a wide range of NLP
tasks has made it a popular model for NLP research
and applications.

5.2.3 RoBERTa

RoBERTa, introduced by Liu et al. (Liu and Lapata,
2019) in 2019, is an NLP model that is based on the
same architecture as BERT but with several modifi-
cations to its training process and hyperparameters.
The model is trained on a much larger corpus of data,
with up to 160 GB of text, and uses dynamic mask-
ing during pre-training. RoBERTa also changes the
hyperparameters used in BERT, including removing
the next sentence prediction task, increasing the batch
size, and training the model for longer durations. Ad-
ditionally, RoBERTa uses byte-pair encoding for sub-
word tokenization, which can improve the model’s
ability to handle rare and out-of-vocabulary words.
These modifications allow RoBERTa to achieve state-
of-the-art performance on a wide range of NLP tasks.

5.2.4 DistilBERT

DistilBERT, introduced by Sanh et al. (Sanh et al.,
2019), is a compact and efficient version of the BERT



Table 2: A comparison of the BLEU scores between our
proposed approach and the baseline results.

Models BLEU Score

Transformer 34.54
RoBERTa 50.01

DistilBERT 50.82
BERT 51.85

AsmDocGen 54.10

model, created through a process called distillation.
It has fewer parameters (40% less) than the BERT
base model. DistilBERT is trained using knowledge
distillation, where the knowledge of a larger model,
in this case BERT, is distilled into a smaller model.
Despite its smaller size, DistilBERT achieves perfor-
mance similar to that of the larger BERT model for
many NLP tasks, while being faster and requiring less
memory to train and run. It has become a popular
choice for NLP tasks, where computational resources
are limited.

6 RESULTS

Table 2 shows the BLEU score for Transformer,
RoBERTa, DistilBERT, BERT and AsmDocGen. Ta-
ble 3 shows that, on average, AsmDocGen outper-
forms the trained sample models BERT, RoBERTa
and DistilBERT by 26%, 23%, and 20% in terms of
precision, recall, and F1-score, respectively.

6.1 Quantitative Analysis

In order to investigate the effectiveness of AsmDoc-
Gen, we compared it with the baseline models men-
tioned above using the metrics BLEU, ROUGE-1,
ROUGE-2, and ROUGE-L. The comparison between
the Transformer and the pre-trained models shows the
effectiveness of transfer learning in training a model
for code summarization using a small dataset. The
outcome of the comparison between AsmDocGen,
BERT, RoBERTa, and DistilBERT shows the high ca-
pability of CodeBERT to learn and understand the as-
sembly language.

The results in Table 2 show that the pre-trained
models, despite their initial unfamiliarity with assem-
bly code syntax, significantly outperform a model
(Transformer) trained from scratch using our smaller
dataset. This suggests that patterns and knowledge,
even when marginally relevant, captured from exten-
sive datasets during the pretraining phase can be sig-
nificantly beneficial for learning new tasks with lim-
ited data.

Consistent outperformance of AsmDocGen
against the other models, shown in Table 3, sup-
ports the inference that CodeBERT’s pre-training
objectives, which specifically target high-level code
and comment pairs, can provide an advantage for
understanding low-level languages compared to mod-
els that were pre-trained on general language data.
Additionally, our results highlight the importance of
selecting a model that is well suited to the task at
hand rather than relying solely on pretraining size or
architecture.

6.2 Qualitative Analysis

Our observations found three types of correctly gen-
erated comments in terms of their similarity to the
ground-truth comments. These three types are:

• Identical: Descriptions that include an exact set
of words in the same order as the ground truth de-
scription (see Table 4).

• Partially Similar: This group refers to comments
that are semantically similar to the ground truth
but only include a subset of original words (see
Table 5).

• Contextually Similar: These comments have dif-
ferent structures and wording from the ground
truth, but convey the relevant context or seman-
tics (see Table 6).

In this section, we present some examples from
each group to compare the ground truth with the re-
sults generated by the model. The aim of this demon-
stration is to illustrate the model’s accuracy in pre-
dicting results that are consistent with the actual ones.
This information is important in evaluating the perfor-
mance of the model and determining its effectiveness
in solving the problem it was designed to address.

Table 5 shows some examples of partially simi-
lar generated comments. It provides a noteworthy
example that showcases the learning capabilities of
the model, going beyond mere pattern memorization.
The table demonstrates how the model accurately
comprehended the meaning of the words ”unopened”
and ”closed”, and produced correct predictions. This
outcome aligns with our expectations for the model
and highlights its desired performance.

Sometimes, the comments generated by our
model, as presented in Table 6, differ completely from
the ground-truth comments. This raises the question
of whether these predictions are actually relevant to
the code’s functionality.

As shown in Table 6, AsmDocGen generated the
comment ”returns the size of the queue,” whereas the
ground-truth comment is ”fuzzy compare operations.”



Table 3: Performance comparison of AsmDocGen and baseline results based on the ROUGE-1, ROUGE-2, and ROUGE-L
scores in terms of precision, recall, and F1-score.

Models ROUGE-1 ROUGE-2 ROUGE-L Average

RoBERTa 0.50 0.16 0.50 0.39
DistilBERT 0.52 0.45 0.52 0.50

BERT 0.56 0.45 0.50 0.50

Pr
ec

is
io

n

AsmDocGen 0.70 0.69 0.51 0.63

RoBERTa 0.36 0.16 0.37 0.30
DistilBERT 0.47 0.30 0.47 0.41

BERT 0.55 0.39 0.46 0.47R
ec

al
l

AsmDocGen 0.70 0.56 0.48 0.58

RoBERTa 0.42 0.16 0.43 0.34
DistilBERT 0.49 0.36 0.49 0.45

BERT 0.55 0.43 0.48 0.49

F1
-s

co
re

AsmDocGen 0.68 0.59 0.49 0.59

Table 4: Three examples of AsmDocGen’s description that
are an exact match to the true description.

Identical

Predicted comment Ground truth

find vertex number
and edges out

find vertex number
and edges out

perform subtraction
then addition

perform subtraction
then addition

perform multiple mul-
tiplication

perform multiple mul-
tiplication

Table 5: Samples of the predicted output which uses similar
words when compared to the true description.

Partially Similar

Predicted comment Ground truth

find unopened closing
brackets

check too many clos-
ing brackets

find second thursday
of sept

find second thursday
of september 2013

find partially paired
brackets

find paired and nested
brackets

Given that in a fuzzy system, a queue can be utilized
to keep track of intermediate results or manage the se-
quence of various operations, the generated comment
seems relevant. Our manual examination of the code
confirmed that this assembly code specifically uses a
queue in a fuzzy system. Additionally, it is worth not-
ing that while ”Find edge destination” and ”find last
node” are not identical, they still convey similar con-

Table 6: Predicted output for sentences that are completely
different and not identical to the truth, but similar to the
concept based on code’s functionality.

Contextually Similar

Predicted comment Ground truth

returns the size of the
queue

fuzzy compare opera-
tions

find last node find edge destination

cepts. ”Find edge destination” is a specific term in
graph theory, while ”find last node” is a broader term
that can apply to various structures, such as linked
lists, trees, or graphs. These findings suggest that al-
though AsmDocGen’s comments may not be identical
to the ground truth, they are still relevant to the func-
tionality of the code.

7 CONCLUSIONS

The comparison between the Transformer and the
pretrained models shows the effectiveness of trans-
fer learning in training a model for code summariza-
tion using a small dataset. The outcome of the com-
parison between AsmDocGen, BERT, RoBERTa, and
DistilBERT shows the high capability of CodeBERT
to learn and understand the assembly language, and
the overall performance of AsmDocGen as a whole.
The evaluation supports the argument that AsmDoc-
Gen represents a significant advance in the field of au-
tomatic code commenting for low-level programming
languages by using a transformer-based model. The
reference corpus we created of assembly-comment
pairs was shown to be beneficial for retraining Code-



BERT to align it better with this assembly documen-
tation task. This innovative approach sets a new stan-
dard in the area.

Future work on this research could include im-
proving the performance of the model by training it on
a larger dataset. Another area of improvement could
be expanding the system to overcome compiler opti-
mization challenges in generating comments for sim-
ilar functions that are compiled with different compil-
ers/optimization levels. In addition, the system could
be modified to generate multi-sentence summaries,
instead of just one-sentence comments.
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