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Abstract

User identity linkage (UIL) is the task of aligning user iden-
tities of the same user across different social network plat-
forms. Although existing approaches have explored various
aspects such as different user profile attributes and social net-
work structures, the writing styles from user-generated texts,
which is commonly known as stylometry, remain relatively
underexplored. In this paper, we propose a novel Graph Neu-
ral Network (GNN)-based model named StyleLink, which
leverages both social network structures and stylometric fea-
tures derived from user-generated texts to address the UIL
problem in an integrated manner. Our model utilizes GNNs to
incorporate both stylometric features and the network struc-
ture for each social network, effectively embedding the net-
work and enhancing user representation. This is the first work
to incorporate stylometric features into GNNs to embed so-
cial networks and then conduct UIL between two embedding
spaces. Extensive experiments on real-world social network
datasets demonstrate the superior performance of StyleLink
over existing state-of-the-art methods, achieving higher ac-
curacy in user linkage and improved ranking of identity
matches. In addition, we explore the effects of different lin-
guistic characteristics in the identification of user identities
and visualizes the effects of applying GNN5s for better social
network embedding.

Introduction

With the flourishing Online Social Networks (OSNs), peo-
ple tend to participate in various social networks to engage
in different social activities. According to reports (Pew Re-
search Center 2018, 2021), roughly three-quarters of the
public (73%) uses more than one OSN and the median
American uses three mainstream social network sites. Each
OSN serves different social networking functions in daily
life. For instance, users connect with friends on Facebook
and Instagram, share updates on X (formerly known as Twit-
ter), and network with colleagues and potential employers
on LinkedIn.

As a result, the same individual may have signed up mul-
tiple accounts across these diverse platforms, each account
reflecting different user attributes, user-generated content
(UGC), and behavior patterns, such as follows, likes, etc.
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User Identity Linkage (UIL), the process of matching ac-
counts owned by the same individual across multiple social
platforms, has both direct and indirect benefits in the for-
profit and non-profit areas. From a revenue perspective, UIL
helps social media companies create more accurate user pro-
files, leading to better recommendation systems (Bonhard
and Sasse 2006; Mazhari, Fakhrahmad, and Sadeghbeygi
2015; Bok et al. 2016) and data-driven strategies that as-
sist user migration (Kumar, Zafarani, and Liu 2011). Mean-
while, in non-commercial or public areas, UIL assists in de-
tecting and investigating cyber crimes (Zhang et al. 2019;
Han et al. 2017), supports user migration between platforms,
and strengthens user privacy protection (Fire et al. 2014;
Yuan, Chen, and Yu 2010; Shetty et al. 2023; Li, Chen, and
Wu 2023) by identifying vulnerabilities linked to account
misuse or duplication. Consequently, UIL not only drives
profit through better monetization and user engagement but
also enhances broader social and ethical initiatives such as
public safety and personal data security. With the advance-
ment of network embedding techniques, embedding-based
methods have been widely employed to address the user
identity linkage (UIL) problem. Existing approaches lever-
age various dimensional attributes of user identities and can
be grouped into three categories: user profile-based, network
structure-based, and content-based methods.

User profile-based approaches typically focus on user-
provided identifiable information, including username, gen-
der, birthday, email, education, location, etc (Zafarani and
Liu 2009; Liu et al. 2013; Ahmad and Ali 2019). While
public profile attributes offer valuable insights for identify-
ing users across OSNGs, their effectiveness diminishes when
applied to large-scale OSNs, where many attributes can be
duplicated and easily impersonated.

Network-based approaches aim to link user identities with
their network structures, specifically utilizing fopology con-
sistency (Zhang and Tong 2016). Users who share similar
neighborhoods in different networks could be recognized
as matched identities. In social networks, social relation-
ships such as follower-followee play a pivotal role in explor-
ing corresponding user identities across different OSNs (Liu
et al. 2016; Zhang and Tong 2016; Zhou et al. 2018; Man
et al. 2016). However, the assumption of topology consis-
tency is challenged by network heterogeneity. For instance,
users may prefer certain platforms, such as favoring Face-



book over graph, leading to active engagement on one net-
work and a subdued presence on another. Additionally, het-
erogeneity arises from differing semantics of relations, such
as those between a career-oriented platform like LinkedIn
and a co-authorship network like Google Scholar.

Content-based approaches to user identity linkage have
explored various aspects of UGC and behavior patterns.
These methods have analyzed tag frequencies (lofciu et al.
2011), typing patterns (Zafarani and Liu 2013), multi-modal
UGC (Chen et al. 2020), and N-gram language modelling
(Goga et al. 2013a; Vosoughi, Zhou, and Roy 2015; Zafarani
and Liu 2013). However, these approaches still have limita-
tions. By focusing solely on UGC, they overlook the crucial
network structure and user connectivity, which are the most
typical characteristics of OSNs. They also face challenges
with platform-specific content variations and scalability is-
sues with large datasets. Moreover, the exclusive focus on
content neglects the fundamental purpose and dynamics of
social networking platforms. These limitations highlight the
need for a more comprehensive approach that integrates con-
tent analysis with network structural information to achieve
more robust cross-platform user identity linkage.

In OSNSs, user profile attributes and network structure
are closely interrelated. For instance, users with similar at-
tributes are more likely to be connected as friends, and
groups of users with shared characteristics often form dense
communities. Drawing inspiration from the success of ap-
plying graph neural networks (GNNs) and attention mech-
anisms to OSN embeddings (Wang, Ye, and Zhou 2020;
Wang et al. 2020), we propose a novel GNN-based model
for User Identity Linkage (UIL). This application-driven ap-
proach leverages both social network structures and stylo-
metric features derived from UGC to address the aforemen-
tioned limitations. To the best of our knowledge, this is the
first work to incorporate stylometric features into GNNs to
embed social networks and then conduct UIL between two
embedding spaces.

* We present a novel methodology that leverages both user-
generated content (UGC) and network structure to es-
tablish correspondences between user accounts across
OSNs. This approach reduces reliance on user-provided
identifiable information, which may be inconsistent or
deliberately obscured. Instead, we focus on analyzing
user activities, including writing styles and social con-
nections, which are harder to impersonate and accumu-
late over time with consistent social network engage-
ment.

e We introduce StyleLink, an innovative Graph Neural
Network (GNN)-based approach to tackle the UIL prob-
lem. StyleLink consists of three primary components: a)
Stylometric feature extraction, where we identify distinc-
tive linguistic patterns in UGC to capture unique writing
styles; b) Network embedding: we employ GNN mod-
els to generate user representations that incorporate both
stylometric features and network structure; and c) Super-
vised linkage learning, where we use a Multi-Layer Per-
ceptron (MLP) as the mapping function to learn the em-
bedding transformation between source and target net-
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works, thus predicting aligned user identities.

* We validate the effectiveness of StyleLink on real-world
social network datasets, specifically X and Foursquare.
Experimental results demonstrate that our method sig-
nificantly outperforms existing baselines in terms of both
accuracy and efficiency.

Related Work
User Identity Linkage

We categorize the existing approaches on user identity link-
age (UIL) into three categories: user profile-based, network-
based, and content-based, from the perspectives of fea-
tures in social networks. Researchers have demonstrated
the utility of a wide range of attributes in addressing the
UIL problem and leveraging a combination of them often
leads to more reliable user identification. Attributes such
as username, gender, age, occupation, hometown, location,
email address, and profile photo (Motoyama and Varghese
2009; Carmagnola and Cena 2009; Goga et al. 2013b, 2015;
Sharma and Dyreson 2018) have all been proven effective in
existing approaches for solving the UIL problem. However,
the effectiveness of these methods is limited in large-scale
social networks due to attribute duplication and user imper-
sonation. Many users also intentionally mask or falsify their
personal information, further challenging these approaches.

Network-based approaches aim to link user identities with
their network structures by leveraging the ropology consis-
tency(Zhang and Tong 2016), which means users who share
similar neighborhoods in different networks could be rec-
ognized as matched ones. In social networks, social rela-
tionships, such as follower-followee relations, play a pivotal
role in exploring corresponding user identities across dif-
ferent SNs (Liu et al. 2016; Zhou et al. 2016, 2018; Man
et al. 2016; Chu et al. 2019). However, they focus solely
on the connections between users, ignoring the rich user-
specific information contained in profile attributes, behav-
iors, and content. This can lead to embeddings that fail to
capture important aspects of user identity, such as interests,
preferences, and linguistic patterns. When users have rel-
atively few connections, i.e. the network connections are
sparse, structure-only embeddings can not adequately rep-
resent users..

Content-based approaches usually exploit any available
multi-modal UGC, including texts (Zheng et al. 2006; Goga
et al. 2013a; Srivastava and Roychoudhury 2020), images
(Zhang et al. 2019; Huang et al. 2019; Chen et al. 2020)
, and activity patterns of users (Vosoughi, Zhou, and Roy
2015; Iofciu et al. 2011). Apart from the aforementioned
limitations, without network structure, it is difficult to cap-
ture how users are influenced by or influence others in the
network, which can be important for understanding user be-
havior and identity.

Network Embedding

Network embedding is a crucial technique for learning low-
dimensional representations of vertices within networks, in
order to capture and preserve the network structure. Most
existing network embedding approaches rely on shallow



models, including DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) treats random walks on graphs as sentences and ap-
plies the Skip-gram model from natural language process-
ing to learn node representations; Node2vec (Grover and
Leskovec 2016), an extension of DeepWalk, introduces a
flexible notion of a node’s network neighborhood and em-
ploys biased random walks to efficiently explore diverse
neighborhoods; LINE (Tang et al. 2015) optimizes a metic-
ulously crafted objective function that maintains both local
and global network structures. They have been widely used
in many UIL approaches when conducting network embed-
ding, for instance, Node2Vec in RLink (Li et al. 2021), ran-
dom walks in DeepLink, CLF, and CRW(Zhou et al. 2018;
Zhang and Philip 2015; Zhan, Zhang, and Yu 2019), etc.
However, due to the inherent complexity of network struc-
tures, shallow models struggle to effectively capture the
complex, highly non-linear structure, leading to suboptimal
representations. The second issue is that they cannot gen-
erate embeddings for nodes not in the training set and are
inherently transductive.

To alleviate these drawbacks, deep representation learn-
ing (Wang, Cui, and Zhu 2016) and Graph Neural Net-
works (GNNs) (Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2018; Xu et al. 2019; Velickovic et al. 2018)
in recent years leverage multiple layers to capture the in-
tricate, non-linear relationships within networks, leading
to more expressive and accurate embeddings. Empowered
by the message passing mechanism, GNNs iteratively up-
date node representations by aggregating information from
neighboring nodes, enabling them to capture both local and
global structural information. The techniques such as Graph
Convolutional Networks (GCNs) (Kipf and Welling 2017)
and Graph Attention Networks (GATs) (Velickovié et al.
2018) have been particularly influential in network embed-
ding and downstream tasks. For instance, DyGNN (Ma et al.
2020), a Dynamic Graph Neural Network model, which can
model the dynamic information of a graph as it evolves.
AS-GCN (Yu et al. 2021) unifies the neural topic model
and GCNs with text-rich network representation. Personal-
ity GCN (Wang et al. 2020) can effectively use text informa-
tion, including TF-IDF and PMI, to detect user personalities.
By leveraging this dual-aspect approach, these models cap-
ture not only the network’s structural properties but also the
rich information associated with individual nodes. Drawing
inspiration from the success of these techniques, we are in-
novated to incorporate stylometric features into our GNN-
based social network embedding process. This novel inte-
gration of linguistic characteristics with network topology
allows StyleLink to create more nuanced and informative
representations of users within social networks, potentially
enhancing the accuracy and robustness of user identity link-
age.

Problem Definition
A social network is a graph G = {V, E, X}, where V' =
{v1,v2,...,un} is a set of nodes representing the users, and
E € V xV isaset of edges representing the social relation-
ships among users, e.g., follower/followee in Twitter. Each
user v; is associated with a d-dimensional stylometric fea-
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ture vector x; (the i-th row in X), which is extracted from
the text written by the user v;.

Let G° = {V*,E%, X} and G' = {V* E', X'} be the
source and target networks, respectively, In these networks,
Vs and V? are the sets of users, E£° and E! are the sets of
edges representing connections between users, and X° and
X* are the sets of stylometric features. In addition, a set of
known anchor nodes T' = {(vf, u)|v; € V*,u} € V'}is
provided, where each pair (v}, u‘;) represents accounts be-
longing to the same individual between the two networks. In
real-life social networks, anchor links naturally exist due to
users registering accounts on multiple platforms. Users may
explicitly mention or link their other social network accounts
in their profiles or posts, providing clear anchor links.

The goal of User Identity Linkage (UIL) is to predict
whether a user v in the source network and a user v§ in
the target network correspond to the same individual in the
real world. Formally, this can be expressed as a function
f(vs, vt |T, G*, G"), which is defined as:

i Y5
. s Ao 1, ifud =t
f (i, vi|T, G*, GY) _{ 0, otherwise
Methodology

To solve the problem of User Identity Linkage, we propose
a GNN-based model, named StyleLink. As shown in Fig-
ure 1, StyleLink consists of three key components: stylo-
metric feature engineering, network embedding via Graph
Neural Networks (GNNs), and supervised linkage learning.
We will discuss each component in detail.

(a) Stylometric Feature Extraction

To model users’ writing styles, stylometric features like
word choice, frequency, punctuation, and sentence length
can be easily identified (Sari, Stevenson, and Vlachos 2018)
and assembled into sets of representative characteristics. In
this paper, we extract and characterize the writing styles
of users from the following aspects, following the frame-
work proposed by (Zheng et al. 2006). We evaluated 274
static features including lexical, syntactical, structural fea-
tures, and idiosyncratic features specially designed for UGC
on social networks. The frequency of misspellings can re-
flect a user’s attention to detail, educational background, and
language proficiency. The use of abbreviations varies greatly
among users, reflecting their communication style, level of
formality, and adaptation to platform norms. Users who fre-
quently interact with various topics may exhibit a broader
range of abbreviations, reflecting their engagement level on
OSNs. Therefore, we choose to incorporate these idiosyn-
cratic features into the stylometric feature set and validate
their capability to enhance the accuracy and reliability of
UIL. All static stylometric features are listed in Table ?? in
the Appendix.

(b) Graph Neural Networks for Social Network
Embedding

In StyleLink, both source and target networks are embedded
into low-dimensional spaces, denoted as Z° and Z* respec-
tively, and a mapping function ® : Z¢ — Z*, which maps
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Figure 1: Illustration of the StyleLink model workflow. The process begins with obtaining source and target social network
information, including user connections and their publicly posted texts (textual UGC). Next, stylometric features are extracted
from the UGC and input into a Graph Neural Network to generate network embeddings that better represent the users. Subse-
quently, a mapping function is constructed to learn the relationships across the two OSNs. Finally, the user linkage results are

produced.
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Figure 2: Overview of Stylometric Feature Extraction: User-
generated texts undergo text pre-processing followed by
extraction of four key stylometric features—Lexical, Syn-
tactical, Structural, and Idiosyncratic—to represent writing
styles.

the latent spaces from the source to the target, is learned.
Firstly, we apply Graph Convolutional Networks (GCNs)
(Kipf and Welling 2017), an effective graph neural network
that captures high-order neighborhood information, to em-
bed the source and target networks. For multi-layer GCN,
the layers can be mathematically defined as:

H'=o(D 2AD 2 XW?) (1
H*' = o(D"2 AD™ 2 H*WF) 2)
where H* is the node embedding matrix at layer k, X in

Eq.1 is the matrix of stylometric features, and also the ini-
tial layer H°, o(+) is a non-linear activation function (e.g.,
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ReLU o(x) = max(0,x)), A is the graph adjacency matrix
with the addition of self-loops, ensuring that each node’s
own features are included in the aggregation process. D is
the graph degree matrix with the addition of self-loops, and
Wt € R%*di+1 js the trainable weight matrix for the [-th
layer.

The final output of the GCN, Z = H¥, represents the
network embeddings after k£ layers, where each row corre-
sponds to a continuous and low-dimensional embedding of
a user) in the network. These embeddings incorporate infor-
mation not only from the node’s own features but also from
the features of its k-hop neighbors, effectively embedding
the network. We name the StyleLink variant as StyleLink-
GCN if its embeddings are from GCNss.

Incorporating the attention mechanism into the GNN
learning process enables a node to gather the most relevant
information from its neighbors and update its features using
learned attention weights. This allows the model to focus on
important nodes or edges in the graph while reducing the im-
pact of noise during message passing in the network (Foun-
toulakis et al. 2023). Here we applied multi-head mechanism
as described in Graph Attention Network (GAT) (Velickovié
et al. 2018) to be the second variant: StyleLink-GAT. Math-
ematically, the multi-head attention mechanism can be de-
fined as follows:

Let h; denote the hidden state of node ¢. The attention
coefficient e;; between node ¢ and node j is computed as:

e;; = LeakyReLU(a” [Wh; || Wh;]) (3)
where « is the attention vector, W is the weight matrix, and

| denotes concatenation. The normalized attention coeffi-
cients cy;; are then obtained using the softmax function:



_ exp(e;;)
> ken () eXP(€ir)
For the multi-head attention GAT layer, the new repre-
sentation of node ¢ is computed as a weighted sum of its

neighbors’ representations, taking into account the attention
coefficients:

“

Oéij

h; =0 OéijWXj (5)
JEN(3)
where o is a non-linear activation function, and A/ (7) de-
notes the set of neighbors of node .
Thus, the attention mechanism enables the model to focus
on important nodes or edges while effectively aggregating

the writing styles of neighbors.

(c) Supervised Linkage Learning

After obtaining the representation Z° € R¥*" 7t ¢ RI*"
from GNNs for the source and target network graphs, re-
spectively, the next step is to learn a mapping function
® : Z5 — Z*. This mapping function is supervised using
the known anchor links 7.

In contrast to many existing methods that typically choose
cosine similarity for their loss function (Zhou et al. 2018;
Zhong et al. 2018; Xie et al. 2018; Chen et al. 2020; Kong,
Zhang, and Yu 2013), our proposed model adopts the Triplet
Loss for the objective function in supervised linkage learn-
ing.The concept of triplet loss was initially developed for
facial recognition applications (Schroff, Kalenichenko, and
Philbin 2015). It has shown improved ability to distinguish
between different items in the embedding space. Unlike co-
sine similarity, which only looks at pairs of items, triplet loss
considers groups of three. This approach pushes the map-
ping function to position correct matches significantly closer
together in the latent space compared to incorrect matches.

We need to minimize the objective function as follows
during the mapping function learning:

— : s t2
Etriplet = arg IIEII/I’? Z [H(P(Za) - Zp||2
(a,p,n)€T

—||®(2) - ZL|I5 + a] (6)

, where Anchor (a) represents a node from the source net-
work; Positive (p) represents the corresponding node from
the target network, i.e. the same user; and Negative (n) is a
different node from the target network.

Based on comparisons between linear and non-linear
mapping functions in (Man et al. 2016), we also decide
to employ Multi-Layer Perceptron (MLP) as our mapping
function ®, which is able to capture the non-linear mapping
relationship between the source and target social networks.

The overall complexity of the method can be summarized
as:

* GNN embedding: O(L - (|Es| + |E¢]) - d)
e MLP Training: O(k - d? - m - n)
* Linkage: O(|V4| - |V4| - d)
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while the method is computationally intensive due to mul-
tiple steps involving large-scale graph operations, embed-
dings, and neural network training, the overall complexity is
manageable with respect to modern computational resources
and can be optimized based on specific use cases and net-
work sizes.

Experiment

In this section, we evaluate the proposed StyleLink model,
including both its GCN and GAT variants, through two ex-
perimental tasks. Our investigation aims to address several
key aspects of the model’s performance and capabilities.
Firstly, we explore the effectiveness of StyleLink in pre-
dicting user identities across different OSNs. We want to
see how our model performs compared to state-of-the-art
(SOTA) methods in the field of UIL. In addition, we fo-
cus on how these linguistic characteristics contribute to cre-
ating more representative and informative network embed-
dings for OSNs. We examine various aspects of stylometric
features to understand their individual and collective impact
on both the quality of network embeddings and the overall
performance of user identity linkage tasks. All the experi-
ments are carried out on a Windows Server equipped with
two Xeon E5-2697 CPUs (36 cores), 384 GB of RAM, and
four NVIDIA TITAN XP GPUs.

Datasets

To verify our approach, we conduct experiments on the
real-world partially aligned OSN datasets: X (Twitter) -
Foursquare. The statistics information of the datasets is
shown as Table ??. This dataset was originally provided by
Zhang et al. 2016, where users of two social networks are
partially aligned. The ground truth of 1,609 anchors is pub-
licly provided in their Foursquare profiles. We extended the
original datasets with additional UGC scraping until the year
of 2023, such that the average number of posts is increased
by 30% in Table ?? to avoid stylometric features being too
sparse.

To improve the accuracy of our analysis, we pre-process
the datasets by removing non-English UGC:s first. Then for
each valid tweet from X or tip from Foursquare, we remove
user mentions (e.g., ”@username”), retweets, hashtags (e.g.,
#topic), and replace URLs uniformly with a specified token.
These elements are excluded because they are often generic
and repetitively used by many users, making them less use-
ful for represent the unique writing styles of users.

Evaluation Metrics and Baselines

To quantitatively evaluate the performance of our proposed
model, we consider the metrics: Precision@k (P@k) and
Mean Average Precision (MAP), which are commonly used
in previous studies (Zhou et al. 2018; Man et al. 2016). The
higher the value of each of the measures, the better the per-
formance of UIL.

Precision@k (P@k) is the metric for evaluating the link-
ing accuracy, which is the same as Recall@k and F}Qk. It



| N [ V[ AvgDegree | AvgPosts | Vocabulary Size
X 5,120 | 130,575 60.28 1,405.5 90,661
Foursquare | 5,313 | 54,233 26.05 270.6 480,135

Table 1: Summary Statistics of X - Foursquare Dataset, with 1,609 anchors users.

UIL method | Type | Topology | Attribute
IONE supervised Y N
DeepLink supervised Y N
PALE supervised Y N
MNA supervised N Y
RLink reinforcement Y N

Table 2: Comparison among different baseline UIL methods.
Y(es) or N(o) stands for whether their network embedding
methods involve topology and attributes.

is defined as:

Pak = Z I;{success@Qk} @)

where I;{successQk}/n measures whether the positive
matching identity exists in the top-k (k < n) list, and n is
the number of testing anchor nodes.

Mean Average Precision (MAP) is calculated as:

MAP@k = X(

> ®)
n

Compared with Precision @k, it is more concerned with the
performance of the returned items ranked ahead.

We evaluated the performance of StyleLink by comparing
it with the following baselines, and the differences among
them are shown in Table ??. Among these baseline models
we choose, network embedding methods are all employed,
but in different manners, such that the user latent space is
obtained for aligning the user identities.

e IONE (Liu et al. 2016): In Input-Output Network Em-
bedding (IONE), a network embedding method is de-
signed to simultaneously learn each user’s follower-ship
and followee-ship while utilizing the input and output
context vectors to maintain the proximity of anchor users.

PALE (MLP) (Man et al. 2016): Predicting Anchor
Links via Embedding (PALE) conducts network em-
bedding to capture its major structural regularity. In
the matching stage, it learns an MLP mapping function
across two low-dimensional latent spaces.

DeepLink (Zhou et al. 2018): DeepLink is a deep rein-
forcement learning based algorithm that applies unbiased
Random Walk to generate embeddings and uses MLP in
a dual learning way to map users.

MNA (Kong, Zhang, and Yu 2013): Multi-Network An-
choring (MNA) extracts social features, including spa-
tial, temporal, and text content features (bag-of-words
vectors weighted by TF-IDF), and neighborhood-based
network features and match user identity pairs.

1

ra
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* RLink (Lietal. 2021): RLink applies Node2Vec (Grover
and Leskovec 2016) to pre-train the network embed-
ding and concatenates the embeddings of source and
target networks to represent network structure informa-
tion. Specifically, it is the first to consider UIL as a se-
quence decision problem and proposes a deep reinforce-
ment learning model.

Experimental Results

First of all, we compare the performances of various ap-
proaches by linking precision PQF, as presented in Fig-
ure 3a. We set the training ratio « to be 0.7 and present
the results of different PQF. The results in Figure 3a show
that both StyleLink-GCN and StyleLink-GAT consistently
outperform the other models across all values of k, with
StyleLink-GAT achieving the highest accuracy. On aver-
age, our method of both variants achieves a 9.2% improve-
ment over the baseline model RLink and a 21.2% im-
provement over DeepLink on the X-Foursquare datasets.
We observe that models utilizing deep learning techniques,
such as DeepLink, PALE, RLink, and our proposed vari-
ants, StyleLink-GCN and StyleLink-GAT, generally achieve
higher linking precision compared to models that do not
employ neural networks, such as IONE and MNA. Specif-
ically, IONE, DeepLink, PALE, RLink, and the StyleLink
variants significantly outperform MNA, which achieves
only 36.04% precision at P@Q30, whereas the other mod-
els achieve comparable precision at P@5. Compared to
PALE and DeepLink, both of which use supervised map-
ping with deep learning methods, StyleLink demonstrates
superior performance by integrating writing style features
into the network embeddings.

Furthermore, we varied the training ratio settings from 0.1
to 0.8 and evaluated the P@Q30 for each method. The propor-
tion of anchor nodes 7" used during training significantly im-
pacts the performance of UIL models. While RLink exhibits
competitive performance, particularly at higher training ra-
tios, it does not reach the precision levels achieved by the
StyleLink models. This suggests that while considering UIL
as a sequence decision problem is beneficial, the network
embeddings generated via Node2Vec in RLink are not as ef-
fective as those produced by our GNN-based embeddings.

To summarize, the above observations demonstrate that
our proposed StyleLink models, both StyleLink-GCN and
StyleLink-GAT, effectively address the User Identity Link-
age (UIL) problem. Compared to other baseline mod-
els, StyleLink demonstrates significantly better performance
with a lower proportion of training anchor nodes. It can
effectively learn meaningful representations and perform
well in scenarios where training data is incomplete or im-
balanced, which is common for authentic social network
datasets. In addition, StyleLink-GAT, which incorporates an



attention mechanism, achieves superior linkage performance
over other models.

8[;Derformance Comparison of UIL Models for Different Precision@k
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Figure 3: Performance comparison between baseline meth-
ods and our model as well as its variants on X-Foursquare
datasets. Each experiment was repeated 10 times, and the
mean evaluation results were recorded.

Ablation Study

An ablation study was carried out to determine the contri-
bution of different components of stylometric features to the
network embedding and UIL performance on OSNs. In Ta-
ble ??, stylometric features are divided into 4 categories,
from the perspective of different linguistics. Therefore, we
conducted experiments on X-Foursquare datasets between
different variants of StyleLink, with different category of
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stylometric features padded zeros respectively. Negative val-
ues indicate a decrease in performance when that category of
features is padded with zeros.

Overall, each category of stylometric feature types con-
tributes positively to the performance of our model, but
to different extents. Lexical features remain the most crit-
ical for StyleLink-GCN according to both metrics. For
StyleLink-GAT, idiosyncratic features have the largest im-
pact in terms of P@10, while lexical and syntactic fea-
tures affect MAP more. Compared to StyleLink-GAT, which
demonstrates more balanced sensitivity across different fea-
ture types, StyleLink-GCN exhibits higher sensitivity to fea-
ture ablation, particularly for lexical and syntactic features.
Structural features have the least impact on StyleLink-GCN
but are more influential for StyleLink-GAT.

Effectiveness of Social Network Embedding via
GCNs

We conduct this experiment to validate the effectiveness of
our approach of generating the stylometric features and then
applying GCNs to embed the whole network. We present
visualizations in Figure 4 to illustrate that applying GNNSs in
network embedding indeed helps generate more meaningful
and distinguishable embeddings.

Firstly, the embeddings are reduced to two dimensions us-
ing t-SNE (van der Maaten and Hinton 2008) for visualiza-
tion. Then, we can use some density-based clustering algo-
rithm, for example, we adopted DBSCAN (Ester et al. 1996)
for large spatial databases with noise in OSNs, to group sim-
ilar nodes based on the reduced embeddings. Nodes with
a similarity score above a defined threshold are filtered for
clarity. Positions for these nodes are determined, and col-
ors are assigned according to their cluster labels. The fil-
tered nodes and their connecting edges are then visualized
in a network graph, with a color bar indicating cluster la-
bels, helping to highlight similarities in writing styles.

From the visualization comparison in Figure 4, we ob-
serve that representing users solely with stylometric features
results in several clustering communities, where users with
similar embeddings tend to cluster closely together in the
embedding space. However, as seen in Figure 4a, despite
the same number of users being represented as in Figure 4b,
most nodes overlap significantly, forming extremely dense
clusters. This can lead to the incorrect alignment of dissimi-

Features StyleLink-GCN StyleLink-GAT
P@10 [ MAP P@10 [ MAP

all features | 55.3 47.1 57.5 50.6

(-) Lexical | -1.87 | -2.32 -1.00 -0.89

(=) Syntac- | -1.43 | -1.21 -0.60 -1.10

tic

(=) Struc- | -0.83 | -0.29 -0.40 -0.50

tural

(=) Idiosyn- | -1.02 | -1.29 -1.40 -1.00

cratic

Table 3: Stylometric Feature Ablation Results.
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(a) This figure visualizes Foursquare embeddings based on stylomet- (b) This figure visualizes Foursquare embeddings after applying
ric features, before the application of GCNs. GCN:s.
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(c) This figure visualizes X (Twitter) embeddings based on stylomet- (d) This figure visualized X (Twitter) embeddings after applying
ric features, before the application of GCNS. GCNs.

Figure 4: We present embedding visualizations for the X - Foursquare datasets, comparing the representations before and after
applying GCNs. Although StyleLink-GAT could achieve better performance, we choose to visualize with Style-GCN for the
scalability and simplicity. High dimensional embeddings of V', X and Z, are projected to 2D dimensional space and the light
grey lines represent the edges E from the network graphs. To enhance clarity and improve visualization quality, we filtered out
nodes with similarity scores below a certain threshold. These filtered nodes, colored in dark purple, contribute to visual clutter
if not removed. After applying this filtering process, 2,004 Twitter users and 2,369 Foursquare users remain, which were used

to generate the visualizations shown above.
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lar users due to similar embeddings.

In contrast, after applying GCNs to generate network
embeddings, we notice that users with similar embeddings
(i.e., users with similar colors) still form clusters, but these
clusters are more dispersed and better by clearer bound-
aries. This observation indicates that GCNs can create more
distinct clusters, which helps differentiate between various
users.

These observations are also evident in Figures 4c and 4d,
where similar patterns in the X dataset can be observed.

Discussion

This study aims to develop and evaluate the StyleLink
model, integrating both GCN and GAT variants, to improve
user identity linkage (UIL) across various online social net-
works (OSNs). Our main objective was to evaluate whether
incorporating stylometric features, linguistics characteristics
inherent in users’ writing styles, into Graph Neural Net-
works could enhance the linking precision and quality of
network embeddings for UIL tasks. We compare StyleLink’s
performance against leading UIL methods, examining how
these stylometric features contribute to the model’s ability to
generate superior social network embeddings and accurately
link user identities across different OSNs. Our results align
with previous studies highlighting the importance of linguis-
tic features in user identification (Zheng et al. 2006; Goga
et al. 2013a; Srivastava and Roychoudhury 2020). However,
our work extends these findings by demonstrating the ef-
fectiveness of GNNs in leveraging these features for cross-
platform identity linkage. While our study demonstrates the
effectiveness of StyleLink, our experiments were conducted
on one benchmark dataset, however with rich information
on textual UGCs. The model’s performance is expected to
be assessed on additional OSNs with varying platform func-
tionalities and user behaviors.

Conclusions and Future Work

In this study, we introduced and evaluated the StyleLink
model, incorporating GCN and GAT variants, for user iden-
tity linkage (UIL) across different online social networks
(OSNs). While our evaluation was conducted on a single,
well-structured X-Foursquare dataset with both textual and
network features, the results remain robust, demonstrating
the effectiveness of combining stylometric features with
graph neural networks for user identity linkage. The re-
sults demonstrate that StyleLink, particularly the GAT vari-
ant, significantly outperforms state-of-the-art UIL methods
in precision, especially at a lower training ratio. This per-
formance improvement highlights the effectiveness of inte-
grating stylometric features into GNN models, providing a
more effective and representative embedding of user identi-
ties across OSNs. The proposed StyleLink method not only
introduces a novel approach to UIL, but also provides prac-
tical insights for practical applications. There are several di-
rections worth investigating in the future. As UGC is also
associated with timestamps, we aim to explore whether tem-
poral writing style evolution plays a significant role in user
identity linkage on social networks. We also intend to ex-
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plore the application of more advanced Graph Neural Net-
work architectures, such as Graph Transformers (Yun et al.
2019; Hu et al. 2020) or GraphSAGE (Hamilton, Ying, and
Leskovec 2018), to potentially enhance the capability in cap-
turing complex and large-scale network structures. Moving
forward, we will also explore how this approach can be
further tailored for heterogeneous platforms and extensive
datasets, which is the persistent challenge in UIL (Shu et al.
2017; Senette, Siino, and Tesconi 2024), aiming to expand
its practical applicability in real-world scenarios.
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Abbr. Meaning Abbr. Meaning

AFAIK As far as I | AFK Away from
know keyboard

ASAP As soon as | BC, B/C | Because
possible

BFF Best  Friend | BRB Be right back
Forever

BTW By the way DM Direct  mes-

sage

FYI For your infor- | IDK I don’t know
mation

IMO In my opinion | RN Right now

JK Just kidding LMK Let me know

LMAO Laughing my | LOL Laugh out
ass off loud

NB Not bad NP No problem

NVM Never mind OFC Of course

OMG Oh my God oMW On my way

PM Private Mes- | TBH To be honest
sage

TMI Too much in- | HBD Happy Birth-
formation day

TY Thank You WTF What the f#%*

YW Youre wel- | XOXO A term to con-
come vey affection

Table 4: Common Social Media Abbreviations and Their
Meanings. We chose these 30 words as they are widely
used and representative across various OSNs (Khairutdinov,
Mukhametzyanova, and Gaysina 2017; Pratiwi and Marlina

2020).
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Categories

Examples

Lexical
Features
F1

Character-based features:

1. Total number of characters(C)

2. Ratio of alphabetic characters/C

3. Ratio of upper-case characters/C

4. Ratio of digits/C

5. Ratio of tabs/C

6-31. Frequency of letters, ignoring case
(26 features: A to Z)

32-53. Frequency of special characters (22
features: )<>%—{} [1# ™~ +*=$"& )
Word-based features:

54. Total number of words (M)

55. Ratio of short words (less than four
characters)/M

56. Total number of characters in words/C
57. Average word length (in characters)
58. Average sentence length (in characters)
59. Average sentence length (in words)
60. Total different words/M

61. Yule’s K measure* (A vocabulary rich-
ness measure defined by Yule)

62-81. Word length frequency distribution
/ M (20 features) Frequency of words in
different lengths

Syntactic
Features
F2

82-89. Frequency of punctuations (8 fea-
tures, including ”, . ? 1 : ;"'

90-239. Frequency of function words (150
features) (Zheng et al. 2006)

Structural
Features
F3

240. Total number of sentences
241. Average sentences per post
242. Average URL per post

Idiosyn-
cratic
Features
F4

243. Average Misspelled words per post
244-273. Abbreviation Frequency
274. Average Abbreviation Diversity

Table 5: List of Stylometric Features




