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Abstract—With the rapidly growing volume and variety of
Electronic Health Records (EHR) data, deep-learning models ex-
hibit state-of-the-art performance for many predictive tasks in the
health domain. To overcome the challenge of high dimensionality
in EHR data, many representation learning methods have been
proposed to learn low-dimensional diagnosis representations.
Another challenge is how to effectively incorporate the domain
knowledge, such as the International Classification of Diseases
(ICD) medical ontology, into the learned embeddings. Albeit the
medical ontology is a knowledge graph, none of the existing
methods take advantage of Graph Neural Network (GNN), which
has demonstrated its ability in other domains. The problem is
that a GNN with multiple hidden layers, which are required
to propagate information from the leaf of the medical ontology
graph to the root, dilutes the differences among the nodes,
degrading the quality of the learned embeddings. In this paper we
introduce a densely connected graph derived from the original
ontology graph to tackle the problem. Furthermore, to model
the information in patient records, we construct a single co-
occurrence graph based on the co-occurrence of diagnoses and
a patient’s diagnosis history. Experimental results show that
the diagnosis embeddings learned from our model, DUal-GRAph
Representation Learning (DUGRA), outperform the current state-
of-the-art models in terms of diagnosis prediction accuracy.

Index Terms—Electronic health records, representation learn-
ing, knowledge graph, graph neural networks.

I. INTRODUCTION

Due to the extensive adoption of health information technol-
ogy in recent years, more and more Electronic Health Records
(EHR) data are becoming available, leading to increasing
usage of machine learning methods to predict the health status
of patients. The primary challenge of performing machine
learning on EHR data comes from its variety and high di-
mensionality composed of thousands of diseases, medications,
treatments, lab test results, etc. Considerable effort has been
made to perform predictive tasks based on learning low-
dimensional diagnosis representations or embeddings from
EHR data, including prediction of a patient’s health status
[1], [2], [3], [4], readmission prediction [5], [6], [7], mortality
prediction [8], [9], [10], etc. The medical history of each
patient in an EHR system consists of a sequence of medical
events, so an EHR data can be considered as sequence data.
Due to the high similarity between EHR sequence data and
the corpus data in natural language processing, many repre-
sentation learning methods in NLP have been deployed in

the field of health informatics. Among them, the well-adopted
word2vec method [11] inspires many EHR machine learning
works to automatically learn low-dimensional representations
of diagnoses through the co-occurrence information in order
to make frequently co-occurring diagnoses close in the em-
bedding space.

Despite promising results given by the models inspired by
the word2vec method, these models require a large amount of
training data, which is difficult to find in the healthcare domain
due to privacy concerns [2], [3], [4]. Also, most of these works
do not utilize the domain background knowledge to increase
the representation power. To tackle these problems, new meth-
ods [2], [3], [4] that incorporate knowledge graphs have been
recently proposed. They use the graph to find the ancestor
of a given diagnosis node in order to partially form the final
representation as a convex combination of its ancestors’ and
its own feature vectors. Although some works [2] claim that
they use knowledge graphs, none of them takes advantage of
the newly emerging graph neural network (GNN), which has
demonstrated its ability in knowledge graphs representation
learning [12].

Graph Neural Network (GNN) is an effective way to learn
node or graph representation from graph structure data [13].
The input of a GNN is a graph where each node is a
representation without considering its neighbor information.
The output of a GNN is a graph where each node is a
representation with the consideration of its neighbors, i.e.,
the contextual information of the graph. In this paper we
propose a new representation learning model, DUal-GRAph
Representation Learning (DUGRA), to generate two embed-
dings of each diagnosis. The first one comes from the medical
ontology graph, such as an International Classification of
Diseases ICD-9 taxonomy in Figure 1 extracted from the
Clinical Classifications Software (CCS) from the Agency for
Healthcare Research and Quality (AHRQ), which captures
the domain knowledge. The second one comes from the co-
occurrence information of diagnosis codes in EHR data. Both
are modelled as graphs, so we use a GNN to learn each
embedding and concatenate them to form a joint embedding.

GNN for Medical Ontology Graph. A medical ontology
graph can be considered a knowledge graph, and it can be
modelled by GNN. GNN was originally proposed to solve



Fig. 1. Graph illustration of ICD-9 taxonomy

the semi-supervised classification problem. Recent work [14]
has further shown that GNN can achieve the same result as
Laplacian smoothing, where feature vectors of nodes become
more similar as the number of layers increases in the GNN,
resulting in better prediction accuracy. However, the aim of
applying representation learning in the medical ontology graph
is to better capture the relationship information between parent
and children diagnosis nodes and improve differentiation of
various diagnosis nodes. Therefore, over-smoothing is not
desirable as it dilutes the differences among the nodes, leading
to worse prediction accuracy, as illustrated in our experiments.

Due to the aforementioned drawbacks of GNN, we ar-
gue that using the raw medical ontology graph as input to
GNN is not ideal for the task of representation learning.
Also, the number of layers in the GNN should be small in
order to avoid over-smoothing. In this paper, we introduce
a densely connected graph derived from the raw medical
ontology graph such that every pair of connected nodes in
the densely connected graph is only 1-hop away. Although
this connection schema allows us to propagate information
without the over-smoothing problem, it removes important
structural information from the graph. To compensate for the
loss of structural information, we design two attention-based
aggregate functions to compress the ancestor relationships and
embed them into the representation of the child nodes.

GNN for Co-occurrence Graph. To model a diagnosis,
it is crucial to consider its frequently co-occurred diagnosis
in patient records. Thus, we construct a co-occurrence graph
from an EHR dataset where patients and diagnoses are nodes;
the edge weight between two diagnosis nodes represents their
degree of co-occurrences, and the edge weight between a
diagnosis node and a patient node represents the weighted fre-
quency of the patient having such a diagnosis in their medical
record. There is no edge between two patient nodes because
most EHR datasets do not capture the relationship informa-
tion among patients. To further enhance the co-occurrence
embedding we use an auxiliary self-prediction task to guide
the learning process of the co-occurrence GNN. This helps the
model perform better in downstream prediction tasks, such as
the next admission diagnoses prediction.

The contributions of this paper can be summarized as
follows:
• This is the first work that utilizes a GNN to model the co-

occurrence information of diagnosis codes in EHR data.
Our experiments demonstrate that using the GNN-based
co-occurrence graph can improve the predictive power of
the learned embeddings, especially for the primary care
patients.

• We propose a novel densely connected graph to improve
the representation of a medical ontology graph with two
attention-based aggregate functions for GNN to integrate
the compressed structural information.

• We conduct extensive experiments on one de facto public
benchmark dataset for Intensive Care Unit (ICU) patients.
Experimental results suggest that our models outperform
all state-of-the-art models in terms of diagnosis prediction
accuracy and justify the choice of our proposed densely
connected graph and attention-based aggregate function.

The rest of the paper is organized as follows: Section II
presents the related work in graph representation learning with
focuses on EHR and provides an introduction of Message
Passing Neural Network (MPNN). Section III formally de-
fines the research problem. Section IV describes DUGRA in
detail. Section V illustrates the experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK

A. Graph Representation Learning

Graph neural network (GNN) is a variant of neural network
that operates on graph domain [13]. Graphs are prevalent in
our daily life. Social networks [15], biological protein-protein
networks [16], drug-drug interactions [17], recommendation
systems [18], and neural language processing [19] — all data
in these domains can be modeled as graphs. Recently, various
GNNs have been proposed to encode graph structure infor-
mation, including Graph Convolutional Network (GCN) [20],
GraphSAGE [21], and Graph Attention Network (GAT) [22].

Message Passing Neural Network (MPNN) [23] is a frame-
work that generalizes all the aforementioned graph neural
network models. In MPNN, the node embedding learning
process has two steps. The first step is to aggregate neighbor
information using a function M t, and the second step is
to update the node representation based on the aggregated
information of its neighbors, denoted by mt

i, using function
U t. Both M t and U t can be customized depending on the
context. A node ni uses aggregate functions to collect the
latent representation after t − 1 time steps updating from its
neighbors N(ni). The latent state of a node after t time steps
is denoted by vti ∈ Rd, where d is the dimension of the latent
state. It is updated based on the message mt

i from its neighbors
N(ni):

mt
i =

∑
j∈N(ni)

M t(vt−1i , vt−1j ), (1)

vti = U t(mt
i) (2)

GNN has demonstrated its power on EHR data [24], [25],
[26], [27], [28]. The authors in [25], [24] use heterogeneous
graph neural network to model heterogeneity attributes in EHR



data. ME2Vec [26] uses graph embedding and GAT on a patient
and doctor graph. However, ME2Vec does not take into account
the medical ontology graph to enhance the representation
power. GAMENet [28] uses GNN and a drug-drug interaction
graph for medical recommendations. Another work worth
mentioning is G-Bert [27], which uses one-layer GAT on a
medical ontology graph to enhance the representation quality
for the diagnosis concept. In contrast, our work uses a densely
connected graph to enable passing information of leaf nodes
directly to the parents without interference by intermediate
nodes. Also, G-Bert does not consider the co-occurrence
information in their embeddings as we do in our work.

B. Representation Learning in EHR

EHR data contains sequences of patient visits. Each visit
contains heterogeneous information such as diagnoses, medi-
cations, lab results, and procedures. Due to the vast number
of data types in EHR data, learning better representations is
critical to improving the performance of downstream tasks.
Previous work on representation learning for EHR data mainly
followed work in Natural Language Processing (NLP) due
to similar forms of data sequentiality [29]. Recurrent neural
networks (RNN) can be used for diagnosis prediction [1],
[30], [31], patient sub-typing [32], and handling missing data
in EHR [33], [34]. Deepcare [7] redesigns the forget gate
in Long-Short Term Memory (LSTM) to solve the irregular
time gap problem in EHR data. Attention mechanism can
also be used in EHR representation learning [35]. Recently,
approaches similar to Bidirectional Encoder Representations
from Transformers (BERT) [36] have been applied to diagnosis
prediction [37], [38] and medical recommendation [27].

The medical ontology graph, which can be considered as
another source of knowledge, has been recently exploited
to improve the quality of the learned representation and the
predicted power. GRAM [2] treats the medical ontology graph
as Clinical Classifications Software (CCS) multilevel diagnosis
hierarchy and ICD-9 code taxonomy as a Directed Acyclic
Graph (DAG); then it uses attention mechanism to learn the
medical code embedding of a node as a weighted sum of the
embeddings of itself and its ancestors. The authors of GRAM
argue that this would help low-frequency medical code to learn
better embedding from their ancestors. MMORE [4] extends
the idea from GRAM and also takes the idea from multi-
sense for words [39]. MMORE assigns two basic embeddings
for each ancestor in the medical ontology graph. Ideally, each
embedding corresponds to a distinct sense that represents a
particular cluster of low-level medical concepts. To alleviate
the inconsistency problem between ontology graph and co-
occurrence, they integrate EHR co-occurrence statistic data
and the predictive task in their model to enhance the predictive
power. They concatenate ontology embedding and EHR co-
occurrence embedding to form their final representation of
medical codes. The authors of KAME [3] argue that GRAM
uses only child embedding learned from the model and ignores
the ancestor embedding. KAME employs the unused ancestor
embedding to generate a knowledge vector for each visit, then

combines the knowledge vector and visit vector together to
form the final visit embedding as the input to the predictive
model. However, none of these methods use child nodes to
enhance the ancestor embeddings and they do not utilize the
power of GNN in a knowledge graph.

III. PROBLEM DESCRIPTION

Let C = {c1, c2, c3, . . . , c|C|} be a set of diagnosis con-
cepts, e.g., ICD-9 or ICD-10 codes. An EHR database contains
a set of patient records P . Each patient record pi ∈ P consists
of a time-ordered sequence of visits 〈vi1, vi2, vi3, . . . , viT 〉, where
T is the number of visits made by patient pi. Each visit vij
contains a set of diagnosis concepts vij ⊆ C. We use a binary
vector x ∈ {0, 1}|C| to represent the diagnoses in the visit,
where the k-th element is set to 1 if ck ∈ vij , indicating patient
pi has diagnosis ck in the visit vij .

Consider Figure 1. Suppose the entire set of patient records
contains only three diagnoses, namely Type I Diabetes Mellitus
(ICD-9 code: 25001, c1), Type II Diabetes Mellitus (ICD-9
code: 25002, c2), and Left Heart Failure (ICD-9 code: 42800,
c3). If a patient has diagnoses 25001 and 42800 in a visit, then
x = [1, 0, 1] represents their visit.

A medical ontology graph captures the relationships of
diagnosis concepts and represents such domain knowledge
in a tree structure, where the parent nodes capture more
general diagnosis concepts of their descendants. For example,
in Figure 1 the two diagnoses Type I Diabetes Mellitus
(ICD-9 code: 25001) and Type II Diabetes Mellitus (ICD-
9 code: 25002) share the same ancestor Diabetes Mellitus
without complication (ICD-9 code: 2500). Each leaf node is
a diagnosis concept c ∈ C. A(c) denotes the set of ancestors
of a diagnosis concept c, containing the internal nodes from
root to leaf c, but not including c. Leaf(n) contains all leaf
nodes of an internal node n.

Given a set of patient records P in an EHR dataset and a
set of diagnosis codes C organized in the form of a medical
ontology graph G, the research problem is to learn a high-
quality embedding ek for each diagnosis concept ck ∈ C based
on the co-occurrence information in P and the domain knowl-
edge G. To evaluate the quality of the learned embeddings,
we follow the convention in the literature of representation
learning and use a downstream prediction task to measure the
quality using classification accuracy. Specifically, the goal is to
predict diagnoses in future visits vt based on previous visits.
Since a visit may contain multiple diagnosis code, this is a
multi-label classification problem.

IV. PROPOSED METHOD: DUGRA

In this paper, we propose a method called DUGRA that
uses a customized Message Passing Neural Network (MPNN)
to learn high-quality representations from two graphs, one
graph for the medical ontology and another graph for the
co-occurrences of diagnosis concepts. We utilize the power
of GNN to pass important information between co-related
medical concepts. Figure 2 depicts the overview of DUGRA,
where the matrices EON and ECO are the embeddings learned



Fig. 2. Overview of DUGRA. The left part illustrates the idea of a densely connected graph. The leaf nodes (solid circles) are diagnosis concepts, while the
internal nodes (dotted circles) represent the ancestors. The ontology embeddings are learned from the left part. The right part illustrates learning embeddings
from the co-occurrence graph, and the lower-mid part is the predictive model.

from the densely connected ontology graph and co-occurrence
graph, respectively. The left part of the figure corresponds
to learning embeddings from the medical ontology graph.
The right part is learning from the co-occurrence graph.
The two learned embeddings are concatenated to form the
final embeddings, which can be utilized for the downstream
prediction task, as shown in the middle part. The detail of each
module is elaborated below.

A. Densely Connected Graphs

1) Densely Connected Graph Construction: Our proposed
densely connected schema aims to use the hierarchical struc-
ture of the medical ontology graph to learn high-quality diag-
nosis code embeddings, and it avoids dilution of knowledge by
intermediate nodes. Li et al. [14] showed that as the number of
propagation layers in GNN increases, the learned embeddings
of nodes would become indistinguishable and converge to the
same value. Our experimental result in Section V-D3 supports
this observation.

In practice, most GNN will have at most 2 layers. A medical
ontology graph has a hierarchical structure, and it may have
5 levels, as shown in Figure 1. However, a 2-layers GNN
can at most pass information from 2-hops neighbors to the
target nodes, which means the a 2-layers GNN can not pass
information from the leaf to ancestors who are more than
2-hops away. We believe that fully using a graph neural
network to propagate useful information from leaf nodes
to all its ancestors is important to enhance the embedding
representation abilities of ancestors.

To avoid the aforementioned problems of knowledge di-
lution caused by intermediate nodes, we design two densely
connected directed graphs, namely child-to-parent graph and
parent-to-child graph, from the raw medical ontology graph.
The child-to-parent graph directly connects each leaf node
ci to its ancestors A(ci). The parent-to-child graph directly
connects the internal nodes ni to all of their leaves Leaf(ci).
Figure 3 depicts an example of a raw medical ontology graph.
Figure 4 depicts the corresponding child-to-parent graph and
parent-to-child graph. Note that the only difference between

Fig. 3. Raw medical ontology graph

Fig. 4. Mean aggregate function data flow

the two resulting graphs is the edge direction. Unlike the
raw medical ontology graph, this connectivity pattern allows
nodes to directly access their parents’ or children’s information
without being influenced by other intermediate nodes on their
paths. Due to the fact that the raw medical ontology graph
is a directed acyclic graph, this property guarantees that for
each node the maximum number of parents in the densely
connected graph is the depth of the node in the raw medical
ontology. For example, in Figure 3 the depth of node Ce is
2, so the maximum number of parents, i.e., the number of
outgoing edges in the child-to-parent graph, is 2, as shown
in Figure 4. Therefore, the resulting graphs would not be too
large for MPNN to handle.

2) Message Propagation: Recall that the Message Passing
Neural Network (MPNN) described in Section II-A has two



steps: aggregation and update. The aggregation step gathers
and integrates information from immediate neighbors. The
update step is responsible for updating the node embedding
based on the aggregated information from its neighbors.
Putting MPNN in the context of the densely connected graphs,
the message propagation mechanism operates on both child-
to-parent and parent-to-child graphs.

In the child-to-parent propagation, MPNN passes informa-
tion from leaves to their ancestors. Each parent node receives
information from its children and uses an aggregation function
to integrate the received information. The choice of aggregate
function is flexible. We have tried three different aggregate
functions, namely mean aggregate, weighted mean, and at-
tention. They are explained in detail in Section IV-A3. The
aggregated information of each node is then fed to an update
function. We formulate the update function of a diagnosis
concept ck using a feed forward neural network:

vck = σ(wumck + b) (3)

where wu and b are learnable parameters, and mck is the
message ck received from its children in the aggregation step.
Each parent gets an updated embedding that integrates their
children’s information.

The learned embeddings vck is the input embedding of
the diagnosis ck in parent-to-child propagation, in which the
parents pass information to their children in the same way
as described in the child-to-parent propagation. The output
embedding of diagnosis concept ck from the parent-to-child
propagation is denoted by εk. In this step, all children would
get information from their parents. Also, since parents have
received information from their children in the child-to-parent
propagation, the children can indirectly receive information
from their siblings.

In a medical ontology, there are actually two types of nodes.
The leaf nodes represent an actual diagnosis, and the internal
nodes are generalized diagnosis concepts. To model such a
heterogeneous graph, we argue that the relations between a
parent and its child, and a child to its parent, are different
and should be modeled differently. This justifies why we
propose two separate sets of learnable parameters for the
child-to-parent propagation and parent-to-child propagation.
Section V-D4 provides empirical evidence to support our
choice.

After the child-to-parent propagation and parent-to-child
propagation, we follow the practice of GRAM [2] to get
the embedding of diagnosis concept node ck from a densely
connected graph as a linear combination of the output of itself
and its ancestors from the parent-to-child propagation:

EONk =
∑

j∈(A(ck)∪ck)

αkjεj (4)

where A(ck) is the ancestors of ck, and the attention weight
αkj is calculated by a feed forward neural network followed
by a softmax function:

αkj =
exp(aT tanh(w[εk; εj ]))∑

l∈A(ck)∪ck exp(a
T tanh(w[εk; εl]))

(5)

where a and w are learnable parameters, and ‘;’ is a concate-
nation operator.

3) Aggregate Functions: Three MPNN aggregate functions
are used in our densely connected graphs. The first one, mean
aggregate function, is a simple formulation for the purpose
of baseline comparison in our experiments. Since our densely
connected graph ignores the underlying structural hierarchical
information in the raw medical ontology graph, we design two
additional aggregate functions, weighted mean and attention,
to incorporate the structural information.

Mean aggregate function. Each node ck takes the element-
wise mean of the incoming node embeddings:

mck =
1

|N |
∑

j∈N(ck)

ecj (6)

where N(ck) is the set of neighbors of ck, and ecj is
the embedding of its neighbor cj . Figure 3 is the original
knowledge graph. Figure 4 shows the information flow of the
mean aggregation function.

Fig. 5. Weighted-mean aggregate function data flow

Weighted-mean aggregation function. The learned em-
bedding of a target node is influenced by its neighborhood.
Neighbors in different distances in the raw medical ontology
graph should have different levels of influences to the target
node. Instead of having a predefined weight for different
distances, we propose using a learnable vector that gives the
weight of an edge based on the distance of two nodes in the
raw medical ontology graph. wδa and wδd denote the learnable
weights of neighbors who are δ-hop away from the target node
for the child-to-parent and parent-to-child graphs, respectively.

The aggregate function for the child-to-parent propagation
is:

mck =
1

|N |

H∑
δ=0

∑
j∈N(ck)δ

wδaecj (7)

where N(ck)
δ is the set of neighbors of ck that are k-hop away

in the raw medical ontology graph, |N | is the total number of
δ-hop neighbours, H is the height of the raw medical ontology,
and ecj is the embedding of node cj . This method only adds
2 ×(H + 1) parameters to our model, where H tends to be
small. In the case of the medical ontology from CCS, H =
5. The aggregate function for the parent-to-child propagation
is the same as Equation 7, but replacing wδa by wδd. Figure 5
depicts the data flow of weighted-mean aggregate function,
where the edge values stand for the weights wδa or wδd.



Fig. 6. Attention aggregate function data flow

Attention aggregation function. Inspired by the graph
attention networks (GAT) [22], we use an attention mechanism
to determine the weight of each edge. The implemented
aggregate function:

mck =
1

|N |
∑

j∈N(ck)

αk,jecj (8)

where αk,j is the attention weight given to the edge between
nodes ck and cj , which is computed as follows:

αk,j =
exp(LeakyReLU(aT tanh(w[ek; ej ])))∑

l∈N(ck)
exp(LeakyReLU(aT tanh(w[ek; el])))

(9)
where a ∈ R2m is a learnable weight vector, and LeakyReLU
is a nonlinear function. Following the convention, we set the
negative input slope α = 0.2. Figure 6 shows the information
propagation flow for the attention aggregate function, where
the edge value αi,j denotes the value obtained from the
attention mechanism.

B. Co-occurrence Graph

Both GRAM [2] and MMORE [4] are using the co-
occurrence information to form the final embeddings for
medication and diagnosis concepts. GRAM uses co-occurrence
embedding to initialize the input embedding of the medication
concept. MMORE concatenates the embedding learned from
the medication and diagnosis ontologies and the co-occurrence
information together to form the final embeddings. The idea
of using co-occurrence information is based on the assumption
that medication or diagnosis concepts appearing frequently
together in the same visit should share similar characteristics
and, therefore, similar embeddings. However, none of the ex-
isting methods intend to capture the co-occurrence information
across all visits of one patient. Therefore, we propose to use
a large EHR graph of patients and diagnosis concepts to learn
the co-occurrence embedding through MPNN.

Inspired by the idea of graph convolutional network for text
classification [19], which uses a huge text graph to conduct
text classification tasks, we build a large heterogeneous co-
occurrence graph that contains diagnosis concepts and patients
as nodes so that the co-occurred diagnoses within the same
visit and the same patient record can be modeled together,
and MPNN can be deployed on this graph. The number
of nodes in the co-occurrence graph, |V |, is the number of
distinct diagnosis concepts plus the number of patients in the

training set. We set the input feature embedding randomly,
I ∈ R(m×d), where m is the number of nodes in the graph,
and d is the input embedding dimension. We build edges
between diagnosis nodes and between diagnosis nodes and
patient nodes. There is no edge between patient nodes because
most of EHR system does not capture the relationship among
patients. Note that there is an edge between two diagnosis
nodes if they co-occur in the same visits, and there is an edge
between a patient and a diagnosis node if the patient has the
diagnosis in any visit.

To compute the degree of co-occurrences between two
diagnosis nodes we use point-wise mutual information (PMI),
which is a popular method for measuring associations between
two objects, to quantify the edge weight. The PMI value
between two diagnosis nodes ck and cj is:

PMI(ck, cj) = log(
p(ck, cj)

p(ck)p(cj)
) (10)

p(ck, cj) =
co-occurrence(ck, cj)

# of patients
(11)

p(ck) =
# of patients having ck

# of patients
(12)

where co-occurrence(ck, cj) is the number of patients having
both ck and cj . A positive Pointwise Mutual Information
(PMI) value implies high correlation between two nodes, and
a negative PMI value indicates no correlation between ck and
cj . Therefore, we only add edges between two diagnosis nodes
that have a positive PMI value.

For the edge weight between patients and diagnoses we
employ a variation of Term Frequency-Inverse Document Fre-
quency (TF-IDF) [40], a popular measure in data mining and
natural language processing. We treat patients as documents
and diagnoses as words. The term frequency is the number
of times a diagnosis is assigned to a patient, and the inverse
document frequency is the inverse fraction of the number
of patients containing these diagnoses. The TF-IDF value
between diagnosis node ck and patient node pi is computed
as:

TFck,pi =
# of ck in pi

# of distinct diagnoses in pi
(13)

IDFck = log(
# of patients

# of patients having ck + 1
) (14)

TF − IDFck,pi = TF × IDF (15)

If a diagnosis has been assigned to many patients, its IDF
value would be small, implying the diagnosis concept is not
a good candidate to represent the distinct situation of the
patients. Therefore we assign a small value to the weight
through the small IDF value. In contrast, a rare diagnosis
would receive a higher IDF value because it can reflect the



special situation of the patients. Formally the weight of edge
between node i and node j is defined as:

wij =


PMI(i, j), i, j are diagnosis nodes, and PMI(i, j) > 0

TF − IDFi,j , i is a diagnosis node and j is a patient node

1, i = j

0, otherwise

(16)
After building the graph we feed the graph to a 2-layer MPNN.
The aggregate function for node i is an element-wise weighted
sum of the incoming nodes’ embedding:

mi =
1

|N |
∑

j∈N(i)

wi,jej (17)

The update function is a feed forward neural network similar to
Equation 3. A 2-layer MPNN allows message passing among
nodes that are at most 2-hops away. Thus, although some
diagnosis nodes may not co-occur in any visit, they can be a 2-
hop neighbor through patient nodes or through other diagnosis
nodes.

Self-prediction task. We implement an auxiliary self-
prediction task to help the co-occurrence graph learn mean-
ingful representation from the co-occurred diagnoses in visits
in patient records. For each patient pi, we use the output
embedding oi of the MPNN as the representation of pi.
The basic idea is that the patient embedding can be used to
predict the health status, i.e., the set of k diagnosis codes
{c1, c2, c3, . . . , ck} ∈ C in pi’s patient record. The goal can
be achieved by minimizing the negative log probability of the
codes presented in the patient node output oi:

LCO = −
1

|K|

|K|∑
k=1

log p(ck|oi) = −
1

|K|

|K|∑
k=1

log
exp(w

′T
1 · oi)∑k

i=1 exp(w
′T
2 · oi))

(18)

We use the softmax function to compute the conditional
probability, and w

′

1 and w
′

2 are learnable parameters.

C. End-to-End Predictive Model

We train the dual graph neural networks together with a pre-
dictive model so that the graph module improves the predictive
performance. The embedding matrices EON and ECO are first
row-wisely concatenated to form the final representations for
the diagnosis concepts, i.e, E = [EON ;ECO]. We create the
final visit embedding vt ∈ Rn where n is the dimension of
the visit embedding as follows:

vt = Relu(E[xt]) (19)

where xt is a one-hot representation of diagnosis concepts
appearing in the visit. Then we input the visit embedding to
a feed forward neural network to get the prediction.

ŷt = Softmax(Qvt + s) (20)

where Q and k are the learnable parameters. We use cross-
entropy loss as the objective function:

Lpredpi = − 1

T

T∑
t=2

[yTt log(ŷt) + (1− yt)T log(1− ŷt))] (21)

where T is the number of hospital admissions to be predicted
for patient pi, and yt is the ground truth label. t starts from
2 because the first visit result has no previous visit. Note that
the above loss is for a single patient. We take the average of
the individual patient’s loss for training all patients in the set.

V. EXPERIMENTS

To demonstrate the quality of the diagnosis representation
we compare the performance of our proposed model, DUGRA,
with other state-of-the-art models in terms of the predictive
performance of future diagnoses on an EHR dataset. By
predicting a patient’s future health status, physicians can
start preventive measures earlier and alleviate the burden on
medical systems. We also use experiments to justify our choice
of a densely connected graph to replace the original medical
ontology graph. Furthermore, we conduct ablation studies to
evaluate the impact of different modules in our proposed
model on the overall performance.

# of patients 5,404
Avg # of diagnoses per admission 12.26
Min # of diagnoses per admission 1
Max # of diagnoses per admission 39
Avg # of visit 2.60
Min # of visit 2
Max # of visit 29
# of diagnosis codes 3,495
# of labels 712

TABLE I
STATISTICS OF THE MIMIC DATASET

A. Dataset and Preprocessing

MIMIC-III [41] is a de facto benchmark dataset consisting
of medical records of more than 7.5K patients admitted to
intensive care units (ICUs), with over 46K visits over 11 years.
It contains various information such as demographics, lab
results, diagnoses, and medications. Since it is an ICU dataset,
most visits span a short period of time with severe situations.
For a fair comparison we follow the preprocessing set-up in
MMORE. We extract adult patients with at least two hospital
admissions where diagnoses and medications are both present
in the MIMIC dataset. We exclude the base-type medications.
Finally, we extract 5,404 patients with an average of 2.6 visits
per patient; the average number of diagnoses per admission is
12.3. The statistics of the datasets are summarized in Table I.

B. Baseline Models

We compare our model with the following four state-of-the-
art models:

1) RETAIN [30] implements a two-level neural attention
model, one for visit-level attention and the other for
variable-level. RETAIN uses two reverse-order RNNs to
generate the attention weight for the two attentions.

2) Med2Vec [42] considers medical concepts in neighbor
admissions to capture their co-occurrence relationships
by the Skip-gram algorithm.

3) GRAM [2] is the first work that uses the medical ontology
graph to learn the medical concept representation and



Training size
Model 20% 40% 60% 80%
RETAIN 0.4422 0.4447 0.4449 0.4545
Med2Vec 0.5064 0.5187 0.5200 0.5290
GRAM 0.4980 0.5218 0.5409 0.5498
MMORE 0.5205 0.5426 0.5548 0.5618
DUGRAmean 0.5274 0.5472 0.5617 0.5705
DUGRAweighted mean 0.5324 0.5512 0.5656 0.5737
DUGRAattn 0.5329 0.5527 0.5664 0.5740

TABLE II
ACCURACY@20 PREDICTION FOR COMPARING DIFFERENT MODELS

predict the next admission status. The medical concept
representation is a weighted sum of its own embedding
and the ancestors’ embeddings. The weight is computed
by a self-attention mechanism.

4) MMORE [4] extends the GRAM framework by allow-
ing each ancestor, except the root node, to have two
embeddings. Also, they combine an embedding learned
from co-occurrence statistics into their medical concept
embedding.

To test the performance of the mean aggregate function,
weighted-mean aggregate function, and attention aggregate
function in the ontology graph, we conduct experiments on
three models, namely DUGRAmean, DUGRAweighted mean,
and DUGRAattn, respectively.

C. Experiment Setup

For a fair comparison we follow the setting in MMORE and
set the dimension of both the knowledge graph embedding and
the co-occurrence embedding to 400 in DUGRA and MMORE.
The embedding dimension of all other baselines, RETAIN,
Med2Vec, and GRAM, is set to 800 for fair comparison as
other models do not concatenate the two embedding matrices.
We use a single-layer neural network as the prediction model.
We also try to use GRU as the prediction model; however,
the performance is worse than a single layer neural network
because many patients in MIMIC-III only have two visits.
Therefore, using a GRU may overfit the dataset. The model is
optimized using Adadelta [43] with batch size 100.

D. Result

We generate the ground-truth label yt for the diagnoses pre-
diction task by grouping the diagnoses in the next admissions
into 712 groups based on the first 3 digits of their ICD-9
codes in database. We randomly split the data into training,
validation, and testing sets. We fix the size of the validation set
to be 10% of the total number of patients. In real-life health
machine learning tasks, the availability of training data can
be very different depending on the specific study. To validate
the robustness of DUGRA, we vary the training set size to
be 20%, 40%, 60%, and 80% of the total number of patients
and use the remaining part as the testing set. We measure the
predictive performance by Accuracy@k, which is defined as:

Accuracy@k =
# of true positives in the top k predictions

# of positives in this visit
(22)

Training size
Model 20% 40% 60% 80%
Densely connected graph 0.5306 0.5479 0.5605 0.5700
1 hidden layer in MPNN 0.5254 0.5419 0.5545 0.5633
2 hidden layer in MPNN 0.5227 0.5348 0.5493 0.5584
3 hidden layer in MPNN 0.5164 0.5248 0.5434 0.5504
4 hidden layer in MPNN 0.5054 0.5236 0.5402 0.5501
5 hidden layer in MPNN 0.4981 0.5232 0.5378 0.5470

TABLE III
ACCURACY@20 PREDICTION FOR ABLATION STUDY ON DENSELY

CONNECTED GRAPH

This is a multi-label classification problems as mentioned in
Section III.

1) Comparing with State-of-the-Arts: Table II shows the
Accuracy@20 result of the next-admissions prediction tasks
for the three variants of DUGRA and baselines. The result sug-
gests that all three variants of DUGRA generally outperform
the baselines, especially with a small training set. This result
also illustrates the effectiveness of using a graph neural net-
work for embedding learning from a medical ontology graph
and a co-occurrence graph. By using the co-occurrence statistic
information and medical ontology graph together, DUGRA
and MMORE show even more significant improvement when
compared to other baselines that use only an either medical
ontology graph or co-occurrence information. This implies that
both the human-defined knowledge graph and the degree of
co-occurrence are useful for learning high-quality diagnosis
representations.

2) Performance of Aggregate Functions: Consider the Ac-
curacy@20 result of different aggregate functions in Table II.
DUGRAweighted mean and DUGRAattn achieve similar accu-
racy, but the method of DUGRAweighted mean only adds a
small number (2× (H +1), where H is the number of layers
in the original ontology graph) of parameters to the traditional
MPNN and does not require considerable memory overhead
as in DUGRAattn. This is due to the fact that a more complex
model, such as DUGRAattn, cannot show its power given the
limited size and simple structure of an ICD-9 ontology graph.
Also, DUGRAweighted mean outperforms DUGRAmean by a
relatively larger margin. This supports our hypothesis that
different levels of neighbors should have different levels of
influences to the target nodes.

3) Ablation Study on Proposed Densely Connected Graph:
The objectives of this ablation study are to evaluate the
performance of our proposed densely connected graph com-
pared to the performance of the original medical ontology
graph, e.g., ICD-9 taxonomy, and to support our claim that
stacking more hidden layers in the MPNN would cause a drop
in performance, as discussed in Section IV-A1 . Since this
ablation study is on the densely connected graph, all models
in this experiment use only the medical ontology graph without
the co-occurrence information. The dimension of the ontology
embedding is 800 in both cases. We use the attention function
as the aggregate function because it yields the best result in
Section V-D2. Table III demonstrates the model performance
of MPNN with a different number of hidden layers using



Training size
Variants of DUGRA 20% 40% 60% 80%
2 sets of parameters 0.5306 0.5479 0.5605 0.5700
same set of parameters 0.4886 0.5087 0.5119 0.5231

TABLE IV
ACCURACY@20 PREDICTION FOR ABLATION STUDY ON HAVING TWO

SEPARATE SETS OF LEARNABLE PARAMETERS IN DIFFERENT
PROPAGATION PHASES ON DENSELY CONNECTED GRAPH.

the original knowledge graph and supports our claim that
stacking more layers in the MPNN of the original medical
ontology graph would degrade the prediction performance for
downstream tasks. Since the maximum distance of a leaf node
to the root is 5 in the ICD-9 taxonomy, an MPNN with at least
five hidden layers is enough to pass information from the leaf
to the root. This study demonstrates that adding more layers
to MPNN to allow information from the bottom to propagate
to the root cannot get better results compared to a shallow
MPNN due to the oversmoothing problem in GNN.

4) Ablation Study on Two Separate Sets of Learnable Pa-
rameters: We further perform an empirical evaluation to sup-
port our choice of using two separate sets of parameters for the
child-to-parent propagation and parent-to-child propagation in
Section IV-A2. Since this is an ablation study on our proposed
densely connected graph, all models in this experiment use
only the medical ontology graph without the co-occurrence
information. The dimension of the ontology embedding is
800. The aggregate function is attention function. Table IV
shows the Accuracy@20 result of a densely connected graph
with/without using two different sets of parameters for two
different propagation phases with different training set sizes.
The result shows that the performance using two sets of
parameters consistently outperforms the performance using
only one set. This justifies our choice of using two different
sets of parameters.

VI. CONCLUSION

In this paper, we introduce DUGRA to learn high-quality
embeddings for diagnosis concepts from a densely connected
graph and a co-occurrence graph via MPNNs. Instead of
using the original ontology graph we introduce a densely
connected schema to avoid the dilution of knowledge from the
intermediate nodes. This is the first work that utilizes a GNN
to model the co-occurrence information of diagnosis code in
EHR data. The empirical evaluation suggests that our proposed
model performs better than the state-of-the-art models in terms
of the diagnosis prediction accuracy for future visits, even with
small training sets. Also, the experimental results confirm our
choice of using a densely connected graph and a co-occurrence
graph. Future work will focus on generalizing our model to
integrate other heterogeneous medical concepts and optimizing
the co-occurrence graph for a large EHR dataset.

ACKNOWLEDGEMENTS

This research is supported by Canada Research Chairs
Program (950-230623).

REFERENCES

[1] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun,
“Doctor AI: Predicting clinical events via recurrent neural networks,”
in Proceedings of the Machine Learning for Healthcare Conference,
2016, pp. 301–318.

[2] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “Gram:
graph-based attention model for healthcare representation learning,” in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 787–795.

[3] F. Ma, Q. You, H. Xiao, R. Chitta, J. Zhou, and J. Gao, “Kame:
Knowledge-based attention model for diagnosis prediction in health-
care,” in Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, 2018, pp. 743–752.

[4] L. Song, C. W. Cheong, K. Yin, W. K. Cheung, B. C. M. Fung,
and J. Poon, “Medical concept embedding with multiple ontological
representations,” in IJCAI’19 Proceedings of the 28th International Joint
Conference on Artificial Intelligence, 2019, pp. 4613–4619.

[5] C. Xiao, T. Ma, A. B. Dieng, D. M. Blei, and F. Wang, “Readmission
prediction via deep contextual embedding of clinical concepts,” PloS
One, vol. 13, no. 4, 2018.

[6] P. Nguyen, T. Tran, N. Wickramasinghe, and S. Venkatesh, “Deepr: a
convolutional net for medical records,” IEEE Journal of Biomedical and
Health Informatics, vol. 21, no. 1, pp. 22–30, 2016.

[7] T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Deepcare: A deep
dynamic memory model for predictive medicine,” in Proceedings of
the Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2016, pp. 30–41.

[8] Y. Zhu, X. Fan, J. Wu, X. Liu, J. Shi, and C. Wang, “Predicting icu
mortality by supervised bidirectional lstm networks.” in Proceedings of
the AIH@ IJCAI, 2018, pp. 49–60.

[9] A. E. Johnson, T. J. Pollard, and R. G. Mark, “Reproducibility in critical
care: a mortality prediction case study,” in Proceedings of the Machine
Learning for Healthcare Conference, 2017, pp. 361–376.

[10] Z. Che, S. Purushotham, R. Khemani, and Y. Liu, “Interpretable deep
models for icu outcome prediction,” in Proceedings of the AMIA Annual
Symposium. American Medical Informatics Association, 2016, p. 371.

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Proceedings of the Advances in Neural Information Processing
Systems, 2013, pp. 3111–3119.

[12] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in Proceedings of the European Semantic Web Conference.
Springer, 2018, pp. 593–607.

[13] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv
preprint arXiv:1812.08434, 2018.

[14] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[15] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in Proceedings of the The
World Wide Web Conference, 2019, pp. 417–426.

[16] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface
prediction using graph convolutional networks,” in Proceedings of the
Advances in Neural Information Processing Systems, 2017, pp. 6530–
6539.

[17] T. Ma, C. Xiao, J. Zhou, and F. Wang, “Drug similarity integra-
tion through attentive multi-view graph auto-encoders,” arXiv preprint
arXiv:1804.10850, 2018.

[18] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

[19] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 7370–7377.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[21] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the Advances in Neural
Information Processing Systems, 2017, pp. 1024–1034.



[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[23] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1263–1272.

[24] S. Liu, F. Vahedian, D. Hachen, O. Lizardo, C. Poellabauer, A. Striegel,
and T. Milenkovic, “Heterogeneous network approach to predict indi-
viduals’ mental health,” arXiv preprint arXiv:1906.04346, 2019.

[25] A. Hosseini, T. Chen, W. Wu, Y. Sun, and M. Sarrafzadeh, “Heteromed:
Heterogeneous information network for medical diagnosis,” in Proceed-
ings of the 27th ACM International Conference on Information and
Knowledge Management, 2018, pp. 763–772.

[26] T. Wu, Y. Wang, Y. Wang, E. Zhao, Y. Yuan, and Z. Yang, “Represen-
tation learning of ehr data via graph-based medical entity embedding,”
arXiv preprint arXiv:1910.02574, 2019.

[27] J. Shang, T. Ma, C. Xiao, and J. Sun, “Pre-training of graph aug-
mented transformers for medication recommendation,” arXiv preprint
arXiv:1906.00346, 2019.

[28] J. Shang, C. Xiao, T. Ma, H. Li, and J. Sun, “Gamenet: graph aug-
mented memory networks for recommending medication combination,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 1126–1133.

[29] E. Steinberg, K. Jung, J. A. Fries, C. K. Corbin, S. R. Pfohl, and
N. H. Shah, “Language models are an effective patient representation
learning technique for electronic health record data,” arXiv preprint
arXiv:2001.05295, 2020.

[30] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart,
“Retain: An interpretable predictive model for healthcare using reverse
time attention mechanism,” in Proceedings of the Advances in Neural
Information Processing Systems, 2016, pp. 3504–3512.

[31] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to diagnose
with lstm recurrent neural networks,” arXiv preprint arXiv:1511.03677,
2015.

[32] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou,
“Patient subtyping via time-aware LSTM networks,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 65–74.

[33] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific Reports, vol. 8, no. 1, pp. 1–12, 2018.

[34] Z. C. Lipton, D. C. Kale, and R. Wetzel, “Modeling missing data in
clinical time series with rnns,” arXiv preprint arXiv:1606.04130, 2016.

[35] F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao, “Dipole: Diagnosis
prediction in healthcare via attention-based bidirectional recurrent neural
networks,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017, pp. 1903–
1911.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[37] Y. Wang, X. Xu, T. Jin, X. Li, G. Xie, and J. Wang, “Inpatient2vec:
Medical representation learning for inpatients,” in Proceedings of the
2019 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 2019, pp. 1113–1117.

[38] Y. Li, S. Rao, J. R. A. Solares, A. Hassaine, D. Canoy, Y. Zhu,
K. Rahimi, and G. Salimi-Khorshidi, “BEHRT: Transformer for elec-
tronic health records,” arXiv preprint arXiv:1907.09538, 2019.

[39] E. Huang, R. Socher, C. Manning, and A. Ng, “Improving word
representations via global context and multiple word prototypes,” in
Proceedings of the 50th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), 2012, pp. 873–882.

[40] J. Ramos et al., “Using tf-idf to determine word relevance in docu-
ment queries,” in Proceedings of the First Instructional Conference on
Machine Learning, vol. 242. Piscataway, NJ, 2003, pp. 133–142.

[41] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii,
a freely accessible critical care database,” Scientific Data, vol. 3, p.
160035, 2016.

[42] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J. Bost,
J. Tejedor-Sojo, and J. Sun, “Multi-layer representation learning for med-
ical concepts,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1495–
1504.

[43] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.


