
Integrating Private Databases for Data Analysis�

Ke Wang1, Benjamin C. M. Fung1, and Guozhu Dong2

1 Simon Fraser University, BC, Canada
{wangk, bfung}@cs.sfu.ca

2 Wright State University, OH, USA
gdong@cs.wright.edu

Abstract. In today’s globally networked society, there is a dual demand
on both information sharing and information protection. A typical sce-
nario is that two parties wish to integrate their private databases to
achieve a common goal beneficial to both, provided that their privacy
requirements are satisfied. In this paper, we consider the goal of build-
ing a classifier over the integrated data while satisfying the k-anonymity
privacy requirement. The k-anonymity requirement states that domain
values are generalized so that each value of some specified attributes iden-
tifies at least k records. The generalization process must not leak more
specific information other than the final integrated data. We present a
practical and efficient solution to this problem.

1 Introduction

Nowadays, one-stop service has been a trend followed by many competitive busi-
ness sectors, where a single location provides multiple related services. For ex-
ample, financial institutions often provide all of daily banking, mortgage, invest-
ment, insurance in one location. Behind the scene, this usually involves infor-
mation sharing among multiple companies. However, a company cannot indis-
criminately open up the database to other companies because privacy policies
[1] place a limit on information sharing. Consequently, there is a dual demand
on information sharing and information protection, driven by trends such as
one-stop service, end-to-end integration, outsourcing, simultaneous competition
and cooperation, privacy and security.

Consider a concrete scenario. Suppose a bank A and a credit card company B
observe different sets of attributes about the same set of individuals identified by
the common key SSN, e.g., TA(SSN,Age,Balance) and TB(SSN, Job, Salary).
These companies want to integrate their data to support better decision making
such as loan or card limit approval. However, simply joining TA and TB would
reveal the sensitive information to the other party. Even if TA and TB individ-
ually do not contain sensitive information, the integrated data can increase the

� Research was supported in part by a research grant from Emerging Opportunity
Fund of IRIS, and a research grant from the Natural Science and Engineering Re-
search Council of Canada.

P. Kantor et al. (Eds.): ISI 2005, LNCS 3495, pp. 171–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 K. Wang, B.C.M. Fung, and G. Dong

Table 1. Compressed tables

Shared Party A Party B

SSN Class Sex ... Job Salary ...

1-3 0Y3N M Janitor 30K

4-7 0Y4N M Mover 32K

8-12 2Y3N M Carpenter 35K

13-16 3Y1N F Technician 37K

17-22 4Y2N F Manager 42K

23-25 3Y0N F Manager 44K

26-28 3Y0N M Accountant 44K

29-31 3Y0N F Accountant 44K

32-33 2Y0N M Lawyer 44K

34 1Y0N F Lawyer 44K

possibility of inferring such information about individuals. The next example
illustrates this point.

Example 1. Consider the data in Table 1 and taxonomy trees in Figure 1. Party
A and Party B own

TA(SSN,Sex, . . . , Class) and TB(SSN, Job, Salary, . . . , Class)

respectively. Each row represents one or more original records and Class con-
tains the distribution of class labels Y and N. After integrating the two tables
(by matching the SSN field), the “female lawyer” on (Sex, Job) becomes unique,
therefore, vulnerable to be linked to sensitive information such as Salary. To
protect against such linking, we can generalize Accountant and Lawyer to Pro-
fessional so that this individual becomes one of many female professionals. No
information is lost as far as classification is concerned because Class does not
depend on the distinction of Accountant and Lawyer.

In this paper, we consider the following secure data integration problem.
Given two private tables for the same set of records on different sets of at-
tributes, we want to produce an integrated table on all attributes for release
to both parties. The integrated table must satisfy the following two require-
ments:

Privacy Preservation. The k-anonymity requirement: Given a specified subset
of attributes called a “quasi-identifier,” each value of the quasi-identifier must
identify at least k records. The larger the k, the more difficult it is to identify
an individual using the quasi-identifier. This requirement can be satisfied by
generalizing domain values into higher level concepts. In addition, at any time
in this generalization, no party should learn more detailed information about the
other party other than those in the final integrated table. For example, Lawyer
is more detailed than Professional.

Integrating Private Databases for Data Analysis 173

Blue-collar White-collar

Non-Technical

Carpenter

Manager

ANY

Technical

Lawyer

Professional

Job

TechnicianMoverJanitor [1-35)

ANY
[1-99)

[1-37) [37-99)

[35-37)

Salary

ANY

Male Female

Sex

<QID1 = {Sex, Job}, 4>
<QID2 = {Sex, Salary}, 11>

Accountant

Fig. 1. Taxonomy trees and QIDs

Information Preservation. The generalized data is as useful as possible to
classification analysis. Generally speaking, the privacy goal requires masking
sensitive information that are specific enough to identify individuals, whereas
the classification goal requires extracting trends and patterns that are general
enough to predict new cases. If generalization is “carefully” performed, it is
possible to mask identifying information while preserving patterns useful for
classification.

There are two obvious approaches. The first one is “integrate-then-generalize”:
first integrate the two tables and then generalize the integrated table using some
single table methods. Unfortunately, this approach does not preserve privacy be-
cause any party holding the integrated table will immediately know all private
information of both parties. The second approach is “generalize-then-integrate”:
first generalize each table locally and then integrate the generalized tables. This
approach does not work for a quasi-identifier that spans the two tables. In the
above example, the k-anonymity on (Sex,Job) cannot be achieved by the k-
anonymity on each of Sex and Job separately.

This paper makes two contributions. First, we define the secure data inte-
gration problem. The goal is to allow data sharing in the presence of privacy
concern. In comparison, classic data integration assumes that all information in
private databases can be freely shared, whereas secure multiparty computation
allows “result sharing” (e.g., the classifier in our case) but completely prohibits
data sharing. More discussions will be available in Section 2. In many applica-
tions, being able to access the actual data not only leads to superior results,
but also is a necessity. For example, the medical doctor will not trust a given
classifier without knowing certain details of patient records. Second, we present
a solution to secure data integration where the two parties cooperate to gener-
alize data by exchanging information not more specific than what they agree to
share.

174 K. Wang, B.C.M. Fung, and G. Dong

2 Related Work

Information integration has been an active area of database research. This litera-
ture typically assumes that all information in each database can be freely shared
[2]. Secure multiparty computation (SMC), on the other hand, allows sharing
of the computed result (i.e., the classifier in our case), but completely prohibits
sharing of data [3]. Liang et al. [4] and Agrawal et al. [2] proposed the notion of
minimal information sharing for computing queries spanning private databases.
They considered computing intersection, intersection size, equijoin and equijoin
size. Their model still prohibits the sharing of databases themselves.

The notion of k-anonymity was proposed in [5], and generalization was used
to achieve k-anonymity in Datafly system [6] and µ-Argus system [7]. Preserving
k-anonymity for classification was studied in [8][9][10]. All these works considered
a single data source, therefore, data integration is not an issue. In the case of
multiple private databases, joining all databases and applying a single table
method would violate the privacy constraint private databases.

3 Problem Definition

We first define k-anonymity and generalization on a single table, then the prob-
lem of secure data integration.

3.1 The k-Anonymity

Consider a person-specific table T (D1, . . . ,Dm, Class). The Class column con-
tains class labels or distribution. Each Di is either a categorical or a continuous
attribute. Let att(v) denote the attribute of a value v. The data provider likes
to protect against linking an individual to sensitive information through some
subset of attributes called a quasi-identifier, or QID. A sensitive linking occurs
if some value of the QID is shared by only a “small” number of records in T .
This requirement is defined below.

Definition 1. Consider p quasi-identifiers QID1, . . . , QIDp on T . a(qidi) de-
notes the number of records in T that share the value qidi on QIDi. The
anonymity of QIDi, denoted A(QIDi), is the smallest a(qidi) for any value
qidi on QIDi. A table T satisfies the anonymity requirement {<QID1, k1>,
. . . , <QIDp, kp>} if A(QIDi) ≥ ki for 1 ≤ i ≤ p, where ki is the anonymity
threshold on QIDi.

Note that if QIDj is a subset of QIDi, where i �= j, and if kj ≤ ki, then
<QIDj , kj> is implied by <QIDi, ki>, therefore, can be removed.

Example 2. <QID1 = {Sex, Job}, 4> states that every qid on QID1 in T must
be shared by at least 4 records in T . In Table 1, the following qids violate
this requirement: <M, Janitor>, <M, Accountant>, <F, Accountant>, <M,
Lawyer>, <F, Lawyer>. The example in Figure 1 specifies the k-anonymity
requirement on two QIDs.

Integrating Private Databases for Data Analysis 175

3.2 Generalization and Specialization

To generalize T , a taxonomy tree is specified for each categorical attribute in
∪QIDi. A leaf node represents a domain value and a parent node represents a
less specific value. For a continuous attribute in ∪QIDi, a taxonomy tree can
be grown at runtime, where each node represents an interval, and each non-leaf
node has two child nodes representing some “optimal” binary split of the parent
interval. Figure 1 shows a dynamically grown taxonomy tree for Salary. More
details will be discussed in Section 4.

We generalize a table T by a sequence of specializations starting from the
top most value for each attribute. A specialization, written v → child(v), where
child(v) denotes the set of child values of v, replaces the parent value v with
the child value that generalizes the domain value in a record. A specialization is
valid if the specialization results in a table satisfying the anonymity requirement
after the specialization. A specialization is beneficial if more than one class are
involved in the records containing v. A specialization needs to be performed only
if it is both valid and beneficial. The specialization process pushes the “cut” of
each taxonomy tree downwards. A cut of the taxonomy tree for an attribute Dj ,
denoted Cutj , contains exactly one value on each root-to-leaf path. A solution
cut is ∪Cutj , where Dj is an attribute in ∪QIDi, such that the generalized
T represented by ∪Cutj satisfies the anonymity requirement. Figure 2 shows a
solution cut indicated by the dashed curve.

3.3 Secure Data Integration

We now consider two parties. Party A owns the table TA(ID,D1, . . . ,Dt, Class)
and B owns the table TB(ID,Dt+1, . . . ,Dm, Class), over the same set of records.
These parties agree to release “minimal information” to form an integrated ta-
ble T (by matching the ID) for conducting a joint classification analysis. The
notion of minimal information is specified by the joint anonymity requirement
{<QID1, k1>, . . . , <QIDp, kp>} on the integrated table. QIDi is local if it con-
tains only attributes from one party, and global otherwise.

Definition 2 (Secure Data Integration). Given two private tables TA and
TB , a joint anonymity requirement {<QID1, k1>, . . . , <QIDp, kp>}, and a tax-
onomy tree for each categorical attribute in ∪QIDi, the secure data integration

Blue-collar White-collar

Non-Technical

Carpenter

Manager

ANY_Job

Technical

Lawyer

Professional

TechnicianMoverJanitor

ANY_Sex

Male Female

Accountant

Fig. 2. A solution cut for QID1 = {Sex, Job}

176 K. Wang, B.C.M. Fung, and G. Dong

is to produce a generalized integrated table T such that (1) T satisfies the joint
anonymity requirement, (2) T contains as much information as possible for clas-
sification, (3) each party learns nothing about the other party more specific than
what is in the final generalized T .

For example, if a record in the final T has values F and Professional on
Sex and Job, and if Party A learns that Professional in this record comes from
Lawyer, condition (3) is violated. Our privacy model ensures the anonymity in
the final integrated table as well as in any intermediate table.

4 An Unsecured Solution

One unsecured approach is first joining TA and TB into a single table T and
then generalizing T . Though this approach does not satisfy the requirement (3)
in Definition 2 (because the party that generalizes the joint table knows all the
details of both TA and TB), the integrated table produced satisfies requirements
(1) and (2) in Definition 2. Below, we briefly describe this unsecured approach.
A secured approach that produces the same integrated table and satisfies the
requirement (3) will be presented in Section 5.

A top-down specialization (TDS) approach has been proposed in [8] to gen-
eralize a single table T . It starts from the top most value for each attribute and
iteratively specializes current values until the anonymity requirement is violated.
Initially, Cuti contains the top most value for each attribute Di. At each iter-
ation, it performs the best specialization w (i.e., of the highest Score) among
the candidates that are valid, beneficial specializations in ∪Cuti, and updates
the Score(x) and “valid/benefical” status of x in ∪Cuti that are affected. The
algorithm terminates when there is no more candidate in ∪Cuti.

The core of this approach is computing Score, which measures the good-
ness of a specialization with respect to privacy preservation and information
preservation. The effect of a specialization v → child(v) can be summarized
by “information gain,” denoted InfoGain(v), and “anonymity loss,” denoted
AnonyLoss(v), due to the specialization. Our selection criterion favors the spe-
cialization v that has the maximum information gain per unit of anonymity loss:

Score(v) =
InfoGain(v)

AnonyLoss(v) + 1
. (1)

We add 1 to AnonyLoss(v) to avoid division by zero.

InfoGain(v) : Let T [x] denote the set of records in T generalized to the value
x. Let freq(T [x], cls) denote the number of records in T [x] having the class cls.
Let |x| be the number of elements in a set x. Note that |T [v]| =

∑
c |T [c]|, where

c ∈ child(v). We have

InfoGain(v) = I(T [v]) −
∑

c

|T [c]|
|T [v]|I(T [c]), (2)

where I(T [x]) is the entropy of T [x] [11]:

Integrating Private Databases for Data Analysis 177

I(T [x]) = −
∑

cls

freq(T [x], cls)
|T [x]| × log2

freq(T [x], cls)
|T [x]| , (3)

Intuitively, I(T [x]) measures the “mix” of classes for the records in T [x], and
InfoGain(v) is the reduction of the mix by specializing v.

AnonyLoss(v) : This is the average loss of anonymity by specializing v over all
QIDj that contain the attribute of v:

AnonyLoss(v) = avg{A(QIDj) − Av(QIDj)}, (4)

where A(QIDj) and Av(QIDj) represents the anonymity before and after spe-
cializing v. Note that AnonyLoss(v) not just depends on the attribute of v; it
depends on all QIDj that contain the attribute of v.

5 Top-Down Specialization for 2 Parties

Now we consider that the table T is given by two tables TA and TB with a
common key ID, where Party A holds TA and Party B holds TB . At first glance,
it seems that the change from one party to two parties is trivial because the
change of Score due to specializing a single attribute depends only on that
attribute and Class, and each party knows about Class and the attributes they
have. This observation is wrong because the change of Score involves the change
of A(QIDj) that depends on the combination of the attributes in QIDj .

Suppose that, in the TDS approach, each party keeps a copy of the current
∪Cuti and generalized T , denoted Tg, in addition to the private TA or TB .
The nature of the top-down approach implies that Tg is more general than the
final answer, therefore, does not violate the requirement (3) in Definition 2. At
each iteration, the two parties cooperate to perform the same specialization as
identified in TDS by communicating certain information in a way that satisfies
the requirement (3) in Definition 2. Algorithm 1 describes the procedure at Party
A (same for Party B).

First, Party A finds the local best candidate and communicates with Party B
to identify the overall winner candidate, say w → child(w). To protect the input
score, Secure 2-party max [3] can be used. The winner candidate will be the
same as identified in TDS because the same selection criterion is used. Suppose
that w is local to Party A (otherwise, the discussion below applies to Party
B). Party A performs w on its copy of ∪Cuti and Tg. This means specializing
each record t ∈ Tg containing w into those t1′, · · · , tk′ containing child values in
child(w), by examining the set of raw records generalized by t, denoted TA[t],
and partitioning TA[t] among TA[t1′], · · · , TA[tk′]. Similarly, Party B updates its
∪Cuti and Tg, and partitions TB [t] into TB [t1′], · · · , TB [tk′]. Since Party B does
not have the attribute for w, Party A needs to instruct Party B how to partition
these records in terms of IDs.

178 K. Wang, B.C.M. Fung, and G. Dong

Algorithm 1. TDS2P for Party A

1: initialize Tg to include one record containing top most values;
2: initialize ∪Cuti to include only top most values;
3: while there is some candidate in ∪Cuti do
4: find the local candidate x of highest Score(x);
5: communicate Score(x) with Party B to find the winner;
6: if the winner w is local then
7: specialize w on Tg;
8: instruct Party B to specialize w;
9: else

10: wait for the instruction from Party B;
11: specialize w on Tg using the instruction;
12: end if ;
13: replace w with child(w) in the local copy of ∪Cuti;
14: update Score(x), the beneficial/valid status for candidates x in ∪Cuti;
15: end while;
16: output Tg and ∪Cuti;

Example 3. Consider Table 1 and the joint anonymity requirement:

{<QID1 = {Sex, Job}, 4>, <QID2 = {Sex,Salary}, 11>}.
Initially,

Tg = {<ANY Sex, ANY Job, [1-99)>}
and

∪Cuti = {ANY Sex, ANY Job, [1-99)},
and all specializations in∪Cuti are candidates. To find the candidate to specialize,
Party A computes Score(ANY Sex), and Party B computes Score(ANY Job)
and Score([1-99)).

Below, we describe the key steps: find the winner candidate (Line 4-5), per-
form the winning specialization (Line 7-11), and update the score and status of
candidates (Line 14). For Party A, a local attribute refers to an attribute from
TA, and a local specialization refers to that of a local attribute.

5.1 Find the Winner Candidate

Party A first finds the local candidate x of highest Score(x), by making use
of computed InfoGain(x), Ax(QIDj) and A(QIDj), and then communicates
with Party B (using secure 2-party max as in [3]) to find the winner candidate.
InfoGain(x), Ax(QIDj) and A(QIDj) come from the update done in the pre-
vious iteration or the initialization prior to the first iteration. This step does
not access data records. Updating InfoGain(x), Ax(QIDj) and A(QIDj) is
considered in Section 5.3.

5.2 Perform the Winner Candidate

Suppose that the winner candidate w is local at Party A (otherwise, replace Party
A with Party B). For each record t in Tg containing w, Party A accesses the raw

Integrating Private Databases for Data Analysis 179

records in TA[t] to tell how to specialize t. To facilitate this operation, we represent
Tg by the data structure called Taxonomy Indexed PartitionS (TIPS). The idea is
to group the raw records in TA according to their generalized records t in Tg.

Definition 3 (TIPS). TIPS is a tree structure. Each node represents a gen-
eralized record over ∪QIDj . Each child node represents a specialization of the
parent node on exactly one attribute. A leaf node represents a generalized record
t in Tg and the leaf partition containing the raw records generalized to t, i.e.,
TA[t]. For a candidate x in ∪Cuti, Px denotes a leaf partition whose generalized
record contains x, and Linkx links up all Px’s.

With the TIPS, we can find all raw records generalized to x by following
Linkx for a candidate x in ∪Cuti. To ensure that each party has only access to
its own raw records, a leaf partition at Party A contains only raw records from
TA and a leaf partition at Party B contains only raw records from TB . Initially,
the TIPS has only the root node representing the most generalized record and
all raw records. In each iteration, the two parties cooperate to perform the
specialization w by refining the leaf partitions Pw on Linkw in their own TIPS.

Example 4. Continue with Example 3. Initially, TIPS has the root represent-
ing the most generalized record <ANY Sex, ANY Job, [1-99)>, TA[root] = TA

and TB [root] = TB . The root is on LinkANY Sex, LinkANY Job, and Link[1−99).
See the root in Figure 3. The shaded field contains the number of raw records
generalized by a node. Suppose that the winning candidate w is [1-99) →
{[1-37), [37-99)} on Salary.

Party B first creates two child nodes under the root and partitions TB [root]
between them. The root is deleted from all Linkx, the child nodes are added
to Link[1−37) and Link[37−99), respectively, and both are added to LinkANY Job

and LinkANY Sex. Party B then sends the following instruction to Party A:

IDs 1-12 go to the node for [1-37).
IDs 13-34 go to the node for [37-99).

On receiving this instruction, Party A creates the two child nodes under the
root in its copy of TIPS and partitions TA[root] similarly. Suppose that the next
winning candidate is ANY Job → {Blue-collar,White-collar}.

The two parties cooperate to specialize each leaf node on LinkANY Job in a
similar way, resulting in the TIPS in Figure 4.

LinkANY_Job

Head of Link ANY_Job
Sex Job Salary

ANY_Sex ANY_Job [1-99)

[1-99) {[1-37), [37-99)}

34
of Recs.

12ANY_Sex ANY_Job [1-37) ANY_Sex ANY_Job [37-99) 22

Fig. 3. The TIPS after the first specialization

180 K. Wang, B.C.M. Fung, and G. Dong

Link
Blue-collar

Head of Link Blue-collar

Sex Job Salary
ANY_Sex ANY_Job [1-99)

ANY_Sex Blue-collar [37-99)

Head of Link White-collar

[1-99) {[1-37), [37-99)}

34
of Recs.

412ANY_Sex Blue-collar [1-37)

12ANY_Sex ANY_Job [1-37) ANY_Sex ANY_Job [37-99) 22

ANY_Sex White-collar [37-99) 18

ANY_Job {Blue-collar, White-collar}

Fig. 4. The TIPS after two specializations

We summarize the operations at the two parties, assuming that the winner
w is local at Party A.

Party A. Refine each leaf partition Pw on Linkw into child partitions Pc. Linkc

is created to link up the new Pc’s for the same c. Mark c as “beneficial” if the
records on Linkc has more than one class. Also, add Pc to every Linkx other
than Linkw to which Pw was previously linked. While scanning the records in
Pw, Party A also collects the following information.

– Instruction for Party B. If a record in Pw is specialized to a child value c,
collect the pair (id,c), where id is the ID of the record. This information will
be sent to Party B to refine the corresponding leaf partitions there.

– Count statistics. To update Score without accessing raw records, some “count
statistics” is maintained for each partition in the TIPS. This is done in the
same scan as performing w described above. See the details in [8].

Party B. On receiving the instruction from Party A, Party B creates child
partitions Pc in its own TIPS. At Party B, Pc’s contain raw records from TB . Pc’s
are obtained by splitting Pw among Pc’s according to the (id, c) pairs received.

We emphasize that updating TIPS is the only operation that accesses raw
records. Subsequently, updating Score(x) (in Section 5.3) makes use of the count
statistics without accessing raw records anymore.

5.3 Update the Score

Score(x) depends on InfoGain(x), Ax(QIDj) and A(QIDj). The updated
A(QIDj) is obtained from Aw(QIDj), where w is the specialization just per-
formed. Below, we consider updating InfoGain(x) and Ax(QIDj) separately.

Updating InfoGain(x). InfoGain(x) is affected in that we need to compute
InfoGain(c) for newly added c in child(w). The owner party of w can compute
InfoGain(c) while collecting the count statistics for c in Section 5.2.

Updating AnonyLoss(x). Recall that Ax(QIDj) is the minimum a(qidj) after
specializing x. Therefore, if att(x) and att(w) both occur in some QIDj , the spe-

Integrating Private Databases for Data Analysis 181

cialization on w might affect Ax(QIDj), and we need to find the new minimum
a(qidj). The following QIDTreej data structure indexes a(qidj) by qidj .

Definition 4 (QIDTrees). For each QIDj = {D1, . . . ,Dq}, QIDTreej is a
tree of q levels, where level i > 0 represents generalized values for Di. A root-to-
leaf path represents an existing qidj on QIDj in the generalized data Tg, with
a(qidj) stored at the leaf node. A branch is trimmed if its a(qidj) = 0. A(QIDj)
is the minimum a(qidj) in QIDTreej .

QIDTreej is kept at a party if the party owns some attributes in QIDj .
On specializing the winner w, a party updates its QIDTreej ’s that contain the
attribute att(w): creates the nodes for the new qidj ’s and computes a(qidj).
We can obtain a(qidj) from the local TIPS: a(qidj) =

∑ |Pc|, where Pc is on
Linkc and qidj is the generalized value on QIDj for Pc. |Pc| is part of the count
statistics for w collected in Section 5.2.

Example 5. Continue with Example 4. Figure 5 shows the initial QIDTree1 and
QIDTree2 for QID1 and QID2 on the left. On performing [1-99) → {[1-37), [37-
99)}, <ANY Sex, [1-99)> in QIDTree2 is replaced with new qids <ANY Sex,
[1-37)> and <ANY Sex, [37-99)>. A(QID2) = 12.

Next, on performing ANY Job → {Blue-collar, White-collar}, <ANY Sex,
ANY Job> in QIDTree1 is replaced with new qids <ANY Sex, Blue-collar>
and <ANY Sex, White-collar>. To compute a(vid) for these new qids, we add
|PBlue-collar| on LinkBlue-collar and |PWhite-collar| on LinkWhite-collar (see Figure
4): a(<ANY Sex, Blue-collar>) = 0 + 12 + 4 = 16, and a(<ANY Sex, White-
collar>) = 0 + 18 = 18. So AANY Job(QID1) = 16.

Updating Ax(QIDj). This is the same as in [8]. Essentially, it makes use of the
count statistics in Section 5.2 to do the update. We omit the details here.

Sex

Job

Initial

a(vid) count

After Specialization
on [1-99)

ANY_Job
34

After Specialization
on ANY_Job

RootQIDTree 1

Sex

Salary
a(vid) count

ANY_Job
34

Root

Blue-collar
16

ANY_Sex

Root

White-collar
18

ANY_Sex

[1-99)
34

ANY_Sex

Root

[1-37)
12

ANY_Sex

Root

[37-99)
22

[1-37)
12

ANY_Sex

Root

[37-99)
22

ANY_Sex ANY_Sex

QIDTree
2

Fig. 5. The QIDTrees data structure

182 K. Wang, B.C.M. Fung, and G. Dong

5.4 Analysis

Theorem 1. TDS2P produces exactly the same integrated table as the unse-
cured TDS on the joint table, and ensures that no party learns more detailed
information about the other party other than what they agree to share.

This claim follows from the fact that TDS2P performs exactly the same
sequence of specializations as in TDS in a distributed manner where TA and
TB are kept locally at the sources. The only information revealed to each other
is those in ∪Cutj and Tg at each iteration. However, such information is more
general than the final integrated table that the two parties agree to share, thanks
to the nature of the top-down approach.

We omit the empirical evaluation of the proposed method. Basically, this
method produced exactly the same generalized data as in the centralized case
where one party holds all attributes of the data (Theorem 1). The latter case
has been studied in [8].

References

1. The House of Commons in Canada: The personal information protection and
electronic documents act (2000) http://www.privcom.gc.ca/.

2. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, San Diego, California (2003)

3. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science. (1982)

4. Liang, G., Chawathe, S.S.: Privacy-preserving inter-database operations. In: Pro-
ceedings of the 2nd Symposium on Intelligence and Security Informatics. (2004)

5. Dalenius, T.: Finding a needle in a haystack - or identifying anonymous census
record. Journal of Official Statistics 2 (1986) 329–336

6. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. International Journal on Uncertainty, Fuzziness, and Knowledge-
based Systems 10 (2002) 571–588

7. Hundepool, A., Willenborg, L.: µ- and τ -argus: Software for statistical disclosure
control. In: Third International Seminar on Statistical Confidentiality, Bled (1996)

8. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and
privacy preservation. In: Proceedings of the 21st IEEE International Conference
on Data Engineering, Tokyo, Japan (2005)

9. Wang, K., Yu, P., Chakraborty, S.: Bottom-up generalization: a data mining solu-
tion to privacy protection. In: Proceedings of the 4th IEEE International Confer-
ence on Data Mining. (2004)

10. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Edmonton, AB, Canada (2002) 279–288

11. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

	Introduction
	Related Work
	Problem Definition
	The k-Anonymity
	Generalization and Specialization
	Secure Data Integration

	An Unsecured Solution
	Top-Down Specialization for 2 Parties
	Find the Winner Candidate
	Perform the Winner Candidate
	Update the Score
	Analysis

	References

