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In the past decade, the number of malware variants has increased rapidly. Many researchers have proposed to detect malware using
intelligent techniques, such as Machine Learning (ML) and Deep Learning (DL), which have high accuracy and precision. These
methods, however, suffer from being opaque in the decision-making process. Therefore, we need Artificial Intelligence (AI)-based
models to be explainable, interpretable, and transparent to be reliable and trustworthy. In this survey, we reviewed articles related to
Explainable AI (XAI) and their application to the significant scope of malware detection. The article encompasses a comprehensive
examination of various XAI algorithms employed in malware analysis. Moreover, we have addressed the characteristics, challenges,
and requirements in malware analysis that cannot be accommodated by standard XAI methods. We discussed that even though
Explainable Malware Detection (EMD) models provide explainability, they make an AI-based model more vulnerable to adversarial
attacks. We also propose a framework that assigns a level of explainability to each XAI malware analysis model, based on the security
features involved in each method. In summary, the proposed project focuses on combining XAI and malware analysis to apply XAI
models for scrutinizing the opaque nature of AI systems and their applications to malware analysis.

CCS Concepts: • Security and privacy → Malware and its mitigation; • Computing methodologies → Artificial intelligence.
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1 INTRODUCTION

Today, many critical infrastructures in our society are connected to the Internet to reduce operating costs or simplify
control. These cyber-physical systems are susceptible to various vulnerabilities that could be exploited by adversaries
by injecting malware and conducting malicious activities, such as information theft and ransom collection [3].

Importance of the topic: Cybersecurity has been enhanced using AI in many remarkable ways, including malware
detection [53, 74], code similarity [24], intrusion detection [92], attack prediction [130], and digital forensics [48].
Detecting malicious or suspicious activity in time may prevent significant loss. As these tasks are crucial, the analytical
model should be accurate and transparent. When a Portable Executable (PE) file is identified as malware, it is essential
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to specify which characteristics, referred to as low-level explanations, or which types of malicious activities, referred to
as high-level explanations, contributed to this determination.

To construct a malware detection model, we need to reverse engineer PE files and analyze the resulting assembly code.
The different paradigms that have been proposed for malware analysis fall into three main categories: Static, Dynamic,
and Hybrid approaches that can be signature-based [83, 149], behavior-based [38, 66], data flow graphs [134, 135, 151],
control flow graphs (CFG) [4, 15, 25, 69], OpCode oriented [37], Grayscale image analysis [64, 125], and Executable and
Linkable Format (ELF) header analysis [14, 112], etc. However, all the studies mentioned have their shortcomings, e.g.,
signature-based models require frequent updates and behavior-oriented methods rely on predefined malicious activities.
Furthermore, except for a few, previous studies failed to be robust and against code obfuscation and the rapidly growing
malware variants [141].

The extension of the computational power of computers and the development of various DL approaches have made
the analysis of security data easier. Malware detection using DL has already been noticeably explored. For instance,
D’Angelo et al.[28] presented an integration of transfer learning and federated learning approaches to address regression
issues. The paper demonstrates a significant advancement in malware detection for IoT devices by combining privacy
preservation with high accuracy and efficiency, overcoming the limitations of existing federated learning methods.
Similarly,[131] conducted a review of malicious traffic analysis. Moreover, intrusion detection using a DL-based model
has been presented in [63], [120], and [75]. Convolutional Neural Networks (CNNs) have also been used in intrusion
detection [147]. The authors have developed a CNN architecture to detect intrusion and malicious activity on the
Web. Similarly, the study employed an extended version of CNN named Deep CNN or DCNN to classify the malware
family [137]. Another advanced version of Artificial Neural Networks (ANNs) known as Autoencoder has been used in
feature selection and other malware analysis-related tasks [145].

Different DL algorithms have also been used in other types of analysis, such as NLP-based malware detection,
including, but not limited to, Recurrent Neural Networks (RNNs), e.g., Gated recurrent units (GRUs) [140], Long Short-
Term Memory (LSTM) [47], and Bi-LSTM [17]. Although the above-mentioned state-of-the-art DL algorithms have
shown their significance in malware detection in terms of precision and accuracy, they are still opaque in explaining
the reason why a decision was made.

In 2016, the Defense Advanced Research Projects Agency (DARPA)1 came upwith a newAI concept named Explainable
AI (XAI), to reduce the black-boxing of Deep Learning (DL) models and strengthen transparency, interpretability and
explainability. With the conception of XAI, many researchers started to work on the new dimension of explainable
models in different fields, including malware detection because it helps stakeholders understand and trust the decisions
made by AI systems. Transparency in XAI ensures that these systems can be audited and validated, addressing potential
biases and errors in AI-driven decisions. This is crucial in security contexts where the reasons behind labeling software
or activities as malicious must be clear and justifiable.

We conducted a comprehensive literature survey on XAI methods for malware analysis (refer to Table 1) and
identified several areas where further research could be beneficial. Specifically, areas such as XAI model evaluation,
comparative analysis of classification methods, used datasets, and adversarial attacks as limitations, are crucial for
explaining and exposing the inadequacies of traditional XAI methods in effectively addressing EMD. Given the unique
and complex nature of malware threats, traditional methods, while useful, fall short in capturing the multi-dimensional
and evasive characteristics of malware. This limitation highlights the need for the development of new XAI approaches

1https://www.darpa.mil/program/explainable-artificial-intelligence
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or the adaptation of existing ones to better handle the intricacies of malware code and behavior. Moreover, establishing
robust, objective metrics for evaluating the interpretability of malware detection models is critical to advancing the
field. Enhancing the resilience of these models against adversarial attacks is also crucial for maintaining the integrity
and reliability of malware analyses. Addressing these core challenges will not only improve model interpretability but
also ensure that such interpretations are trustworthy and practical in real-world scenarios. Moreover, the method of
communication should change according to the underlying security data, so it can convey relevant information as a
true means of representation to the end user. Various models proposed by researchers are already inspired by Natural
Language Processing (NLP) or image recognition, and although they are efficient for textual/image data, they need to
be highly customized for this type of security data.

Malware analysts need to comprehend the features and malicious behaviors behind a prediction for a particular
malware family. This way, they can later adjust the malware detection systems to be able to identify similar patterns
and anomalies as malware [13].

This article bridges the gap between XAI and malware detection by reviewing and enriching recent studies published
by top publishers. This study aims to address the following research questions: 1) How can XAI improve transparency
and trust in malware detection systems? (Section 4) 2) What are the current state-of-the-art XAI methods used in
malware analysis, and how effective are they? (Section 4.3) 3) What are the challenges and limitations of these methods,
and how can they be overcome? (Sections 5.2, 5.4, 5.5) 4) What are the potential ways of communication for malware
analysts and cybersecurity stakeholders? (Section 5.3)

This work also demonstrates the model construction of malware detection and classification using XAI. XAI ensures to
overcome the black-box nature of DL algorithms and provide transparency, enhanced interpretability, and explainability
to the deep models, along with probability calculation for each prediction. In this survey, we addressed XAI for malware
analysis and explored all the existing endeavors in this domain, with their challenges and limitations. The contributions
of this review paper are as follows:

• We conducted a review of XAI methods for malware analysis published in top journals between 2016 and 2023,
evaluating their metrics, discriminating power, and interpretability (Section 4.3, 4.4).

• We presented several possible solutions that XAI offers for the problems related to malware detection and
discuss adversarial attacks, as a limitation of some XAI models (Section 5.2, 5.4, 5.5).

• We identified a lack of generalization in evaluating XAI models for malware analysis and proposed a metric for
evaluating the explainability of XAI models at different levels of explanations (Section 5.1.2).

• We proposed a framework for evaluating the explainability of XAI models for malware analysis based on
different levels of explanations and used a taxonomy to assess how understandable the explanations are. We
also applied this taxonomy to previous studies and discuss their communication level (Section 5.3).

The structure of the article is organized as follows: Section 2 presents an all-encompassing review of the relevant
literature and contextual background. Section 3 covers malware analysis, including both traditional and automated
techniques employing traditional ML or DL approaches, along with a thorough discussion of datasets. In Section 4,
the XAI methods for malware analysis are discussed in detail. Section 5 discusses the challenges. Finally, Section 6
concludes the article, highlighting future research avenues.

3
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2 RELATED SURVEY ARTICLES

There has been a considerable number of publications in the domain of malware analysis using DL. For instance, in [53],
the author used transfer learning to classify malware images. Similarly, [131] covered a review of malicious traffic
analysis using ML. Moreover, Sohi et al. [120] used a DL-based model for intrusion detection. Subsequently, these
authors recognized the sensitivity of the models and began to focus on their interpretability.

‘Right to Explanation’ was the primary reason behind XAI-models [127]. Afterwards, many researchers started
working on interpretability in distinctive subdomains, including malware detection. For example, in [106], the authors
interpreted the ANNmodel, and Lacave et al. [57] explained the Bayesian Neural Network (BNN). Not only DL algorithms
but traditional ML models also sometimes need to enhance the level of explainability, such as Support Vector Machine
(SVM) and logistic regression. Martens et al. [80] presented a comprehensive rule extraction-based study using SVM.
Numerous researchers also worked on a graphical drawing of the black-box DL models using heatmap [22]. The authors
in [146] provide a survey study on visual analytics techniques for ML.

To prove the significance of our research, we studied and analyzed papers on XAI for malware detection by following
the PRISMA model [113]. We selected renowned publishers and conferences (see details in Appendix, Section 7) and
Table 6 to ensure the comprehensiveness and relevance of our analysis. Table 1 presents a summary of the topics
that have been covered in the review papers. Aslan et al. [13] provide deep insights into the various approaches for
malware detection, including heuristic-based algorithms and IoT-based malware, concluding that no algorithm can detect
sophisticated and new malware. Signature and heuristic-based methods, however, outperform the others. Similarly,
Namanya et al. [87] presented a detailed review of various published works regarding obfuscation techniques. They
also reviewed multiple methods to detect malware through recently published works, including heuristics. However,
they did not include any future direction for malware detection.

Few studies are partially introducing XAI in the field of malware hunting. Gibert et al. [34] reviewed a comprehensive
analysis of malware detection, including challenges and future scope. The study provides quality content on malware
taxonomy and background on malware analysis, including static, dynamic, and hybrid methods. Although the authors
included and discussed interpretability and the adversarial attack problem in future trends, they did not review the
explainable malware model classifiers. In the same way, Majid et al. [78] mainly focused on DL techniques and elaborated
on them. However, the study neither discussed the future challenges nor explainable DL models in detail. Limited
published studies have assessed the area of cybersecurity using XAI, such as [124], and [44] presented an analysis of
cybersecurity methods using XAI.

Although some studies discuss XAI for malware analysis, they do not specifically focus on malware detection, but
rather cover other cybersecurity domains related to XAI, such as intrusion detection, spam detection, and malicious
traffic detection. For example, [123] is one of the rare review papers in which the authors discuss the interpretability,
explainability, and accountability of AI-based malware and intrusion detection models. Srivastava et al. [123] presented
a review of cybersecurity and its inherent subdomains, but not specifically on malware analysis. The authors discussed
various other topics, e.g., health care, Industrial 4.0, supply chain, e-governance, etc. They give a superficial overview of
the application of XAI for malware analysis. Similarly, in [81], the author reviewed articles on XAI for three domains:
NLP, bioinformatics, and malware classification. In [48], the authors described and reviewed the application of XAI to
build reliability in DL models for digital forensics, but not for malware analysis. For these reasons, we did not include
these studies in Table 1.
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To the best of our knowledge, no review paper has discussed the challenges and limitations of XAI models in the
area of cybersecurity or malware detection. In [61], the authors demonstrated a comprehensive literature survey on
cyberattacks and cybersecurity in recent developments and trends, but did not examine the scope of XAI in particular.
In [55] and [16], the authors discussed the vulnerability of XAI models to adversarial attacks. These are among the few
review papers that cover three major interrelated areas: cybersecurity, XAI, and adversarial attack. However, these
studies also did not focus on malware analysis.

Singh et al. [116] partially discussed the problem of adversarial attacks and mainly reviewed articles published using
various analysis methods, but they did not discuss the explainable model.

Although many articles have attempted to organize XAI studies, only a few have been successful in doing so. For
example, studies by authors such as [35] and [2] covered a wide range of XAI topics, but they did not specifically focus
on malware analysis. While these studies provided a general overview of XAI, our work is significant in expanding the
scope of research for both paradigms. Our article highlights the shortcomings of previous works, such as the lack of
attention to adversarial attacks, and proposes new evaluation metrics. We also suggest a common evaluation method
and communication level for XAI in malware analysis, contributing to the advancement of the field.

Table 1. Summary of published review papers on related topics. ‘c’ indicates complete explanation, ‘p’ signifies partial discussion, and
‘x’ means not discussed at all in the mentioned article. ‘MAP’ stands for Malware Analysis Process.
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Arfeen et al. [10] c x c c c c c c c x x p

Aslan et al. [13] x p x c c c c c c x x x

Bhusal et al. [16] x x c p x x x x x p c x

Feizollah et al. [31] c c c c c c p x c x x x

Gibert et al. [34] c x c c c c c x c x x c

Iadarola et al. [44] p x p p p p p x c c x c

Kuppa et al. [55] x x x p x x x x x c c p

Li et al. [61] x x x c x x x x p c x p

Majid et al. [78] x x x p c c x x c x x x

Mathews et al. [81] p x x p x x x x c c x p

Namanya et al. [87] x p p c c c p c p x x x

Razgallah et al. [100] x x x c c c p p c x x x

Saeed et al. [105] c x x c p p x c c x x x

Singh et al. [116] x c x x c c x x c x x p

Souri et al. [122] p x p c c c p x c x x x

Srivastava et al. [123] c p p p x x x x c c x c

Stevens et al. [124] x x x x x x x x p c x x

Wang et al. [132] x x x p c c c x c x x x

Our Survey c c c c c c c c c c c c
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3 MALWARE ANALYSIS AND DETECTION

In this section, we discuss various types of approaches used prior to the introduction of XAI in this domain. These
approaches encompass all types of malware analysis, ranging from basic static analysis to ML/DL-based algorithms. We
refer to only a few studies in Table 2, not all studies within these categories, as our aim is to emphasize and explore XAI
for EMD.

3.1 Traditional approaches for malware analysis

File analysis using a vetting service such as VirusTotal [10] is the first step of malware analysis. If VirusTotal does
not recognize the file, it does not necessarily mean the file is benign. Such files are subjected to further analysis using
traditional approaches, which scrutinize deeper aspects that automated tools may miss. If a file is subsequently identified
as suspicious or malicious through deeper analysis, it is then added to an internal or specialized malware database.
This includes comprehensive steps such as code analysis, where findings at each stage are thoroughly validated. The
final step in the malware analysis procedure is to authenticate and catalog a malicious file in this specialized database,
ensuring its characteristics can be quickly identified in future scans.

Fig. 1. Stages of Malware Analysis Process. This diagram details the sequential layers of malware analysis, highlighting the transition
from static properties analysis through dynamic behavior and dynamic properties analysis, to reverse engineering and code analysis.
It illustrates how each layer builds upon the previous to provide a thorough evaluation of potential malware.

The three main stages of malware analysis—static, dynamic, and hybrid—are distinguished by the quality, features
(mentioned in Table 2), and complexity of the features. ’Quality’ refers to the effectiveness of the features in accurately
identifying malware, and ’complexity’ involves the computational resources and expertise required to analyze these
features. The diagram 1 details the typical flow of malware analysis, starting from initial static analysis through to
dynamic and behavioral analysis, integrating both high-level overview and deeper, specific processes. These stages are
detailed further below.

3.1.1 Static analysis. Static analysis is one of the fundamental ways to dissect a malware sample. Malware analysts
employ a myriad of static features to analyze a known malware sample, as shown in Table 2. Since static features
are simple to manipulate and are not robust, static-based malware detection systems can easily be circumvented and
exploited by packed and obfuscated malware. Static analysis works well solely to gain an initial indication about a file.
If analysts discover unusual indications about a file, they can perform a more thorough investigation.

3.1.2 Dynamic analysis. Dynamic analysis is more reliable than static analysis, although carrying out a thorough
dynamic analysis is challenging [93]. Analysts are not only limited to classifying the files, but they can also watch their

6
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Table 2. Studies and their method for malware analysis.

Type Features Article(s) Features used

Static analysis PE headers features, Import/Export libraries or ser-
vices, Entropy, Printable-readable strings, Bytes of
images, N-grams (from static contexts)

[49, 50, 60] Op-code/Bytes n-gram analysis

Dynamic analysis CFGs, API Calls, Call graphs, Memory modifications,
Registry changes, Hardware related information, Net-
work traffic, N-grams (from dynamic contexts)

[91, 95, 108,
110, 128]

API calls, Function in DLL im-
port/export, system calls based de-
tection

Hybrid analysis A combined analysis utilizing both static and dynamic
features mentioned above

[114] Op-code n-grams and API calls
based analysis

Heuristics-based
analysis

Features based on behavioral characteristics and
heuristic rules, e.g., API or system calls

[45, 90] Diagram of system-call graph, print-
able string, etc.

ML/DL-based
analysis

Utilize either static features, dynamic features, or a
combination of both

[65, 86] Gray scale images classification us-
ing CNN

[29] API calls analysis using Bayesian
network

[39, 136, 144] Autoencoder based detection

behavior. They can extract a file’s dynamic properties (Table 2) by running it in a sandbox environment and observing
their behavior, registry changes, memory alterations, network, and Internet-related activities. Any clue discovered
during static analysis might be scrutinized throughout this procedure, because attackers eventually need to modify
a dynamic feature, which is not simple to achieve, and evading a dynamic analysis is rather difficult. On the other
hand, some files cannot be executed in a safe environment such as in a virtual machine or sandbox, and the detection
mechanism may flag files as benign if disguised in specific environments.

The disadvantage of dynamic analysis, other than being computationally expensive, is that malware might hide its
malicious behaviour while being analyzed.

3.1.3 Hybrid and code analysis. Hybrid analysis combines both static and dynamic analysis of malware. Engineers
attempt to comprehend the relationship between the behavior of the files and their features. Additionally, analysts
thoroughly examine the assembly code and function to determine how the file will affect the system or organization.

Adopting the hybrid approach is complicated, because attackers constantly create new malware variants and it is
difficult to check such a large number of files manually [34]. As a result, the following new paradigms are used to detect
malicious activity:

• Heuristics-based analysis: This type of malware analysis uses automated processes to extract rules from
training files. Although heuristics-based analysis is good at finding zero-day malware, it is prone to false-
positives. Identifying a malware sample generally involves dynamic features, such as API calls and CFGs, or
static features like strings. Heuristic-based systems are vulnerable against polymorphic, packed, and obfuscated
malwares.
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• ML/DL-based analysis: This type of malware analysis is a more efficient, quick, and accurate technique to
evaluate malware than traditional methods. However, ML/DL-based approaches suffer from a lack of inter-
pretability and need a sufficient amount of labeled data. These shortcomings were the main motivation behind
introducing XAI for malware analysis, which we will cover in detail in the next sections.

3.2 ML/DL algorithms for malware analysis

Fig. 2. Algorithms used for malware classification or detection Fig. 3. Malware dataset classification used in the studies taken
for the survey

3.2.1 Traditional ML. There are many different types of traditional ML models with their strengths and weaknesses.
Each ML model has a specific level of interpretability. Linear and logistic regression are among the basic classification
algorithms that are straightforward to explain, but they perform poorly when the relationships between dependent and
independent variables are non-linear.

In the article by Alzubaidi et al. [8], the authors use a rule-based approach described in the study [2] for intrusion
detection. The approach involves generalizing a linear method and uses a rule-based ensemble to construct an explainable
model. Similar to this approach, Decision Tree (DT) and Random Forest (RF) algorithms also split data based on feature
rules. For example, the ID3 algorithm2 selects features based on entropy and then classifies the data.

DT has high interpretability, but if we ensemble multiple trees for RF, it becomes more difficult for analysts to study.
Studies [5, 7, 83, 84] use RF for classification purposes. In addition to RF, XGBoost has also been used for malicious
detection [7, 12].

SVM has frequently been used for malware classification. Studies [51, 67, 83] used SVM in different ways and also
provided explainability by using it as a surrogate model. The study [83] employed two versions, i.e., Linear and RBF
SVM on the DREBIN dataset [11] for malicious Android app classification. [56] are among the rare studies that use
unsupervised learning for classification, where classification is based on Indicators of Compromise (IOC), such as
registry keys, file path, command lines, domain names, and IP addresses.

3.2.2 DL. DL-based models have been applied to a wide range of applications, due to their high classification power. A
DL model can process different types of data, such as images, time series, and graphs. Therefore, the algorithm we

2https://pypi.org/project/decision-tree-id3/
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use for a classification problem primarily depends on the kind of data we are processing for detection or classification.
Notably, four types of DL algorithms are predominantly employed for malware classification: Multilayer Perceptrons
(MLP), which are used for feature-based data; CNN and their customized versions, suitable for image data; RNN, ideal
for time series or assembly code analysis; and Graph Neural Networks (GNN), used when processing graph-based data.

Initially, feature-based classification applied on structured data had been frequently used, as it was easy to surrogate
for explainable models. Early studies used different versions of MLP [36, 96] that used ANN, and the features were
system calls, libraries, and kernels. The studies [38, 139] extracted features such as API systems calls from binaries
and used DNN for the classification of malicious files. Study [133] proposed a novel method for interpretable malware
detection that used MLP with attention layers to detect the most influencing features. The authors compared their
method with other state-of-the-art models at that time.

Because most of the studies represented binaries in terms of images, either colored or grey-scale, the authors
employed different versions of CNN for image-based classification. [19, 32, 99, 138] used initial versions of CNN and
the study [19] used a customized version of CNN called EMBERMalConv. Similar to [133], Bose et al. [19] added an
attention mechanism in CNN for extracting the details of weights and gradients of the layers and determining the
influencing pixels of the image. The model proposed in the study claimed to be better than the original MalConv [138].
Similarly, Lin et al. [62] used an advanced version of CNN, namely GoogLeNet Inception 3, a CNN architecture with 22
hidden layers. In addition, the study by Mitchell et al. [85] implemented a CNN using opcode data.

There are two types of data that researchers use in RNNs: 1) time series data and 2) assembly code extracted from
binaries using a dissembler. The studies [36, 51, 94, 97] used various versions of RNN. For instance, studies [51, 97]
detected malicious activities using network traffic data. Prasse et al. [97] implemented their malicious behavior
detection method by LSTM and transformers. Khan et al [51] implemented an LSTM-based autoencoder for a similar
task. Article [36] presented a state-of-the-art model named LEMNA (Local Explanation Method using Nonlinear
Approximation) for explaining cyber threat data. They processed the hex sequence of assembly code using RNN
and provide explainability using LEMNA. Furthermore, [94] employed an attention-based RNN that investigates the
utilization of registers in each cycle and depicts the gradient of the layers as an explainability of a malicious event.
Different transformers used to process assembly code are also popular among researchers. For example, in [59], the
authors used a galaxy-based transformer to process the assembly code, creating the embedding of the function, and
providing influencing functions as interpretability. Moreover, BERT (Bidirectional Encoder Representations from
Transformers) was used in the study [67].

Up to now, Herath et al. [40] is the only study that used CFG for the detection and processing through GNN. In
the same model, they also proposed a method to provide explainability through a graph (network of blocks that are
responsible for a malicious activity). Additionally, Saqib et al. [107] introduced a new graph model, the Canonical
Executable Graph (CEG), which they utilized for malware family detection. Their results, when compared with those
obtained using CFG, demonstrated superior performance.

3.3 Datasets of the studies

Data analysts primarily use four types of data for malicious activity detection and classification. Figure 3 depicts the
classification of the data types used in the studies and connects them with their specific data. The detail of each data
type is as follows:
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3.3.1 Binaries. Security analysts rely on binaries as essential data for their investigations, since they encompass all the
necessary information for detecting malicious activities. Binary files, identifiable by extensions such as .exe or .bin,
consist of a sequence of eight-bit bytes. Disassemblers are required to interpret this type of file and transform it into
other required data formats, such as CFGs, code, images, or features. Binary files can contain various file types, such as
executables, libraries, images, databases, and archives, among others. In the research studies examined in our proposed
review paper, the majority of the binaries used were Android (APK) files or PE files.

Android APPs or APK files An APK file is an Android package that is used to install an Android application on a
mobile device. Recent investigations have shown that many hackers use APK files to carry out malicious behavior on a
user’s mobile phone, such as draining its battery, stealing passwords, or sharing confidential material. Considering
that smartphones contain a great deal of a user’s confidential information, it is essential to analyze harmful code that
spreads through APK files. In this subsection, we review the numerous APK datasets that are publicly available and
were employed in the articles we evaluated.

Two very popular public repositories of malicious APK files are VirusShare and VirusTotal. VirusTotal can be used
for checking whether an APK is either malicious or benign by using its hashes. For instance, study [11, 121, 133, 139]
downloaded malicious APK files from VirusShare. However, for the benign samples, they used the Google Play Store
and tested all the samples over VirusTotal. Furthermore, [94] and [83] used datasets from VirusTotal.

Drebin [11], which was created for static analysis of malware running on Android, is another benchmark dataset. The
authors [11] gathered binaries from a variety of sources, including the Google Play Store and the Russian and Chinese
markets. They also obtained samples from the Android Malware Genome Project [150]. Later, they employed VirusTotal
to evaluate each sample and distinguish malware from benign samples by taking the majority votes of the results from
ten antivirus scans (AntiVir, AVG, BitDefender, ClamAV, ESET, F-Secure, Kaspersky, McAfee, Panda, and Sophos). Drebin
is a huge repository for malware analysis, which is why it has been used by many studies, e.g., [5, 11, 52, 67, 83, 133].

The study [133] explores a new repository of malware, the National Internet Emergency Center (NIEC)2. This
directory has the latest malware samples and contains various malware categories including Trojans, spyware, and
phishing. Similarly, study [7] used a dataset (CICMalDroid 2020 [73, 76]) published by the University of New Brunswick
(UNB)3. CICMalDroid 2020 is a recently released Android malware dataset consisting of more than 17,341 APK files
spanning four categories of adware, banking malware, riskware, and SMS malware. They also have a separate category
for benign binaries [73, 76]. Another study by Ambekar et al.[9] utilized two different repositories: Borah et al.[18] and
Mathur et al. [82].

PE files The MALICIA dataset is a collection of binaries that have so far exploited 502 servers [88]. The authors
of the dataset collected samples of malicious binaries from different servers and provided their metadata [121]. The
study [19] used this data for classification purposes. Another dataset is MALIMG [89], which is a collection of malware
images from 25 different families. The authors proposed a method to convert binaries into grey-scale images before
classifying them. This dataset was used by [62] and [138] to propose an interpretable malware detection model. Other
studies that have employed PE binaries have not publicized their datasets, due to non-disclosure agreements. Their
dataset consists of a mixture of Android and Windows binaries, or the samples were collected from various sources and
verified on VirusTotal.

2https://share.anva.org.cn/web/publicity/listMalware
3https://www.unb.ca/cic/datasets/index.html
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3.3.2 Source code. Source code is also used by some studies for malware detection or classification. For example, in [94],
researchers executed 367 programs on the Xilinx Zynq7000 SoC ZC702 evaluation board. Similarly, in [43], Smali code
extracted from source code was converted into an image that was used for further analysis. This demonstrates the
potential of source code data in enhancing the accuracy and effectiveness for malware detection and classification.

3.3.3 Network traffic. Four studies in our review used network traffic data for interpretable malware detection. The
study [97] collected network traffic data from various companies and different users. The dataset consists of 9,776,911
training samples and 9,970,560 test samples, where each sample is a combination of an organization, a user, and a
five-minute interval in which at least one network event was observed. In total, 216 distinct network events occurred at
least once in the training and evaluation data—most of these events occurred frequently. On average, 2.69 network
events were observed in each five-minute interval in the training data and 2.73 events in the test data. Similarly, Sharma
et al. [115] collected network traffic data from various sources, such as MalShare and VirusShare. Another study [51]
used a real-world gas pipeline system data source in their conducted experiments, created by Mississippi State University
(MSU) [105]. This data source contains time series data with real and synthetic labeled anomaly points. The entire
dataset consists of 2,74,628 samples, out of which 2,14,580 are normal data samples, and 6,0048 are anomalous. Through
this process, normal and abnormal fragments are created. Unlike the previous two studies, article [63] used publicly
available network traffic data, known as UGR’16 [70]. This dataset is a collection of about four months of real network
traffic from a tier-3 Internet Service Provider (ISP), containing background and attack traffic. It is a well-labeled dataset
with enough ground truth attacks. For their specific analysis, the researchers selected a portion of this dataset (i.e., 115
GB) that encompasses the network flows captured within a designated time window.

3.3.4 Malicious URLs. Apart from CICMalDroid 2020 [73, 76], UNB also published other URL-based datasets, such as
ISCX-URL2016 [79]. This is a dataset containing benign, spam, phishing, defacement, and malicious URLs. The study [7]
utilized this dataset to performed interpretable malicious URL detection. Similarly, in article [12], authors used another
dataset (CIC-Bell-DNS 2021) [77] for malicious domain classification. This dataset includes discriminative DNS-based
features (e.g., subdomain length, numeric percentage, character distribution, entropy, N-grams, obfuscation method,
etc.) that are more robust than the previous studies.

4 XAI-BASED MALWARE ANALYSIS

4.1 General approach

In this section, we present a general approach to implement XAI for malware analysis. Fig. 4 depicts the overall process
of malware detection/classification using XAI. The pipeline of the process consists of four different components. 1)
Classification/Detection: In this pipeline the data is first split into two parts for the training and testing phases.
In the training phase, the data is further divided into training and validation sets. The validation set is employed to
fine-tune the classifier parameters and save the best model for the testing phase. These processes are iterated until
the specified hyper-parameter epoch is exceeded or the required evaluation criteria are met. 2) Model evaluation:
In the second phase of the analysis, it is crucial to evaluate the performance of the model using various measures
commonly used to assess a model’s classification or detection performance: precision, recall, accuracy, misclassification
score, and F-score. Precision refers to the model’s ability to accurately identify true positive samples, while recall
measures the model’s ability to identify all positive samples. Accuracy denotes the percentage of correct predictions
made by the model, while the misclassification score measures the number of incorrectly classified samples. The
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F-score combines precision and recall to provide a more comprehensive evaluation of the model’s performance. These
measures are essential for understanding the effectiveness of the model and identifying areas for improvement. 3)
Explainability/Interpretability: Regarding the explainability and interpretability of the classification, if a model’s
performance is deemed satisfactory during the evaluation phase, the subsequent step involves explaining or interpreting
the classification results. While various models have been developed to describe real-world data, the interpretability
of malicious data varies depending on the input. The explainability generator interprets the predictions in terms of
features, images, and graphs. Two possible ways to generate these explanations include local explanations during the
testing phase (Fig. 4) or global explanations that tune the explanation generator’s parameters during the training phase.
The subsequent section elaborates more on these distinct categories of explanations. 4) Explainability assessment:
After generating explanations, it is crucial to assess their quality. This process is typically qualitative and involves
ground truth matching, case studies, and other similar methods. Some researchers have also proposed assessment
metrics to quantify the quality of the explanations.

The rest of the article elaborates on the models proposed in the literature for each of these four pipeline components,
providing a detailed discussion of their strengths, weaknesses, and applicability in the context of malware analysis.

4.2 Categories of XAI

Based on interpretability, we can divide the XAI models into two groups:

4.2.1 Global Interpretation. Global interpretation analyzes the model as a whole, focusing on the overall structure,
parameters, and the representations it has captured [72]. This type of interpretation provides insights into how the
entire model behaves across all data points. It examines the contributions of model parameters (weights and biases) to
the predictions. Essentially, it depicts the distribution of the predicted outputs concerning the features. For instance, in
a neural network trained to classify malware, global interpretation might involve analyzing the importance of different
layers and neurons in making predictions. Techniques such as feature importance scores, where the impact of each
feature on the overall prediction is quantified, are commonly used for global interpretation. However, achieving global
interpretability becomes challenging as the number of parameters increases, especially when dealing with feature
spaces that exceed three dimensions, making them difficult to visualize and comprehend.

As an example, suppose we have a deep learning model trained to detect malware based on various static and
dynamic features. A global interpretation technique might analyze the overall importance of features such as PE
headers, API calls, and network traffic patterns. It could use feature importance scores to show that API calls contribute
more significantly to the model’s predictions than PE headers. This information helps understand the model’s general
behavior and the features it relies on most across all instances.

4.2.2 Local Interpretation. Local interpretation, in contrast to global interpretation, focuses on understanding the
model’s prediction for a single instance. This approach seeks to explain why the model made a specific prediction for a
particular input. For example, in the context of malware detection, local interpretation might highlight the specific
features of a malware sample (such as certain API calls or byte sequences) that were most influential in the model’s
decision to classify it as malicious. Techniques such as Local Interpretable Model-agnostic Explanations (LIME) [101]
and Shapley Additive Explanations (SHAP) [68] are commonly used for local interpretation. These methods generate
explanations by approximating the model locally around the instance of interest, providing insights into which features
contributed most to the prediction. For instance, LIME might perturb the input features and observe the changes in the

12



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

model’s output to identify important features, while SHAP values quantify the contribution of each feature based on
cooperative game theory.

For local interpretation, consider a specific malware sample that the model has classified as malicious. Using SHAP,
we can generate a local explanation that shows which features of this particular sample influenced the model’s decision.
For instance, the explanation might reveal that certain unusual API calls and specific byte sequences in the file were
critical in identifying it as malware. This localized insight helps security analysts understand why the model flagged
this specific sample, aiding in further investigation and validation.

Fig. 4. Illustration of an XAI model for malware analysis,
showing key performance metrics: Accuracy (Acc), Precision
(P), Recall (R), and F1-Score (FC).

Fig. 5. Explanation methods for malware classification

4.3 XAI Methods

In this section, we discuss various studies and their explainability methods. Table 3 collectively presents these methods,
noting whether they include ground truth and whether their methods have been evaluated.

4.3.1 Rule-based. Rule-based explainability has been inspired by DT. Since DT is a self-interpretable traditional ML
algorithm, it does not require further exploration. In a rule-based model, we need to formalize thresholds for features
or define some rules that are constructed in the form of trees that make them understandable for people (Figure 6a).
However, applying DT to malware analysis is not very convincing and researchers have shifted to black-box DL and
further extract certain principles to add explainability.

Researchers typically create DT from a trained neural network and record the output of hidden layers [139] by
extracting them as features. Mathematically, the features are defined as follows:

𝑐𝑖 𝑗 =
1
𝑛𝑖

𝑁 𝑗−1∑︁
𝑛=0

𝑂𝑖
ℎ 𝑗

(1)

where 𝑐𝑖 𝑗 is the 𝑖𝑡ℎ instance and column 𝑗 of the dataset 𝐷 ′, used to construct the explanation DT. In this equation,
𝑂𝑖
ℎ 𝑗

denotes the output of the 𝑗𝑡ℎ hidden layer for the 𝑖𝑡ℎ instance, 𝑛𝑖 is the total number of outputs for the 𝑖𝑡ℎ instance,

and 𝑁 𝑗 represents the total number of neurons in the 𝑗𝑡ℎ hidden layer. The final result (e.g., benign or malware) of the
13
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black-box model is used as a label column in 𝐷 ′. After constructing the data 𝐷 ′, a DT model is trained based on the
entropy of 𝐷 ′ for column 𝑐 ,

𝐸𝑛𝑡 (𝐷 ′) = −
∑︁
𝑐𝜖𝐶

𝑝𝑐𝑙𝑜𝑔2 (𝑝𝑐 ) (2)

where 𝑝𝑐 is the proportion of class 𝑐 in the dataset. By splitting 𝐷 ′, information gain (IG) can be calculated

𝐼𝐺 (𝐷 ′, 𝑐 = 𝜆) = 𝐻 (𝐷 ′) − 𝐻 (𝐷 ′ |𝑐 = 𝜆) (3)

where 𝐻 (𝐷 ′ |𝑐 = 𝜆) is the entropy for a specific value/class (𝜆) of any column 𝑐 in a given sample 𝐷 ′.
In the last step, a column with maximum IG will be chosen. The explainability of the model looks as Fig 6a.

(a) Rule-based method used for malware
classification/detection

(b) Attention mechanism for explainabil-
ity

(c) Image-based explainability for two
different malware families presented
in [44]. A sample of the Mecor and Air-
push malware families are presented on
the left and right.

Fig. 6. XAI methods for EMD

Yan et al. [139] proposed a rule-based explainable model. First, they constructed a rule-based tree from the output
layer of the trained neural network and then extracted rules from the input and input layers of the same classifier.
Finally, they used values of the output layer as a bridge to join the input-rule-tree and output-rule-tree. The study [63]
used another rule-based model that was originally represented by Dash et al. [34]. In [34], authors used Boolean rules
either in the form of disjunctive ( OR-of-AND) or conjunctive (AND-of-OR) normal forms. Similarly, Sharma et al. [115]
used network traffic data to extract network features and employed DT to extract rules for explaining the attack.

4.3.2 Attention mechanism. Most of the XAI malware detection studies used attention-based mechanisms to provide
explainability in the model. Attention mechanism can be applied to any type of data and provides explainability
according to the input and the model used for classification or detection. For instance, if the input data is an image,
this mechanism generates some patterns in the image that may represent a malware family or malicious event. If the
input data is a feature, it can be applied to various hidden layers of MLP to help us understand the feed-forwarding
mechanism for any set of features.

As shown in Figure 6b, 𝛼𝑖 indicates the importance of the corresponding feature, which can be calculated using the
Softmax function as,

𝛼𝑖 =
𝑒𝑥𝑝 (𝑒ℎ

𝑖
)∑𝑛

𝑗=0 𝑒𝑥𝑝 (𝑒ℎ𝑖 𝑗 )
, (4)
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Table 3. Explainable methods types and explaining strategies for studies. ‘x’ presets the study not evaluated their XAI method.

M
et
ho

d

Re
f

XAI Model Explained by

G
ro
un

d
Tr
ut
h

XAI Metrics

A
tte

nt
io
n
m
ec
ha
ni
sm

-b
as
ed

[19] Analysing gradient and weights of layers Extracting influencer bytes No x

[133] Attention-based mechanism Key features Yes Interpretability result

[97] Integrated gradients method Determine the sequence of the most important net-
work events

No x

[83] Gradient-based approach Most influential local features No x

[96] Layer wise relevance and aggregate Most influencing system call to the tag classification Manual evaluation

[94] Attention in RNN Highlight register uses in cycles No x

[138] Attention-based mechanism Most influencing instructions No x

[11] Attention-based weight extraction Static key features Manual evaluation

[59] Attention-based mechanism Static features and code embedding Manual evaluation

ru
le
-b
as
ed [139] Rule-based tree generation Important features No x

[63] Boolean rule in disjunctive normal form or con-
junctive normal form

Feature based explanation Yes x

[115] DT Boolean rules for attack traffics No x

Fe
at
ur
e
ba
se
d

[36] LEMNA Most influencing bytes Yes Fidelity test

[38] N-grams extraction Most influencing system calls No x

[51] LIME Key features No x

[52] LIME Most contributing OpCode sequence No x

[56] EIGER IOC detection Manual evaluation

[7, 126] SHAP Key features No x

[67] SHAP, LIME Key features Fidelity,robustness

[5, 6, 119] SHAP Key features No x

[9, 12] SHAP, LIME Key features No x

[85] H-LIME Key Opcode features extraction No Completeness, sparsity,
consistency, efficiency

Im
ag
e
ba
se
d

[19] Analysing gradient and weights of layers Extracting influencing bytes No x

[99] LIME Heatmap No x

[44] Grad-CAM Heatmap generation, cumulative heatmap, learning
evaluation

Yes x

[32, 43] Grad-CAM Most influencing pixels, heatmap Yes Manual evaluation

[62] Ensemble Deep Taylor Decomposition (EDTD) Pixel-level explanation Fidelity, robustness

G
ra
ph

-b
as
ed [30] Relate a sub graph to the tactics, techniques,

and procedures (TTP)
Subgraph identification Yes Manual evaluation

[121] SHAP Subgraph of API call graph No x

[40] CFGExplainer Subgraph identification Sparsity, fidelity

[107] GAGE Subgraph extracted from CEG Yes Robustness

where 𝑛 is the total number of the features involved in the classification, and 𝑒ℎ
𝑖
is the output of the hidden layer ℎ,

which is

𝑒ℎ𝑖 =

𝑛−1∑︁
𝑘=0

𝑥𝑘𝑖 𝑤ℎ𝑘 , (5)

where 𝑛 is the total number of the features involved in the classification, and 𝑒ℎ
𝑖
is the output of the hidden layer,

𝑤ℎ𝑘 is a learnable weight of ℎ𝑡ℎ hidden layer and 𝑘𝑡ℎ feature. The Softmax function is crucial here as it normalizes the
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output of the hidden layer, converting them into probabilities that sum to one, thereby highlighting the most influential
features for the classification process. This normalized scoring by the Softmax function emphasizes the significant
features by amplifying the highest scores and suppressing others, facilitating a clear and interpretable visualization of
feature importance in the model.

The attention mechanism is the most generic solution for the explainability of any black-box model and any form of
data type. For example, in [19], the authors conducted experiments on weights and gradients associated with different
layers of MalConv, while predicting the class of PE. This way, they extracted raw bytes, which are more influential for
the prediction, and deciphered them as part of the PE. They found that header bytes contribute more than other parts.
However, other sections of the binary also show responsibility for the class prediction.

Similar to [19], other studies used ensemble attention mechanisms in CNN, e.g., [138]. Furthermore, article [94]
proposed a model in which they integrated CNN with RNN. Some studies also embedded attention layers in MLP
and detected the key features of the classification, e.g., [133] and [59]. In [59], researchers inserted an attention layer
in FFNN (Feed Forward Neural Network) and detected the main features in the input layer. Also, they utilized this
mechanism to detect the most influencing assembly functions. Arp et al. [11] used SVM for the classification and tune
some weights to the feature.

Studies [83, 96, 97] employed gradient-based explainability. They analyzed the relevance of each feature in each layer
by calculating the gradients and providing explainability. In [97], the authors used integrated gradients and determined
the sequence of the most important network events. Similarly, in [83], Melis et al. proposed a model to identify the
most influential local features. Study [96] analyzed layer-wise relevance and aggregated the gradient to detect the most
influencing system call to the tag classification.

4.3.3 Feature-based. Similar to rule-based explainability, feature-based explainability also detects influencing features
for the prediction. However, in this type of explainability, we detect those features by formalizing their importance in
the prediction. In this section, we provide a detailed description of these models, including LIME, SHAP, and LEMNA.

LIME is a local surrogate model used for explaining each individual prediction. LIME is trained on the training
dataset and for each epoch, it tries to understand how much the output may change on which input. Mathematically,
LIME can be explained as follows:

E(𝑓𝑥 ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔𝜖𝐺 𝐿(𝑓 , 𝑔, 𝜋𝑥 ) + Ω(𝑔), (6)

where E(𝑓𝑥 ) is an explanation of model 𝑓 for instance 𝑥 , and g, a linear model is fitted by LIME, and 𝑥 is the instance
for making the interpretability.𝐺 is the set of all possible explanations and we strive to keep the minimum loss function
𝐿 for the instance 𝑥 . The 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑓 ) is the function that checks the prediction’s closeness with 𝑔 and the actual
model or trained classifier 𝑓 for instance 𝑥 . Ω(𝑔) is the complexity of the model, which we aim to keep as small as
possible by controlling the number of parameters used for explainability. The proximity 𝜋𝑥 represents the strength of
the observation, which is closed to 𝑥 and used for explainability.

The studies [9, 12, 51, 52, 67] used LIME to identify the main features of the classification. Moreover, Mitchell et
al. [85] proposed a novel hierarchical LIME (H-LIME) approach, applied at the levels of classes and methods, resulting
in a sparser explanation.

SHAP Similar to LIME, SHAP is a local interpretable model. In this approach, we calculate the contribution of the
individual features in the prediction using various possible combinations for all other features. Furthermore, it can be
formulated as follows:
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𝜙 𝑗 (𝑣𝑎𝑙) = Σ𝑆⊆(1,...,𝑝) { 𝑗 }
|𝑆 |!(𝑝 − |𝑆 | − 1)!

𝑝!
(𝑣𝑎𝑙 (𝑆 ∪ 𝑗) − 𝑣𝑎𝑙 (𝑆)), (7)

where 𝑥 is the input that we are deciphering, 𝑆 is the subset of the attributes used in the model, and 𝑝 is the total
number of the models. Furthermore, 𝑣𝑎𝑙𝑥 (𝑆) is the prediction for the instance 𝑥 for the 𝑆 subset of the features.

𝑣𝑎𝑙𝑥 (𝑆) =
∫

𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑝 )𝑑P𝑥∉𝑆 − 𝐸𝑋 (𝑓 (𝑋 )) (8)

SHAP used the Shapley value to detect the contribution of each feature in the prediction for an instance 𝑥 . It is inspired
by Game Theory, where each feature behaves like an individual player of the game and each player is independent to
make a decision. Below is the SHAP function:

𝑔(𝑧′) = ∅0 +
𝑗=1∑︁
𝑀

∅𝑗𝑧
′
𝑗 , (9)

where 𝑔 is the function for interpretability, ∅𝑗 is each feature’s contribution, which sums up 𝑝 times, and the total
number of features is computed as follows:

𝑝∑︁
𝑗=1

∅𝑗 = 𝑓 (𝑥) − 𝐸𝑋 (𝑓 (𝑋 )) . (10)

𝑓 (𝑥) is the prediction for 𝑥 . In articles [5–7, 9, 12, 67, 119, 126], researchers employed SHAP for the interpretability
of the main features.

Other Some studies proposed an XAI model dedicated to security data. For instance, Guo et al. [36] proposed a model
known as LEMNA, customized for security applications. They claimed that it generated high-fidelity results. Although
it is a locally interpretable model like LIME, it can handle feature dependency and nonlinear local boundaries to increase
explanation fidelity for cybersecurity data. In [56], the authors proposed a model called EIGER that automatically
generates IOC. N-Grams extraction of the input features is also employed to explain the underlying model. In [38], the
authors extracted N-grams and system calls to explain malware classification.

4.3.4 Image-based. In image-based explainability, researchers either highlight some part of the image (check Figure 6c)
or create representing images for each class by employing ensemble, aggregation, or calculating gradients from images of
training data. Selvaraju et al. [117] proposed an explainable model, Gradient-weighted Class Activation Mapping (Grad-
CAM), for various versions of CNN. It finds a value for each pixel of the image, which is called a class discriminative
localization map, 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀

𝑐 𝜖 R𝑢×𝑣 , with dimensions height(𝑢) and width(𝑣) formulated as follows:

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (

∑︁
𝑘

𝑤𝑐
𝑘
𝐴𝑘 ) (11)

where𝑤𝑐
𝑘
is the learnable weight for convolution 𝑘 and class 𝑐 , and 𝐴𝑘 is the activation of convolution 𝑘 .𝑤𝑐

𝑘
can be

calculated as follows:

𝑤𝑐
𝑘
=

︷     ︸︸     ︷
1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖 𝑗

, (12)
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where 𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖 𝑗

is the gradient of class 𝑐 score for feature 𝑦, with respect to activation 𝐴𝑘 , and the first part (︷︸︸︷) of
the Eq. 12 depicts the global average pooling.

The Grad-CAM model was later used by researchers for security applications, e.g., [32, 43, 44]. The studies [43, 44]
used CNN for malware classification and explored the portion of images that contributed the most in the classification
using Grad-CAM. Moreover, studies [19, 62] fond the most influencing bytes (image pixels) by analyzing the gradient
of CNN. Lin et al. [62] proposed an Ensemble Deep Taylor Decomposition (ETDTD) as a method to provide pixel-level
explanations for the outputs of a Selective Deep Ensemble Learning-based (SDEL) for image-based malware detection.
SDEL is a detector proposed in the same study for image-based malware detection, which combines multiple deep
learning models to improve the accuracy. In [138], the model was similar to [19], but the classification was explained by
highlighting instructions instead of bytes. Apart from this, Rahman et al. [99] only generated a heatmap.

4.3.5 Graph-based. Recently, graph-based explainability has been employed by security researchers to detect a network
of blocks or functions that are malicious, instead of finding just the functions. It represents the interpretability of
the malicious events or code in the form of a subgraph. In the studies [30, 40], the authors extracted CFGs from an
executable and used them for classification. Later, they employed any subgraph extraction technique and surrogate in
their classification method to explain the prediction. In [40], Herath et al. proposed a model namely, CFGExplainer, to
extract the blocks of a CFG and used it to explain the behavior of the malware. Moreover, in [30], the authors extracted
the most influential API calls from a CFG of a malicious file. Additionally, Soi et al.[121] utilized an API call graph as
input to extract APIs for explainability purposes. Building upon these approaches, Saqib et al.[107] developed the CEG
and employed a novel method, the Genetic Algorithm based Graph Explainer (GAGE), to identify malicious functions
and their caller-callee relationships within CEG. The approach by Saqib et al. [107] demonstrated enhanced robustness
and discriminative power compared to CFGExplainer.

4.4 XAI malware analysis model evaluation

Evaluating the performance of an explainable malware detection model requires assessing two key components:
discrimination power and interpretability [20]. Discrimination power refers to the model’s ability to accurately classify
benign and malicious files or identify the specific malware family to which a file belongs. Interpretability, on the
other hand, refers to the quality of the explanations provided by the model, including factors such as correctness and
robustness.

4.4.1 Discriminating power. The discriminating power of an explainable model is vital and should not be compromised
while explaining the prediction. The metrics that are normally used to quantify the classification power of a model
include precision, recall, and accuracy, as defined below:

Precisionmeasures the number of right predictions out of the total number of observations of a class. Mathematically,
the precision for a model𝑚 and class 𝑐 is:

𝑃 (𝑚,𝑐) = No. of correct predictions of c
Total observations in c

(13)

Recall is the proportion of correct predictions out of the total number of predictions made for a class 𝑐 by model𝑚.

𝑅(𝑚,𝑐) = No. of correct predictions of c
Total no. of c

(14)
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Accuracy is the percentage of correct predictions out of a total number of predictions made by any model𝑚.

𝐴(𝑚) = No. of correct predictions
Total no. of observations

× 100 (15)

F1-Score is the harmonic mean of precision and recall and can be mathematically written for a class 𝑐 and model𝑚.

𝐹1(𝑚) = 2 × 𝑃 (𝑚,𝑐) × 𝑅(𝑚,𝑐)
𝑃 (𝑚,𝑐) + 𝑅(𝑚,𝑐 (16)

The higher the score for the discriminating power, the better the classification model will be.
In this, Section 4.4.1, the discriminating power of various models is compared based on different datasets, as presented

in Table 8. Although these comparisons are drawn from diverse datasets, they are instrumental in demonstrating
the robustness and adaptability of the models across varying contexts and data characteristics. This approach allows
us to identify which models maintain high performance regardless of dataset variability, offering insights into their
generalization capabilities. Furthermore, this comparison helps in highlighting specific strengths and weaknesses of
each model, facilitating a more informed choice of model based on the dataset’s nature and the requirements of the
classification task. By evaluating models across different datasets, we can better understand the potential impacts of
dataset-specific factors on model performance and thus refine model selection and tuning strategies for optimal results
in real-world applications.

4.4.2 Interpretability. Interpretability is an essential evaluation criterion for malware detection models, because it
allows for understanding how and why a model is making its decisions. Interpretability is necessary in the context of
malware detection, because it identifies specific features or characteristics that the model uses to make its decisions.
This information can be used to improve the model by focusing on the most relevant features and to gain insight into the
behaviour of the malware itself. Additionally, interpretability can increase trust in the model and its decisions, as users
can understand how it arrived at its predictions. This is particularly important in scenarios where the consequences
of misclassification can be severe. Overall, interpretability is an essential aspect of designing explainable malware
detection models and researchers are using the following metrics to evaluate it:

Interpretability result (IR) is proposed by Wu et al. [133] to evaluate a model generated explanations regarding
any malicious file. The model proposed by Wu et al. [133] generates textual information regarding the file. In addition,
their ground truth data about being malicious is also an unstructured text. The key word or set of words extracted from
both textual explanations are known as ‘concept’. This way, we have two sets of ‘concepts’ (e.g., 𝐶𝐺𝑇 and 𝐶𝑀𝐺 ):

𝐶𝐺𝑇 = {𝑤 | 𝑤 ∈ Word(s) in ground truth explainability}

𝐶𝑀𝐺 = {𝑤 | 𝑤 ∈ Word(s) in model generated explainability}

So, the numbers of elements in the following subsets are

𝑁𝑑 =

���𝐶𝑀𝐺

⋂
𝐶𝐺𝑇

��� , 𝑁𝑠 = |𝐶𝑀𝐺 −𝐶𝐺𝑇 | , 𝑁𝑡 =

���𝐶𝑀𝐺

⋃
𝐶𝐺𝑇

��� ,
where 𝑁𝑑 denotes the number of concepts correctly verified with ground truth from model-generated explainability.
𝑁𝑠 represents the number of those concepts identified by the model, but not in ground truth. Last, 𝑁𝑡 is the number of
total concepts in both sets. The above numbers help to determine the following metrics:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑑

𝑁𝑑 + 𝑁𝑠
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑁𝑑

𝑁𝑡
, 𝑖𝑟 =

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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where 0 ≤ 𝑖𝑟 ≤ 1. If 𝑁𝑑 increases, 𝑖𝑟 tends to 1. However, for higher 𝑁𝑠 values, the value of 𝑖𝑟 decreases. As a corollary,
for high explainability, 𝑖𝑟 should have a value close to 1.

Fidelity is a more generic and global metric to evaluate the explanations of any XAI model. Fidelity is not only for
unstructured textual data, but also for image-, graph-, and feature-based explainability, as studies [36, 40, 62, 67] have
used these metrics to evaluate the performance of their models.

Assume we have two sets of explanations, namely model-generated and ground truth:

𝑆𝐺𝑇𝑖 =

{
𝑓𝑖 𝑗 | 𝑓𝑖 𝑗 ∈ value of 𝑗𝑡ℎ feature in ground truth explainability for 𝑖𝑡ℎ instance

}
𝑆𝑀𝐺
𝑖 =

{
𝑓𝑖 𝑗 | 𝑓𝑖 𝑗 ∈ value of 𝑗𝑡ℎ feature in model generated explainability for 𝑖𝑡ℎ instance

}
where 𝑆𝐺𝑇

𝑖
and 𝑆𝑀𝐺

𝑖
are sets of features from ground-truth and model-generated data, respectively. Moreover, 𝑓 can

represent any kind of feature that is used to perform the classification or detection of malware, e.g., pixel of malicious
file’s image, static or dynamic features of PE, etc. A viable approach to determine the fidelity of black-box models is by
utilizing Mean Absolute Percentage Error (MAPE). Using MAPE, the fidelity of the model𝑚 is

𝐹 (𝑚) = 1 −

1
𝑁

𝑁∑︁
𝑖=0

𝑀∑︁
𝑗=0

��𝑆𝐺𝑇
𝑖

(𝑓𝑖 𝑗 ) − 𝑆𝑀𝐺
𝑖

(𝑓𝑖 𝑗 )
����𝑆𝐺𝑇

𝑖
(𝑓𝑖 𝑗 )

��  , (17)

where 𝑁 and𝑀 are the total number of instances and features in the testing data, respectively.
A model with higher fidelity is good and demonstrates how well the model is able to mimic the ground truth

explanation.
Robustness shows how much the XAI model can generate diverse explanations for different predictions and data.

Therefore, the robustness of the model does not depend on ground truth.
First, we need to define the similarity between two different explanations generated for two different data points by

model𝑚,

𝑠𝑖𝑚(𝑒𝑐𝑥
𝑖
(𝑚), 𝑒𝑐𝑥

𝑗
(𝑚)) =



∑𝑀
𝑘=0

���𝑒𝑐𝑥𝑖 (𝑓𝑘 ) − 𝑒𝑐𝑥𝑗 (𝑓𝑘 )
��� 𝑖 𝑓 𝑓𝑘 ∈ 𝑒𝑐𝑥

𝑖
(𝑚) ∩ 𝑒𝑐𝑥

𝑗
(𝑚)

∑𝑀
𝑘=0

��𝑒𝑐𝑥
𝑖
(𝑓𝑘 )

�� 𝑖 𝑓 𝑓𝑖𝑘 ∉ 𝑒
𝑐𝑥
𝑖
(𝑚) ∩ 𝑒𝑐𝑥

𝑗
(𝑚)

(18)

where 𝑒𝑐𝑥
𝑖
(𝑚) denotes the explanation generated by model𝑚 for an instance 𝑖 from class 𝑐𝑥 and 𝑐𝑥 ∈ 𝐶 . 𝐶 is a set of all

the classes. 𝑓𝑘 is the 𝑘𝑡ℎ feature of the explanation and the total number of features is denoted by𝑀 .
For two different classes 𝑐𝑥 and 𝑐𝑦 from which samples to calculate similarity are selected, if we repeat the experiment

𝜂 (𝑐𝑥 ) and 𝜂 (𝑐𝑦) times, respectively, then the robustness of model𝑚 is calculated as:

𝑅(𝑚) =
∑
𝜂 (𝑐𝑥 ) 𝑠𝑖𝑚(𝑒𝑐𝑥

𝑖
(𝑚), 𝑒𝑐𝑥

𝑗
(𝑚))/𝜂 (𝑐𝑥 )∑

𝜂 (𝑐𝑦 ) 𝑠𝑖𝑚(𝑒𝑐𝑦
𝑖

(𝑚), 𝑒𝑐𝑦
𝑗
(𝑚))/𝜂 (𝑐𝑦)

(19)

Robustness represents a ratio between the similarities of different classes. Thus, a robust model𝑚 should generate a
high value for two different malware families or for benign and malicious files.

Expressiveness describes the expressive power of any explanation generated by model𝑚 from a human perspec-
tive [62]. High class distinctiveness, i.e., robustness and correctness of an explanation, i.e., fidelity, lead us to understand
an explanation better. Thus, the expressiveness of model𝑚 is formulated as a factor of both robustness and fidelity [62]:
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𝐸 (𝑚) = 𝐹 (𝑚)/𝑅(𝑚) (20)

Sparsity refers to the ratio between the size of the feature set used to provide an explanation by a model and the
size of the ground truth explanation set. It can be computed for a model𝑚 as:

𝑆 (𝑚) = 1
𝑁

𝑁∑︁
𝑖=0

(
1 −

��𝑆𝑀𝐺
𝑖

����𝑆𝐺𝑇
𝑖

��
)
, (21)

where 𝑁 is the size of testing data and |.| presents the cardinality of any set. Sparsity has its significance when we
evaluate a model with fidelity. A good model should have high sparsity without compromising its fidelity.

Completeness quantifies how much of the decision-making process the explanation covers. For model𝑚, it can be
measured as the proportion of decision factors explained:

𝐶 (𝑚) = Number of factors explained
Total decision factors

, (22)

where a higher 𝐶 (𝑚) indicates more comprehensive explanations. A high level of completeness ensures that users
gain a comprehensive understanding of how and why decisions are made, fostering greater trust and reliability in the
system.

Consistency assesses whether similar inputs lead to similar explanations in model𝑚. It can be defined as:

𝐾 (𝑚) = 1 − Var(𝑒 (𝑥))
Var(𝑥) , (23)

where 𝑒 (𝑥) is the explanation for input 𝑥 , and Var represents variability. Higher 𝐾 (𝑚) implies greater consistency and
high consistency ensures that the model’s logic is stable and predictable, which is particularly important in high-stakes
environments like malware detection.

Efficiency evaluates the computational cost of generating explanations. For model𝑚, it is given by:

𝐸 (𝑚) = 1
Time to generate explanations + Resource usage

, (24)

aiming for higher 𝐸 (𝑚) to ensure practical usability in real-time systems. A highly efficientmodel minimizes the overhead
of generating explanations, ensuring that the system remains practical even in resource-constrained environments.

5 DISCUSSION AND ANALYSIS

5.1 Performance analysis

5.1.1 Discriminating power analysis. The performance of the models varies significantly across different studies (Table
4). For example, the model in study [139] had an accuracy of 0.9855, a precision of 0.9793, a recall of 0.9827, and an
F1-score of 0.9804. In contrast, the model in study [19] (using the MalConv algorithm) had an accuracy of 0.871 and an
F1-score of 0.873. Similarly, the study [133] demonstrated the improvement in performance with increasing complexity
in the algorithms used (Drebin, MLP, and XMal), with an accuracy of 0.9524, 0.965, and 0.9835, respectively. Furthermore,
study x4 showed the impact of using different architectures such as CNN, LSTM, Transformer (pre-trained), Transformer,
and RF on the performance, where the Transformer architecture had the lowest performance with an accuracy of
0.486. It is important to note that the results presented in this table should be interpreted cautiously, as they are highly
dependent on the specific dataset and experimental setup used in each study.
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Table 4. Combined Performance and Interpretability Assessment. Abbreviations used: Acc - Accuracy, P - Precision, R - Recall, FS -
F1-Score. A mark ’x’ denotes studies not using any metrics to evaluate their XAI methods.

Study Malicious Benign Algorithm Acc P R FS Interpretability Assessment

[139] 31,805 10,000 MLP 98.55 97.93 98.27 98.04 x

[19] 700 MalConv 87.10 87.30 x

[19] 700 EMBER Mal 92.20 x

[133] 15,570 20,120 Drebin 95.24 95.94 94.9 95.42 Interpretability result

[133] 15,570 20,120 MLP 96.50 96.38 97.13 96.75 x

[133] 15,570 20,120 XMal 98.35 98.48 98.28 98.37 x

[97] CNN 92.10 x

[97] LSTM 92.30 x

[97] Transformer 94.70 x

[97] Transformer 48.60 x

[97] RF 32.20 x

[44] 7386 1060 CNN 97.00 x

[43] CNN 94.40 94.70 94.30 94.50 Empirical testing

[30] 3250 133743 SIR-GN 89.60 92.70 Empirical testing

[51] 60048 214580 Conv-LSTM- 89.21 93.87 51.43 67.91 x

[52] 5560 CNN 98.00 98.00 98.00 97.00 x

[62] GoogleNet In 99.87 99.80 99.14 99.50 Fidelity, Robustness, Expressiveness

[83] 5615 121329 SVM 99.00 x

[96] ANN 94.00 85.00 96.00 Empirical testing

[94] RNN 98.90 Empirical testing

[7] XGBoost 95.00 x

[7] XGBoost 98.00 x

[40] GNN 77.55 Fidelity, Sparsity

[67] BERT 99.40 Fidelity, Robustness

[5] RF 98.60 x

[12] XGBoost 98.18 97.79 98.57 98.18 x

[11] Drebin 95.90 x

[59] IFFNN 97.70 97.50 97.90 Empirical testing

[85] 17,240 CNN 0.9290 0.9371 0.9494 0.9432 Completeness, Sparsity, Stability/Consistency, Efficiency

[126] 50,000 50,000 LR 0.7566 0.8965 0.5802 0.7045 x

[126] 50,000 50,000 DT 0.9720 0.9670 0.9772 0.9721 x

[126] 50,000 50,000 KNN 0.7671 0.7132 0.8933 0.793 x

[99] 9,339 CNN 0.9944 0.9944 0.9944 0.9944 x

[121] 48,372 CNN 0.8700 0.8600 0.8800 0.8700 x

[6] 29,298 XGB 0.9985 0.9985 0.9985 0.9985 x

[119] Hybrid CNN-BiGRU 0.9798 0.9775 0.9776 0.9775 x

[32] GradCam 0.9600 0.9500 0.9540 0.9704 x

[9] TabLSTMNet 0.9763 0.9789 0.9776 0.9800 x

[107] GCNN, GAGE 0.9000 0.8500 0.8700 0.8700 Robustness

Upon reviewing the interpretability assessment alongside the discriminative power, we find that there is no consistent
correlation between explainability and discriminative power. For example, studies [43, 133] exhibit high discriminative
power coupled with substantial explainability, whereas study[40] demonstrates very low discriminative power.

5.1.2 Interpretability assessment. The interpretability of the models is an essential aspect of evaluating explainable
malware detection models. In the literature review, most of the studies have used manual evaluation methods to assess
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the interpretability of the models. However, there needs to be more standardization and consistency in evaluating
interpretability. For example, some studies may focus on the transparency of the model’s decision-making process. In
contrast, others may concentrate on the interpretability of the features or representations learned by the model.

Despite the lack of standardization in the interpretability evaluation, it is clear that the interpretability of the models
is important for ensure that the discrimination results are meaningful and actionable. For example, suppose a model can
correctly identify malware, but cannot provide insight into why it made that decision. In that case, it may be difficult for
security analysts to use that information to take action. This highlights the importance of developing interpretability
evaluation methods that are both standardized and meaningful.

Interpretability is an essential aspect of explainable malware detection. It should be evaluated using numeric values
to ensure consistency and standardization. However, most studies reviewed in this article use manual evaluation, which
may lead to subjectivity. Balancing performance and interpretability, while designing and evaluating malware detection
models, is important (Table 4).

5.2 Specificity to malware analysis

Existing XAI methods, such as LIME and SHAP, are only partially suitable for interpretable malware analysis, due to
their limitations in handling high-dimensional and complex data, such as the binary code of a malware sample [36].
These methods are designed to explain the predictions of a model on individual instances. They may need help to
comprehensively understand the entire malware detection process. Additionally, these methods are not explicitly
designed to handle the unique characteristics of malware, such as evasive tactics and polymorphism, which can make
them less effective in explaining the behaviour of a malware sample [111]. Furthermore, the use of such methods for
malware analysis has been limited in the literature, and their effectiveness in this domain needs to be thoroughly
evaluated. For example, in a study by Guo et al. [36], the authors applied LIME to explain the predictions of a malware
detection model and found that the explanations were only sometimes relevant or sufficient to understand the model’s
decision.

In conclusion, while existing XAI methods may provide some level of interpretability, they may not be appropriate
for interpretable malware analysis, due to their following limitations:

• Lack of proper evaluationmetrics: The field of interpretablemalware analysis is still in its infancy and appropriate
evaluation metrics must be used to measure the interpretability of the models. The lack of such metrics leads to
subjectivity in assessing interpretability and makes it difficult to compare different models. For instance, in
our survey, many studies claim to provide explainability, yet they have not evaluated their models against XAI
metrics. In Table 4, the majority of the studies, denoted by ’x,’ do not utilize any evaluation metrics.

• The complexity of malware: Malware, by its very nature, is designed to evade detection and can use various
techniques to achieve this. This makes it difficult to understand the underlying behaviour of malware and thus
challenging to generate interpretable explanations of the models’ predictions. For example, studies [30, 40]
exemplify the challenges in generating interpretable model explanations. Study [30] uses CFG generation
to analyze how malware’s dynamic alteration of execution paths complicates detection and interpretation.
Similarly, study [40] examines CFGwith node features, demonstrating howmalware uses obfuscation techniques
to evade detection, further hindering clear interpretation. Both studies illustrate the difficulty in maintaining
accuracy in models’ explanations due to the sophisticated evasion strategies employed by malware, highlighting
a significant gap that necessitates further research in robust, adaptive malware analysis techniques.
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• Adversarial attacks: XAI models are vulnerable to adversarial attacks, which can manipulate the models’
predictions and the generated explanations. This makes it difficult to trust the interpretability of the models,
especially in the context of malware detection, where adversaries may have a vested interest in evading detection.
For instance, the studies listed in Table 3 that utilize image-based explainability methods demonstrate increased
vulnerability to such attacks [148]. These adversarial strategies can subtly alter image inputs in ways that are
imperceptible to human observers but lead to incorrect model outputs, thus misleading the explanation process
and undermining trust in the system’s decisions.

5.3 Method of communication

In Section 4.2, the method of communication is typically divided into two main categories: local and global explanations.
To further refine these categories, we can also categorize them based on the level of abstraction, which determines the
comprehensibility level of the explanation to people [71]. However, there is a trade-off between the level of abstraction
and the fidelity and faithfulness of the method. Methods with higher abstraction levels are more understandable to
humans, but may not accurately reflect the model’s behavior.

For local explanations, feature explanation is the lowest level of abstraction, while natural language explanations
are the highest level. Feature explanation involves highlighting the input features that have led to a particular output,
while natural language explanations use sentences to describe predictions using more abstract concepts. For global
explanations, vocabulary explanation is the lowest level of abstraction, while rule explanations are the highest level.
Vocabulary explanation explains the entire model in terms of each word in the vocabulary, while rule explanation
extracts general rules to explain the model’s behavior, although this can be challenging due to the complexity of the
rule extraction process.

Choosing the appropriate method of communication for XAI explanations is an ongoing challenge and depends on
the specific application and target audience. The most popular methods of communication include, but are not limited
to, input features, adversarial examples, influential examples, counterfactuals, natural language, vocabulary, ensemble,
linguistic information, and rules [71].

DL-based models for malware analysis should be explainable in terms of features used in manual or traditional
methods (see Table 2) so that security administrators and reverse engineers may better comprehend the model’s behavior
and thought process. Malware identification has previously been made and explained using various techniques, such as
feature extraction, API call analysis, subgraph extraction from CFGs, etc. However, some of the explanations do not
directly help the stakeholders, who need to understand the proposed method of explanation generation from scratch,
which again leads to a blackboxing.

In this article, we propose different levels of explanations categories based on features used in explanation and their
relation with manual analysis. They are as follows:

Level 0: This level involves visualizations, some tree construction, or rule generations, which are neither based on
static nor dynamic features mentioned in Table 2. This level does not directly explain something to the stakeholders.
However, after learning some background about the proposed method, they may learn the pattern and use it in analyses.
For example, heatmaps may not directly mean anything to reverse engineers or security administrators, but can provide
an overview of the model’s behaviour. Suitable for initial assessments by data analysts and entry-level security personnel,
these visualizations can help identify patterns or anomalies that merit further investigation.

Level 1: At this level, static indicators provide security administrators with informationabout whether a file is
suspicious or not. Key feature extraction based on LIME or SHAP is in this category. Although this level of explanation
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Table 5. Level of studies in the literature
Co

m
.L
ev
el

Study Method Used Justification

Le
ve
l0

[19, 99] Heat maps Analysing gradient, weights of layers, and/or pixels which are not
directly explainable to stakeholders

[32, 36, 44] Grayscale image, influencial bytes Image generation, heatmap generation, cumulative heatmap, learn-
ing evaluation but not applicable to code

[43] Smali code to images Most influencing pixels heatmap

[62] NA Pixel-level explanation

[63, 115] Features of attack traffic, boolean rule in
disjunctive normal form or conjunctive
normal form

Feature-based explanation

Le
ve
l1

[139] Static features (N-grams) Rule-based tree generation

[85, 133] Opcode N-grams Static key features

[52] Opcode sequences to image Most contributing opcode sequence

[84] Static features analysis Threshold-based rules constructed from features

[5–7, 9, 11, 12, 51, 67, 83, 119, 126] Static features Feature-based explanation

Le
ve
l2

[97] Network traffic Determine the sequence of the most important network events IOC

[38, 121] Most influencing system calls, APIs Dynamic features analysis

[30] CFG generation Subgraph identification, relate a subgraph to the TTP

[96] System calls, system libraries, and kernel Most influencing system call to the tag classification

[56] IOC Extracts features based on their behavior, IOC detection

[94] Register utilization in each cycle Highlight register uses in cycles

[59] Static and dynamic features Uses opcode frequency and features analysis

Le
ve
l3

[138] Bytes to image Most influencing instructions

[40] CFG with node features Subgraph identification

[107] CEG Subgraph of malicious functions and their caller-callee

provides a clue solely at a superficial level, it could be helpful for further dynamic analysis. Additionally, these
explanations can guide the configuration of security tools to better detect similar threats in the future and assist in
the initial stages of incident response by outlining the primary characteristics of the potential malware. This level of
explanation is instrumental for security administrators and malware analysts who need to rapidly assess the potential
threat of a file and preparing the groundwork for more detailed forensic analysis.

Level 2: At this stage, dynamic features determine whether a file is malicious. Network connections, file system
activity, API calls, and CFGs are some features that can be retrieved from file behaviour. An explanation based on these
could provide substantial understanding to the stakeholders. Therefore, it is on a higher level of communication. This
level is crucial for network administrators and cybersecurity incident responders who require a deeper understanding
of an active or potential threat’s behavior within a network environment. The explanations provided here support
proactive threat hunting and incident response strategies.

Level 3: Reverse engineering-related features such as subgraph extraction and code analysis are included at this
level. These aspects-based interpretations may help explain the malware’s operation and means of evading detection
more in depth. This is the highest level of explanation because following this, reverse engineers immediately draw
their conclusions and investigate the degree and nature of the danger that might arise from the user only making
minor efforts. This level is tailored for expert stakeholders like forensic analysts and advanced security researchers.
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These professionals benefit from a granular understanding of malware operations and evasion tactics, facilitating a
comprehensive threat analysis.

The proposed study suggests a categorization based on four levels of explanation for evaluating models for malware
analysis. From Level 0 to Level 3, these levels are arranged in ascending order of interpretation quality. According to
their degree of interpretability, we used this framework to group the research we included in our survey (see Table 5)
into different categories.

5.4 Time Efficiency

Generally, explainability adds additional computational cost on top of the underlying deep neural network training.
Although most systems today are equipped with GPU, we need to improve the time efficiency of the XAI model.
Overlapping the training and the explanation part is a way to enhance the system’s efficiency and performance. In
other words, explanations are extracted at the same time that the model is being trained.

Intrinsic interpretability is a way to integrate interpretability into the models to increase efficiency. One approach
is to add a new layer with interpretable constraints to improve the comprehensibility of the classification models
globally [72]. Another way is to use an attention weight matrix to specify which parts of the input are attended by the
model.

For method of communication discussed in the previous section, generally, higher levels of abstraction in explanations
(Levels 2 and 3) involve more complex computations and hence are less time-efficient compared to Levels 0 and 1.
However, these higher levels provide richer insights that can be critical for advanced forensic analysis and detailed
system audits. Therefore, while they require more computational resources, their potential for providing deep insights
justifies the additional time cost.

Table 6. Time complexity analysis of different algorithms for training and testing phases

Algorithm Time Complexity Brief Analysis Phase Studies

Grad-CAM 𝑂 (𝑛2 · 𝑑) Grad-CAM involves a forward pass, gradient calculation, and matrix multiplications, primarily
affecting the computational cost with respect to the sequence length𝑛 and feature dimension𝑑 . The
operations scale quadratically with the sequence length and linearly with the feature dimension.

Testing [32, 43, 44]

SHAP 𝑂 (𝑛 · 2𝑛 ) SHAP calculates the Shapley values for feature importance, with an exponential complexity for
exact calculations due to the combinatorial nature of subsets.

Testing [5–7, 9, 12,
67, 119, 121,
126]

LIME 𝑂 (𝑁 · 𝑝 + 𝑛2 · 𝑁 ) LIME generates local explanations by perturbing the input and fitting a simple model to these
perturbations. Here, 𝑁 is the number of perturbed samples, 𝑝 is the prediction time, and 𝑛 is the
number of features in the local model. The complexity is linear in the number of samples and
quadratic in the number of features.

Testing [9, 51, 52,
67, 99]

Attention-
ANN

𝑂 (𝑛2 · 𝑑) Attention mechanisms, as used in transformers, compute relevance scores and apply them to input
sequences. The dominant cost is in computing the dot-product attention for sequences of length 𝑛
and feature dimension 𝑑 , scaling quadratically with the sequence length.

Training
and Testing

[11, 59, 94,
133, 138]

DT 𝑂 (𝑛 ·𝑚 · log(𝑚)) Constructing a DT involves splitting data based on feature values to minimize impurity. Here, 𝑛
is the number of features, and𝑚 is the number of samples. The complexity reflects the effort to
evaluate splits at each node, with a logarithmic factor for tree depth in balanced cases.

Training [115]

DT 𝑂 (𝑑) Once the tree is constructed, making predictions and generating explanations involves traversing
the tree from the root to a leaf, where 𝑑 is the depth of the tree. This is generally fast and efficient.

Testing [115]

GAGE 𝑂 (𝐺 × 𝑃 × 𝐸) GAGE iteratively refines subgraphs using a genetic algorithm.𝐺 represents the number of genera-
tions, 𝑃 is the population size per generation, and 𝐸 is the fitness evaluation time for subgraphs,
influenced by the number of nodes and edges. The process is computationally intensive due to the
iterative nature and the complexity of graph operations.

Training [107]

Time efficiency is a crucial assessment criterion often overlooked in many studies. In our survey, only four studies
considered this aspect. Alani et al. [5] reported a testing phase time of 0.7631 microseconds (𝜇𝑠) to extract features for
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explainability using SHAP. Aslam et al. [12] achieved a time of 0.0424 seconds to extract URL features using XGBoost.
However, they achieved a significantly lower time of 0.0078 seconds using DT. Despite the longer extraction time,
XGBoost demonstrated better discriminative power than DT. Alani et al. [6] used SHAP and reported a training time of
0.518116 seconds and a testing time of 0.569026 microseconds (𝜇𝑠). Li et al. [59] claimed their method could analyze
15,239 samples per second. These results underscore the importance of including time efficiency in the evaluation of
explainable models, as it directly impacts their practicality and scalability in real-world applications. Furthermore, we
analyzed their time complexity in Table 6, providing a comprehensive comparison of the computational costs associated
with different algorithms.

5.5 Adversarial attack as limitation

There is no doubt that DL speeds up the malware analysis process. In addition, XAI provides a way to verify the detection
or classification performed by black box DL models. However, both DL and XAI have limitations and sometimes even
interpretability and explainability make it easy for attackers to evade security. Many studies [27, 118, 148] explained how
XAI can be manipulated and have proposed a model to uncover the vulnerabilities in XAI models. For example, Zhang
et. al [148] demonstrated that interpretable DL systems (IDLSes) are vulnerable to adversarial manipulations, allowing
adversaries to arbitrarily designate an input’s prediction and interpretation, and suggested potential countermeasures.
The paper [27] demonstrated how explanations can be manipulated by applying visually imperceptible perturbations to
inputs and proposed mechanisms to enhance the robustness of explanations. Similarly, Slack et. al [118] showed how
post hoc explanation techniques, such as LIME and SHAP, can be manipulated by adversarial entities using a novel
scaffolding technique, allowing biased classifiers to remain biased, while generating innocuous explanations. Therefore,
when dealing with DL and XAI-based models designed for malware analysis, it becomes additionally critical to address
the security of AI.

The adversarial attack is still an open issue for the DL-based model, which could make a malware detection system
fragile. An adversary could also use explainability to exploit the malware detection model. Thus, in this section, we
review two types of papers: 1) studies that discussed the fragility of a DL model for malware detection and 2) studies
that used explainability to evade the detection mechanism.

Mathematically, the minimum perturbation added to the 𝑥 ′ feature used for classification can affect the classification’s
direction and result in a misclassification.

𝑚𝑖𝑛 ∥𝛿𝑥 ∥

𝑠 .𝑡 . 𝑥
′
= 𝑥 + 𝛿𝑥 , 𝑓 (𝑥 ′) ≠ 𝑓 (𝑥) ,

(25)

where 𝑥 is any instance of the dataset, 𝑓 (.) is the classification model, and 𝛿𝑥 is the perturbation.

5.5.1 Adversarial attacks against DL. DLmodels can be exploited using various types of data. For instance, in [42, 58, 111],
researchers proposed models to manipulate the static and dynamic features of the PE and evade detection. Laskov et
al. [58] utilized PE features and automated the process to search the space where they can inject malicious features. In
our survey, the majority of studies focus on feature-based explainability; for instance, studies [5, 7, 51, 52, 67] utilize
this approach. These models are particularly vulnerable to the types of adversarial attacks discussed earlier, where
malicious features are inserted to evade detection.

Other studies [42, 111] proposed models based on API calls and dynamic features analysis. Furthermore, some
researchers also used dynamic features as sequential data, e.g., sequence of API calls. It is challenging to create
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adversarial samples by modifying such data, because one wrong API addition may crash the software. However, some
the authors proposed a model to automatically find the space where they can insert benign API calls and mislead the
classifier. In the articles [41, 103, 104], authors proposed a model to automatically insert API calls and other printable
strings that do not affect the functionality of the executable. The model proposed by Han et al. [38] employs system
calls as input, a form of sequential data, making it prone to specific adversarial tactics. Such tactics take advantage of
the sequential arrangement by inserting seemingly innocuous API calls in a strategic manner. These inserted calls are
designed to deceive classifiers effectively while maintaining the functionality of the software, thereby avoiding system
crashes.

The CFG is also a major component to detect a malicious process because it is hard to be distort. However, Abusnaina
et al. [1] performed adversarial analysis to generate a subgraph and modify the CFG to evade the system. In addition,
some researchers have proposed binary-level modifications. For example, in [26, 98], the authors extract benign
prototypes during the training of the neural network and add them to the malicious file. Studies employing CFG, such as
those by researchers in [40] and [30], are vulnerable to the adversarial techniques discussed. These techniques involve
the generation of subgraphs that subtly alter the CFG to evade detection systems.

5.5.2 Adversarial attacks against XAI. XAI is used to enhance the transparency of DL models and involves humans to
verify their classification. However, some attacks have been devised to exploit these models, such as [54, 102]. Rosenberg
et al. [102] discussed how XAI could be used to generate adversarial examples for malware classifiers. The paper
presented a new approach for generating adversarial examples that focused on modifying specific features of the input,
rather than adding new features. The authors first used XAI techniques to identify the most important features of a
given malware sample and then conducted a specific modification, feature-by-feature. This approach allowed them to
generate adversarial examples that were the most likely to evade detection, while still preserving the functionality of
the malware. The paper [102] also introduced the concept of transferability of explainability, which means that the
same XAI techniques can be applied to different classifiers and datasets and still result in a similar subset of important
features. Overall, this method highlighted how XAI techniques can be used to generate more effective adversarial
examples for malware classifiers and how adversaries can leverage these techniques to bypass multi-feature types of
malware classifiers. It also raised important questions about the trade-offs between interpretability and robustness in
traditional ML models.

In another work, Kuppa et al. [54] proposed a method for exploiting XAI-based models in a black box setting.
The authors proposed a taxonomy for XAI methods, covering various security properties and threat models. They
then designed a novel black box attack to analyze the consistency, correctness, and confidence security properties of
gradient-based XAI methods. The key idea behind this attack was to use the information provided by the XAI model’s
explanation report to craft adversarial examples that could fool the model without affecting its output. To conduct
the attack, the authors used a gradient-based optimization method to find adversarial examples that maximized the
difference between the explanation report and the actual classifier output. After, they evaluated the proposed approach
on three security-relevant datasets and models, and demonstrated that the method could mislead both the classifier and
explanation report. The results of the study showed that the proposed black box attack is effective in exploiting the XAI
models and it can help in designing more secure and robust XAI methods.

Over-revealing malicious features in files for the sake of explainability can lead to the types of attacks discussed
previously. For instance, the study by [56] exposes features based on their behavior in IOC detection, potentially
informing attackers. Similarly, [40] openly reveals CFG with node features that have malicious intent. Moreover,
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[96] utilizes system calls and system libraries, which inadvertently disclose the most influential system calls for tag
classification to potential attackers.

6 CONCLUSION

In this review paper, we conducted an in-depth analysis of state-of-the-art techniques in XAI for malware analysis.
Our analysis revealed several challenges in creating effective explainable models, including the difficulty in balancing
interpretability with accuracy, the absence of a standardized evaluation framework, and the complexity of explaining
intricate models.

We observed a need for a generic metric for comparing the quality of explainability, which presents a challenge
for malware analysts and reverse engineers. To address this issue, we proposed a framework for comparing the level
of explainability that provides insight into how well the model explains malicious file predictions and the depth of
knowledge contained in the explanation. Our proposed taxonomy categorized each study considered in this review,
along with their justification for falling into that particular category.

We further noted that various articles used different metrics for evaluating their explainability, with some failing to
provide sufficient justification for accuracy. We proposed a generic approach for quantifying explainability quality to
address this issue. Additionally, we evaluated and compared each study based on its discriminative power.

There are several potential future directions for XAI in malware analysis research. One important area for future
research is generating a reliable ground truth dataset that could be used for training and evaluating explainable
models. This would help improve the models’ reliability and increase their effectiveness. Another important direction is
the development of more effective techniques for improving the explainability levels of these models. Our proposed
taxonomy provides a road map for increasing the interpretability of models up to level 3. Nonetheless, there is potential
to make explanations more understandable to malware analysts and other security stakeholders. Additionally, future
work should focus on developing standard evaluation criteria for explainable models. In this article, we generalized
some of the metrics used in the literature and proposed some generic metrics. Evaluating models on these metrics is
necessary to set benchmark models for the field.

Overall, this review paper contributes to the field of XAI for malware analysis by identifying the challenges in creating
effective explainable models, proposing a framework for comparing explainability levels, and offering a taxonomy for
categorizing studies. Our proposed approach for quantifying explainability quality and evaluating each study based
on its discriminative power can guide researchers and practitioners in developing effective XAI models for malware
analysis.
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APPENDIX

A. BACKGROUND

A1. Rise of AI

With an incalculable amount of data gathered daily, it is not feasible to analyze and correlate them using only the
intervention of a human agent. To automate and systematically analyze and explore big data, researchers have started
predicting and classifying data using statistical and mathematical concepts known as traditional ML models. Traditional
ML models include, but are not limited to linear regression, logistic regression, polynomial regression, DT, RF, SVM,
and K-mean clustering. For instance, the foundational concepts of machine learning have been extensively discussed
by Carbonell et al. [21], while the practical applications of ANNs in data classification are detailed by Jain et al. [46].
Further, Wang et al. [129] provide a brief review of ML-applications across various fields such as medicine, agriculture,
and environmental science, demonstrating the versatility of ML techniques. Finally, the development and applications
of evolutionary ANNs are reviewed by Yao [142], illustrating their role in enhancing the capabilities of traditional
neural networks. However, traditional ML methods are not efficient in solving complex problems, especially when the
decision boundary is highly non-linear. Consequently, DL algorithms [8, 109], inspired by the working of the human
brain, came into the picture. The deep network architectures in the DL models can extract high-level representations of
the input data using several non-linear complex layers.

A2. Black-boxing in AI

AI has revolutionized our life by offering effective and efficient traditional ML and DL-based algorithms that mimic
what humans can think and do. Although these models can achieve human performance in a wide range of applications,
they are unable to explain their output results in a human-understandable way. They can classify inputs into different
categories, but cannot explain why a particular decision was made. Each AI-based model can provide a different level of
explainability. For example, DT are to some extent inherently explainable, because of the rules they generate during the
classification process, whereas SVM’s predictions are is too complicated to be understand among all ML models. ANN
improved the performance of every AI model, but due to their inherent robustness and complexity, they almost provide
the least amount of reliability, interpretability, and transparency [2] (check Figure 7).

A3. ‘Right to Explanation’ and XAI

‘Right to Explanation’ (RTE) was the primary motivation for explainable AI models [127]. According to this law, any
group or individual has the right to know the explanation behind every personal, legal, or commercial decision made by
any professional or legal executive [127], e.g., rejection of loan application, health insurance coverage, etc. Because any
prediction or decision automatically made using ANN has only a result without an explanation of how that result was
obtained, DL methods are in violation of the law. For example, in digital forensics, a false prediction/classification may
lead us to the wrong criminal. Therefore, a model needs to be transparent in order to be able to rely on it for automated
forensics results.

In the case of malware analysis, DL-based models can be a useful. However, adopting these models could be
problematic if the model’s decisions are not explainable to the involved stakeholders. Security administration may
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Fig. 7. Relation between performance and explainability of ML/DL models.

apply RTE because a false positive malware detection could result in unwanted system disruptions and downtime,
and a false negative could leave the system vulnerable to an attack, which may put the organization in jeopardy. By
providing explanations for the decisions made by the model, analysts can better understand the reasoning behind the
results and improve the accuracy and effectiveness of the malware analysis. Furthermore, security analysts can identify
the causes of the incidents to help them in mitigating the risk and adjusting the security policies of the organization
accordingly [72].

B. METHODOLOGY AND ARTICLE SELECTION

Fig. 8. Flow chart of the methodology chosen for article
searching and screening (Step-wise representation)

Table 7. Parameters of the survey

Parameter

Literature
databases

CiteSeerX, ACM digital library, IEEE Ex-
plore, SCOPUS, Google Scholar

Journal
databases

SpringerLink, Science Direct Journals,
Elsevier, IEEE, Archive

Types of publi-
cations

Archive, journal articles, conference pa-
pers

Inclusion/ Ex-
clusion criteria

Relevant to XAI and malware analysis

Keywords Malware analysis, XAI, Interpretation,
Explainable, Transparent models, Ad-
versarial learning, Adversarial machine
learning, Evasion attacks, Poisoning at-
tacks, Deep learning, Adversarial exam-
ples, Cyber security, Fragile XAI

We conducted a systematic review for our proposed literature survey. Researchers suggested various frameworks or
approaches for conducting literature reviews in a systematic way, such as the PRISMA model [113] (see Fig. 8).
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To perform our study we conducted a thorough search for related articles using various databases such as Google
Scholar, Scopus, and different journals’ websites. Our initial step involved filtering the records and eliminating duplicates.
We then proceeded to remove non-qualitative articles. To select the papers once the dataset was finalized we applied
eligibility criteria based on specific features such as relevance to XAI and malware analysis. Ultimately we selected 27
articles that met our criteria for evaluation in the study, as shown in Figure 8. The filtering process was based on the
relevance of articles to the topic under investigation. Table 7 highlights the parameters we used in our survey.

During the revision of the paper, we repeated the same process with the same selection criteria for papers published
from 2023 onward and the analysis. Therefore, Figure 8 does not include the second revision phase.

C. FUTURE DIRECTIONS AND EMERGING APPROACHES

This section provides an overview of these advancements and discusses their potential impact on future research and
practical applications.

Unstructured and multi-modal data integration: Unstructured data such as call graphs, CFGs, and API graphs,
using Graph-based models like GAGE [107] and CFGExplainer [40], have shown promise in capturing the complex
relationships within malware code. These models can provide more interpretable insights by analyzing malicious
executables’ code and data flow graphs. The robustness and discriminative power of these models suggest they will play
a crucial role in advancing EMD. Moreover, the integration of multi-modal data, combining information from different
sources such as network traffic, system logs, and binary analysis, offers a comprehensive view of malware behavior.
Multi-modal approaches can improve detection accuracy and provide richer explanations by leveraging diverse data
types. For instance, HYDRA [33] learns from various sources to maximize the benefits of multiple feature types to reflect
the characteristics of malware executables. Future research should focus on developing frameworks that effectively
integrate and analyze multi-modal data to enhance both the performance and interpretability of EMD.

Federated learning and privacy-preserving techniques: Recent studies have highlighted the importance of
privacy-preserving techniques in malware detection, particularly in environments like IoT devices where data sensitivity
is paramount. Federated learning, which enables model training across decentralized devices without sharing raw
data, has gained traction. For instance, D’Angelo et al. [28] demonstrated a significant advancement in this area by
integrating transfer learning and federated learning to improve regression analysis in malware detection. This approach
not only enhances privacy but also maintains high accuracy and efficiency, making it a valuable direction for future
research.

Advances in NLP: The application of NLP techniques to malware analysis is an emerging area that leverages the
power of models based on Large Language Models (LLMs). For example, this survey [143] highlights that using LLMs
such as GPT-4 to detect malware is a promising application. These models (e.g., BERT, GPT) can analyze code and
documentation to identify patterns indicative of malicious behavior. By integrating NLP with traditional malware
detection methods, researchers can improve the interpretability and accuracy of their models. Future work could
explore the synergy between NLP and other explainability techniques to enhance the transparency of malware detection
systems.

Quantum machine learning: Quantum computing holds potential for significant advancements in machine
learning, including malware detection. Quantum Machine Learning (QML) algorithms can process information at
unprecedented speeds, potentially improving the efficiency and accuracy of detection models. For instance, Giovanni
et al. [23] present a malware detection method using quantum machine learning, comparing its performance and
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explainability with CNNs. Although still in the early stages, exploring the application of QML to XAI and malware
detection could open new avenues for research and development.
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