
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Comprehensive Analysis of Explainable AI for Malware Hunting

MOHD SAQIB∗, School of Information Studies, McGill University, Canada

SAMANEH MAHDAVIFAR†, School of Information Studies, McGill University, Canada

BENJAMIN C. M. FUNG‡, School of Information Studies, McGill University, Canada

PHILIPPE CHARLAND§,Mission Critical Cyber Security Section, Defence R&D Canada, Canada

In the past decade, the number of malware variants has increased rapidly. Many researchers have proposed to detect malware using
intelligent techniques, such as Machine Learning (ML) and Deep Learning (DL), which have high accuracy and precision. These
methods, however, suffer from being opaque in the decision-making process. Therefore, we need Artificial Intelligence (AI)-based
models to be explainable, interpretable, and transparent to be reliable and trustworthy. In this survey, we reviewed articles related to
Explainable AI (XAI) and their application to the significant scope of malware detection. The article encompasses a comprehensive
examination of various XAI algorithms employed in malware analysis. Moreover, we have addressed the characteristics, challenges,
and requirements in malware analysis that cannot be accommodated by standard XAI methods. We discussed that even though
Explainable Malware Detection (EMD) models provide explainability, they make an AI-based model more vulnerable to adversarial
attacks. We also propose a framework that assigns a level of explainability to each XAI malware analysis model, based on the security
features involved in each method. In summary, the proposed project focuses on combining XAI and malware analysis to apply XAI
models for scrutinizing the opaque nature of AI systems and their applications to malware analysis.

CCS Concepts: • Security and privacy → Malware and its mitigation; • Computing methodologies → Artificial intelligence.

Additional Key Words and Phrases: Explainable AI , Malware Detection, Malware Analysis

ACM Reference Format:
Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland. 2023. A Comprehensive Analysis of Explainable AI
for Malware Hunting. In . ACM, New York, NY, USA, 39 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Today, many critical infrastructures in our society are connected to the Internet to reduce operating costs or simplify
control. These cyber-physical systems are susceptible to various vulnerabilities that could be exploited by adversaries
by injecting malware and conducting malicious activities, such as information theft and ransom collection [3].

Importance of the topic: Cybersecurity has been enhanced using AI in many remarkable ways, including malware
detection [53, 74], code similarity [24], intrusion detection [92], attack prediction [130], and digital forensics [48].
Detecting malicious or suspicious activity in time may prevent significant loss. As these tasks are crucial, the analytical
model should be accurate and transparent. When a Portable Executable (PE) file is identified as malware, it is essential

∗Mohd Saqib is responsible for survey screening, designed and completed the initial writing of this article.
†Samaneh Mahdavifar reviewed, revised and extended the study.
‡Benjamin C. M. Fung provided guidance throughout the manuscript preparation process and provided feedback at every stage of the project.
§Philippe Charland provided guidance throughout the manuscript preparation process and provided feedback at every stage of the project.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0003-2125-2162
HTTPS://ORCID.ORG/0000-0001-7040-659X
HTTPS://ORCID.ORG/0000-0001-8423-2906
HTTPS://ORCID.ORG/0000-0003-4051-9942
https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

to specify which characteristics, referred to as low-level explanations, or which types of malicious activities, referred to
as high-level explanations, contributed to this determination.

To construct a malware detection model, we need to reverse engineer PE files and analyze the resulting assembly code.
The different paradigms that have been proposed for malware analysis fall into three main categories: Static, Dynamic,
and Hybrid approaches that can be signature-based [83, 149], behavior-based [38, 66], data flow graphs [134, 135, 151],
control flow graphs (CFG) [4, 15, 25, 69], OpCode oriented [37], Grayscale image analysis [64, 125], and Executable and
Linkable Format (ELF) header analysis [14, 112], etc. However, all the studies mentioned have their shortcomings, e.g.,
signature-based models require frequent updates and behavior-oriented methods rely on predefined malicious activities.
Furthermore, except for a few, previous studies failed to be robust and against code obfuscation and the rapidly growing
malware variants [141].

The extension of the computational power of computers and the development of various DL approaches have made
the analysis of security data easier. Malware detection using DL has already been noticeably explored. For instance,
D’Angelo et al.[28] presented an integration of transfer learning and federated learning approaches to address regression
issues. The paper demonstrates a significant advancement in malware detection for IoT devices by combining privacy
preservation with high accuracy and efficiency, overcoming the limitations of existing federated learning methods.
Similarly,[131] conducted a review of malicious traffic analysis. Moreover, intrusion detection using a DL-based model
has been presented in [63], [120], and [75]. Convolutional Neural Networks (CNNs) have also been used in intrusion
detection [147]. The authors have developed a CNN architecture to detect intrusion and malicious activity on the
Web. Similarly, the study employed an extended version of CNN named Deep CNN or DCNN to classify the malware
family [137]. Another advanced version of Artificial Neural Networks (ANNs) known as Autoencoder has been used in
feature selection and other malware analysis-related tasks [145].

Different DL algorithms have also been used in other types of analysis, such as NLP-based malware detection,
including, but not limited to, Recurrent Neural Networks (RNNs), e.g., Gated recurrent units (GRUs) [140], Long Short-
Term Memory (LSTM) [47], and Bi-LSTM [17]. Although the above-mentioned state-of-the-art DL algorithms have
shown their significance in malware detection in terms of precision and accuracy, they are still opaque in explaining
the reason why a decision was made.

In 2016, the Defense Advanced Research Projects Agency (DARPA)1 came upwith a newAI concept named Explainable
AI (XAI), to reduce the black-boxing of Deep Learning (DL) models and strengthen transparency, interpretability and
explainability. With the conception of XAI, many researchers started to work on the new dimension of explainable
models in different fields, including malware detection because it helps stakeholders understand and trust the decisions
made by AI systems. Transparency in XAI ensures that these systems can be audited and validated, addressing potential
biases and errors in AI-driven decisions. This is crucial in security contexts where the reasons behind labeling software
or activities as malicious must be clear and justifiable.

We conducted a comprehensive literature survey on XAI methods for malware analysis (refer to Table 1) and
identified several areas where further research could be beneficial. Specifically, areas such as XAI model evaluation,
comparative analysis of classification methods, used datasets, and adversarial attacks as limitations, are crucial for
explaining and exposing the inadequacies of traditional XAI methods in effectively addressing EMD. Given the unique
and complex nature of malware threats, traditional methods, while useful, fall short in capturing the multi-dimensional
and evasive characteristics of malware. This limitation highlights the need for the development of new XAI approaches

1https://www.darpa.mil/program/explainable-artificial-intelligence

2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

or the adaptation of existing ones to better handle the intricacies of malware code and behavior. Moreover, establishing
robust, objective metrics for evaluating the interpretability of malware detection models is critical to advancing the
field. Enhancing the resilience of these models against adversarial attacks is also crucial for maintaining the integrity
and reliability of malware analyses. Addressing these core challenges will not only improve model interpretability but
also ensure that such interpretations are trustworthy and practical in real-world scenarios. Moreover, the method of
communication should change according to the underlying security data, so it can convey relevant information as a
true means of representation to the end user. Various models proposed by researchers are already inspired by Natural
Language Processing (NLP) or image recognition, and although they are efficient for textual/image data, they need to
be highly customized for this type of security data.

Malware analysts need to comprehend the features and malicious behaviors behind a prediction for a particular
malware family. This way, they can later adjust the malware detection systems to be able to identify similar patterns
and anomalies as malware [13].

This article bridges the gap between XAI and malware detection by reviewing and enriching recent studies published
by top publishers. This study aims to address the following research questions: 1) How can XAI improve transparency
and trust in malware detection systems? (Section 4) 2) What are the current state-of-the-art XAI methods used in
malware analysis, and how effective are they? (Section 4.3) 3) What are the challenges and limitations of these methods,
and how can they be overcome? (Sections 5.2, 5.4, 5.5) 4) What are the potential ways of communication for malware
analysts and cybersecurity stakeholders? (Section 5.3)

This work also demonstrates the model construction of malware detection and classification using XAI. XAI ensures to
overcome the black-box nature of DL algorithms and provide transparency, enhanced interpretability, and explainability
to the deep models, along with probability calculation for each prediction. In this survey, we addressed XAI for malware
analysis and explored all the existing endeavors in this domain, with their challenges and limitations. The contributions
of this review paper are as follows:

• We conducted a review of XAI methods for malware analysis published in top journals between 2016 and 2023,
evaluating their metrics, discriminating power, and interpretability (Section 4.3, 4.4).

• We presented several possible solutions that XAI offers for the problems related to malware detection and
discuss adversarial attacks, as a limitation of some XAI models (Section 5.2, 5.4, 5.5).

• We identified a lack of generalization in evaluating XAI models for malware analysis and proposed a metric for
evaluating the explainability of XAI models at different levels of explanations (Section 5.1.2).

• We proposed a framework for evaluating the explainability of XAI models for malware analysis based on
different levels of explanations and used a taxonomy to assess how understandable the explanations are. We
also applied this taxonomy to previous studies and discuss their communication level (Section 5.3).

The structure of the article is organized as follows: Section 2 presents an all-encompassing review of the relevant
literature and contextual background. Section 3 covers malware analysis, including both traditional and automated
techniques employing traditional ML or DL approaches, along with a thorough discussion of datasets. In Section 4,
the XAI methods for malware analysis are discussed in detail. Section 5 discusses the challenges. Finally, Section 6
concludes the article, highlighting future research avenues.

3

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

2 RELATED SURVEY ARTICLES

There has been a considerable number of publications in the domain of malware analysis using DL. For instance, in [53],
the author used transfer learning to classify malware images. Similarly, [131] covered a review of malicious traffic
analysis using ML. Moreover, Sohi et al. [120] used a DL-based model for intrusion detection. Subsequently, these
authors recognized the sensitivity of the models and began to focus on their interpretability.

‘Right to Explanation’ was the primary reason behind XAI-models [127]. Afterwards, many researchers started
working on interpretability in distinctive subdomains, including malware detection. For example, in [106], the authors
interpreted the ANNmodel, and Lacave et al. [57] explained the Bayesian Neural Network (BNN). Not only DL algorithms
but traditional ML models also sometimes need to enhance the level of explainability, such as Support Vector Machine
(SVM) and logistic regression. Martens et al. [80] presented a comprehensive rule extraction-based study using SVM.
Numerous researchers also worked on a graphical drawing of the black-box DL models using heatmap [22]. The authors
in [146] provide a survey study on visual analytics techniques for ML.

To prove the significance of our research, we studied and analyzed papers on XAI for malware detection by following
the PRISMA model [113]. We selected renowned publishers and conferences (see details in Appendix, Section 7) and
Table 6 to ensure the comprehensiveness and relevance of our analysis. Table 1 presents a summary of the topics
that have been covered in the review papers. Aslan et al. [13] provide deep insights into the various approaches for
malware detection, including heuristic-based algorithms and IoT-based malware, concluding that no algorithm can detect
sophisticated and new malware. Signature and heuristic-based methods, however, outperform the others. Similarly,
Namanya et al. [87] presented a detailed review of various published works regarding obfuscation techniques. They
also reviewed multiple methods to detect malware through recently published works, including heuristics. However,
they did not include any future direction for malware detection.

Few studies are partially introducing XAI in the field of malware hunting. Gibert et al. [34] reviewed a comprehensive
analysis of malware detection, including challenges and future scope. The study provides quality content on malware
taxonomy and background on malware analysis, including static, dynamic, and hybrid methods. Although the authors
included and discussed interpretability and the adversarial attack problem in future trends, they did not review the
explainable malware model classifiers. In the same way, Majid et al. [78] mainly focused on DL techniques and elaborated
on them. However, the study neither discussed the future challenges nor explainable DL models in detail. Limited
published studies have assessed the area of cybersecurity using XAI, such as [124], and [44] presented an analysis of
cybersecurity methods using XAI.

Although some studies discuss XAI for malware analysis, they do not specifically focus on malware detection, but
rather cover other cybersecurity domains related to XAI, such as intrusion detection, spam detection, and malicious
traffic detection. For example, [123] is one of the rare review papers in which the authors discuss the interpretability,
explainability, and accountability of AI-based malware and intrusion detection models. Srivastava et al. [123] presented
a review of cybersecurity and its inherent subdomains, but not specifically on malware analysis. The authors discussed
various other topics, e.g., health care, Industrial 4.0, supply chain, e-governance, etc. They give a superficial overview of
the application of XAI for malware analysis. Similarly, in [81], the author reviewed articles on XAI for three domains:
NLP, bioinformatics, and malware classification. In [48], the authors described and reviewed the application of XAI to
build reliability in DL models for digital forensics, but not for malware analysis. For these reasons, we did not include
these studies in Table 1.

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

To the best of our knowledge, no review paper has discussed the challenges and limitations of XAI models in the
area of cybersecurity or malware detection. In [61], the authors demonstrated a comprehensive literature survey on
cyberattacks and cybersecurity in recent developments and trends, but did not examine the scope of XAI in particular.
In [55] and [16], the authors discussed the vulnerability of XAI models to adversarial attacks. These are among the few
review papers that cover three major interrelated areas: cybersecurity, XAI, and adversarial attack. However, these
studies also did not focus on malware analysis.

Singh et al. [116] partially discussed the problem of adversarial attacks and mainly reviewed articles published using
various analysis methods, but they did not discuss the explainable model.

Although many articles have attempted to organize XAI studies, only a few have been successful in doing so. For
example, studies by authors such as [35] and [2] covered a wide range of XAI topics, but they did not specifically focus
on malware analysis. While these studies provided a general overview of XAI, our work is significant in expanding the
scope of research for both paradigms. Our article highlights the shortcomings of previous works, such as the lack of
attention to adversarial attacks, and proposes new evaluation metrics. We also suggest a common evaluation method
and communication level for XAI in malware analysis, contributing to the advancement of the field.

Table 1. Summary of published review papers on related topics. ‘c’ indicates complete explanation, ‘p’ signifies partial discussion, and
‘x’ means not discussed at all in the mentioned article. ‘MAP’ stands for Malware Analysis Process.

St
ud

y

M
al
w
ar
e

Ta
xo

no
m
y

M
A
P

Fe
at
ur

e

D
is
cu

ss
io
n

B
ac
kg

ro
un

d
on

M
A
P

Analysis Type

Ex
pl
ai
na

bl
e

M
od

el

A
dv

er
sa
ri
al

A
tt
ac
k

Fu
tu
re

T
re
nd

s

/C
ha

ll
en

ge
s

Static Dynamic Hybrid Heuristic ML/DL

Arfeen et al. [10] c x c c c c c c c x x p

Aslan et al. [13] x p x c c c c c c x x x

Bhusal et al. [16] x x c p x x x x x p c x

Feizollah et al. [31] c c c c c c p x c x x x

Gibert et al. [34] c x c c c c c x c x x c

Iadarola et al. [44] p x p p p p p x c c x c

Kuppa et al. [55] x x x p x x x x x c c p

Li et al. [61] x x x c x x x x p c x p

Majid et al. [78] x x x p c c x x c x x x

Mathews et al. [81] p x x p x x x x c c x p

Namanya et al. [87] x p p c c c p c p x x x

Razgallah et al. [100] x x x c c c p p c x x x

Saeed et al. [105] c x x c p p x c c x x x

Singh et al. [116] x c x x c c x x c x x p

Souri et al. [122] p x p c c c p x c x x x

Srivastava et al. [123] c p p p x x x x c c x c

Stevens et al. [124] x x x x x x x x p c x x

Wang et al. [132] x x x p c c c x c x x x

Our Survey c c c c c c c c c c c c

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

3 MALWARE ANALYSIS AND DETECTION

In this section, we discuss various types of approaches used prior to the introduction of XAI in this domain. These
approaches encompass all types of malware analysis, ranging from basic static analysis to ML/DL-based algorithms. We
refer to only a few studies in Table 2, not all studies within these categories, as our aim is to emphasize and explore XAI
for EMD.

3.1 Traditional approaches for malware analysis

File analysis using a vetting service such as VirusTotal [10] is the first step of malware analysis. If VirusTotal does
not recognize the file, it does not necessarily mean the file is benign. Such files are subjected to further analysis using
traditional approaches, which scrutinize deeper aspects that automated tools may miss. If a file is subsequently identified
as suspicious or malicious through deeper analysis, it is then added to an internal or specialized malware database.
This includes comprehensive steps such as code analysis, where findings at each stage are thoroughly validated. The
final step in the malware analysis procedure is to authenticate and catalog a malicious file in this specialized database,
ensuring its characteristics can be quickly identified in future scans.

Fig. 1. Stages of Malware Analysis Process. This diagram details the sequential layers of malware analysis, highlighting the transition
from static properties analysis through dynamic behavior and dynamic properties analysis, to reverse engineering and code analysis.
It illustrates how each layer builds upon the previous to provide a thorough evaluation of potential malware.

The three main stages of malware analysis—static, dynamic, and hybrid—are distinguished by the quality, features
(mentioned in Table 2), and complexity of the features. ’Quality’ refers to the effectiveness of the features in accurately
identifying malware, and ’complexity’ involves the computational resources and expertise required to analyze these
features. The diagram 1 details the typical flow of malware analysis, starting from initial static analysis through to
dynamic and behavioral analysis, integrating both high-level overview and deeper, specific processes. These stages are
detailed further below.

3.1.1 Static analysis. Static analysis is one of the fundamental ways to dissect a malware sample. Malware analysts
employ a myriad of static features to analyze a known malware sample, as shown in Table 2. Since static features
are simple to manipulate and are not robust, static-based malware detection systems can easily be circumvented and
exploited by packed and obfuscated malware. Static analysis works well solely to gain an initial indication about a file.
If analysts discover unusual indications about a file, they can perform a more thorough investigation.

3.1.2 Dynamic analysis. Dynamic analysis is more reliable than static analysis, although carrying out a thorough
dynamic analysis is challenging [93]. Analysts are not only limited to classifying the files, but they can also watch their

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 2. Studies and their method for malware analysis.

Type Features Article(s) Features used

Static analysis PE headers features, Import/Export libraries or ser-
vices, Entropy, Printable-readable strings, Bytes of
images, N-grams (from static contexts)

[49, 50, 60] Op-code/Bytes n-gram analysis

Dynamic analysis CFGs, API Calls, Call graphs, Memory modifications,
Registry changes, Hardware related information, Net-
work traffic, N-grams (from dynamic contexts)

[91, 95, 108,
110, 128]

API calls, Function in DLL im-
port/export, system calls based de-
tection

Hybrid analysis A combined analysis utilizing both static and dynamic
features mentioned above

[114] Op-code n-grams and API calls
based analysis

Heuristics-based
analysis

Features based on behavioral characteristics and
heuristic rules, e.g., API or system calls

[45, 90] Diagram of system-call graph, print-
able string, etc.

ML/DL-based
analysis

Utilize either static features, dynamic features, or a
combination of both

[65, 86] Gray scale images classification us-
ing CNN

[29] API calls analysis using Bayesian
network

[39, 136, 144] Autoencoder based detection

behavior. They can extract a file’s dynamic properties (Table 2) by running it in a sandbox environment and observing
their behavior, registry changes, memory alterations, network, and Internet-related activities. Any clue discovered
during static analysis might be scrutinized throughout this procedure, because attackers eventually need to modify
a dynamic feature, which is not simple to achieve, and evading a dynamic analysis is rather difficult. On the other
hand, some files cannot be executed in a safe environment such as in a virtual machine or sandbox, and the detection
mechanism may flag files as benign if disguised in specific environments.

The disadvantage of dynamic analysis, other than being computationally expensive, is that malware might hide its
malicious behaviour while being analyzed.

3.1.3 Hybrid and code analysis. Hybrid analysis combines both static and dynamic analysis of malware. Engineers
attempt to comprehend the relationship between the behavior of the files and their features. Additionally, analysts
thoroughly examine the assembly code and function to determine how the file will affect the system or organization.

Adopting the hybrid approach is complicated, because attackers constantly create new malware variants and it is
difficult to check such a large number of files manually [34]. As a result, the following new paradigms are used to detect
malicious activity:

• Heuristics-based analysis: This type of malware analysis uses automated processes to extract rules from
training files. Although heuristics-based analysis is good at finding zero-day malware, it is prone to false-
positives. Identifying a malware sample generally involves dynamic features, such as API calls and CFGs, or
static features like strings. Heuristic-based systems are vulnerable against polymorphic, packed, and obfuscated
malwares.

7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

• ML/DL-based analysis: This type of malware analysis is a more efficient, quick, and accurate technique to
evaluate malware than traditional methods. However, ML/DL-based approaches suffer from a lack of inter-
pretability and need a sufficient amount of labeled data. These shortcomings were the main motivation behind
introducing XAI for malware analysis, which we will cover in detail in the next sections.

3.2 ML/DL algorithms for malware analysis

Fig. 2. Algorithms used for malware classification or detection Fig. 3. Malware dataset classification used in the studies taken
for the survey

3.2.1 Traditional ML. There are many different types of traditional ML models with their strengths and weaknesses.
Each ML model has a specific level of interpretability. Linear and logistic regression are among the basic classification
algorithms that are straightforward to explain, but they perform poorly when the relationships between dependent and
independent variables are non-linear.

In the article by Alzubaidi et al. [8], the authors use a rule-based approach described in the study [2] for intrusion
detection. The approach involves generalizing a linear method and uses a rule-based ensemble to construct an explainable
model. Similar to this approach, Decision Tree (DT) and Random Forest (RF) algorithms also split data based on feature
rules. For example, the ID3 algorithm2 selects features based on entropy and then classifies the data.

DT has high interpretability, but if we ensemble multiple trees for RF, it becomes more difficult for analysts to study.
Studies [5, 7, 83, 84] use RF for classification purposes. In addition to RF, XGBoost has also been used for malicious
detection [7, 12].

SVM has frequently been used for malware classification. Studies [51, 67, 83] used SVM in different ways and also
provided explainability by using it as a surrogate model. The study [83] employed two versions, i.e., Linear and RBF
SVM on the DREBIN dataset [11] for malicious Android app classification. [56] are among the rare studies that use
unsupervised learning for classification, where classification is based on Indicators of Compromise (IOC), such as
registry keys, file path, command lines, domain names, and IP addresses.

3.2.2 DL. DL-based models have been applied to a wide range of applications, due to their high classification power. A
DL model can process different types of data, such as images, time series, and graphs. Therefore, the algorithm we

2https://pypi.org/project/decision-tree-id3/

8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

use for a classification problem primarily depends on the kind of data we are processing for detection or classification.
Notably, four types of DL algorithms are predominantly employed for malware classification: Multilayer Perceptrons
(MLP), which are used for feature-based data; CNN and their customized versions, suitable for image data; RNN, ideal
for time series or assembly code analysis; and Graph Neural Networks (GNN), used when processing graph-based data.

Initially, feature-based classification applied on structured data had been frequently used, as it was easy to surrogate
for explainable models. Early studies used different versions of MLP [36, 96] that used ANN, and the features were
system calls, libraries, and kernels. The studies [38, 139] extracted features such as API systems calls from binaries
and used DNN for the classification of malicious files. Study [133] proposed a novel method for interpretable malware
detection that used MLP with attention layers to detect the most influencing features. The authors compared their
method with other state-of-the-art models at that time.

Because most of the studies represented binaries in terms of images, either colored or grey-scale, the authors
employed different versions of CNN for image-based classification. [19, 32, 99, 138] used initial versions of CNN and
the study [19] used a customized version of CNN called EMBERMalConv. Similar to [133], Bose et al. [19] added an
attention mechanism in CNN for extracting the details of weights and gradients of the layers and determining the
influencing pixels of the image. The model proposed in the study claimed to be better than the original MalConv [138].
Similarly, Lin et al. [62] used an advanced version of CNN, namely GoogLeNet Inception 3, a CNN architecture with 22
hidden layers. In addition, the study by Mitchell et al. [85] implemented a CNN using opcode data.

There are two types of data that researchers use in RNNs: 1) time series data and 2) assembly code extracted from
binaries using a dissembler. The studies [36, 51, 94, 97] used various versions of RNN. For instance, studies [51, 97]
detected malicious activities using network traffic data. Prasse et al. [97] implemented their malicious behavior
detection method by LSTM and transformers. Khan et al [51] implemented an LSTM-based autoencoder for a similar
task. Article [36] presented a state-of-the-art model named LEMNA (Local Explanation Method using Nonlinear
Approximation) for explaining cyber threat data. They processed the hex sequence of assembly code using RNN
and provide explainability using LEMNA. Furthermore, [94] employed an attention-based RNN that investigates the
utilization of registers in each cycle and depicts the gradient of the layers as an explainability of a malicious event.
Different transformers used to process assembly code are also popular among researchers. For example, in [59], the
authors used a galaxy-based transformer to process the assembly code, creating the embedding of the function, and
providing influencing functions as interpretability. Moreover, BERT (Bidirectional Encoder Representations from
Transformers) was used in the study [67].

Up to now, Herath et al. [40] is the only study that used CFG for the detection and processing through GNN. In
the same model, they also proposed a method to provide explainability through a graph (network of blocks that are
responsible for a malicious activity). Additionally, Saqib et al. [107] introduced a new graph model, the Canonical
Executable Graph (CEG), which they utilized for malware family detection. Their results, when compared with those
obtained using CFG, demonstrated superior performance.

3.3 Datasets of the studies

Data analysts primarily use four types of data for malicious activity detection and classification. Figure 3 depicts the
classification of the data types used in the studies and connects them with their specific data. The detail of each data
type is as follows:

9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

3.3.1 Binaries. Security analysts rely on binaries as essential data for their investigations, since they encompass all the
necessary information for detecting malicious activities. Binary files, identifiable by extensions such as .exe or .bin,
consist of a sequence of eight-bit bytes. Disassemblers are required to interpret this type of file and transform it into
other required data formats, such as CFGs, code, images, or features. Binary files can contain various file types, such as
executables, libraries, images, databases, and archives, among others. In the research studies examined in our proposed
review paper, the majority of the binaries used were Android (APK) files or PE files.

Android APPs or APK files An APK file is an Android package that is used to install an Android application on a
mobile device. Recent investigations have shown that many hackers use APK files to carry out malicious behavior on a
user’s mobile phone, such as draining its battery, stealing passwords, or sharing confidential material. Considering
that smartphones contain a great deal of a user’s confidential information, it is essential to analyze harmful code that
spreads through APK files. In this subsection, we review the numerous APK datasets that are publicly available and
were employed in the articles we evaluated.

Two very popular public repositories of malicious APK files are VirusShare and VirusTotal. VirusTotal can be used
for checking whether an APK is either malicious or benign by using its hashes. For instance, study [11, 121, 133, 139]
downloaded malicious APK files from VirusShare. However, for the benign samples, they used the Google Play Store
and tested all the samples over VirusTotal. Furthermore, [94] and [83] used datasets from VirusTotal.

Drebin [11], which was created for static analysis of malware running on Android, is another benchmark dataset. The
authors [11] gathered binaries from a variety of sources, including the Google Play Store and the Russian and Chinese
markets. They also obtained samples from the Android Malware Genome Project [150]. Later, they employed VirusTotal
to evaluate each sample and distinguish malware from benign samples by taking the majority votes of the results from
ten antivirus scans (AntiVir, AVG, BitDefender, ClamAV, ESET, F-Secure, Kaspersky, McAfee, Panda, and Sophos). Drebin
is a huge repository for malware analysis, which is why it has been used by many studies, e.g., [5, 11, 52, 67, 83, 133].

The study [133] explores a new repository of malware, the National Internet Emergency Center (NIEC)2. This
directory has the latest malware samples and contains various malware categories including Trojans, spyware, and
phishing. Similarly, study [7] used a dataset (CICMalDroid 2020 [73, 76]) published by the University of New Brunswick
(UNB)3. CICMalDroid 2020 is a recently released Android malware dataset consisting of more than 17,341 APK files
spanning four categories of adware, banking malware, riskware, and SMS malware. They also have a separate category
for benign binaries [73, 76]. Another study by Ambekar et al.[9] utilized two different repositories: Borah et al.[18] and
Mathur et al. [82].

PE files The MALICIA dataset is a collection of binaries that have so far exploited 502 servers [88]. The authors
of the dataset collected samples of malicious binaries from different servers and provided their metadata [121]. The
study [19] used this data for classification purposes. Another dataset is MALIMG [89], which is a collection of malware
images from 25 different families. The authors proposed a method to convert binaries into grey-scale images before
classifying them. This dataset was used by [62] and [138] to propose an interpretable malware detection model. Other
studies that have employed PE binaries have not publicized their datasets, due to non-disclosure agreements. Their
dataset consists of a mixture of Android and Windows binaries, or the samples were collected from various sources and
verified on VirusTotal.

2https://share.anva.org.cn/web/publicity/listMalware
3https://www.unb.ca/cic/datasets/index.html

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

3.3.2 Source code. Source code is also used by some studies for malware detection or classification. For example, in [94],
researchers executed 367 programs on the Xilinx Zynq7000 SoC ZC702 evaluation board. Similarly, in [43], Smali code
extracted from source code was converted into an image that was used for further analysis. This demonstrates the
potential of source code data in enhancing the accuracy and effectiveness for malware detection and classification.

3.3.3 Network traffic. Four studies in our review used network traffic data for interpretable malware detection. The
study [97] collected network traffic data from various companies and different users. The dataset consists of 9,776,911
training samples and 9,970,560 test samples, where each sample is a combination of an organization, a user, and a
five-minute interval in which at least one network event was observed. In total, 216 distinct network events occurred at
least once in the training and evaluation data—most of these events occurred frequently. On average, 2.69 network
events were observed in each five-minute interval in the training data and 2.73 events in the test data. Similarly, Sharma
et al. [115] collected network traffic data from various sources, such as MalShare and VirusShare. Another study [51]
used a real-world gas pipeline system data source in their conducted experiments, created by Mississippi State University
(MSU) [105]. This data source contains time series data with real and synthetic labeled anomaly points. The entire
dataset consists of 2,74,628 samples, out of which 2,14,580 are normal data samples, and 6,0048 are anomalous. Through
this process, normal and abnormal fragments are created. Unlike the previous two studies, article [63] used publicly
available network traffic data, known as UGR’16 [70]. This dataset is a collection of about four months of real network
traffic from a tier-3 Internet Service Provider (ISP), containing background and attack traffic. It is a well-labeled dataset
with enough ground truth attacks. For their specific analysis, the researchers selected a portion of this dataset (i.e., 115
GB) that encompasses the network flows captured within a designated time window.

3.3.4 Malicious URLs. Apart from CICMalDroid 2020 [73, 76], UNB also published other URL-based datasets, such as
ISCX-URL2016 [79]. This is a dataset containing benign, spam, phishing, defacement, and malicious URLs. The study [7]
utilized this dataset to performed interpretable malicious URL detection. Similarly, in article [12], authors used another
dataset (CIC-Bell-DNS 2021) [77] for malicious domain classification. This dataset includes discriminative DNS-based
features (e.g., subdomain length, numeric percentage, character distribution, entropy, N-grams, obfuscation method,
etc.) that are more robust than the previous studies.

4 XAI-BASED MALWARE ANALYSIS

4.1 General approach

In this section, we present a general approach to implement XAI for malware analysis. Fig. 4 depicts the overall process
of malware detection/classification using XAI. The pipeline of the process consists of four different components. 1)
Classification/Detection: In this pipeline the data is first split into two parts for the training and testing phases.
In the training phase, the data is further divided into training and validation sets. The validation set is employed to
fine-tune the classifier parameters and save the best model for the testing phase. These processes are iterated until
the specified hyper-parameter epoch is exceeded or the required evaluation criteria are met. 2) Model evaluation:
In the second phase of the analysis, it is crucial to evaluate the performance of the model using various measures
commonly used to assess a model’s classification or detection performance: precision, recall, accuracy, misclassification
score, and F-score. Precision refers to the model’s ability to accurately identify true positive samples, while recall
measures the model’s ability to identify all positive samples. Accuracy denotes the percentage of correct predictions
made by the model, while the misclassification score measures the number of incorrectly classified samples. The

11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

F-score combines precision and recall to provide a more comprehensive evaluation of the model’s performance. These
measures are essential for understanding the effectiveness of the model and identifying areas for improvement. 3)
Explainability/Interpretability: Regarding the explainability and interpretability of the classification, if a model’s
performance is deemed satisfactory during the evaluation phase, the subsequent step involves explaining or interpreting
the classification results. While various models have been developed to describe real-world data, the interpretability
of malicious data varies depending on the input. The explainability generator interprets the predictions in terms of
features, images, and graphs. Two possible ways to generate these explanations include local explanations during the
testing phase (Fig. 4) or global explanations that tune the explanation generator’s parameters during the training phase.
The subsequent section elaborates more on these distinct categories of explanations. 4) Explainability assessment:
After generating explanations, it is crucial to assess their quality. This process is typically qualitative and involves
ground truth matching, case studies, and other similar methods. Some researchers have also proposed assessment
metrics to quantify the quality of the explanations.

The rest of the article elaborates on the models proposed in the literature for each of these four pipeline components,
providing a detailed discussion of their strengths, weaknesses, and applicability in the context of malware analysis.

4.2 Categories of XAI

Based on interpretability, we can divide the XAI models into two groups:

4.2.1 Global Interpretation. Global interpretation analyzes the model as a whole, focusing on the overall structure,
parameters, and the representations it has captured [72]. This type of interpretation provides insights into how the
entire model behaves across all data points. It examines the contributions of model parameters (weights and biases) to
the predictions. Essentially, it depicts the distribution of the predicted outputs concerning the features. For instance, in
a neural network trained to classify malware, global interpretation might involve analyzing the importance of different
layers and neurons in making predictions. Techniques such as feature importance scores, where the impact of each
feature on the overall prediction is quantified, are commonly used for global interpretation. However, achieving global
interpretability becomes challenging as the number of parameters increases, especially when dealing with feature
spaces that exceed three dimensions, making them difficult to visualize and comprehend.

As an example, suppose we have a deep learning model trained to detect malware based on various static and
dynamic features. A global interpretation technique might analyze the overall importance of features such as PE
headers, API calls, and network traffic patterns. It could use feature importance scores to show that API calls contribute
more significantly to the model’s predictions than PE headers. This information helps understand the model’s general
behavior and the features it relies on most across all instances.

4.2.2 Local Interpretation. Local interpretation, in contrast to global interpretation, focuses on understanding the
model’s prediction for a single instance. This approach seeks to explain why the model made a specific prediction for a
particular input. For example, in the context of malware detection, local interpretation might highlight the specific
features of a malware sample (such as certain API calls or byte sequences) that were most influential in the model’s
decision to classify it as malicious. Techniques such as Local Interpretable Model-agnostic Explanations (LIME) [101]
and Shapley Additive Explanations (SHAP) [68] are commonly used for local interpretation. These methods generate
explanations by approximating the model locally around the instance of interest, providing insights into which features
contributed most to the prediction. For instance, LIME might perturb the input features and observe the changes in the

12

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

model’s output to identify important features, while SHAP values quantify the contribution of each feature based on
cooperative game theory.

For local interpretation, consider a specific malware sample that the model has classified as malicious. Using SHAP,
we can generate a local explanation that shows which features of this particular sample influenced the model’s decision.
For instance, the explanation might reveal that certain unusual API calls and specific byte sequences in the file were
critical in identifying it as malware. This localized insight helps security analysts understand why the model flagged
this specific sample, aiding in further investigation and validation.

Fig. 4. Illustration of an XAI model for malware analysis,
showing key performance metrics: Accuracy (Acc), Precision
(P), Recall (R), and F1-Score (FC).

Fig. 5. Explanation methods for malware classification

4.3 XAI Methods

In this section, we discuss various studies and their explainability methods. Table 3 collectively presents these methods,
noting whether they include ground truth and whether their methods have been evaluated.

4.3.1 Rule-based. Rule-based explainability has been inspired by DT. Since DT is a self-interpretable traditional ML
algorithm, it does not require further exploration. In a rule-based model, we need to formalize thresholds for features
or define some rules that are constructed in the form of trees that make them understandable for people (Figure 6a).
However, applying DT to malware analysis is not very convincing and researchers have shifted to black-box DL and
further extract certain principles to add explainability.

Researchers typically create DT from a trained neural network and record the output of hidden layers [139] by
extracting them as features. Mathematically, the features are defined as follows:

𝑐𝑖 𝑗 =
1
𝑛𝑖

𝑁 𝑗−1∑︁
𝑛=0

𝑂𝑖
ℎ 𝑗

(1)

where 𝑐𝑖 𝑗 is the 𝑖𝑡ℎ instance and column 𝑗 of the dataset 𝐷 ′, used to construct the explanation DT. In this equation,
𝑂𝑖
ℎ 𝑗

denotes the output of the 𝑗𝑡ℎ hidden layer for the 𝑖𝑡ℎ instance, 𝑛𝑖 is the total number of outputs for the 𝑖𝑡ℎ instance,

and 𝑁 𝑗 represents the total number of neurons in the 𝑗𝑡ℎ hidden layer. The final result (e.g., benign or malware) of the
13

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

black-box model is used as a label column in 𝐷 ′. After constructing the data 𝐷 ′, a DT model is trained based on the
entropy of 𝐷 ′ for column 𝑐 ,

𝐸𝑛𝑡 (𝐷 ′) = −
∑︁
𝑐𝜖𝐶

𝑝𝑐𝑙𝑜𝑔2 (𝑝𝑐) (2)

where 𝑝𝑐 is the proportion of class 𝑐 in the dataset. By splitting 𝐷 ′, information gain (IG) can be calculated

𝐼𝐺 (𝐷 ′, 𝑐 = 𝜆) = 𝐻 (𝐷 ′) − 𝐻 (𝐷 ′ |𝑐 = 𝜆) (3)

where 𝐻 (𝐷 ′ |𝑐 = 𝜆) is the entropy for a specific value/class (𝜆) of any column 𝑐 in a given sample 𝐷 ′.
In the last step, a column with maximum IG will be chosen. The explainability of the model looks as Fig 6a.

(a) Rule-based method used for malware
classification/detection

(b) Attention mechanism for explainabil-
ity

(c) Image-based explainability for two
different malware families presented
in [44]. A sample of the Mecor and Air-
push malware families are presented on
the left and right.

Fig. 6. XAI methods for EMD

Yan et al. [139] proposed a rule-based explainable model. First, they constructed a rule-based tree from the output
layer of the trained neural network and then extracted rules from the input and input layers of the same classifier.
Finally, they used values of the output layer as a bridge to join the input-rule-tree and output-rule-tree. The study [63]
used another rule-based model that was originally represented by Dash et al. [34]. In [34], authors used Boolean rules
either in the form of disjunctive (OR-of-AND) or conjunctive (AND-of-OR) normal forms. Similarly, Sharma et al. [115]
used network traffic data to extract network features and employed DT to extract rules for explaining the attack.

4.3.2 Attention mechanism. Most of the XAI malware detection studies used attention-based mechanisms to provide
explainability in the model. Attention mechanism can be applied to any type of data and provides explainability
according to the input and the model used for classification or detection. For instance, if the input data is an image,
this mechanism generates some patterns in the image that may represent a malware family or malicious event. If the
input data is a feature, it can be applied to various hidden layers of MLP to help us understand the feed-forwarding
mechanism for any set of features.

As shown in Figure 6b, 𝛼𝑖 indicates the importance of the corresponding feature, which can be calculated using the
Softmax function as,

𝛼𝑖 =
𝑒𝑥𝑝 (𝑒ℎ

𝑖
)∑𝑛

𝑗=0 𝑒𝑥𝑝 (𝑒ℎ𝑖 𝑗)
, (4)

14

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 3. Explainable methods types and explaining strategies for studies. ‘x’ presets the study not evaluated their XAI method.

M
et
ho

d

Re
f

XAI Model Explained by

G
ro
un

d
Tr
ut
h

XAI Metrics

A
tte

nt
io
n
m
ec
ha
ni
sm

-b
as
ed

[19] Analysing gradient and weights of layers Extracting influencer bytes No x

[133] Attention-based mechanism Key features Yes Interpretability result

[97] Integrated gradients method Determine the sequence of the most important net-
work events

No x

[83] Gradient-based approach Most influential local features No x

[96] Layer wise relevance and aggregate Most influencing system call to the tag classification Manual evaluation

[94] Attention in RNN Highlight register uses in cycles No x

[138] Attention-based mechanism Most influencing instructions No x

[11] Attention-based weight extraction Static key features Manual evaluation

[59] Attention-based mechanism Static features and code embedding Manual evaluation

ru
le
-b
as
ed [139] Rule-based tree generation Important features No x

[63] Boolean rule in disjunctive normal form or con-
junctive normal form

Feature based explanation Yes x

[115] DT Boolean rules for attack traffics No x

Fe
at
ur
e
ba
se
d

[36] LEMNA Most influencing bytes Yes Fidelity test

[38] N-grams extraction Most influencing system calls No x

[51] LIME Key features No x

[52] LIME Most contributing OpCode sequence No x

[56] EIGER IOC detection Manual evaluation

[7, 126] SHAP Key features No x

[67] SHAP, LIME Key features Fidelity,robustness

[5, 6, 119] SHAP Key features No x

[9, 12] SHAP, LIME Key features No x

[85] H-LIME Key Opcode features extraction No Completeness, sparsity,
consistency, efficiency

Im
ag
e
ba
se
d

[19] Analysing gradient and weights of layers Extracting influencing bytes No x

[99] LIME Heatmap No x

[44] Grad-CAM Heatmap generation, cumulative heatmap, learning
evaluation

Yes x

[32, 43] Grad-CAM Most influencing pixels, heatmap Yes Manual evaluation

[62] Ensemble Deep Taylor Decomposition (EDTD) Pixel-level explanation Fidelity, robustness

G
ra
ph

-b
as
ed [30] Relate a sub graph to the tactics, techniques,

and procedures (TTP)
Subgraph identification Yes Manual evaluation

[121] SHAP Subgraph of API call graph No x

[40] CFGExplainer Subgraph identification Sparsity, fidelity

[107] GAGE Subgraph extracted from CEG Yes Robustness

where 𝑛 is the total number of the features involved in the classification, and 𝑒ℎ
𝑖
is the output of the hidden layer ℎ,

which is

𝑒ℎ𝑖 =

𝑛−1∑︁
𝑘=0

𝑥𝑘𝑖 𝑤ℎ𝑘 , (5)

where 𝑛 is the total number of the features involved in the classification, and 𝑒ℎ
𝑖
is the output of the hidden layer,

𝑤ℎ𝑘 is a learnable weight of ℎ𝑡ℎ hidden layer and 𝑘𝑡ℎ feature. The Softmax function is crucial here as it normalizes the
15

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

output of the hidden layer, converting them into probabilities that sum to one, thereby highlighting the most influential
features for the classification process. This normalized scoring by the Softmax function emphasizes the significant
features by amplifying the highest scores and suppressing others, facilitating a clear and interpretable visualization of
feature importance in the model.

The attention mechanism is the most generic solution for the explainability of any black-box model and any form of
data type. For example, in [19], the authors conducted experiments on weights and gradients associated with different
layers of MalConv, while predicting the class of PE. This way, they extracted raw bytes, which are more influential for
the prediction, and deciphered them as part of the PE. They found that header bytes contribute more than other parts.
However, other sections of the binary also show responsibility for the class prediction.

Similar to [19], other studies used ensemble attention mechanisms in CNN, e.g., [138]. Furthermore, article [94]
proposed a model in which they integrated CNN with RNN. Some studies also embedded attention layers in MLP
and detected the key features of the classification, e.g., [133] and [59]. In [59], researchers inserted an attention layer
in FFNN (Feed Forward Neural Network) and detected the main features in the input layer. Also, they utilized this
mechanism to detect the most influencing assembly functions. Arp et al. [11] used SVM for the classification and tune
some weights to the feature.

Studies [83, 96, 97] employed gradient-based explainability. They analyzed the relevance of each feature in each layer
by calculating the gradients and providing explainability. In [97], the authors used integrated gradients and determined
the sequence of the most important network events. Similarly, in [83], Melis et al. proposed a model to identify the
most influential local features. Study [96] analyzed layer-wise relevance and aggregated the gradient to detect the most
influencing system call to the tag classification.

4.3.3 Feature-based. Similar to rule-based explainability, feature-based explainability also detects influencing features
for the prediction. However, in this type of explainability, we detect those features by formalizing their importance in
the prediction. In this section, we provide a detailed description of these models, including LIME, SHAP, and LEMNA.

LIME is a local surrogate model used for explaining each individual prediction. LIME is trained on the training
dataset and for each epoch, it tries to understand how much the output may change on which input. Mathematically,
LIME can be explained as follows:

E(𝑓𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔𝜖𝐺 𝐿(𝑓 , 𝑔, 𝜋𝑥) + Ω(𝑔), (6)

where E(𝑓𝑥) is an explanation of model 𝑓 for instance 𝑥 , and g, a linear model is fitted by LIME, and 𝑥 is the instance
for making the interpretability.𝐺 is the set of all possible explanations and we strive to keep the minimum loss function
𝐿 for the instance 𝑥 . The 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑓) is the function that checks the prediction’s closeness with 𝑔 and the actual
model or trained classifier 𝑓 for instance 𝑥 . Ω(𝑔) is the complexity of the model, which we aim to keep as small as
possible by controlling the number of parameters used for explainability. The proximity 𝜋𝑥 represents the strength of
the observation, which is closed to 𝑥 and used for explainability.

The studies [9, 12, 51, 52, 67] used LIME to identify the main features of the classification. Moreover, Mitchell et
al. [85] proposed a novel hierarchical LIME (H-LIME) approach, applied at the levels of classes and methods, resulting
in a sparser explanation.

SHAP Similar to LIME, SHAP is a local interpretable model. In this approach, we calculate the contribution of the
individual features in the prediction using various possible combinations for all other features. Furthermore, it can be
formulated as follows:

16

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝜙 𝑗 (𝑣𝑎𝑙) = Σ𝑆⊆(1,...,𝑝) { 𝑗 }
|𝑆 |!(𝑝 − |𝑆 | − 1)!

𝑝!
(𝑣𝑎𝑙 (𝑆 ∪ 𝑗) − 𝑣𝑎𝑙 (𝑆)), (7)

where 𝑥 is the input that we are deciphering, 𝑆 is the subset of the attributes used in the model, and 𝑝 is the total
number of the models. Furthermore, 𝑣𝑎𝑙𝑥 (𝑆) is the prediction for the instance 𝑥 for the 𝑆 subset of the features.

𝑣𝑎𝑙𝑥 (𝑆) =
∫

𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑝)𝑑P𝑥∉𝑆 − 𝐸𝑋 (𝑓 (𝑋)) (8)

SHAP used the Shapley value to detect the contribution of each feature in the prediction for an instance 𝑥 . It is inspired
by Game Theory, where each feature behaves like an individual player of the game and each player is independent to
make a decision. Below is the SHAP function:

𝑔(𝑧′) = ∅0 +
𝑗=1∑︁
𝑀

∅𝑗𝑧
′
𝑗 , (9)

where 𝑔 is the function for interpretability, ∅𝑗 is each feature’s contribution, which sums up 𝑝 times, and the total
number of features is computed as follows:

𝑝∑︁
𝑗=1

∅𝑗 = 𝑓 (𝑥) − 𝐸𝑋 (𝑓 (𝑋)) . (10)

𝑓 (𝑥) is the prediction for 𝑥 . In articles [5–7, 9, 12, 67, 119, 126], researchers employed SHAP for the interpretability
of the main features.

Other Some studies proposed an XAI model dedicated to security data. For instance, Guo et al. [36] proposed a model
known as LEMNA, customized for security applications. They claimed that it generated high-fidelity results. Although
it is a locally interpretable model like LIME, it can handle feature dependency and nonlinear local boundaries to increase
explanation fidelity for cybersecurity data. In [56], the authors proposed a model called EIGER that automatically
generates IOC. N-Grams extraction of the input features is also employed to explain the underlying model. In [38], the
authors extracted N-grams and system calls to explain malware classification.

4.3.4 Image-based. In image-based explainability, researchers either highlight some part of the image (check Figure 6c)
or create representing images for each class by employing ensemble, aggregation, or calculating gradients from images of
training data. Selvaraju et al. [117] proposed an explainable model, Gradient-weighted Class Activation Mapping (Grad-
CAM), for various versions of CNN. It finds a value for each pixel of the image, which is called a class discriminative
localization map, 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀

𝑐 𝜖 R𝑢×𝑣 , with dimensions height(𝑢) and width(𝑣) formulated as follows:

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (

∑︁
𝑘

𝑤𝑐
𝑘
𝐴𝑘) (11)

where𝑤𝑐
𝑘
is the learnable weight for convolution 𝑘 and class 𝑐 , and 𝐴𝑘 is the activation of convolution 𝑘 .𝑤𝑐

𝑘
can be

calculated as follows:

𝑤𝑐
𝑘
=

︷ ︸︸ ︷
1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖 𝑗

, (12)

17

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

where 𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖 𝑗

is the gradient of class 𝑐 score for feature 𝑦, with respect to activation 𝐴𝑘 , and the first part (︷︸︸︷) of
the Eq. 12 depicts the global average pooling.

The Grad-CAM model was later used by researchers for security applications, e.g., [32, 43, 44]. The studies [43, 44]
used CNN for malware classification and explored the portion of images that contributed the most in the classification
using Grad-CAM. Moreover, studies [19, 62] fond the most influencing bytes (image pixels) by analyzing the gradient
of CNN. Lin et al. [62] proposed an Ensemble Deep Taylor Decomposition (ETDTD) as a method to provide pixel-level
explanations for the outputs of a Selective Deep Ensemble Learning-based (SDEL) for image-based malware detection.
SDEL is a detector proposed in the same study for image-based malware detection, which combines multiple deep
learning models to improve the accuracy. In [138], the model was similar to [19], but the classification was explained by
highlighting instructions instead of bytes. Apart from this, Rahman et al. [99] only generated a heatmap.

4.3.5 Graph-based. Recently, graph-based explainability has been employed by security researchers to detect a network
of blocks or functions that are malicious, instead of finding just the functions. It represents the interpretability of
the malicious events or code in the form of a subgraph. In the studies [30, 40], the authors extracted CFGs from an
executable and used them for classification. Later, they employed any subgraph extraction technique and surrogate in
their classification method to explain the prediction. In [40], Herath et al. proposed a model namely, CFGExplainer, to
extract the blocks of a CFG and used it to explain the behavior of the malware. Moreover, in [30], the authors extracted
the most influential API calls from a CFG of a malicious file. Additionally, Soi et al.[121] utilized an API call graph as
input to extract APIs for explainability purposes. Building upon these approaches, Saqib et al.[107] developed the CEG
and employed a novel method, the Genetic Algorithm based Graph Explainer (GAGE), to identify malicious functions
and their caller-callee relationships within CEG. The approach by Saqib et al. [107] demonstrated enhanced robustness
and discriminative power compared to CFGExplainer.

4.4 XAI malware analysis model evaluation

Evaluating the performance of an explainable malware detection model requires assessing two key components:
discrimination power and interpretability [20]. Discrimination power refers to the model’s ability to accurately classify
benign and malicious files or identify the specific malware family to which a file belongs. Interpretability, on the
other hand, refers to the quality of the explanations provided by the model, including factors such as correctness and
robustness.

4.4.1 Discriminating power. The discriminating power of an explainable model is vital and should not be compromised
while explaining the prediction. The metrics that are normally used to quantify the classification power of a model
include precision, recall, and accuracy, as defined below:

Precisionmeasures the number of right predictions out of the total number of observations of a class. Mathematically,
the precision for a model𝑚 and class 𝑐 is:

𝑃 (𝑚,𝑐) = No. of correct predictions of c
Total observations in c

(13)

Recall is the proportion of correct predictions out of the total number of predictions made for a class 𝑐 by model𝑚.

𝑅(𝑚,𝑐) = No. of correct predictions of c
Total no. of c

(14)

18

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Accuracy is the percentage of correct predictions out of a total number of predictions made by any model𝑚.

𝐴(𝑚) = No. of correct predictions
Total no. of observations

× 100 (15)

F1-Score is the harmonic mean of precision and recall and can be mathematically written for a class 𝑐 and model𝑚.

𝐹1(𝑚) = 2 × 𝑃 (𝑚,𝑐) × 𝑅(𝑚,𝑐)
𝑃 (𝑚,𝑐) + 𝑅(𝑚,𝑐 (16)

The higher the score for the discriminating power, the better the classification model will be.
In this, Section 4.4.1, the discriminating power of various models is compared based on different datasets, as presented

in Table 8. Although these comparisons are drawn from diverse datasets, they are instrumental in demonstrating
the robustness and adaptability of the models across varying contexts and data characteristics. This approach allows
us to identify which models maintain high performance regardless of dataset variability, offering insights into their
generalization capabilities. Furthermore, this comparison helps in highlighting specific strengths and weaknesses of
each model, facilitating a more informed choice of model based on the dataset’s nature and the requirements of the
classification task. By evaluating models across different datasets, we can better understand the potential impacts of
dataset-specific factors on model performance and thus refine model selection and tuning strategies for optimal results
in real-world applications.

4.4.2 Interpretability. Interpretability is an essential evaluation criterion for malware detection models, because it
allows for understanding how and why a model is making its decisions. Interpretability is necessary in the context of
malware detection, because it identifies specific features or characteristics that the model uses to make its decisions.
This information can be used to improve the model by focusing on the most relevant features and to gain insight into the
behaviour of the malware itself. Additionally, interpretability can increase trust in the model and its decisions, as users
can understand how it arrived at its predictions. This is particularly important in scenarios where the consequences
of misclassification can be severe. Overall, interpretability is an essential aspect of designing explainable malware
detection models and researchers are using the following metrics to evaluate it:

Interpretability result (IR) is proposed by Wu et al. [133] to evaluate a model generated explanations regarding
any malicious file. The model proposed by Wu et al. [133] generates textual information regarding the file. In addition,
their ground truth data about being malicious is also an unstructured text. The key word or set of words extracted from
both textual explanations are known as ‘concept’. This way, we have two sets of ‘concepts’ (e.g., 𝐶𝐺𝑇 and 𝐶𝑀𝐺):

𝐶𝐺𝑇 = {𝑤 | 𝑤 ∈ Word(s) in ground truth explainability}

𝐶𝑀𝐺 = {𝑤 | 𝑤 ∈ Word(s) in model generated explainability}

So, the numbers of elements in the following subsets are

𝑁𝑑 =

���𝐶𝑀𝐺

⋂
𝐶𝐺𝑇

��� , 𝑁𝑠 = |𝐶𝑀𝐺 −𝐶𝐺𝑇 | , 𝑁𝑡 =

���𝐶𝑀𝐺

⋃
𝐶𝐺𝑇

��� ,
where 𝑁𝑑 denotes the number of concepts correctly verified with ground truth from model-generated explainability.
𝑁𝑠 represents the number of those concepts identified by the model, but not in ground truth. Last, 𝑁𝑡 is the number of
total concepts in both sets. The above numbers help to determine the following metrics:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑑

𝑁𝑑 + 𝑁𝑠
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑁𝑑

𝑁𝑡
, 𝑖𝑟 =

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

19

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

where 0 ≤ 𝑖𝑟 ≤ 1. If 𝑁𝑑 increases, 𝑖𝑟 tends to 1. However, for higher 𝑁𝑠 values, the value of 𝑖𝑟 decreases. As a corollary,
for high explainability, 𝑖𝑟 should have a value close to 1.

Fidelity is a more generic and global metric to evaluate the explanations of any XAI model. Fidelity is not only for
unstructured textual data, but also for image-, graph-, and feature-based explainability, as studies [36, 40, 62, 67] have
used these metrics to evaluate the performance of their models.

Assume we have two sets of explanations, namely model-generated and ground truth:

𝑆𝐺𝑇𝑖 =

{
𝑓𝑖 𝑗 | 𝑓𝑖 𝑗 ∈ value of 𝑗𝑡ℎ feature in ground truth explainability for 𝑖𝑡ℎ instance

}
𝑆𝑀𝐺
𝑖 =

{
𝑓𝑖 𝑗 | 𝑓𝑖 𝑗 ∈ value of 𝑗𝑡ℎ feature in model generated explainability for 𝑖𝑡ℎ instance

}
where 𝑆𝐺𝑇

𝑖
and 𝑆𝑀𝐺

𝑖
are sets of features from ground-truth and model-generated data, respectively. Moreover, 𝑓 can

represent any kind of feature that is used to perform the classification or detection of malware, e.g., pixel of malicious
file’s image, static or dynamic features of PE, etc. A viable approach to determine the fidelity of black-box models is by
utilizing Mean Absolute Percentage Error (MAPE). Using MAPE, the fidelity of the model𝑚 is

𝐹 (𝑚) = 1 −

1
𝑁

𝑁∑︁
𝑖=0

𝑀∑︁
𝑗=0

��𝑆𝐺𝑇
𝑖

(𝑓𝑖 𝑗) − 𝑆𝑀𝐺
𝑖

(𝑓𝑖 𝑗)
����𝑆𝐺𝑇

𝑖
(𝑓𝑖 𝑗)

��  , (17)

where 𝑁 and𝑀 are the total number of instances and features in the testing data, respectively.
A model with higher fidelity is good and demonstrates how well the model is able to mimic the ground truth

explanation.
Robustness shows how much the XAI model can generate diverse explanations for different predictions and data.

Therefore, the robustness of the model does not depend on ground truth.
First, we need to define the similarity between two different explanations generated for two different data points by

model𝑚,

𝑠𝑖𝑚(𝑒𝑐𝑥
𝑖
(𝑚), 𝑒𝑐𝑥

𝑗
(𝑚)) =



∑𝑀
𝑘=0

���𝑒𝑐𝑥𝑖 (𝑓𝑘) − 𝑒𝑐𝑥𝑗 (𝑓𝑘)
��� 𝑖 𝑓 𝑓𝑘 ∈ 𝑒𝑐𝑥

𝑖
(𝑚) ∩ 𝑒𝑐𝑥

𝑗
(𝑚)

∑𝑀
𝑘=0

��𝑒𝑐𝑥
𝑖
(𝑓𝑘)

�� 𝑖 𝑓 𝑓𝑖𝑘 ∉ 𝑒
𝑐𝑥
𝑖
(𝑚) ∩ 𝑒𝑐𝑥

𝑗
(𝑚)

(18)

where 𝑒𝑐𝑥
𝑖
(𝑚) denotes the explanation generated by model𝑚 for an instance 𝑖 from class 𝑐𝑥 and 𝑐𝑥 ∈ 𝐶 . 𝐶 is a set of all

the classes. 𝑓𝑘 is the 𝑘𝑡ℎ feature of the explanation and the total number of features is denoted by𝑀 .
For two different classes 𝑐𝑥 and 𝑐𝑦 from which samples to calculate similarity are selected, if we repeat the experiment

𝜂 (𝑐𝑥) and 𝜂 (𝑐𝑦) times, respectively, then the robustness of model𝑚 is calculated as:

𝑅(𝑚) =
∑
𝜂 (𝑐𝑥) 𝑠𝑖𝑚(𝑒𝑐𝑥

𝑖
(𝑚), 𝑒𝑐𝑥

𝑗
(𝑚))/𝜂 (𝑐𝑥)∑

𝜂 (𝑐𝑦) 𝑠𝑖𝑚(𝑒𝑐𝑦
𝑖

(𝑚), 𝑒𝑐𝑦
𝑗
(𝑚))/𝜂 (𝑐𝑦)

(19)

Robustness represents a ratio between the similarities of different classes. Thus, a robust model𝑚 should generate a
high value for two different malware families or for benign and malicious files.

Expressiveness describes the expressive power of any explanation generated by model𝑚 from a human perspec-
tive [62]. High class distinctiveness, i.e., robustness and correctness of an explanation, i.e., fidelity, lead us to understand
an explanation better. Thus, the expressiveness of model𝑚 is formulated as a factor of both robustness and fidelity [62]:

20

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝐸 (𝑚) = 𝐹 (𝑚)/𝑅(𝑚) (20)

Sparsity refers to the ratio between the size of the feature set used to provide an explanation by a model and the
size of the ground truth explanation set. It can be computed for a model𝑚 as:

𝑆 (𝑚) = 1
𝑁

𝑁∑︁
𝑖=0

(
1 −

��𝑆𝑀𝐺
𝑖

����𝑆𝐺𝑇
𝑖

��
)
, (21)

where 𝑁 is the size of testing data and |.| presents the cardinality of any set. Sparsity has its significance when we
evaluate a model with fidelity. A good model should have high sparsity without compromising its fidelity.

Completeness quantifies how much of the decision-making process the explanation covers. For model𝑚, it can be
measured as the proportion of decision factors explained:

𝐶 (𝑚) = Number of factors explained
Total decision factors

, (22)

where a higher 𝐶 (𝑚) indicates more comprehensive explanations. A high level of completeness ensures that users
gain a comprehensive understanding of how and why decisions are made, fostering greater trust and reliability in the
system.

Consistency assesses whether similar inputs lead to similar explanations in model𝑚. It can be defined as:

𝐾 (𝑚) = 1 − Var(𝑒 (𝑥))
Var(𝑥) , (23)

where 𝑒 (𝑥) is the explanation for input 𝑥 , and Var represents variability. Higher 𝐾 (𝑚) implies greater consistency and
high consistency ensures that the model’s logic is stable and predictable, which is particularly important in high-stakes
environments like malware detection.

Efficiency evaluates the computational cost of generating explanations. For model𝑚, it is given by:

𝐸 (𝑚) = 1
Time to generate explanations + Resource usage

, (24)

aiming for higher 𝐸 (𝑚) to ensure practical usability in real-time systems. A highly efficientmodel minimizes the overhead
of generating explanations, ensuring that the system remains practical even in resource-constrained environments.

5 DISCUSSION AND ANALYSIS

5.1 Performance analysis

5.1.1 Discriminating power analysis. The performance of the models varies significantly across different studies (Table
4). For example, the model in study [139] had an accuracy of 0.9855, a precision of 0.9793, a recall of 0.9827, and an
F1-score of 0.9804. In contrast, the model in study [19] (using the MalConv algorithm) had an accuracy of 0.871 and an
F1-score of 0.873. Similarly, the study [133] demonstrated the improvement in performance with increasing complexity
in the algorithms used (Drebin, MLP, and XMal), with an accuracy of 0.9524, 0.965, and 0.9835, respectively. Furthermore,
study x4 showed the impact of using different architectures such as CNN, LSTM, Transformer (pre-trained), Transformer,
and RF on the performance, where the Transformer architecture had the lowest performance with an accuracy of
0.486. It is important to note that the results presented in this table should be interpreted cautiously, as they are highly
dependent on the specific dataset and experimental setup used in each study.

21

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

Table 4. Combined Performance and Interpretability Assessment. Abbreviations used: Acc - Accuracy, P - Precision, R - Recall, FS -
F1-Score. A mark ’x’ denotes studies not using any metrics to evaluate their XAI methods.

Study Malicious Benign Algorithm Acc P R FS Interpretability Assessment

[139] 31,805 10,000 MLP 98.55 97.93 98.27 98.04 x

[19] 700 MalConv 87.10 87.30 x

[19] 700 EMBER Mal 92.20 x

[133] 15,570 20,120 Drebin 95.24 95.94 94.9 95.42 Interpretability result

[133] 15,570 20,120 MLP 96.50 96.38 97.13 96.75 x

[133] 15,570 20,120 XMal 98.35 98.48 98.28 98.37 x

[97] CNN 92.10 x

[97] LSTM 92.30 x

[97] Transformer 94.70 x

[97] Transformer 48.60 x

[97] RF 32.20 x

[44] 7386 1060 CNN 97.00 x

[43] CNN 94.40 94.70 94.30 94.50 Empirical testing

[30] 3250 133743 SIR-GN 89.60 92.70 Empirical testing

[51] 60048 214580 Conv-LSTM- 89.21 93.87 51.43 67.91 x

[52] 5560 CNN 98.00 98.00 98.00 97.00 x

[62] GoogleNet In 99.87 99.80 99.14 99.50 Fidelity, Robustness, Expressiveness

[83] 5615 121329 SVM 99.00 x

[96] ANN 94.00 85.00 96.00 Empirical testing

[94] RNN 98.90 Empirical testing

[7] XGBoost 95.00 x

[7] XGBoost 98.00 x

[40] GNN 77.55 Fidelity, Sparsity

[67] BERT 99.40 Fidelity, Robustness

[5] RF 98.60 x

[12] XGBoost 98.18 97.79 98.57 98.18 x

[11] Drebin 95.90 x

[59] IFFNN 97.70 97.50 97.90 Empirical testing

[85] 17,240 CNN 0.9290 0.9371 0.9494 0.9432 Completeness, Sparsity, Stability/Consistency, Efficiency

[126] 50,000 50,000 LR 0.7566 0.8965 0.5802 0.7045 x

[126] 50,000 50,000 DT 0.9720 0.9670 0.9772 0.9721 x

[126] 50,000 50,000 KNN 0.7671 0.7132 0.8933 0.793 x

[99] 9,339 CNN 0.9944 0.9944 0.9944 0.9944 x

[121] 48,372 CNN 0.8700 0.8600 0.8800 0.8700 x

[6] 29,298 XGB 0.9985 0.9985 0.9985 0.9985 x

[119] Hybrid CNN-BiGRU 0.9798 0.9775 0.9776 0.9775 x

[32] GradCam 0.9600 0.9500 0.9540 0.9704 x

[9] TabLSTMNet 0.9763 0.9789 0.9776 0.9800 x

[107] GCNN, GAGE 0.9000 0.8500 0.8700 0.8700 Robustness

Upon reviewing the interpretability assessment alongside the discriminative power, we find that there is no consistent
correlation between explainability and discriminative power. For example, studies [43, 133] exhibit high discriminative
power coupled with substantial explainability, whereas study[40] demonstrates very low discriminative power.

5.1.2 Interpretability assessment. The interpretability of the models is an essential aspect of evaluating explainable
malware detection models. In the literature review, most of the studies have used manual evaluation methods to assess

22

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

the interpretability of the models. However, there needs to be more standardization and consistency in evaluating
interpretability. For example, some studies may focus on the transparency of the model’s decision-making process. In
contrast, others may concentrate on the interpretability of the features or representations learned by the model.

Despite the lack of standardization in the interpretability evaluation, it is clear that the interpretability of the models
is important for ensure that the discrimination results are meaningful and actionable. For example, suppose a model can
correctly identify malware, but cannot provide insight into why it made that decision. In that case, it may be difficult for
security analysts to use that information to take action. This highlights the importance of developing interpretability
evaluation methods that are both standardized and meaningful.

Interpretability is an essential aspect of explainable malware detection. It should be evaluated using numeric values
to ensure consistency and standardization. However, most studies reviewed in this article use manual evaluation, which
may lead to subjectivity. Balancing performance and interpretability, while designing and evaluating malware detection
models, is important (Table 4).

5.2 Specificity to malware analysis

Existing XAI methods, such as LIME and SHAP, are only partially suitable for interpretable malware analysis, due to
their limitations in handling high-dimensional and complex data, such as the binary code of a malware sample [36].
These methods are designed to explain the predictions of a model on individual instances. They may need help to
comprehensively understand the entire malware detection process. Additionally, these methods are not explicitly
designed to handle the unique characteristics of malware, such as evasive tactics and polymorphism, which can make
them less effective in explaining the behaviour of a malware sample [111]. Furthermore, the use of such methods for
malware analysis has been limited in the literature, and their effectiveness in this domain needs to be thoroughly
evaluated. For example, in a study by Guo et al. [36], the authors applied LIME to explain the predictions of a malware
detection model and found that the explanations were only sometimes relevant or sufficient to understand the model’s
decision.

In conclusion, while existing XAI methods may provide some level of interpretability, they may not be appropriate
for interpretable malware analysis, due to their following limitations:

• Lack of proper evaluationmetrics: The field of interpretablemalware analysis is still in its infancy and appropriate
evaluation metrics must be used to measure the interpretability of the models. The lack of such metrics leads to
subjectivity in assessing interpretability and makes it difficult to compare different models. For instance, in
our survey, many studies claim to provide explainability, yet they have not evaluated their models against XAI
metrics. In Table 4, the majority of the studies, denoted by ’x,’ do not utilize any evaluation metrics.

• The complexity of malware: Malware, by its very nature, is designed to evade detection and can use various
techniques to achieve this. This makes it difficult to understand the underlying behaviour of malware and thus
challenging to generate interpretable explanations of the models’ predictions. For example, studies [30, 40]
exemplify the challenges in generating interpretable model explanations. Study [30] uses CFG generation
to analyze how malware’s dynamic alteration of execution paths complicates detection and interpretation.
Similarly, study [40] examines CFGwith node features, demonstrating howmalware uses obfuscation techniques
to evade detection, further hindering clear interpretation. Both studies illustrate the difficulty in maintaining
accuracy in models’ explanations due to the sophisticated evasion strategies employed by malware, highlighting
a significant gap that necessitates further research in robust, adaptive malware analysis techniques.

23

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

• Adversarial attacks: XAI models are vulnerable to adversarial attacks, which can manipulate the models’
predictions and the generated explanations. This makes it difficult to trust the interpretability of the models,
especially in the context of malware detection, where adversaries may have a vested interest in evading detection.
For instance, the studies listed in Table 3 that utilize image-based explainability methods demonstrate increased
vulnerability to such attacks [148]. These adversarial strategies can subtly alter image inputs in ways that are
imperceptible to human observers but lead to incorrect model outputs, thus misleading the explanation process
and undermining trust in the system’s decisions.

5.3 Method of communication

In Section 4.2, the method of communication is typically divided into two main categories: local and global explanations.
To further refine these categories, we can also categorize them based on the level of abstraction, which determines the
comprehensibility level of the explanation to people [71]. However, there is a trade-off between the level of abstraction
and the fidelity and faithfulness of the method. Methods with higher abstraction levels are more understandable to
humans, but may not accurately reflect the model’s behavior.

For local explanations, feature explanation is the lowest level of abstraction, while natural language explanations
are the highest level. Feature explanation involves highlighting the input features that have led to a particular output,
while natural language explanations use sentences to describe predictions using more abstract concepts. For global
explanations, vocabulary explanation is the lowest level of abstraction, while rule explanations are the highest level.
Vocabulary explanation explains the entire model in terms of each word in the vocabulary, while rule explanation
extracts general rules to explain the model’s behavior, although this can be challenging due to the complexity of the
rule extraction process.

Choosing the appropriate method of communication for XAI explanations is an ongoing challenge and depends on
the specific application and target audience. The most popular methods of communication include, but are not limited
to, input features, adversarial examples, influential examples, counterfactuals, natural language, vocabulary, ensemble,
linguistic information, and rules [71].

DL-based models for malware analysis should be explainable in terms of features used in manual or traditional
methods (see Table 2) so that security administrators and reverse engineers may better comprehend the model’s behavior
and thought process. Malware identification has previously been made and explained using various techniques, such as
feature extraction, API call analysis, subgraph extraction from CFGs, etc. However, some of the explanations do not
directly help the stakeholders, who need to understand the proposed method of explanation generation from scratch,
which again leads to a blackboxing.

In this article, we propose different levels of explanations categories based on features used in explanation and their
relation with manual analysis. They are as follows:

Level 0: This level involves visualizations, some tree construction, or rule generations, which are neither based on
static nor dynamic features mentioned in Table 2. This level does not directly explain something to the stakeholders.
However, after learning some background about the proposed method, they may learn the pattern and use it in analyses.
For example, heatmaps may not directly mean anything to reverse engineers or security administrators, but can provide
an overview of the model’s behaviour. Suitable for initial assessments by data analysts and entry-level security personnel,
these visualizations can help identify patterns or anomalies that merit further investigation.

Level 1: At this level, static indicators provide security administrators with informationabout whether a file is
suspicious or not. Key feature extraction based on LIME or SHAP is in this category. Although this level of explanation

24

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 5. Level of studies in the literature
Co

m
.L
ev
el

Study Method Used Justification

Le
ve
l0

[19, 99] Heat maps Analysing gradient, weights of layers, and/or pixels which are not
directly explainable to stakeholders

[32, 36, 44] Grayscale image, influencial bytes Image generation, heatmap generation, cumulative heatmap, learn-
ing evaluation but not applicable to code

[43] Smali code to images Most influencing pixels heatmap

[62] NA Pixel-level explanation

[63, 115] Features of attack traffic, boolean rule in
disjunctive normal form or conjunctive
normal form

Feature-based explanation

Le
ve
l1

[139] Static features (N-grams) Rule-based tree generation

[85, 133] Opcode N-grams Static key features

[52] Opcode sequences to image Most contributing opcode sequence

[84] Static features analysis Threshold-based rules constructed from features

[5–7, 9, 11, 12, 51, 67, 83, 119, 126] Static features Feature-based explanation

Le
ve
l2

[97] Network traffic Determine the sequence of the most important network events IOC

[38, 121] Most influencing system calls, APIs Dynamic features analysis

[30] CFG generation Subgraph identification, relate a subgraph to the TTP

[96] System calls, system libraries, and kernel Most influencing system call to the tag classification

[56] IOC Extracts features based on their behavior, IOC detection

[94] Register utilization in each cycle Highlight register uses in cycles

[59] Static and dynamic features Uses opcode frequency and features analysis

Le
ve
l3

[138] Bytes to image Most influencing instructions

[40] CFG with node features Subgraph identification

[107] CEG Subgraph of malicious functions and their caller-callee

provides a clue solely at a superficial level, it could be helpful for further dynamic analysis. Additionally, these
explanations can guide the configuration of security tools to better detect similar threats in the future and assist in
the initial stages of incident response by outlining the primary characteristics of the potential malware. This level of
explanation is instrumental for security administrators and malware analysts who need to rapidly assess the potential
threat of a file and preparing the groundwork for more detailed forensic analysis.

Level 2: At this stage, dynamic features determine whether a file is malicious. Network connections, file system
activity, API calls, and CFGs are some features that can be retrieved from file behaviour. An explanation based on these
could provide substantial understanding to the stakeholders. Therefore, it is on a higher level of communication. This
level is crucial for network administrators and cybersecurity incident responders who require a deeper understanding
of an active or potential threat’s behavior within a network environment. The explanations provided here support
proactive threat hunting and incident response strategies.

Level 3: Reverse engineering-related features such as subgraph extraction and code analysis are included at this
level. These aspects-based interpretations may help explain the malware’s operation and means of evading detection
more in depth. This is the highest level of explanation because following this, reverse engineers immediately draw
their conclusions and investigate the degree and nature of the danger that might arise from the user only making
minor efforts. This level is tailored for expert stakeholders like forensic analysts and advanced security researchers.

25

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

These professionals benefit from a granular understanding of malware operations and evasion tactics, facilitating a
comprehensive threat analysis.

The proposed study suggests a categorization based on four levels of explanation for evaluating models for malware
analysis. From Level 0 to Level 3, these levels are arranged in ascending order of interpretation quality. According to
their degree of interpretability, we used this framework to group the research we included in our survey (see Table 5)
into different categories.

5.4 Time Efficiency

Generally, explainability adds additional computational cost on top of the underlying deep neural network training.
Although most systems today are equipped with GPU, we need to improve the time efficiency of the XAI model.
Overlapping the training and the explanation part is a way to enhance the system’s efficiency and performance. In
other words, explanations are extracted at the same time that the model is being trained.

Intrinsic interpretability is a way to integrate interpretability into the models to increase efficiency. One approach
is to add a new layer with interpretable constraints to improve the comprehensibility of the classification models
globally [72]. Another way is to use an attention weight matrix to specify which parts of the input are attended by the
model.

For method of communication discussed in the previous section, generally, higher levels of abstraction in explanations
(Levels 2 and 3) involve more complex computations and hence are less time-efficient compared to Levels 0 and 1.
However, these higher levels provide richer insights that can be critical for advanced forensic analysis and detailed
system audits. Therefore, while they require more computational resources, their potential for providing deep insights
justifies the additional time cost.

Table 6. Time complexity analysis of different algorithms for training and testing phases

Algorithm Time Complexity Brief Analysis Phase Studies

Grad-CAM 𝑂 (𝑛2 · 𝑑) Grad-CAM involves a forward pass, gradient calculation, and matrix multiplications, primarily
affecting the computational cost with respect to the sequence length𝑛 and feature dimension𝑑 . The
operations scale quadratically with the sequence length and linearly with the feature dimension.

Testing [32, 43, 44]

SHAP 𝑂 (𝑛 · 2𝑛) SHAP calculates the Shapley values for feature importance, with an exponential complexity for
exact calculations due to the combinatorial nature of subsets.

Testing [5–7, 9, 12,
67, 119, 121,
126]

LIME 𝑂 (𝑁 · 𝑝 + 𝑛2 · 𝑁) LIME generates local explanations by perturbing the input and fitting a simple model to these
perturbations. Here, 𝑁 is the number of perturbed samples, 𝑝 is the prediction time, and 𝑛 is the
number of features in the local model. The complexity is linear in the number of samples and
quadratic in the number of features.

Testing [9, 51, 52,
67, 99]

Attention-
ANN

𝑂 (𝑛2 · 𝑑) Attention mechanisms, as used in transformers, compute relevance scores and apply them to input
sequences. The dominant cost is in computing the dot-product attention for sequences of length 𝑛
and feature dimension 𝑑 , scaling quadratically with the sequence length.

Training
and Testing

[11, 59, 94,
133, 138]

DT 𝑂 (𝑛 ·𝑚 · log(𝑚)) Constructing a DT involves splitting data based on feature values to minimize impurity. Here, 𝑛
is the number of features, and𝑚 is the number of samples. The complexity reflects the effort to
evaluate splits at each node, with a logarithmic factor for tree depth in balanced cases.

Training [115]

DT 𝑂 (𝑑) Once the tree is constructed, making predictions and generating explanations involves traversing
the tree from the root to a leaf, where 𝑑 is the depth of the tree. This is generally fast and efficient.

Testing [115]

GAGE 𝑂 (𝐺 × 𝑃 × 𝐸) GAGE iteratively refines subgraphs using a genetic algorithm.𝐺 represents the number of genera-
tions, 𝑃 is the population size per generation, and 𝐸 is the fitness evaluation time for subgraphs,
influenced by the number of nodes and edges. The process is computationally intensive due to the
iterative nature and the complexity of graph operations.

Training [107]

Time efficiency is a crucial assessment criterion often overlooked in many studies. In our survey, only four studies
considered this aspect. Alani et al. [5] reported a testing phase time of 0.7631 microseconds (𝜇𝑠) to extract features for

26

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

explainability using SHAP. Aslam et al. [12] achieved a time of 0.0424 seconds to extract URL features using XGBoost.
However, they achieved a significantly lower time of 0.0078 seconds using DT. Despite the longer extraction time,
XGBoost demonstrated better discriminative power than DT. Alani et al. [6] used SHAP and reported a training time of
0.518116 seconds and a testing time of 0.569026 microseconds (𝜇𝑠). Li et al. [59] claimed their method could analyze
15,239 samples per second. These results underscore the importance of including time efficiency in the evaluation of
explainable models, as it directly impacts their practicality and scalability in real-world applications. Furthermore, we
analyzed their time complexity in Table 6, providing a comprehensive comparison of the computational costs associated
with different algorithms.

5.5 Adversarial attack as limitation

There is no doubt that DL speeds up the malware analysis process. In addition, XAI provides a way to verify the detection
or classification performed by black box DL models. However, both DL and XAI have limitations and sometimes even
interpretability and explainability make it easy for attackers to evade security. Many studies [27, 118, 148] explained how
XAI can be manipulated and have proposed a model to uncover the vulnerabilities in XAI models. For example, Zhang
et. al [148] demonstrated that interpretable DL systems (IDLSes) are vulnerable to adversarial manipulations, allowing
adversaries to arbitrarily designate an input’s prediction and interpretation, and suggested potential countermeasures.
The paper [27] demonstrated how explanations can be manipulated by applying visually imperceptible perturbations to
inputs and proposed mechanisms to enhance the robustness of explanations. Similarly, Slack et. al [118] showed how
post hoc explanation techniques, such as LIME and SHAP, can be manipulated by adversarial entities using a novel
scaffolding technique, allowing biased classifiers to remain biased, while generating innocuous explanations. Therefore,
when dealing with DL and XAI-based models designed for malware analysis, it becomes additionally critical to address
the security of AI.

The adversarial attack is still an open issue for the DL-based model, which could make a malware detection system
fragile. An adversary could also use explainability to exploit the malware detection model. Thus, in this section, we
review two types of papers: 1) studies that discussed the fragility of a DL model for malware detection and 2) studies
that used explainability to evade the detection mechanism.

Mathematically, the minimum perturbation added to the 𝑥 ′ feature used for classification can affect the classification’s
direction and result in a misclassification.

𝑚𝑖𝑛 ∥𝛿𝑥 ∥

𝑠 .𝑡 . 𝑥
′
= 𝑥 + 𝛿𝑥 , 𝑓 (𝑥 ′) ≠ 𝑓 (𝑥) ,

(25)

where 𝑥 is any instance of the dataset, 𝑓 (.) is the classification model, and 𝛿𝑥 is the perturbation.

5.5.1 Adversarial attacks against DL. DLmodels can be exploited using various types of data. For instance, in [42, 58, 111],
researchers proposed models to manipulate the static and dynamic features of the PE and evade detection. Laskov et
al. [58] utilized PE features and automated the process to search the space where they can inject malicious features. In
our survey, the majority of studies focus on feature-based explainability; for instance, studies [5, 7, 51, 52, 67] utilize
this approach. These models are particularly vulnerable to the types of adversarial attacks discussed earlier, where
malicious features are inserted to evade detection.

Other studies [42, 111] proposed models based on API calls and dynamic features analysis. Furthermore, some
researchers also used dynamic features as sequential data, e.g., sequence of API calls. It is challenging to create

27

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

adversarial samples by modifying such data, because one wrong API addition may crash the software. However, some
the authors proposed a model to automatically find the space where they can insert benign API calls and mislead the
classifier. In the articles [41, 103, 104], authors proposed a model to automatically insert API calls and other printable
strings that do not affect the functionality of the executable. The model proposed by Han et al. [38] employs system
calls as input, a form of sequential data, making it prone to specific adversarial tactics. Such tactics take advantage of
the sequential arrangement by inserting seemingly innocuous API calls in a strategic manner. These inserted calls are
designed to deceive classifiers effectively while maintaining the functionality of the software, thereby avoiding system
crashes.

The CFG is also a major component to detect a malicious process because it is hard to be distort. However, Abusnaina
et al. [1] performed adversarial analysis to generate a subgraph and modify the CFG to evade the system. In addition,
some researchers have proposed binary-level modifications. For example, in [26, 98], the authors extract benign
prototypes during the training of the neural network and add them to the malicious file. Studies employing CFG, such as
those by researchers in [40] and [30], are vulnerable to the adversarial techniques discussed. These techniques involve
the generation of subgraphs that subtly alter the CFG to evade detection systems.

5.5.2 Adversarial attacks against XAI. XAI is used to enhance the transparency of DL models and involves humans to
verify their classification. However, some attacks have been devised to exploit these models, such as [54, 102]. Rosenberg
et al. [102] discussed how XAI could be used to generate adversarial examples for malware classifiers. The paper
presented a new approach for generating adversarial examples that focused on modifying specific features of the input,
rather than adding new features. The authors first used XAI techniques to identify the most important features of a
given malware sample and then conducted a specific modification, feature-by-feature. This approach allowed them to
generate adversarial examples that were the most likely to evade detection, while still preserving the functionality of
the malware. The paper [102] also introduced the concept of transferability of explainability, which means that the
same XAI techniques can be applied to different classifiers and datasets and still result in a similar subset of important
features. Overall, this method highlighted how XAI techniques can be used to generate more effective adversarial
examples for malware classifiers and how adversaries can leverage these techniques to bypass multi-feature types of
malware classifiers. It also raised important questions about the trade-offs between interpretability and robustness in
traditional ML models.

In another work, Kuppa et al. [54] proposed a method for exploiting XAI-based models in a black box setting.
The authors proposed a taxonomy for XAI methods, covering various security properties and threat models. They
then designed a novel black box attack to analyze the consistency, correctness, and confidence security properties of
gradient-based XAI methods. The key idea behind this attack was to use the information provided by the XAI model’s
explanation report to craft adversarial examples that could fool the model without affecting its output. To conduct
the attack, the authors used a gradient-based optimization method to find adversarial examples that maximized the
difference between the explanation report and the actual classifier output. After, they evaluated the proposed approach
on three security-relevant datasets and models, and demonstrated that the method could mislead both the classifier and
explanation report. The results of the study showed that the proposed black box attack is effective in exploiting the XAI
models and it can help in designing more secure and robust XAI methods.

Over-revealing malicious features in files for the sake of explainability can lead to the types of attacks discussed
previously. For instance, the study by [56] exposes features based on their behavior in IOC detection, potentially
informing attackers. Similarly, [40] openly reveals CFG with node features that have malicious intent. Moreover,

28

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[96] utilizes system calls and system libraries, which inadvertently disclose the most influential system calls for tag
classification to potential attackers.

6 CONCLUSION

In this review paper, we conducted an in-depth analysis of state-of-the-art techniques in XAI for malware analysis.
Our analysis revealed several challenges in creating effective explainable models, including the difficulty in balancing
interpretability with accuracy, the absence of a standardized evaluation framework, and the complexity of explaining
intricate models.

We observed a need for a generic metric for comparing the quality of explainability, which presents a challenge
for malware analysts and reverse engineers. To address this issue, we proposed a framework for comparing the level
of explainability that provides insight into how well the model explains malicious file predictions and the depth of
knowledge contained in the explanation. Our proposed taxonomy categorized each study considered in this review,
along with their justification for falling into that particular category.

We further noted that various articles used different metrics for evaluating their explainability, with some failing to
provide sufficient justification for accuracy. We proposed a generic approach for quantifying explainability quality to
address this issue. Additionally, we evaluated and compared each study based on its discriminative power.

There are several potential future directions for XAI in malware analysis research. One important area for future
research is generating a reliable ground truth dataset that could be used for training and evaluating explainable
models. This would help improve the models’ reliability and increase their effectiveness. Another important direction is
the development of more effective techniques for improving the explainability levels of these models. Our proposed
taxonomy provides a road map for increasing the interpretability of models up to level 3. Nonetheless, there is potential
to make explanations more understandable to malware analysts and other security stakeholders. Additionally, future
work should focus on developing standard evaluation criteria for explainable models. In this article, we generalized
some of the metrics used in the literature and proposed some generic metrics. Evaluating models on these metrics is
necessary to set benchmark models for the field.

Overall, this review paper contributes to the field of XAI for malware analysis by identifying the challenges in creating
effective explainable models, proposing a framework for comparing explainability levels, and offering a taxonomy for
categorizing studies. Our proposed approach for quantifying explainability quality and evaluating each study based
on its discriminative power can guide researchers and practitioners in developing effective XAI models for malware
analysis.

ACKNOWLEDGMENTS

This research is supported by BlackBerry Ltd. (ALLRP 561035), Defence Research and Development Canada (contract
no. W7701-217332), NSERC Alliance Grants (ALLRP 561035-20), NSERC Discovery Grants (RGPIN-2024-04087), and
Canada Research Chairs Program (CRC-2019-00041).

REFERENCES
[1] Ahmed Abusnaina, Aminollah Khormali, Hisham Alasmary, Jeman Park, Afsah Anwar, and Aziz Mohaisen. 2019. Adversarial learning attacks on

graph-based IoT malware detection systems. In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, 1296–1305.
https://doi.org/10.1109/ICDCS.2019.00130

[2] A. Adadi and M. Berrada. 2018. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018),
52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052

29

https://doi.org/10.1109/ICDCS.2019.00130
https://doi.org/10.1109/ACCESS.2018.2870052

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

[3] W. A. Al-Khater, S. Al-Maadeed, A. A. Ahmed, A. S. Sadiq, and M. K. Khan. 2020. Comprehensive Review of Cybercrime Detection Techniques.
IEEE Access 8 (2020), 137293–137311. https://doi.org/10.1109/ACCESS.2020.3011259

[4] S. Alam, I. Traore, and I. Sogukpinar. 2015. Annotated Control Flow Graph for Metamorphic Malware Detection. Comput. J. 58, 10 (2015), 2608–2621.
https://doi.org/10.1093/comjnl/bxu148

[5] Mohammed M Alani and Ali Ismail Awad. 2022. Paired: An explainable lightweight android malware detection system. IEEE Access 10 (2022),
73214–73228. https://doi.org/10.1109/ACCESS.2022.3189645

[6] MohammedMAlani, Atefeh Mashatan, and Ali Miri. 2023. XMal: A lightweight memory-based explainable obfuscated-malware detector. Computers
& Security 133 (2023), 103409. https://doi.org/10.1016/j.cose.2023.103409

[7] Rafa Alenezi and Simone A Ludwig. 2021. Explainability of Cybersecurity Threats Data Using SHAP. In 2021 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 01–10. https://doi.org/10.1109/SSCI50451.2021.9659888

[8] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma, José Santamaría, Mohammed A Fadhel, Muthana
Al-Amidie, and Laith Farhan. 2021. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of
big Data 8, 1 (2021), 1–74. https://doi.org/10.1186/s40537-021-00444-8

[9] Namrata Govind Ambekar, N Nandini Devi, Surmila Thokchom, and Yogita. 2024. TabLSTMNet: enhancing android malware classification through
integrated attention and explainable AI. Microsystem Technologies (2024), 1–19. https://doi.org/10.1007/s00542-024-05615-0

[10] A. Arfeen, Z. A. Khan, R. Uddin, and U. Ahsan. 2022. Toward accurate and intelligent detection of malware. Concurrency and Computation: Practice
and Experience 34, 4 (2022), e6652. https://doi.org/10.1002/cpe.6652

[11] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. 2014. Drebin: Effective and explainable
detection of android malware in your pocket.. In Ndss, Vol. 14. 23–26. https://doi.org/10.14722/ndss.2014.23247

[12] Nida Aslam, Irfan Ullah Khan, Samiha Mirza, Alanoud AlOwayed, Fatima M Anis, Reef M Aljuaid, and Reham Baageel. 2022. Interpretable
Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI). Sustainability 14, 12 (2022), 7375.
https://doi.org/10.3390/su14127375

[13] Ömer Aslan Aslan and Refik Samet. 2020. A comprehensive review on malware detection approaches. IEEE Access 8 (2020), 6249–6271.
https://doi.org/10.1109/ACCESS.2019.2963724

[14] J. Bai, Y. Yang, S. Mu, and Y. Ma. 2013. Malware Detection Through Mining Symbol Table of Linux Executables. Information Technology Journal 12,
2 (2013), 380–384. https://doi.org/10.3923/itj.2013.380.384

[15] H. Berger, C. Hajaj, E. Mariconti, and A. Dvir. 2022. MaMaDroid2.0 – The Holes of Control Flow Graphs. 2 (2022). https://doi.org/10.48550/arXiv.
2202.13922 arXiv:2202.13922

[16] D. Bhusal and N. Rastogi. 2022. Adversarial Patterns: Building Robust Android Malware Classifiers. Building Robust Android Malware Classifiers.
arXiv, Adversarial Patterns. https://doi.org/10.48550/ARXIV.2203.02121

[17] P. Bhuvaneshwari, A. N. Rao, and Y. H. Robinson. 2021. Spam review detection using self attention based CNN and bi-directional LSTM. Multimedia
Tools and Applications 80, 12 (2021), 18107–18124. https://doi.org/10.1007/s11042-021-10602-y

[18] Parthajit Borah, DK Bhattacharyya, and JK Kalita. 2020. Malware Dataset Generation and Evaluation. In 2020 IEEE 4th Conference on Information
Communication Technology (CICT). IEEE, 1–6. https://doi.org/10.1109/CICT51604.2020.9312053

[19] Shamik Bose, Timothy Barao, and Xiuwen Liu. 2020. Explaining ai for malware detection: Analysis of mechanisms of malconv. In 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE, 1–8. https://doi.org/10.1109/IJCNN48605.2020.9207322

[20] Nicola Capuano, Giuseppe Fenza, Vincenzo Loia, and Claudio Stanzione. 2022. Explainable Artificial Intelligence in CyberSecurity: A Survey. IEEE
Access 10 (2022), 93575–93600. https://doi.org/10.1109/ACCESS.2022.3204171

[21] Jaime G Carbonell, Ryszard S Michalski, and Tom M Mitchell. 1983. An overview of machine learning. Machine learning (1983), 3–23. https:
//doi.org/10.1016/B978-0-08-051054-5.50005-4

[22] J. Choo and S. Liu. 2018. Visual Analytics for Explainable Deep Learning. IEEE Computer Graphics and Applications 38, 4 (2018), 84–92.
https://doi.org/10.1109/MCG.2018.042731661

[23] Giovanni Ciaramella, Fabio Martinelli, Francesco Mercaldo, and Antonella Santone. 2023. Exploring Quantum Machine Learning for Explainable
Malware Detection. In 2023 International Joint Conference on Neural Networks (IJCNN). 1–6. https://doi.org/10.1109/IJCNN54540.2023.10191964

[24] S. H. H. Ding, B. C. M. Fung, and P. Charland. 2019. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code
Obfuscation and Compiler Optimization. 2019 IEEE Symposium on Security and Privacy (SP). 472-489 (2019). https://doi.org/10.1109/SP.2019.00003

[25] Y. Ding, W. Dai, S. Yan, and Y. Zhang. 2014. Control flow-based opcode behavior analysis for Malware detection. Computers & Security 44 (2014),
65–74. https://doi.org/10.1016/j.cose.2014.04.003

[26] Yuxin Ding, Miaomiao Shao, Cai Nie, and Kunyang Fu. 2022. An Efficient Method for Generating Adversarial Malware Samples. Electronics 11, 1
(2022), 154. https://doi.org/10.3390/electronics11010154

[27] Ann-Kathrin Dombrowski, Maximilian Alber, Christopher J. Anders, Marcel Ackermann, Klaus-Robert Müller, and Pan Kessel. 2019. Explanations
can be manipulated and geometry is to blame. https://doi.org/10.48550/ARXIV.1906.07983

[28] Gianni D’Angelo, Eslam Farsimadan, Massimo Ficco, Francesco Palmieri, and Antonio Robustelli. 2023. Privacy-preserving malware detection in
Android-based IoT devices through federated Markov chains. Future Generation Computer Systems 148 (2023), 93–105. https://doi.org/10.1016/j.
future.2023.05.021

30

https://doi.org/10.1109/ACCESS.2020.3011259
https://doi.org/10.1093/comjnl/bxu148
https://doi.org/10.1109/ACCESS.2022.3189645
https://doi.org/10.1016/j.cose.2023.103409
https://doi.org/10.1109/SSCI50451.2021.9659888
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1007/s00542-024-05615-0
https://doi.org/10.1002/cpe.6652
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.3390/su14127375
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.3923/itj.2013.380.384
https://doi.org/10.48550/arXiv.2202.13922
https://doi.org/10.48550/arXiv.2202.13922
https://arxiv.org/abs/2202.13922
https://doi.org/10.48550/ARXIV.2203.02121
https://doi.org/10.1007/s11042-021-10602-y
https://doi.org/10.1109/CICT51604.2020.9312053
https://doi.org/10.1109/IJCNN48605.2020.9207322
https://doi.org/10.1109/ACCESS.2022.3204171
https://doi.org/10.1016/B978-0-08-051054-5.50005-4
https://doi.org/10.1016/B978-0-08-051054-5.50005-4
https://doi.org/10.1109/MCG.2018.042731661
https://doi.org/10.1109/IJCNN54540.2023.10191964
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1016/j.cose.2014.04.003
https://doi.org/10.3390/electronics11010154
https://doi.org/10.48550/ARXIV.1906.07983
https://doi.org/10.1016/j.future.2023.05.021
https://doi.org/10.1016/j.future.2023.05.021

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[29] Mojtaba Eskandari, Zeinab Khorshidpour, and Sattar Hashemi. 2013. HDM-Analyser: a hybrid analysis approach based on data mining techniques
for malware detection. J. Comput. Virol. 9, 2 (may 2013), 77–93. https://doi.org/10.1007/s11416-013-0181-8

[30] Jeffrey Fairbanks, Andres Orbe, Christine Patterson, Janet Layne, Edoardo Serra, and Marion Scheepers. 2021. Identifying ATT&CK Tactics in
Android Malware Control Flow Graph Through Graph Representation Learning and Interpretability. In 2021 IEEE International Conference on Big
Data (Big Data). IEEE, 5602–5608. https://doi.org/10.1109/BigData52589.2021.9671343

[31] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab. 2015. A review on feature selection in mobile malware detection. Digital Investigation 13
(2015), 22–37. https://doi.org/10.1016/j.diin.2015.02.001

[32] Premanand Ghadekar, Tejas Adsare, Neeraj Agrawal, Dhananjay Deore, and Tejas Dharmik. 2024. Multi-Class Malware Detection using modified
GNN and Explainable AI. In 2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU). 1–8. https://doi.org/10.1109/IC-
CGU58078.2024.10530706

[33] Daniel Gibert, Carles Mateu, and Jordi Planes. 2020. HYDRA: A multimodal deep learning framework for malware classification. Computers &
Security 95 (2020), 101873. https://doi.org/10.1016/j.cose.2020.101873

[34] D. Gibert, C. Mateu, and J. Planes. 2020. The rise of machine learning for detection and classification of malware: Research developments, trends
and challenges. Journal of Network and Computer Applications 153, 102526 (2020). https://doi.org/10.1016/j.jnca.2019.102526

[35] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. 2018. A Survey of Methods for Explaining Black Box Models.
Comput. Surveys 51, 5 (Aug 2018), 42. https://doi.org/10.1145/3236009

[36] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. Lemna: Explaining deep learning based security applications. In
proceedings of the 2018 ACM SIGSAC conference on computer and communications security. 364–379. https://doi.org/10.1016/j.cose.2021.102198

[37] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo. 2018. A deep Recurrent Neural Network based approach for Internet of
Things malware threat hunting. Future Generation Computer Systems 85 (2018), 88–96. https://doi.org/10.1016/j.future.2018.03.007

[38] X. Han and B. Olivier. 2020. Interpretable and Adversarially-Resistant Behavioral Malware Signatures. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing. Association for Computing Machinery 35 (2020), 1668–1677. https://doi.org/10.1145/3341105.3373854

[39] William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, and Xin Li. 2016. DL4MD: A deep learning framework for intelligent malware detection. In
Proceedings of the International Conference on Data Science (ICDATA). 61. https://api.semanticscholar.org/CorpusID:22913382

[40] Jerome Dinal Herath, Priti Prabhakar Wakodikar, Ping Yang, and Guanhua Yan. 2022. CFGExplainer: Explaining Graph Neural Network-Based
Malware Classification from Control Flow Graphs. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 172–184. https://doi.org/10.1109/DSN53405.2022.00028

[41] Weiwei Hu and Ying Tan. 2018. Black-box attacks against RNN based malware detection algorithms. InWorkshops at the Thirty-Second AAAI
Conference on Artificial Intelligence. https://doi.org/10.48550/arXiv.1705.08131

[42] Weiwei Hu and Ying Tan. 2022. Generating adversarial malware examples for black-box attacks based on GAN. In International Conference on Data
Mining and Big Data. Springer, 409–423. https://doi.org/10.48550/ARXIV.1702.05983

[43] Giacomo Iadarola, Rosangela Casolare, Fabio Martinelli, Francesco Mercaldo, Christian Peluso, and Antonella Santone. 2021. A Semi-Automated
Explainability-Driven Approach for Malware Analysis through Deep Learning. In 2021 International Joint Conference on Neural Networks (IJCNN).
IEEE, 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533803

[44] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone. 2021. Towards an interpretable deep learning model for mobile malware detection and
family identification. Computers & Security 105 (2021), 102198. https://doi.org/10.1016/j.cose.2021.102198

[45] Rafiqul Islam, Ronghua Tian, Lynn M Batten, and Steve Versteeg. 2013. Classification of malware based on integrated static and dynamic features.
Journal of Network and Computer Applications 36, 2 (2013), 646–656. https://doi.org/10.1016/j.jnca.2012.10.004

[46] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. 1996. Artificial neural networks: A tutorial. Computer 29, 3 (1996), 31–44. https:
//doi.org/10.1109/2.485891

[47] G. Jain, M. Sharma, and B. Agarwal. 2019. Optimizing semantic LSTM for spam detection. International Journal of Information Technology 11, 2
(2019), 239–250. https://doi.org/10.1007/s41870-018-0157-5

[48] Aditya K., Slawomir Grzonkowski, and Nhien An Lekhac. 2018. Enabling Trust in Deep Learning Models: A Digital Forensics Case Study. In 2018
17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE). 1250–1255. https://doi.org/10.1109/TrustCom/BigDataSE.2018.00172

[49] Arzu Gorgulu Kakisim, Mert Nar, and Ibrahim Sogukpinar. 2020. Metamorphic malware identification using engine-specific patterns based on
co-opcode graphs. Computer Standards & Interfaces 71 (2020), 103443. https://doi.org/10.1016/j.csi.2020.103443

[50] Abhishek Karnik, Suchandra Goswami, and Ratan Guha. 2007. Detecting Obfuscated Viruses Using Cosine Similarity Analysis. In First Asia
International Conference on Modelling Simulation (AMS’07). 165–170. https://doi.org/10.1109/AMS.2007.31

[51] Izhar Ahmed Khan, Nour Moustafa, Dechang Pi, Karam M Sallam, Albert Y Zomaya, and Bentian Li. 2021. A New Explainable Deep Learning
Framework for Cyber Threat Discovery in Industrial IoT Networks. IEEE Internet of Things Journal (2021). https://doi.org/10.1109/JIOT.2021.3130156

[52] Martin Kinkead, Stuart Millar, Niall McLaughlin, and Philip O’Kane. 2021. Towards explainable CNNs for Android malware detection. Procedia
Computer Science 184 (2021), 959–965. https://doi.org/10.1016/j.procs.2021.03.118

[53] S. Kumar and B. Janet. 2022. DTMIC: Deep transfer learning for malware image classification. Journal of Information Security and Applications 64
(2022), 103063. https://doi.org/10.1016/j.jisa.2021.103063

31

https://doi.org/10.1007/s11416-013-0181-8
https://doi.org/10.1109/BigData52589.2021.9671343
https://doi.org/10.1016/j.diin.2015.02.001
https://doi.org/10.1109/IC-CGU58078.2024.10530706
https://doi.org/10.1109/IC-CGU58078.2024.10530706
https://doi.org/10.1016/j.cose.2020.101873
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1145/3236009
https://doi.org/10.1016/j.cose.2021.102198
https://doi.org/10.1016/j.future.2018.03.007
https://doi.org/10.1145/3341105.3373854
https://api.semanticscholar.org/CorpusID:22913382
https://doi.org/10.1109/DSN53405.2022.00028
https://doi.org/10.48550/arXiv.1705.08131
https://doi.org/10.48550/ARXIV.1702.05983
https://doi.org/10.1109/IJCNN52387.2021.9533803
https://doi.org/10.1016/j.cose.2021.102198
https://doi.org/10.1016/j.jnca.2012.10.004
https://doi.org/10.1109/2.485891
https://doi.org/10.1109/2.485891
https://doi.org/10.1007/s41870-018-0157-5
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00172
https://doi.org/10.1016/j.csi.2020.103443
https://doi.org/10.1109/AMS.2007.31
https://doi.org/10.1109/JIOT.2021.3130156
https://doi.org/10.1016/j.procs.2021.03.118
https://doi.org/10.1016/j.jisa.2021.103063

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

[54] Aditya Kuppa and Nhien-An Le-Khac. 2020. Black box attacks on explainable artificial intelligence (XAI) methods in cyber security. In 2020
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8. https://doi.org/10.1109/IJCNN48605.2020.9206780

[55] A. Kuppa and N.-A. Le-Khac. 2021. Adversarial XAI Methods in Cybersecurity. IEEE Transactions on Information Forensics and Security 16 (2021),
4924–4938. https://doi.org/10.1109/TIFS.2021.3117075

[56] Yuma Kurogome, Yuto Otsuki, Yuhei Kawakoya, Makoto Iwamura, Syogo Hayashi, Tatsuya Mori, and Koushik Sen. 2019. EIGER: Automated
IOC Generation for Accurate and Interpretable Endpoint Malware Detection. In Proceedings of the 35th Annual Computer Security Applications
Conference (San Juan, Puerto Rico, USA) (ACSAC ’19). Association for Computing Machinery, New York, NY, USA, 687–701. https://doi.org/10.
1145/3359789.3359808

[57] C. Lacave and F. J. Diez. 2000. A Review of Explanation Methods for Bayesian Networks. Knowledge Engineering Review 17 (2000), 2002.
https://doi.org/10.1017/S026988890200019X

[58] Pavel Laskov et al. 2014. Practical evasion of a learning-based classifier: A case study. In 2014 IEEE symposium on security and privacy. IEEE,
197–211. https://doi.org/10.1109/SP.2014.20

[59] Miles Q Li, Benjamin CM Fung, Philippe Charland, and Steven HH Ding. 2021. I-MAD: Interpretable malware detector using Galaxy Transformer.
Computers & Security 108 (2021), 102371. https://doi.org/10.1016/j.cose.2021.102371

[60] Wei-Jen Li, Salvatore Stolfo, Angelos Stavrou, Elli Androulaki, and Angelos D Keromytis. 2007. A study of malcode-bearing documents. In Detection
of Intrusions and Malware, and Vulnerability Assessment: 4th International Conference, DIMVA 2007 Lucerne, Switzerland, July 12-13, 2007 Proceedings
4. Springer, 231–250. https://doi.org/10.1007/978-3-540-73614-1_14

[61] Y. Li and Q. Liu. 2021. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments. Energy
Reports 7 (2021), 8176–8186. https://doi.org/10.1016/j.egyr.2021.08.126

[62] Yuzhou Lin and Xiaolin Chang. 2021. Towards Interpretable Ensemble Learning for Image-based Malware Detection. arXiv preprint arXiv:2101.04889
(2021). https://doi.org/10.48550/arXiv.2101.04889

[63] Hong Liu, Chen Zhong, Awny Alnusair, and Sheikh Rabiul Islam. 2021. FAIXID: a framework for enhancing ai explainability of intrusion detection
results using data cleaning techniques. Journal of Network and Systems Management 29, 4 (2021), 1–30. https://doi.org/10.1007/s10922-021-09606-8

[64] L. Liu and B. Wang. 2016. Malware classification using gray-scale images and ensemble learning. 3rd International Conference on Systems and
Informatics (ICSAI) 1018-1022 (2016). https://doi.org/10.1109/ICSAI.2016.7811100

[65] Liu Liu, Bao-sheng Wang, Bo Yu, and Qiu-xi Zhong. 2017. Automatic malware classification and new malware detection using machine learning.
Frontiers of Information Technology & Electronic Engineering 18, 9 (2017), 1336–1347. https://doi.org/10.1631/FITEE.1601325

[66] W. Liu, P. Ren, K. Liu, and H. Duan. 2011. Behavior-Based Malware Analysis and Detection. 2011 First International Workshop on Complexity and
Data Mining 39-42 (2011). https://doi.org/10.1109/IWCDM.2011.17

[67] Zhi Lu and Vrizlynn LL Thing. 2022. “How Does It Detect A Malicious App?” Explaining the Predictions of AI-based Malware Detector. In 2022
IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing,(HPSC)
and IEEE Intl Conference on Intelligent Data and Security (IDS). IEEE, 194–199. https://doi.org/10.1109/BigDataSecurityHPSCIDS54978.2022.00045

[68] Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 4768–4777.

[69] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma. 2019. A Combination Method for Android Malware Detection Based on Control Flow Graphs and Machine
Learning Algorithms. IEEE Access 7 (2019), 21235–21245. https://doi.org/10.1109/ACCESS.2019.2896003

[70] Gabriel Maciá-Fernández, José Camacho, Roberto Magán-Carrión, Pedro García-Teodoro, and Roberto Therón. 2018. UGR ‘16: A new dataset for
the evaluation of cyclostationarity-based network IDSs. Computers & Security 73 (2018), 411–424. https://doi.org/10.1016/j.cose.2017.11.004

[71] Andreas Madsen, Siva Reddy, and Sarath Chandar. 2022. Post-hoc Interpretability for Neural NLP: A Survey. ACM Comput. Surv. 55, 8, Article 155
(dec 2022), 42 pages. https://doi.org/10.1145/3546577

[72] Samaneh Mahdavifar. 2021. Explainable deep learning for detecting cyber threats. Ph.D. Dissertation. University of New Brunswick. https:
//unbscholar.lib.unb.ca/handle/1882/14572

[73] Samaneh Mahdavifar, Dima Alhadidi, and Ali A Ghorbani. 2022. Effective and efficient hybrid android malware classification using pseudo-label
stacked auto-encoder. Journal of network and systems management 30 (2022), 1–34. https://doi.org/10.1007/s10922-021-09634-4

[74] Samaneh Mahdavifar and Ali A Ghorbani. 2019. Application of deep learning to cybersecurity: A survey. Neurocomputing 347 (2019), 149–176.
https://doi.org/10.1016/j.neucom.2019.02.056

[75] Samaneh Mahdavifar and Ali A Ghorbani. 2023. CapsRule: Explainable Deep Learning for Classifying Network Attacks. IEEE Transactions on
Neural Networks and Learning Systems (2023). https://doi.org/10.1109/TNNLS.2023.3262981

[76] Samaneh Mahdavifar, Andi Fitriah Abdul Kadir, Rasool Fatemi, Dima Alhadidi, and Ali A Ghorbani. 2020. Dynamic android malware cat-
egory classification using semi-supervised deep learning. In 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf
on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE, 515–522. https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094

[77] Samaneh Mahdavifar, Nasim Maleki, Arash Habibi Lashkari, Matt Broda, and Amir H Razavi. 2021. Classifying malicious domains using DNS
traffic analysis. In 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE, 60–67.
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00024

32

https://doi.org/10.1109/IJCNN48605.2020.9206780
https://doi.org/10.1109/TIFS.2021.3117075
https://doi.org/10.1145/3359789.3359808
https://doi.org/10.1145/3359789.3359808
https://doi.org/10.1017/S026988890200019X
https://doi.org/10.1109/SP.2014.20
https://doi.org/10.1016/j.cose.2021.102371
https://doi.org/10.1007/978-3-540-73614-1_14
https://doi.org/10.1016/j.egyr.2021.08.126
https://doi.org/10.48550/arXiv.2101.04889
https://doi.org/10.1007/s10922-021-09606-8
https://doi.org/10.1109/ICSAI.2016.7811100
https://doi.org/10.1631/FITEE.1601325
https://doi.org/10.1109/IWCDM.2011.17
https://doi.org/10.1109/BigDataSecurityHPSCIDS54978.2022.00045
https://doi.org/10.1109/ACCESS.2019.2896003
https://doi.org/10.1016/j.cose.2017.11.004
https://doi.org/10.1145/3546577
https://unbscholar.lib.unb.ca/handle/1882/14572
https://unbscholar.lib.unb.ca/handle/1882/14572
https://doi.org/10.1007/s10922-021-09634-4
https://doi.org/10.1016/j.neucom.2019.02.056
https://doi.org/10.1109/TNNLS.2023.3262981
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00024

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[78] Al-Ani Mustafa Majid, Ahmed Jamal Alshaibi, Evgeny Kostyuchenko, and Alexander Shelupanov. 2023. A review of artificial intelligence based
malware detection using deep learning. Materials Today: Proceedings 80 (2023), 2678–2683. https://doi.org/10.1016/j.matpr.2021.07.012

[79] Mohammad Saiful Islam Mamun, Mohammad Ahmad Rathore, Arash Habibi Lashkari, Natalia Stakhanova, and Ali A Ghorbani. 2016. Detecting
malicious urls using lexical analysis. In Network and System Security: 10th International Conference, NSS 2016, Taipei, Taiwan, September 28-30, 2016,
Proceedings 10. Springer, 467–482. https://doi.org/10.1007/978-3-319-46298-130

[80] D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen. 2007. Comprehensible credit scoring models using rule extraction from support vector
machines. European Journal of Operational Research 183, 3 (2007), 1466–1476. https://doi.org/10.1016/j.ejor.2006.04.051

[81] S. M. Mathews. 2019. Explainable Artificial Intelligence Applications in NLP, Biomedical, and Malware Classification: A Literature Review. In
Intelligent Computing, R. Bhatia Arai and S. Kapoor (Eds.). International Publishing, Springer, 1269–1292. https://doi.org/10.1007/978-3-030-22868-
2_90

[82] Akshay Mathur, Laxmi Mounika Podila, Keyur Kulkarni, Quamar Niyaz, and Ahmad Y Javaid. 2021. NATICUSdroid: A malware detection
framework for Android using native and custom permissions. Journal of Information Security and Applications 58 (2021), 102696. https:
//doi.org/10.1016/j.jisa.2020.102696

[83] M. Melis, D. Maiorca, B. Biggio, G. Giacinto, and F. Roli. 2018. Explaining Black-box Android Malware Detection. 26th European Signal Processing
Conference (EUSIPCO) 524 (2018), 524–528. https://doi.org/10.23919/EUSIPCO.2018.8553598

[84] Alan Mills, Theodoros Spyridopoulos, and Phil Legg. 2019. Efficient and interpretable real-time malware detection using random-forest. In 2019
International conference on cyber situational awareness, data analytics and assessment (Cyber SA). IEEE, 1–8. https://doi.org/10.1109/CyberSA.2019.
8899533

[85] Jeff Mitchell, Niall McLaughlin, and Jesus Martinez-del Rincon. 2024. Generating sparse explanations for malicious Android opcode sequences
using hierarchical LIME. Computers & Security 137 (2024), 103637. https://doi.org/10.1016/j.cose.2023.103637

[86] Hamad Naeem, Bing Guo, Muhammad Rashid Naeem, and Danish Vasan. 2019. Visual malware classification using local and global malicious
pattern. Journal of Computers 6 (2019), 73–83. https://doi.org/10.3966/199115992019123006006

[87] A. P. Namanya, A. Cullen, I. U. Awan, and J. P. Disso. 2018. The World of Malware: An Overview. IEEE 6th International Conference on Future
Internet of Things and Cloud (FiCloud) (2018), 420–427. https://doi.org/10.1109/FiCloud.2018.00067

[88] Antonio Nappa, M Zubair Rafique, and Juan Caballero. 2015. The MALICIA dataset: identification and analysis of drive-by download operations.
International Journal of Information Security 14, 1 (2015), 15–33. https://doi.org/10.1007/s10207-014-0248-7

[89] Lakshmanan Nataraj, Sreejith Karthikeyan, Gregoire Jacob, and Bangalore S Manjunath. 2011. Malware images: visualization and automatic
classification. In Proceedings of the 8th international symposium on visualization for cyber security. 1–7. https://doi.org/10.1145/2016904.2016908

[90] Smita Naval, Vijay Laxmi, Muttukrishnan Rajarajan, Manoj Singh Gaur, and Mauro Conti. 2015. Employing Program Semantics for Malware
Detection. IEEE Transactions on Information Forensics and Security 10, 12 (2015), 2591–2604. https://doi.org/10.1109/TIFS.2015.2469253

[91] Stavros D Nikolopoulos and Iosif Polenakis. 2017. A graph-based model for malware detection and classification using system-call groups. Journal
of Computer Virology and Hacking Techniques 13, 1 (2017), 29–46. https://doi.org/10.1007/s11416-016-0267-1

[92] S. Niksefat, P. Kaghazgaran, and B. Sadeghiyan. 2017. Privacy issues in intrusion detection systems: A taxonomy, survey and future directions.
Computer Science Review 25 (2017), 69–78. https://doi.org/10.1016/j.cosrev.2017.07.001

[93] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. 2019. Dynamic malware analysis in the modern era—A state of the art survey. ACM
Computing Surveys (CSUR) 52, 5 (2019), 1–48. https://doi.org/10.1145/3329786

[94] Zhixin Pan, Jennifer Sheldon, and Prabhat Mishra. 2020. Hardware-Assisted Malware Detection using Explainable Machine Learning. In 2020 IEEE
38th International Conference on Computer Design (ICCD). 663–666. https://doi.org/10.1109/ICCD50377.2020.00113

[95] Younghee Park and Douglas Reeves. 2011. Deriving common malware behavior through graph clustering. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security. 497–502. https://doi.org/10.1016/j.cose.2013.09.006

[96] Lukas Pirch, Alexander Warnecke, Christian Wressnegger, and Konrad Rieck. 2021. Tagvet: Vetting malware tags using explainable machine
learning. In Proceedings of the 14th European Workshop on Systems Security. 34–40. https://doi.org/10.1145/3447852.3458719

[97] Paul Prasse, Jan Brabec, Jan Kohout, Martin Kopp, Lukas Bajer, and Tobias Scheffer. 2021. Learning explainable representations of malware
behavior. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 53–68. https://doi.org/10.1007/978-3-
030-86514-6_4

[98] Yanchen Qiao, Weizhe Zhang, Zhicheng Tian, Laurence T Yang, Yang Liu, and Mamoun Alazab. 2022. Adversarial Malware Sample Generation
Method Based on the Prototype of Deep Learning Detector. Computers & Security (2022), 102762. https://doi.org/10.1016/j.cose.2022.102762

[99] Mohammad Muhibur Rahman, Anushua Ahmed, Mutasim Husain Khan, Mohammad Rakibul Hasan Mahin, Fahmid Bin Kibria, Dewan Ziaul Karim,
and Mohammad Kaykobad. 2023. CNN vs Transformer Variants: Malware Classification Using Binary Malware Images. In 2023 IEEE International
Conference on Communication, Networks and Satellite (COMNETSAT). IEEE, 308–315. https://doi.org/10.1109/COMNETSAT59769.2023.10420585

[100] Asma Razgallah, Raphaël Khoury, Sylvain Hallé, and Kobra Khanmohammadi. 2021. A survey of malware detection in Android apps: Recommen-
dations and perspectives for future research. Computer Science Review 39 (2021), 100358. https://doi.org/10.1016/j.cosrev.2020.100358

[101] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).
Association for Computing Machinery, New York, NY, USA, 1135–1144. https://doi.org/10.1145/2939672.2939778

33

https://doi.org/10.1016/j.matpr.2021.07.012
https://doi.org/10.1007/978-3-319-46298-1 30
https://doi.org/10.1016/j.ejor.2006.04.051
https://doi.org/10.1007/978-3-030-22868-2_90
https://doi.org/10.1007/978-3-030-22868-2_90
https://doi.org/10.1016/j.jisa.2020.102696
https://doi.org/10.1016/j.jisa.2020.102696
https://doi.org/10.23919/EUSIPCO.2018.8553598
https://doi.org/10.1109/CyberSA.2019.8899533
https://doi.org/10.1109/CyberSA.2019.8899533
https://doi.org/10.1016/j.cose.2023.103637
https://doi.org/10.3966/199115992019123006006
https://doi.org/10.1109/FiCloud.2018.00067
https://doi.org/10.1007/s10207-014-0248-7
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1109/TIFS.2015.2469253
https://doi.org/10.1007/s11416-016-0267-1
https://doi.org/10.1016/j.cosrev.2017.07.001
https://doi.org/10.1145/3329786
https://doi.org/10.1109/ICCD50377.2020.00113
https://doi.org/10.1016/j.cose.2013.09.006
https://doi.org/10.1145/3447852.3458719
https://doi.org/10.1007/978-3-030-86514-6_4
https://doi.org/10.1007/978-3-030-86514-6_4
https://doi.org/10.1016/j.cose.2022.102762
https://doi.org/10.1109/COMNETSAT59769.2023.10420585
https://doi.org/10.1016/j.cosrev.2020.100358
https://doi.org/10.1145/2939672.2939778

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

[102] Ishai Rosenberg, Shai Meir, Jonathan Berrebi, Ilay Gordon, Guillaume Sicard, and Eli Omid David. 2020. Generating end-to-end adversarial
examples for malware classifiers using explainability. In 2020 international joint conference on neural networks (IJCNN). IEEE, 1–10. https:
//doi.org/10.1109/IJCNN48605.2020.9207168

[103] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2020. Query-efficient black-box attack against sequence-based malware classifiers.
In Annual Computer Security Applications Conference. 611–626. https://doi.org/10.1145/3427228.3427230

[104] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. 2018. Generic black-box end-to-end attack against state of the art API call based
malware classifiers. In International Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 490–510. https://doi.org/10.1007/978-3-
030-00470-5_23

[105] I. A. Saeed, A. Selamat, and A. M. A. Abuagoub. 2013. A Survey on Malware and Malware Detection Systems. International Journal of Computer
Applications 67, 16 (2013), 25–31. https://doi.org/10.5120/11480-7108

[106] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller. 2019. Explainable AI: interpreting, explaining and
visualizing deep learning. Vol. 11700. Springer Nature.

[107] M. Saqib, B. C. M. Fung, P. Charland, and A. Walenstein. 2024. GAGE: Genetic Algorithm-based Graph Explainer for Malware Analysis. In Proc. of
the 40th IEEE International Conference on Data Engineering (ICDE). IEEE Computer Society, Utrecht, Netherlands, 2258–2270.

[108] V Sai Sathyanarayan, Pankaj Kohli, and Bezawada Bruhadeshwar. 2008. Signature generation and detection of malware families. In Information
Security and Privacy: 13th Australasian Conference, ACISP 2008, Wollongong, Australia, July 7-9, 2008. Proceedings 13. Springer, 336–349. https:
//doi.org/10.1007/978-3-540-70500-0_25

[109] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural networks 61 (2015), 85–117. https://doi.org/10.1016/j.neunet.
2014.09.003

[110] M.G. Schultz, E. Eskin, F. Zadok, and S.J. Stolfo. 2001. Data mining methods for detection of new malicious executables. In Proceedings 2001 IEEE
Symposium on Security and Privacy. SP 2001. 38–49. https://doi.org/10.1109/SECPRI.2001.924286

[111] Ali Shafiei, Vera Rimmer, Ilias Tsingenopoulos, Lieven Desmet, and Wouter Joosen. 2022. Position Paper: On Advancing Adversarial Malware
Generation Using Dynamic Features. In Proceedings of the 1st Workshop on Robust Malware Analysis (Nagasaki, Japan) (WoRMA ’22). Association
for Computing Machinery, New York, NY, USA, 15–20. https://doi.org/10.1145/3494110.3528244

[112] F. Shahzad and M. Farooq. 2012. ELF-Miner: using structural knowledge and data mining methods to detect new (Linux) malicious executables.
Knowledge and Information Systems 30, 3 (2012), 589–612. https://doi.org/10.1007/s10115-011-0393-5

[113] Larissa Shamseer, David Moher, Mike Clarke, Davina Ghersi, Alessandro Liberati, Mark Petticrew, Paul Shekelle, and Lesley A Stewart. 2015.
Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. Bmj 349 (2015).
https://doi.org/10.1136/bmj.g7647

[114] Madhu K Shankarapani, Subbu Ramamoorthy, Ram S Movva, and Srinivas Mukkamala. 2011. Malware detection using assembly and API call
sequences. Journal in computer virology 7 (2011), 107–119. https://doi.org/10.1007/s11416-010-0141-5

[115] Yashovardhan Sharma, Simon Birnbach, and Ivan Martinovic. 2023. RADAR: A TTP-based Extensible, Explainable, and Effective System for
Network Traffic Analysis and Malware Detection. In Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference (Stavanger,
Norway) (EICC ’23). Association for Computing Machinery, New York, NY, USA, 159–166. https://doi.org/10.1145/3590777.3590804

[116] J. Singh and J. Singh. 2021. A survey on machine learning-based malware detection in executable files. Journal of Systems Architecture 112 (2021),
101861. https://doi.org/10.1016/j.sysarc.2020.101861

[117] Jagsir Singh and Jaswinder Singh. 2021. A survey on machine learning-based malware detection in executable files. Journal of Systems Architecture
112 (2021), 101861. https://doi.org/j.sysarc.2020.101861

[118] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. 2020. Fooling LIME and SHAP: Adversarial Attacks on Post
Hoc Explanation Methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (New York, NY, USA) (AIES ’20). Association for
Computing Machinery, New York, NY, USA, 180–186. https://doi.org/10.1145/3375627.3375830

[119] Santosh K Smmarwar, Govind P Gupta, and Sanjay Kumar. 2023. XAI-AMD-DL: An Explainable AI Approach for Android Malware Detection
System Using Deep Learning. In 2023 IEEE World Conference on Applied Intelligence and Computing (AIC). IEEE, 423–428. https://doi.org/10.1109/
AIC57670.2023.10263974

[120] S. M. Sohi, J.-P. Seifert, and F. Ganji. 2021. RNNIDS: Enhancing network intrusion detection systems through deep learning. Computers & Security
102 (2021), 102151. https://doi.org/10.1016/j.cose.2020.102151

[121] Diego Soi, Alessandro Sanna, Davide Maiorca, and Giorgio Giacinto. 2024. Enhancing android malware detection explainability through function
call graph APIs. Journal of Information Security and Applications 80 (2024), 103691. https://doi.org/10.1016/j.jisa.2023.103691

[122] A. Souri and R. Hosseini. 2018. A state-of-the-art survey of malware detection approaches using data mining techniques. Human-Centric Computing
and Information Sciences 8, 1 (2018), 3. https://doi.org/10.1186/s13673-018-0125-x

[123] G. Srivastava, R. H. Jhaveri, S. Bhattacharya, S. Pandya, Maddikunta Rajeswari, P. K. R., G. Yenduri, J. G. Hall, M. Alazab, and T. R. Gadekallu. 2022.
XAI for Cybersecurity: State of the Art, Challenges, Open Issues and Future Directions. https://doi.org/10.48550/ARXIV.2206.03585

[124] T. Stevens. 2020. Knowledge in the grey zone: AI and cybersecurity. Digital War 1, 1 (2020), 164–170. https://doi.org/10.1057/s42984-020-00007-w
[125] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai. 2018. Lightweight Classification of IoTMalware Based on Image Recognition.

IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) 2 (2018), 664–669. https://doi.org/10.1109/COMPSAC.2018.10315

34

https://doi.org/10.1109/IJCNN48605.2020.9207168
https://doi.org/10.1109/IJCNN48605.2020.9207168
https://doi.org/10.1145/3427228.3427230
https://doi.org/10.1007/978-3-030-00470-5_23
https://doi.org/10.1007/978-3-030-00470-5_23
https://doi.org/10.5120/11480-7108
https://doi.org/10.1007/978-3-540-70500-0_25
https://doi.org/10.1007/978-3-540-70500-0_25
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1145/3494110.3528244
https://doi.org/10.1007/s10115-011-0393-5
https://doi.org/10.1136/bmj.g7647
https://doi.org/10.1007/s11416-010-0141-5
https://doi.org/10.1145/3590777.3590804
https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/j.sysarc.2020.101861
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1109/AIC57670.2023.10263974
https://doi.org/10.1109/AIC57670.2023.10263974
https://doi.org/10.1016/j.cose.2020.102151
https://doi.org/10.1016/j.jisa.2023.103691
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.48550/ARXIV.2206.03585
https://doi.org/10.1057/s42984-020-00007-w
https://doi.org/10.1109/COMPSAC.2018.10315

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[126] Trong-Nghia To, Hien Do Hoang, Phan The Duy, and Van-Hau Pham. 2023. MalDEX: An Explainable Malware Detection System Based on Ensemble
Learning. In 2023 International Conference on Multimedia Analysis and Pattern Recognition (MAPR). 1–6. https://doi.org/10.1109/MAPR59823.2023.
10288922

[127] K. Vredenburgh. 2021. The Right to Explanation. Vol. 30. Wiley Online Library. 209–229 pages. https://doi.org/10.1111/jopp.12262
[128] Gérard Wagener, Radu State, and Alexandre Dulaunoy. 2008. Malware behaviour analysis. Journal in computer virology 4 (2008), 279–287.

https://doi.org/10.1007/s11416-007-0074-9
[129] HuaWang, Cuiqin Ma, and Lijuan Zhou. 2009. A brief review of machine learning and its application. In 2009 international conference on information

engineering and computer science. IEEE, 1–4. https://doi.org/10.1109/ICIECS.2009.5362936
[130] Q. Wang, H. Yang, G. Wu, K.-K. R. Choo, Z. Zhang, G. Miao, and Y. Ren. 2022. Black-box adversarial attacks on XSS attack detection model.

Computers & Security 113 (2022), 4102554. https://doi.org/10.1016/j.cose.2021.102554
[131] Zihao Wang, K. W. Fok, and V. L. L. Thing. 2022. Machine learning for encrypted malicious traffic detection: Approaches, datasets and comparative

study. Computers & Security 113 (2022), 102542. https://doi.org/10.1016/j.cose.2021.102542
[132] Zhiqiang Wang, Q. Liu, and Y. Chi. 2020. Review of Android Malware Detection Based on Deep Learning. IEEE Access 8 (2020), 181102–181126.

https://doi.org/10.1109/ACCESS.2020.3028370
[133] Bozhi Wu, Sen Chen, Cuiyun Gao, Lingling Fan, Yang Liu, Weiping Wen, and Michael R Lyu. 2021. Why an android app is classified as

malware: Toward malware classification interpretation. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 2 (2021), 1–29.
https://doi.org/10.1145/3423096

[134] Tobias Wüchner, Martín Ochoa, and Alexander Pretschner. 2015. Robust and effective malware detection through quantitative data flow graph
metrics. In Detection of Intrusions and Malware, and Vulnerability Assessment: 12th International Conference, DIMVA 2015, Milan, Italy, July 9-10,
2015, Proceedings 12. Springer, 98–118. https://doi.org/10.1007/978-3-319-20550-2_6

[135] T.Wüchner, M. Ochoa, and A. Pretschner. 2014. Malware Detection with Quantitative Data FlowGraphs. In Proceedings of the 9th ACM Symposium on
Information. Computer and Communications Security, 271–282. https://doi.org/10.1145/2590296.2590319 https://doi.org/10.1145/2590296.2590319.

[136] Fei Xiao, Zhaowen Lin, Yi Sun, and Yan Ma. 2019. Malware detection based on deep learning of behavior graphs. Mathematical Problems in
Engineering 2019, 1 (2019), 8195395. https://doi.org/10.1155/2019/8195395

[137] G. Xiao, J. Li, Y. Chen, and K. Li. 2020. MalFCS: An effective malware classification framework with automated feature extraction based on deep
convolutional neural networks. J. Parallel Distributed Comput. 141 (2020), 49–58. https://doi.org/10.1016/j.jpdc.2020.03.012

[138] Hiromu Yakura, Shinnosuke Shinozaki, Reon Nishimura, Yoshihiro Oyama, and Jun Sakuma. 2017. Malware Analysis of Imaged Binary Samples by
Convolutional Neural Network with Attention Mechanism. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security (Dallas,
Texas, USA) (AISec ’17). Association for Computing Machinery, New York, NY, USA, 55–56. https://doi.org/10.1145/3128572.3140457

[139] Anli Yan, Zhenxiang Chen, Haibo Zhang, Lizhi Peng, Qiben Yan, Muhammad Umair Hassan, Chuan Zhao, and Bo Yang. 2021. Effective detection
of mobile malware behavior based on explainable deep neural network. Neurocomputing 453 (2021), 482–492. https://doi.org/10.1016/j.neucom.
2020.09.082

[140] J. Yang, T. Li, G. Liang, Y. Wang, T. Gao, and F. Zhu. 2020. Spam transaction attack detection model based on GRU and WGAN-div. Computer
Communications 161 (2020), 172–182. https://doi.org/10.1016/j.comcom.2020.07.031

[141] Wei Yang, Deguang Kong, Tao Xie, and Carl A. Gunter. 2017. Malware Detection in Adversarial Settings: Exploiting Feature Evolutions and
Confusions in Android Apps. In Proceedings of the 33rd Annual Computer Security Applications Conference (Orlando, FL, USA) (ACSAC ’17).
Association for Computing Machinery, New York, NY, USA, 288–302. https://doi.org/10.1145/3134600.3134642

[142] Xin Yao. 1993. A review of evolutionary artificial neural networks. International journal of intelligent systems 8, 4 (1993), 539–567. https:
//doi.org/10.1007/s10462-011-9270-6

[143] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024. A survey on large language model (llm) security and privacy:
The good, the bad, and the ugly. High-Confidence Computing (2024), 100211. https://doi.org/10.1016/j.hcc.2024.100211

[144] Yanfang Ye, Lingwei Chen, Shifu Hou, William Hardy, and Xin Li. 2018. DeepAM: a heterogeneous deep learning framework for intelligent
malware detection. Knowledge and Information Systems 54 (2018), 265–285. https://doi.org/10.1007/s10115-017-1058-9

[145] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula. 2017. Autoencoder-based feature learning for cyber security applications. International
Joint Conference on Neural Networks (IJCNN) (2017), 3854–3861. https://doi.org/10.1109/IJCNN.2017.7966342

[146] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu. 2021. A survey of visual analytics techniques for machine learning. Computational Visual
Media 7, 1 (2021), 3–36. https://doi.org/10.1007/s41095-020-0191-7

[147] H. Zhang, L. Huang, C. Q. Wu, and Z. Li. 2020. An effective convolutional neural network based on SMOTE and Gaussian mixture model for
intrusion detection in imbalanced dataset. Computer Networks 177 (2020), 107315. https://doi.org/10.1016/j.comnet.2020.107315

[148] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and Ting Wang. 2020. Interpretable Deep Learning under Fire. In Proceedings of
the 29th USENIX Conference on Security Symposium (SEC’20). USENIX Association, USA, Article 94, 18 pages.

[149] M. Zheng, M. Sun, and J. C. S. Lui. 2013. Droid Analytics: A Signature Based Analytic System to Collect, Extract, Analyze and Associate
Android Malware. In 12th IEEE International Conference on Trust, Security and Privacy in Computing and. Communications, 163–171. https:
//doi.org/10.1109/TrustCom.2013.25

[150] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization and evolution. In 2012 IEEE symposium on security and privacy.
IEEE, 95–109. https://doi.org/10.1109/SP.2012.16

35

https://doi.org/10.1109/MAPR59823.2023.10288922
https://doi.org/10.1109/MAPR59823.2023.10288922
https://doi.org/10.1111/jopp.12262
https://doi.org/10.1007/s11416-007-0074-9
https://doi.org/10.1109/ICIECS.2009.5362936
https://doi.org/10.1016/j.cose.2021.102554
https://doi.org/10.1016/j.cose.2021.102542
https://doi.org/10.1109/ACCESS.2020.3028370
https://doi.org/10.1145/3423096
https://doi.org/10.1007/978-3-319-20550-2_6
https://doi.org/10.1145/2590296.2590319
https://doi.org/10.1155/2019/8195395
https://doi.org/10.1016/j.jpdc.2020.03.012
https://doi.org/10.1145/3128572.3140457
https://doi.org/10.1016/j.neucom.2020.09.082
https://doi.org/10.1016/j.neucom.2020.09.082
https://doi.org/10.1016/j.comcom.2020.07.031
https://doi.org/10.1145/3134600.3134642
https://doi.org/10.1007/s10462-011-9270-6
https://doi.org/10.1007/s10462-011-9270-6
https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.1007/s10115-017-1058-9
https://doi.org/10.1109/IJCNN.2017.7966342
https://doi.org/10.1007/s41095-020-0191-7
https://doi.org/10.1016/j.comnet.2020.107315
https://doi.org/10.1109/TrustCom.2013.25
https://doi.org/10.1109/TrustCom.2013.25
https://doi.org/10.1109/SP.2012.16

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

[151] D. Zhu, H. Jin, Y. Yang, D. Wu, and W. Chen. 2017. DeepFlow: Deep learning-based malware detection by mining Android application for abnormal
usage of sensitive data. IEEE Symposium on Computers and Communications (ISCC) (2017), 438–443. https://doi.org/10.1109/ISCC.2017.8024568

APPENDIX

A. BACKGROUND

A1. Rise of AI

With an incalculable amount of data gathered daily, it is not feasible to analyze and correlate them using only the
intervention of a human agent. To automate and systematically analyze and explore big data, researchers have started
predicting and classifying data using statistical and mathematical concepts known as traditional ML models. Traditional
ML models include, but are not limited to linear regression, logistic regression, polynomial regression, DT, RF, SVM,
and K-mean clustering. For instance, the foundational concepts of machine learning have been extensively discussed
by Carbonell et al. [21], while the practical applications of ANNs in data classification are detailed by Jain et al. [46].
Further, Wang et al. [129] provide a brief review of ML-applications across various fields such as medicine, agriculture,
and environmental science, demonstrating the versatility of ML techniques. Finally, the development and applications
of evolutionary ANNs are reviewed by Yao [142], illustrating their role in enhancing the capabilities of traditional
neural networks. However, traditional ML methods are not efficient in solving complex problems, especially when the
decision boundary is highly non-linear. Consequently, DL algorithms [8, 109], inspired by the working of the human
brain, came into the picture. The deep network architectures in the DL models can extract high-level representations of
the input data using several non-linear complex layers.

A2. Black-boxing in AI

AI has revolutionized our life by offering effective and efficient traditional ML and DL-based algorithms that mimic
what humans can think and do. Although these models can achieve human performance in a wide range of applications,
they are unable to explain their output results in a human-understandable way. They can classify inputs into different
categories, but cannot explain why a particular decision was made. Each AI-based model can provide a different level of
explainability. For example, DT are to some extent inherently explainable, because of the rules they generate during the
classification process, whereas SVM’s predictions are is too complicated to be understand among all ML models. ANN
improved the performance of every AI model, but due to their inherent robustness and complexity, they almost provide
the least amount of reliability, interpretability, and transparency [2] (check Figure 7).

A3. ‘Right to Explanation’ and XAI

‘Right to Explanation’ (RTE) was the primary motivation for explainable AI models [127]. According to this law, any
group or individual has the right to know the explanation behind every personal, legal, or commercial decision made by
any professional or legal executive [127], e.g., rejection of loan application, health insurance coverage, etc. Because any
prediction or decision automatically made using ANN has only a result without an explanation of how that result was
obtained, DL methods are in violation of the law. For example, in digital forensics, a false prediction/classification may
lead us to the wrong criminal. Therefore, a model needs to be transparent in order to be able to rely on it for automated
forensics results.

In the case of malware analysis, DL-based models can be a useful. However, adopting these models could be
problematic if the model’s decisions are not explainable to the involved stakeholders. Security administration may

36

https://doi.org/10.1109/ISCC.2017.8024568

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 7. Relation between performance and explainability of ML/DL models.

apply RTE because a false positive malware detection could result in unwanted system disruptions and downtime,
and a false negative could leave the system vulnerable to an attack, which may put the organization in jeopardy. By
providing explanations for the decisions made by the model, analysts can better understand the reasoning behind the
results and improve the accuracy and effectiveness of the malware analysis. Furthermore, security analysts can identify
the causes of the incidents to help them in mitigating the risk and adjusting the security policies of the organization
accordingly [72].

B. METHODOLOGY AND ARTICLE SELECTION

Fig. 8. Flow chart of the methodology chosen for article
searching and screening (Step-wise representation)

Table 7. Parameters of the survey

Parameter

Literature
databases

CiteSeerX, ACM digital library, IEEE Ex-
plore, SCOPUS, Google Scholar

Journal
databases

SpringerLink, Science Direct Journals,
Elsevier, IEEE, Archive

Types of publi-
cations

Archive, journal articles, conference pa-
pers

Inclusion/ Ex-
clusion criteria

Relevant to XAI and malware analysis

Keywords Malware analysis, XAI, Interpretation,
Explainable, Transparent models, Ad-
versarial learning, Adversarial machine
learning, Evasion attacks, Poisoning at-
tacks, Deep learning, Adversarial exam-
ples, Cyber security, Fragile XAI

We conducted a systematic review for our proposed literature survey. Researchers suggested various frameworks or
approaches for conducting literature reviews in a systematic way, such as the PRISMA model [113] (see Fig. 8).

37

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Mohd Saqib, Samaneh Mahdavifar, Benjamin C. M. Fung, and Philippe Charland

To perform our study we conducted a thorough search for related articles using various databases such as Google
Scholar, Scopus, and different journals’ websites. Our initial step involved filtering the records and eliminating duplicates.
We then proceeded to remove non-qualitative articles. To select the papers once the dataset was finalized we applied
eligibility criteria based on specific features such as relevance to XAI and malware analysis. Ultimately we selected 27
articles that met our criteria for evaluation in the study, as shown in Figure 8. The filtering process was based on the
relevance of articles to the topic under investigation. Table 7 highlights the parameters we used in our survey.

During the revision of the paper, we repeated the same process with the same selection criteria for papers published
from 2023 onward and the analysis. Therefore, Figure 8 does not include the second revision phase.

C. FUTURE DIRECTIONS AND EMERGING APPROACHES

This section provides an overview of these advancements and discusses their potential impact on future research and
practical applications.

Unstructured and multi-modal data integration: Unstructured data such as call graphs, CFGs, and API graphs,
using Graph-based models like GAGE [107] and CFGExplainer [40], have shown promise in capturing the complex
relationships within malware code. These models can provide more interpretable insights by analyzing malicious
executables’ code and data flow graphs. The robustness and discriminative power of these models suggest they will play
a crucial role in advancing EMD. Moreover, the integration of multi-modal data, combining information from different
sources such as network traffic, system logs, and binary analysis, offers a comprehensive view of malware behavior.
Multi-modal approaches can improve detection accuracy and provide richer explanations by leveraging diverse data
types. For instance, HYDRA [33] learns from various sources to maximize the benefits of multiple feature types to reflect
the characteristics of malware executables. Future research should focus on developing frameworks that effectively
integrate and analyze multi-modal data to enhance both the performance and interpretability of EMD.

Federated learning and privacy-preserving techniques: Recent studies have highlighted the importance of
privacy-preserving techniques in malware detection, particularly in environments like IoT devices where data sensitivity
is paramount. Federated learning, which enables model training across decentralized devices without sharing raw
data, has gained traction. For instance, D’Angelo et al. [28] demonstrated a significant advancement in this area by
integrating transfer learning and federated learning to improve regression analysis in malware detection. This approach
not only enhances privacy but also maintains high accuracy and efficiency, making it a valuable direction for future
research.

Advances in NLP: The application of NLP techniques to malware analysis is an emerging area that leverages the
power of models based on Large Language Models (LLMs). For example, this survey [143] highlights that using LLMs
such as GPT-4 to detect malware is a promising application. These models (e.g., BERT, GPT) can analyze code and
documentation to identify patterns indicative of malicious behavior. By integrating NLP with traditional malware
detection methods, researchers can improve the interpretability and accuracy of their models. Future work could
explore the synergy between NLP and other explainability techniques to enhance the transparency of malware detection
systems.

Quantum machine learning: Quantum computing holds potential for significant advancements in machine
learning, including malware detection. Quantum Machine Learning (QML) algorithms can process information at
unprecedented speeds, potentially improving the efficiency and accuracy of detection models. For instance, Giovanni
et al. [23] present a malware detection method using quantum machine learning, comparing its performance and

38

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

A Comprehensive Analysis of Explainable AI for Malware Hunting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

explainability with CNNs. Although still in the early stages, exploring the application of QML to XAI and malware
detection could open new avenues for research and development.

Received DD MMM YYY; revised DD MMM YYYY; accepted DD MMM YYYY

39

	Abstract
	1 Introduction
	2 Related survey articles
	3 Malware Analysis and Detection
	3.1 Traditional approaches for malware analysis
	3.2 ML/DL algorithms for malware analysis
	3.3 Datasets of the studies

	4 XAI-based Malware Analysis
	4.1 General approach
	4.2 Categories of XAI
	4.3 XAI Methods
	4.4 XAI malware analysis model evaluation

	5 Discussion and Analysis
	5.1 Performance analysis
	5.2 Specificity to malware analysis
	5.3 Method of communication
	5.4 Time Efficiency
	5.5 Adversarial attack as limitation

	6 Conclusion
	References

