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Abstract 7 

In recent years, the massive data collection in buildings has paved the way for the 8 

development of accurate data-driven building models (DDBMs) for various applications. However, 9 

a model with a high overall accuracy would not ensure a good predictive performance on all 10 

conditions. The biased predictive performance for some conditions may cause fairness problems. 11 

Although pre-processing methods were proposed to improve predictive fairness by removing 12 

discrimination from training datasets for classification problems in building engineering domain, 13 

they lack the ability of achieving user-defined trade-off between fairness and accuracy for 14 

regression problems, such as energy prediction. To improve the predictive fairness of regression 15 

models in terms of having similar predictive performance between different conditions, this study 16 

proposes four in-processing methods, namely mean residual difference penalized (MRDP) 17 

regression, mean square error penalized (MSEP) regression, mean residual difference constrained 18 

(MRDC) regression, and mean square error constrained (MSEC) regression, to add fairness-related 19 

penalties or constraints to the loss function of regression models. Then, these proposed methods 20 

are applied to develop linear regression models for energy prediction of an apartment. In this case 21 

study, improving predictive fairness means to let the energy predictive accuracy be uniform no 22 

matter if there is occupancy movement. The result shows that MSEC is the most powerful method 23 

to improve fairness in terms of mean square error (MSE) rate and mean absolute error (MAE) rate, 24 

while MSEP is another good option to improve fairness without a significant decrease on the 25 

overall accuracy. MRDC is effective on improving the similarity of absolute mean residual 26 

difference (abs(MRD)) between different conditions, however, MRDP would not affect the 27 

predictive result. 28 
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1. Introduction 1 

In recent years, the widespread installation of smart sensors, Internet-of-Things, and smart 2 

home energy management systems (HEMSs) makes buildings data-rich [1]. The abundant data 3 

could be utilized to train data-driven models to represent building states, such as indoor air 4 

temperature [2], indoor air quality [3], HVAC operation status [4,5], energy consumption [6,7], 5 

etc. Among these models, energy prediction models could be integrated into model predictive 6 

controller to provide optimal control signals for building energy management systems to achieve 7 

energy saving, cost saving, and/or peak shifting [8]. Accurate energy prediction could also benefit 8 

suppliers in energy generation and distribution planning [9]. 9 

Existing energy prediction models mainly treat energy prediction as regression problems 10 

whose outputs are continuous values [10]. The primary aim of these models is to be accurate 11 

enough so that predictive results are close enough to measured values. Commonly used accuracy 12 

measures for these regression models include MAE, MAPE, RMSE, CV(RMSE), R2, etc. [11]. 13 

However, a high overall accuracy could not ensure the predictive performance is fairly perfect in 14 

different conditions. In fact, improving predictive performance similarity between distinct 15 

conditions could ensure that the predictive model provides a fair service to the users by ensuring  16 

them to receive a uniform predictive performance. For instance, if one energy predictive model is 17 

more accurate when some occupants are in the building than the period that some other occupants 18 

are in the building, energy scheduling service provided based on the model would be more efficient 19 

for the former occupants, thus, it would be unfair to other ones who receive less accurate 20 

information. 21 

Fairness problems are varied and could mainly be classified into three categories based on 22 

the relationship between predictive results and the protected attribute(s) [12]: Type I. The predicted 23 

output is independent of the protected attribute(s). Type II. The predictive performance is similar 24 

across classes/conditions defined by the protected attribute(s). Type III. The predicted output is 25 

independent of the predictive probability score for samples coming from different 26 

classes/conditions defined by the protected attribute(s). Here, protected attributes are also called 27 

sensitive attributes. They define conditions in which the predictive result is not willing to be biased. 28 

For instance, race, age, gender, occupancy-related data (e.g., occupancy status, occupancy count, 29 

and occupants’ occupation, etc.) are commonly used protected attributes because different 30 
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predictive service for conditions defined by them could cause discrimination problems. Note that 1 

achieving different types of fairness at the same time is almost impossible [13] because of their 2 

distinct evaluation criteria. Thus, researchers are recommended to clearly define which type of 3 

fairness that they plan to achieve. In this study, achieving fairness refers to have uniform predictive 4 

accuracy among different conditions defined by the protected attribute (i.e., Type II fairness). 5 

One probable reason behind the distinct predictive accuracy of different conditions is the 6 

imbalanced training dataset. For instance, in reality, most operation data of HVAC devices are of 7 

normal status, while only a few are in faulty condition. As a result, the data-driven model trained 8 

based on this imbalanced dataset would work perfectly on predicting normal status, but show 9 

worse performance for faulty detection. Therefore, to narrow the predictive performance between 10 

different conditions, one useful way is to reduce the discrimination among training dataset. In other 11 

word, it means to produce a balanced training dataset that contains a similar amount of data for all 12 

conditions. These methods belong to data pre-processing methods. 13 

The easiest way to get a balanced training dataset is to oversample for minority conditions 14 

and/or undersample for majority conditions. For instance, the synthetic minority oversampling 15 

technique (SMOTE) that samples data for minority conditions by linear interpolation between 16 

minority samples has been used to oversample faulty samples to increase the fault detection 17 

accuracy of HVAC devices [14,15]. However, large oversampling size may increase the 18 

classification uncertainty because of the change in data distribution. Furthermore, this method has 19 

not been used to solve fairness problems. To eliminate the bias among conditions defined by the 20 

protected attribute and output label, Kamiran and Calders [16] proposed uniform sampling and 21 

preferential sampling: uniform sampling randomly duplicate data for minority conditions or delete 22 

data from majority conditions, while preferential sampling duplicate/delete data that closest to the 23 

decision boundary. However, these methods have not been applied to omit the bias among the 24 

training dataset of data-driven building models (DDBMs). To remove discrimination from the 25 

training dataset of DDBMs, we proposed four types of data pre-processing methods, namely 26 

sequential sampling, sequentially balanced preferential sampling, reversed preferential sampling, 27 

and sequential preferential sampling, to produce a balanced training dataset for classification 28 

problems. The generalizability of these proposed methods on fairness and accuracy of DDBMs is 29 

compared with uniform sampling and preferential sampling in [12,17]. 30 
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Besides, generating representative data is an efficient way to enrich data points in minority 1 

conditions. For instance, Yan et al. [5] applied the generative adversarial network (GAN) to 2 

generate faulty training samples for fault detection and diagnosis (FDD) of air handling units 3 

(AHUs). Their study found that the re-balanced training dataset could improve the diagnostic 4 

accuracy of traditional data-driven models (e.g., random forest (RF), support vector machine 5 

(SVM), multi-layer perceptron (MLP), k-nearest-neighbor (KNN) and decision tree (DT)) from 6 

nearly 50% to almost 100%. Yan et al. [19] have also applied the GAN to re-balance the training 7 

dataset for automatic FDD for chillers. Li et al. [1] proposed a GAN to improve the diagnostic 8 

accuracy for building HVAC systems by taking advantage of the re-balanced labeled and unlabeled 9 

data. However, these data generative models usually face the non-convergence issue [20]. Besides, 10 

the representativity of created data would highly affect the predictive performance, including 11 

fairness and accuracy. 12 

These data pre-processing methods could eliminate bias among training dataset, and thus, 13 

improve the predictive accuracy among minority conditions. However, it could not quantitively 14 

ensure that the predictive accuracy is similar enough between different conditions. Besides, data 15 

pre-processing methods are more suitable for classification problems because conditions defined 16 

by the output label and protected attribute are less and easier to be determined. 17 

To quantitively define the required performance similarity for regression problems like 18 

building energy consumption, in-processing methods that set fairness-related constraints or 19 

penalties in the loss function of model training would be a good option [21]. In-processing methods 20 

could achieve specific fairness measures chosen by the programmer while preserving high 21 

accuracy. However, as the type of fairness measure could vary among different predictive tasks, 22 

the code may need to be changed accordingly. 23 

There are mainly three types of fairness improvement in-processing methods: fairness 24 

constraints, prejudice remover regularizer, and adversarial debiasing. Among these methods, the 25 

fairness constraints method adds fairness constraints to the loss function of the training process 26 

[22]; the prejudice remover regularizer method applies a fairness regularizer to the loss function 27 

[23]; while the adversarial debiasing method develops a predictor and an adversary at the same 28 

time to weaken the power of predicting the protected attribute from the predictive outputs [24]. 29 
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In-processing fairness improvement methods have been used in regression or classification 1 

problems to ensure similar income prediction performance [22,25,26], loan allocation result 2 

[22,23], or violent recidivism prediction performance [23,24,27,28] for people coming from 3 

different race or gender. Yet, they have never been applied to data-driven building models to 4 

achieve uniform energy predictive accuracy among end users. 5 

In building engineering domain, the cost-sensitive algorithm, a kind of in-processing methods 6 

that increases classification accuracy of specified conditions through assigning higher 7 

misclassification cost for these conditions, has been used to increase the predictive accuracy of 8 

user-defined conditions [29] or faulty conditions [30–32]. However, they have not been applied to 9 

solve fairness problems. Further, most of existing studies on cost-sensitive algorithms focus on 10 

classification problems instead of regression problems. 11 

The previous review of the literature shows that improving fairness for building energy 12 

prediction models is required to ensure uniform predictive performance under all conditions, which 13 

means making sure that services provided based on the predictive result are non-discriminatory. 14 

Besides, there are many fairness improvement methods. Among them, in-processing methods 15 

show the ability to achieve user-defined fairness. However, fairness-related constraints or penalty 16 

should be set based on the specific problem. To the best of the authors’ knowledge, there is no 17 

existing study focusing on quantitively improving fairness among regression problems in building 18 

engineering domain. This study fills this gap and has the following major contributions: 19 

• Investigate the possibility of improving fairness to have uniform predictive performance 20 

under different conditions for building energy prediction, 21 

• Propose four in-processing fairness improvement methods for regression problems to 22 

improve fairness, by setting user-defined constraints or penalties for improving predictive 23 

performance similarity between different conditions, and 24 

• Implement the proposed methods to develop fairness-aware linear regression models for 25 

building energy prediction. Both predictive accuracy and fairness are evaluated. 26 

The outline of this paper is: Section 2 introduces the proposed in-processing techniques and 27 

optimization algorithm used for solving the optimization problem defined by in-processing 28 

methods. A case study that applies these methods to improve the energy predictive fairness while 29 
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preserving predictive accuracy is designed and introduced in this section. In Section 3, results are 1 

analyzed in terms of accuracy measures and fairness measures. Then, Section 4 discusses the effect 2 

of loss functions and optimization algorithms. Finally, Section 5 summarizes the conclusion. 3 

2. Methodology 4 

2.1. In-processing fairness improvement methods 5 

Training a model means learning proper model parameters to minimize a loss function 6 

(denote as Loss) that indicates the closeness of predicted values to their corresponding actual 7 

values. For regression models, commonly used Loss includes mean square error (MSE, see 8 

Equation 1) and mean absolute error (MAE, see Equation 2). MSE calculates the mean of squared 9 

error losses (also called L2 loss). Square loss is the square of residual difference, which is the 10 

difference between the actual value and the predicted value. MAE is the mean of absolute errors, 11 

which are also known as L1 losses. Absolute error is the distance between the actual value and 12 

predicted value. Generally, MSE loss function converges faster than MAE, because the quadratic 13 

function of MSE makes it easier to find the gradient. However, the MAE loss function shows the 14 

advantage of being more robust to outliers than MSE. 15 

MSE = 1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑖𝑖=1:𝑛𝑛                                                        (1) 16 

where n is the number of training data samples, y is the measured value, 𝑦𝑦� is the predicted value. 17 

MAE = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑖𝑖=1:𝑛𝑛                                                        (2) 18 

However, minimizing MSE or MAE could not make sure that the predictive performance is 19 

similar among different conditions. To solve this problem, this section would present four in-20 

processing fairness improvement methods that add penalties or constraints to Loss in order to 21 

narrow the predictive performance difference between conditions defined by the protected attribute. 22 

To make a simple explanation, the original loss function (such as MSE or MAE) without 23 

considering fairness is denoted by Loss_ori, and the protected attribute is assumed as a binary 24 

attribute. Note that these methods could be extended to problems with multi-class protected 25 

attribute through adding pair-wise constraints/penalties.  26 
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2.1.1. Mean residual difference penalized (MRDP) regression 1 

The loss function of this method, as shown in Equation 3, comprises a Loss_ori that illustrates 2 

the overall predictive accuracy and a prejudice remover regularizer that indicates the difference 3 

magnitude between the mean residual difference when the protected attribute (denoted by S) is 4 

Positive and the mean residual difference when  S = Negative. The difference magnitude is squared 5 

to avoid negative values. Besides, users could justify the trade-off between accuracy and fairness, 6 

though setting the multiplier λ for the regularizer. The bigger the λ, the more important the fairness. 7 

𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝑜𝑜𝑚𝑚 + 𝜆𝜆[ 1
𝑠𝑠0
∑ (𝑦𝑦ℎ − 𝑦𝑦�ℎ)ℎ=1:𝑠𝑠0,𝑆𝑆=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 − 1

𝑠𝑠1
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)𝑘𝑘=1:𝑠𝑠1,𝑆𝑆=𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 ]2       (3) 8 

where λ is the multiplier of the prejudice remover regularizer; S is the protected attribute, 𝑆𝑆 ∈ 9 

[Negative, Positive]; s0 is the number of training data with S = Negative, s1 is the number of 10 

training data with S = Positive. 11 

The regularizer in Equation 3 could be rewritten as Equation 4. It explains that the regularizer 12 

calculates the square difference between the mean actual value difference and mean predicted 13 

value difference among conditions with S = Negative and S = Positive. 14 

[� 1
𝑠𝑠0
∑ 𝑦𝑦ℎℎ=1:𝑠𝑠0,𝑆𝑆=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 − 1

𝑠𝑠1
∑ 𝑦𝑦𝑘𝑘𝑘𝑘=1:𝑠𝑠1,𝑆𝑆=𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 � − � 1

𝑠𝑠0
∑ 𝑦𝑦�ℎℎ=1:𝑠𝑠0,𝑆𝑆=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 −15 

1
𝑠𝑠1
∑ 𝑦𝑦�𝑘𝑘𝑘𝑘=1:𝑠𝑠1,𝑆𝑆=𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 �]2                                                                                                              (4) 16 

2.1.2. Mean square error penalized (MSEP) regression 17 

In this method, fairness significance is represented by the absolute difference between the 18 

MSE when S=Positive and MSE when S=Negative, see Equation 5. This method avoids the error 19 

cancellation within a condition caused by over-predicting for some samples and under-predicting 20 

for other samples in the same condition. Similar to MRDP, the trade-off between accuracy and 21 

fairness is justified by λ. Note that when λ=+∞, the MSEP could be considered as a method of 22 

Lagrange multiplier that is aimed at finding the minimum Loss_ori subject to the equality 23 

constraint that makes the MSE when S=Positive to be the same as the MSE when S=Negative. 24 

𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝑜𝑜𝑚𝑚 + 𝜆𝜆| 1
𝑠𝑠0
∑ (𝑦𝑦ℎ − 𝑦𝑦�ℎ)ℎ=1:𝑠𝑠0,𝑆𝑆=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛

2 − 1
𝑠𝑠1
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2𝑘𝑘=1:𝑠𝑠1,𝑆𝑆=𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 |     (5) 25 
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2.1.3. Mean residual difference constrained (MRDC) regression 1 

MRDC is inspired by adding fairness-related constraints to Loss_ori to limit the predictive 2 

performance similarity between conditions defined by the protected attribute. The objective 3 

function of MRDC for model training, as shown in Equation 6, defines fairness by letting the 4 

absolute mean residual difference (denote as abs(MRD)) when S = Negative to be at least p or at 5 

most 1
𝑝𝑝
 of abs(MRD) when S = Positive. When p =0.8, it infers that this method is trying to achieve 6 

fairness in terms of the “80 percent rule” [33]: the predictive result is fair when the predictive 7 

performance of any protected group is at least 80% of the highest predictive performance of the 8 

protected groups. 9 

𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝑜𝑜𝑚𝑚                                                             (6) 10 

Subject to         | 1
𝑠𝑠0
∑ (𝑦𝑦ℎ − 𝑦𝑦�ℎ)ℎ=1:𝑠𝑠0,𝑆𝑆=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 | ≤ 1

𝑝𝑝
∗ | 1

𝑠𝑠1
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)𝑘𝑘=1:𝑠𝑠1,𝑆𝑆=𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 | 11 

| 1
𝑠𝑠0
∑ (𝑦𝑦ℎ − 𝑦𝑦�ℎ)ℎ=1:𝑠𝑠0,𝑆𝑆=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 | ≥ 𝑝𝑝 ∗ | 1

𝑠𝑠1
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)𝑘𝑘=1:𝑠𝑠1,𝑆𝑆=𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 |  12 

where p infers the similarity of predictive performance among different conditions defined by the 13 

protected attribute. 14 

2.1.4. Mean square error constrained (MSEC) regression 15 

The loss function of MSEC is present in Equation 7. Its fairness-related constrains are aimed 16 

at making the MSE when S = Negative to be at least p or at most 1
𝑝𝑝
 of the MSE when S = Positive. 17 

It shows the advantage of considering the predictive error of each individual points, while mean 18 

residual difference in MRDC makes the overall predictive error be mitigated by different 19 

individuals in the same group. 20 

𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝑜𝑜𝑚𝑚                                                                 (7) 21 

Subject to         1
𝑠𝑠0
∑ (𝑦𝑦ℎ − 𝑦𝑦�ℎ)ℎ=1:𝑠𝑠0,𝑆𝑆=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛

2 ≤ 1
𝑝𝑝
∗ 1
𝑠𝑠1
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)𝑘𝑘=1:𝑠𝑠1,𝑆𝑆=𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛

2 22 

1
𝐿𝐿0

� (𝑦𝑦ℎ − 𝑦𝑦�ℎ)2
ℎ=1:𝑠𝑠0,𝑆𝑆=𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛

≥ 𝑝𝑝 ∗
1
𝐿𝐿1

� (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)
𝑘𝑘=1:𝑠𝑠1,𝑆𝑆=𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛

2
 23 
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2.2. Optimization algorithm 1 

Considering the increased complexity of the loss function by in-processing methods, 2 

derivative-free optimization algorithms that do not use derivatives or finite differences [34] would 3 

be better options to train regression model parameters. Notable derivative-free optimization 4 

algorithms mainly include Bayesian optimization, adaptive coordinate descent, genetic algorithms 5 

(GA), differential evolution (DE), simulated annealing, particle swarm optimization (PSO), etc. 6 

Among these algorithms, DE has been proofed to be effective in solving constrained optimization 7 

problems [35]. Therefore, it will be selected as the solver for optimization problems set by in-8 

processing methods. 9 

DE is a heuristic approach that gets the global optimal solution by iteratively improving the 10 

candidate solution based on an evolutionary process [36]. Its general procedure is presented in 11 

Figure 1. Detailed description of each step is given as below: 12 

Population Initialization: Generate a random or user-defined initial population that contains a set 13 

of candidate solutions. 14 

Fitness assignment: Evaluate the fitness score of each solution through a fitness function to 15 

determine how fit the solution is. 16 

Selection: Select a set of solutions (parents) based on some selection procedures for the mutation 17 

process to create the unit vector. 18 

Mutation: Mutate a unit vector through adding a scaled differential vector to a target vector. Here, 19 

the differential vector is the difference between the two or more selected parents, while the target 20 

vector is the parent with prioritized direction of creating the unit vector. 21 

Crossover: Generate new offspring by crossing over a selected ‘major’ parent (different from the 22 

parents used in mutation) and the unit vector created from mutation, and then, add the offspring to 23 

the population. Crossover methods mainly include average and intuitive. 24 

Stop criteria: Terminate the algorithm if the population has converged (its offspring would not 25 

significantly increase the fitness) or if the maximum number of iterations has been reached. 26 

 27 
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  1 
Figure 1: General procedure of a basic DE 2 

2.3.Case study: Energy prediction 3 

To investigate the applicability of proposed in-processing methods to solve fairness problems 4 

in building engineering domain, a case study is designed to apply these methods to train regressive 5 

models to predict hourly energy consumption of an apartment. In the case study, motion status is 6 

the binary protected attribute, which means the in-processing methods are aimed at presenting 7 

similar energy predictive performance no matter if there is occupancy movement in the apartment. 8 

Detailed description of data collection and feature selection are presented in Section 2.3.1, while 9 

the study cases are explained in Section 2.3.2. 10 

2.3.1. Data description and feature selection 11 

Building-related data used in this study was collected by sensors and HEMS in a three-12 

bedroom apartment in Lyon, France, whose layout is shown in Figure 2. The data collection 13 

techniques and devices are explained in details in [37–40]. The original dataset was collected with 14 

one-minute time interval during the year of 2016. It contains information of time index (time of 15 

the day, day of the week), indoor temperature, indoor humidity, CO2 concentration, motion status, 16 
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window opening status, blind position, lighting status and lighting power consumption, as well as 1 

plug power consumption. Note that the summary of plug load and lighting energy consumption 2 

data (Wh) represents the building energy use in this study. Besides, weather information, such as 3 

ambient air temperature,  and humidity, wind speed and direction, solar radiation, solar illuminance, 4 

etc., were collected with one-minute time interval from a local weather station in Vaulx-en-Velin, 5 

France. 6 

As a larger time interval could increase the data representativity and acceptable predictive 7 

runtime [41], collected data was processed to one-hour resolution. Motion status was recorded as 8 

‘1’ if there was any movement detected by the corresponding presence sensor during the 60 9 

minutes in that hour. One attribute called ‘Motion status_Total’ was added as a candidate input 10 

feature to represent if there is any movement detected in the studied apartment during one hour. It 11 

is assumed as the protected attribute, which means S=Positive is the condition that there is 12 

occupancy movement and S=Negative represents there is no detected movement in the apartment. 13 

Besides, the same sample strategy was applied to lighting status to evaluate if there was any light 14 

opening during one hour. Energy consumption data within one hour was averaged by minute data 15 

and normalized to be the range between 0 and 1. For other attributes, the hourly value was sampled 16 

every 60 minutes. Besides, as energy consumption may belong to time series data that historical 17 

energy consumption would affect future values [11], previous 24 hours’ normalized hourly energy 18 

consumption (NHEC) data and previous 168th NHEC are also added as candidate features. Overall, 19 

there are 106 candidate features. A list of these features are presented in the supplementary 20 

information. 21 

 22 
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 1 

Figure 2: Footprint of the studied apartment 2 

The NHEC of lighting and plug-ins is the output of data-driven models. Its distribution is 3 

shown in Figure 3. In the collected dataset, NHEC is lower than 0.7 most of the time. To select the 4 

most representative features for NHEC prediction, correlation between the candidate features and 5 

the output is calculated by Equation 8. Features whose correlation with the output is higher than 6 

0.3 are selected as inputs. The selected 15 input features and their correlation with the output is 7 

present in Table 1. 8 
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 1 
Figure 3: NHEC distribution 2 

 3 

𝑜𝑜𝑥𝑥𝑥𝑥 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑥𝑥𝑖𝑖−𝑥𝑥�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2 ∑ (𝑥𝑥𝑖𝑖−𝑥𝑥�)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

                                                    (8) 4 

where 𝑜𝑜𝑥𝑥𝑦𝑦 is the Pearson correlation coefficient, 𝑥𝑥 is the candidate input feature, �̅�𝑥 is the mean of 5 
corresponding 𝑥𝑥, 𝑦𝑦� is the mean of y. 6 

 7 

Table 1: Selected input features and their correlation with the output attribute 8 
Input feature Correlation 

with the output 
Input feature Correlation 

with the output 
Input feature Correlation 

with the output 

Sun altitude  0.30 Motion status 5 0.42 Motion 
status_Total 0.45 

Motion status 1 0.58 Motion status 6 0.53 NHEC t-1 0.57 
Motion status 2 0.59 Motion status 7 0.46 NHEC t-2 0.34 
Motion status 3 0.57 Motion status 8 0.41 NHEC t-23 0.31 
Motion status 4 0.39 Motion status 13 0.32 NHEC t-24 0.33 

Note that the number after the name of motion status means the corresponding measurement device, while the time 9 
index after NHEC illustrates the normalized hourly energy consumption at the corresponding time, t is the current 10 
time. 11 

2.3.2. Case description 12 

As the start point of investigating in-processing fairness improvement methods in building 13 

energy application, a relatively simple regression model, i.e., linear regression (see Equation 9), is 14 

used in this study to predict the normalized hourly energy consumption (NHEC). 15 

𝑦𝑦� = 𝑤𝑤0 + ∑ 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗=1 :𝑚𝑚                                                  (9) 16 
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where w and 𝑤𝑤0 are parameters that need to be estimated during model training, m is the number 1 
of input features. 2 

In this study, a reference case that uses MSE as the loss function to learn parameters of the 3 

developed linear regression model is conduced to be the basis when evaluating the fairness 4 

improvement ability of in-processing methods. Then, other case studies are designed to investigate 5 

the effects of in-processing methods and their corresponding p or λ values on the predictive result, 6 

see Table 2. MSE is the Loss_ori for these cases. 7 

Table 2: Description of study cases 8 
Case name In-processing methods p or λ value 
Reference case   
MRDP_0.6 MRDP 0.6 
MRDP_0.8 MRDP 0.8 
MSEP_0.6 MSEP 0.6 
MSEP_0.8 MSEP 0.8 
MRDC_0.6 MRDC 0.6 
MRDC_0.8 MRDC 0.8 
MSEC_0.6 MSEC 0.6 
MSEC_0.8 MSEC 0.8 

Note that constraints that limit the predicted NHEC within [0, 1] are added to the loss function of all cases 9 

The DE is coded using the scikit-opt package [42], and its hyperparameters are shown in 10 

Table 3. For all cases, a 10-fold cross validation process is used for training and validating. MAE 11 

and MSE are used to evaluate the predictive performance. To be more specific, ‘MSE_TOTAL’ 12 

and ‘MAE_TOTAL’ is the overall accuracy. ‘1-MSE’ and ‘1-MAE’ means MSE and MAE when 13 

S=Positive, respectively. ‘0-MSE’ and ‘0-MAE’ is MSE and MAE when S=Negative, 14 

respectively. Besides, as the goal of this study is  to improve fairness in terms of increasing the 15 

similarity of predictive performance between different conditions, fairness could be evaluated by 16 

the difference between 1-MSE and 0-MSE or the difference between 1-MAE and 0-MAE. The 17 

smaller the difference, the better the predictive fairness. On the other hand, it could also be 18 

evaluated by MSE rate (the rate between 1-MSE and 0-MSE) or MAE rate (the rate between 1-19 

MAE and 0-MAE). Higher MSE rate or MAE rate means a better fairness achievement. For 20 

example, if MSE rate or MAE rate is higher than 0.8, the “80 percent rule” is achieved. 21 

  22 



15 
 

Table 3: Hyperparameters of DE 1 
Hyperparameter Meaning Value 

size_pop Size of population 50 

max_iter Max iteration 1000 

prob_mut Probability of mutation 0.001 

F Coefficient of mutation 0.5 

 2 

Simulations are run by Python 3.7 on a desktop with Intel Core i7-4790 CPU @3.60GHz 3 

and 8GB of RAM. 4 

3. Results 5 

3.1. Accuracy in terms of MSE and fairness in terms of MSE rate 6 

The effect of four proposed in-processing methods on the predictive MSE during model 7 

training and validation are compared in Figure 4. It shows that MRDP would not affect the 8 

predictive accuracy in terms of MSE no matter during model training or model validation. As 9 

illustrated in Section 2.1.1, the regularizer added by MRDP tries to make the predictive result fair 10 

for conditions with S=Positive and S=Negative to have similar mean residual difference. In other 11 

words, it means to make the difference of mean measured value between the condition that S = 12 

Negative and the condition that S = Positive to be the same as the difference of mean predicted 13 

value between the condition when S = Negative and the condition when S = Positive. As shown in 14 

Figure 5, even in the reference case, the mean predicted NHEC is the same as the mean measured 15 

NHEC, irrelevance of S= Positive or S= Negative. Thus, the regularizer added by MRDP did not 16 

work and it is always almost equal to zero in this case study. Another interesting finding from 17 

Figure 5 is that the energy consumption when there are occupant activities in the apartment (when 18 

S= Positive) is more than twice of the energy consumed during the period that no occupancy 19 

movement is detected (S= Negative). It shows that occupancy-related data would be an important 20 

input for energy prediction of residential buildings. 21 
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1 
(a) Model training 2 

 3 
(b) Model validation 4 

Figure 4: Effect of in-processing methods on the predictive accuracy in terms of MSE during (a) model training and 5 
(b) model validation 6 

 7 

 8 
Figure 5: Mean measured NHEC and mean predicted NHEC for conditions S=Positive and S=Negative during 9 

model training 10 
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Besides, from Figure 4(a), during model training, MSEP with λ=0.6 could effectively make 1 

the 1-MSE to be similar to the 0-MSE. However, the predictive accuracy would be decreased as 2 

the overall MSE is increased from 0.01 to 0.016. Increasing λ from 0.6 to 0.8 would not 3 

significantly contribute to the similarity of between 1-MSE and 0-MSE. However, the overall 4 

predictive accuracy of MSEP with λ=0.8 is slightly worse than MSEP with λ=0.6. Furthermore, 5 

Figure 4(b) shows that the effect of MSEP on increasing the similarity between 1-MSE and 0-6 

MSE could not be generalized to validation data. 7 

Figure 4 also shows that MRDC with p=0.6 shows a slight effect on MSE, while MRDC with 8 

p=0.8 would significantly increase MSE_TOTAL, 1-MSE and 0-MSE. However, MRDC could 9 

not narrow the difference between 1-MSE and 0-MSE. This is because MRDC is aimed at making 10 

the abs(MRD) to be similar enough between S=Positive and S=Negative, instead of increasing the 11 

similarity in terms of MSE. Increasing p value for MRDC could effectively increase the fairness 12 

in terms of abs(MRD) rate during model training (see Figure 6(b)), however, the predictive 13 

accuracy would be decreased as the abs(MRD) would be increased (see Figure 6(a)). Even if 14 

increasing p value could increase the abs(MRD) rate, this pattern is not generalizable during model 15 

validation (see Figure 7). This problem may be caused by nonconvergence of the optimization 16 

algorithm when p=0.8. It could be solved by increasing the maximum iteration number of DE. 17 

  18 
(a)                                                                                          (b) 19 

Figure 6: Effect of MRDC on the (a) abs(MRD) and (b) abs(MRD) rate during model training 20 

 21 
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  1 
(a)                                                                                          (b) 2 

Figure 7: Effect of MRDC on the (a) abs(MRD) and (b) abs(MRD) rate during model validation 3 

 4 

Moreover, increasing p value of MSEC would increase the MSE (see Figure 4), however, the 5 

difference between 1-MSE and 0-MSE would be decreased. Figure 8 shows the effect of MSEC 6 

on the Type II fairness improvement: MSEC with p=0.6 could increase the MSE rate to be higher 7 

than 0.6 no matter during model training or model validation, while MSEC with p=0.8 could 8 

ensure the MSE rate to be higher than 0.8. 9 

To improve Type II fairness in terms of having a high MSE rate, MSEP and MSEC would be 10 

suitable solutions. However, from Figure 8, MSEC shows better generalizability on the validation 11 

dataset. As Figure 8 shows MRDP does not affect the MSE rate. Although MRDC_0.6 shows a 12 

small MSE rate improvement ability during model training and validation, MRDC_0.8 13 

significantly decreases the MSE rate from 0.61 to 0.27 during model validation. 14 

  15 

 16 
(a)                                                                                         (b) 17 

Figure 8: Effect of in-processing methods on the predictive fairness in terms of MSE rate during (a) model training 18 
and (b) model validation 19 
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3.2. Accuracy in terms of MAE and fairness in terms of MAE rate 1 

As illustrated in Section 3.1, the regularizer added by MRDP is always almost equal to zero 2 

in this case study. Therefore, MRDP also does not present any effect on the MAE, as shown in 3 

Figure 9. Besides, MSEP with λ=0.6 could effectively decrease the difference between 1-MAE 4 

and 0-MAE during model training. Increasing λ from 0.6 to 0.8 would not further decrease the 5 

difference during model training, but the difference would be decreased during validation. 6 

Furthermore, increasing λ for MSEP would decrease the predictive accuracy because the overall 7 

MAE is increased. 8 

  9 
(a) Model training 10 

11 
(b) Model validation 12 

 13 
Figure 9: Effect of in-processing methods on the predictive accuracy in terms of MAE during (a) model training and 14 

(b) model validation 15 
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From Figure 9, MRDC could not decrease the difference between 1-MSE and 0-MSE, 1 

although the overall accuracy is decreased. However, MSEC with p=0.6 would effectively 2 

decrease the difference between 1-MAE and 0-MAE from ~0.067 to ~0.004 during model training. 3 

Increasing the p value would not contribute more to improving the similarity between 1-MAE and 4 

0-MAE, but would show further harm to the overall predictive accuracy in terms of MAE. 5 

The fairness improvement ability in terms of MAE rate is compared between these in-6 

processing methods and is presented in Figure 10. Even if the reference case shows a MAE rate 7 

lower than 0.25 during model training, its MAE rate could reach 0.77 during model validation. 8 

MRDP does not affect the MAE rate during model training, while other in-processing methods 9 

would increase the MAE rate. Among them, MRDC with p=0.6 could slightly increase the average 10 

MAE rate during model training to 0.32, while MRDC with p=0.8 could increase this value to 11 

0.43. However, even if MRDC_0.6 shows a slight increase on the MAE rate during model 12 

validation, MRDC_0.8 would significantly decrease it. MSEP could increase the MAE rate to be 13 

~0.73 during model training, no matter λ=0.6 or λ=0.8. However, a higher λ value shows better 14 

MAE rate during validation. MSEC shows the best effect on increasing MAE rate, however, it 15 

shows the different pattern with MSE rate: increasing p value from 0.6 to 0.8 would not further 16 

improve the MAE rate. 17 

  18 

 19 
(a) Model training                                                           (b) Model validation 20 

 21 
Figure 10: Effect of in-processing methods on the predictive fairness in terms of MAE rate during (a) model training 22 

and (b) model validation 23 
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4. Discussion 1 

4.1.Effect of Loss_ori selection 2 

In this study MSE was selected as Loss_ori for in-processing methods, when MAE was 3 

another candidate. The reasons behind this selection include 1) MSE would be more efficient in 4 

term of computation time because the quadratic function of MSE makes it easier to find the 5 

gradient or the direction in which the value of loss function decreases. This reason is proofed 6 

through comparing the training time between using MSE and MAE as the loss function: the 7 

average runtime for using MSE is ~3,400s, while using MAE makes the runtime increase to 8 

~3,600s; 2) MSE might be more powerful in predicting NHEC values that do not occur frequently 9 

in the training dataset. As illustrated in Section 2.1, MSE is more sensitive to outliers but MAE is 10 

more robust to outliers. It is because the square part of MSE makes it bigger than MAE when 11 

predicting an outlier as the same value. In other words, MSE tries harder to correctly predict 12 

unusual values. In the collected dataset, NHEC is lower than 0.7 most of the time (as shown in 13 

Figure 3), and high NHEC may be treated as outliers during model training, although it is not the 14 

case. Therefore, MSE is selected as Loss_ori to ensure the predictive accuracy for high NHEC 15 

values that are not common in the dataset and suffers a risk of considering as outliers by the data-16 

driven model. 17 

Nonetheless, when comparing the predicted NHEC and measured NHEC for linear regression 18 

models using MSE or MAE as the loss function in Figure 11, it is hard to conclude the better loss 19 

function. Both of them are likely to under-predict the NHEC when the corresponding ground truth 20 

value is higher than 0.7. More effective loss function that gives more weights to the unusual 21 

scenarios is still required to predict high NHEC. Further predictive performance comparison 22 

between MSE and MAE loss functions could be found in Table 4. It shows that using MSE as the 23 

loss function has higher predictive accuracy in terms of MSE, while selecting MAE as the loss 24 

function could ensure a lower predictive error in terms of MAE. 25 
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  1 
(a)                                                                                      (b) 2 

Figure 11: Comparison between y and 𝑦𝑦�  when using (1) MSE or (2) MAE as the loss function 3 

 4 

Table 4: Predictive accuracy when using MSE or MAE as the loss function 5 
 Performance criteria 

MSE MAE 

Loss 

function 

MSE 0.0109 0.0634 

MAE 0.0114 0.0605 

 6 

4.2.Effect of optimization algorithms 7 

Although DE is powerful in solving loss functions of the proposed in-processing algorithms, 8 

there are other optimization algorithms that may work well on these constrained optimization 9 

problems. For example, genetic algorithm (GA) is a commonly used derivative-free optimization 10 

algorithms in building engineering domain. It has been used to do optimal design [43], optimal 11 

control [44,45], and predictive model training [46,47], etc.. Therefore, in this section, the runtime 12 

and predictive accuracy of reference cases with MSE as the loss function would be compared 13 

between DE and GA. 14 

GA is a metaheuristic inspired by the process of natural selection that selects the fittest 15 

individual to produce the next generation [48]. It could solve both constrained and unconstrained 16 

optimization problems, even if their objective function is discontinuous, nondifferentiable, 17 

stochastic, or nonlinear [49]. The general procedure of a basic GA is presented in Figure 12. Note 18 

that unlike DE, crossover is processed before mutation in GA. Besides, in the selection step, GA 19 

selects two fittest solutions based on their fitness scores, while DE selects a set of parents. Further, 20 

GA mutates new offspring based on a probability distribution to maintain the diversity within the 21 
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population, while the mutation in DE is processed to create a unit vector based on the differential 1 

vector and target vector. 2 

  3 
Figure 12: General procedure of a basic GA 4 

In this section, DE and GA have the same population size and maximum iteration time. Their 5 

predictive accuracy for the reference case is compared in Table 5. It shows that DE always show 6 

a better accuracy than GA no matter in terms of MSE or MAE. However, GA is much faster than 7 

DE, as training time of each fold in GA is ~1,700s while DE needs ~3,400s. Therefore, GA would 8 

be recommended to solve the optimization problem during model training if the runtime is an 9 

important factor. 10 

Table 5: Predictive accuracy comparison between DE and GA 11 
 Model training Model validation 

MSE MAE MSE MAE 

Optimization 

algorithm 

DE 0.0107 0.0620 0.0109 0.0634 

GA 0.0109 0.0639 0.0112 0.0647 

 12 
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5. Conclusion 1 

To improve predictive fairness of regression DDBMs to have uniform predictive accuracy 2 

between different conditions, this study proposed four in-processing methods—MRDP, MSEP, 3 

MRDC, MSEC—to achieve the user-defined trade-off between predictive fairness and overall 4 

accuracy. The fundamental of these methods is to set fairness-related penalties or constraints in 5 

the objective function of model training. 6 

A case study was done to apply these in-processing methods to develop linear regression 7 

models for the energy prediction of an apartment. The effect of p/λ values of these methods on the 8 

predictive accuracy and fairness were investigated. Conclusions draw from this case study include: 9 

• MRDP would not affect the predictive result, because the mean predicted values are almost 10 

equal to the mean measured values under the same condition (S=Positive or S=Negative). 11 

• MSEP with λ=0.6 could significantly decrease the accuracy difference between the 12 

situation that S= Positive and the situation with S=Negative. Increasing λ from 0.6 to 0.8 13 

for MSEP would not narrow the accuracy difference too much, but it would decrease the 14 

overall accuracy. 15 

• MRDC does not present the ability to decrease the accuracy (MAE or MSE) difference 16 

between different conditions defined by the protected attribute. However, it works good on 17 

increasing the similarity of abs(MRD) between S=Positive and S=Negative. 18 

• MSEC could decrease the difference between 1-MSE and 0-MSE. However, MSEC with 19 

p=0.6 results in competitive 1-MAE and 0-MAE similarity compared to MSEC with p=0.8. 20 

The overall predictive accuracy in terms of MSE and MAE would be decreased when 21 

increase the p value. 22 

• MSEC is the most powerful in-processing methods to improve Type II fairness in terms of 23 

MSE rate and MAE rate. Besides, MSEP is another good option. It shows better 24 

performance on preserving the overall predictive accuracy than MSEC. However, MRDC 25 

with a high p value could even destroy the fairness. 26 

As the proposed methods show different effects on the accuracy and fairness, researchers are 27 

recommended to select proper methods based on their research objectives. For example, if 28 

improving the MSE rate is the main concern, MSEC would be the best option; if the main objective 29 

is to improve fairness to have a high abs(MRD) rate, MRDC could be selected. Furthermore, this 30 
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study shows some drawbacks: 1) Linear regression models are relatively simple compared with 1 

other regression models, such as deep learning. The simple structure of linear regression makes it 2 

hard to provide high predictive accuracy. Therefore, in the future, integrating the proposed in-3 

processing methods into more complex and powerful data-driven models would be an interesting 4 

topic. 2) Finding fast and effective optimization algorithms to solve complex objective functions 5 

caused by integrating in-processing methods would be a potential research direction, as the shorted 6 

runtime would make the fairness-aware regression models applicable to develop model predictive 7 

controllers. 8 

 9 

 10 
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Abbreviations 14 

abs(MRD) Absolute Mean Residual Difference 

AHUs Air Handling Units 

CV(RMSE) Coefficient of Variation of the Root Mean Square Error 

DDBMs Data-Driven Buildings Models 

DE Differential Evolution 

DT Decision Tree 

FDD Fault Detection and Diagnosis 

GA Genetic Algorithm 

GAN Generative Adversarial Network 

HVAC Heating Ventilation and Air-Conditioning 

HEMS Home Energy Management System 

kNN k-Nearest-Neighbor 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MLP Multi-Layer Perceptron 

MRDC Mean Residual Difference Constrained Regression 
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MRDP Mean Residual Difference Penalized Regression 

MSE Mean Square Error 

MSEC Mean Square Error Constrained Regression 

MSEP Mean Square Error Penalized Regression 

NHEC Normalized Hourly Energy Consumption 

PSO Particle Swarm Optimization 

𝑅𝑅2 R Square 

RF Random Forest 

RMSE Root Mean Square Error 

SMOTE Synthetic Minority Oversampling Technique 

SVM Support Vector Machine 

 1 

Nomenclature 2 

Loss Loss function 

Loss_ori The original loss function without considering fairness 

p Weights in MRDC and MSEC. It infers the similarity of predictive 

performance among different conditions defined by the protected attribute 

𝑜𝑜𝑥𝑥𝑦𝑦 Pearson correlation coefficient between input feature x and target output y 

S Protected attribute 

s0 The number of training data with S = Negative 

s1 The number of training data with S = Positive 

𝑤𝑤0 Bias term 

w Weight matrix 

𝑥𝑥 Input feature 

�̅�𝑥 Mean value of input feature 

y Measured value 

𝑦𝑦� Mean value of measured value 

𝑦𝑦� Predicted value 

λ Multiplier of the prejudice remover regularizer (MRDP and MSEP) 

 3 
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Supplementary Information: 1 

Table S1: Candidate input features 2 
Input feature Input feature Input feature Input feature Input feature Input feature 

Day of the week 
Irradiance 
shadow band 
correction factor 

Set-point 
temperature for 
heater 3 

Blind position 1 
Slat angle 
position 8 NHEC t-9 

Time of the day 
Direct 
horizontal 
irradiance 

Set-point 
temperature for 
heater 4 

Blind position 2 Slat angle 
position 9 NHEC t-10 

Sun altitude 
Global 
horizontal UVA 
irradiance 

Set-point 
temperature for 
heater 5 

Blind position 3 Slat angle 
position 10 NHEC t-11 

Sun azimuth 
Global 
horizontal UVB 
irradiance 

Set-point 
temperature for 
heater 6 

Blind position 4 Window 
opening status 1 NHEC t-12 

Global 
horizontal 
illuminance 

CO2 
concentration 1 Motion status 1 Blind position 5 Window 

opening status 2 NHEC t-13 

Diffuse 
horizontal 
illuminance 

CO2 
concentration 2 Motion status 2 Blind position 6 Window 

opening status 3 NHEC t-14 

Global vertical 
north 
illuminance 

CO2 
concentration 3 Motion status 3 Blind position 7 Window 

opening status 4 NHEC t-15 

Global vertical 
east illuminance 

CO2 
concentration 4 Motion status 4 Blind position 8 Window 

opening status 5 NHEC t-16 

Global vertical 
south 
illuminance 

Indoor 
temperature 1 Motion status 5 Blind position 9 Window 

opening status 6 NHEC t-17 

Global vertical 
west 
illuminance 

Indoor 
temperature 2 Motion status 6 Blind position 

10 
Window 
opening status 7 NHEC t-18 

Global 
horizontal 
irradiance 

Indoor 
temperature 3 Motion status 7 Slat angle 

position 1 NHEC t-1 NHEC t-19 

Giffuse 
horizontal 
irradiance 

Indoor 
temperature 4 Motion status 8 Slat angle 

position 2 NHEC t-2 NHEC t-20 

Zenith 
luminance 

Indoor relative 
humidity 1 

Motion status 
10 

Slat angle 
position 3 NHEC t-3 NHEC t-21 

Relative 
humidity 

Indoor relative 
humidity 2 

Motion status 
11 

Slat angle 
position 4 NHEC t-4 NHEC t-22 

Wind direction Indoor relative 
humidity 3 

Motion status 
12 

Slat angle 
position 5 NHEC t-5 NHEC t-23 

Wind speed Indoor relative 
humidity 4 

Motion status 
13 

Slat angle 
position 6 NHEC t-6 NHEC t-24 

Dry bulb 
temperature 

Set-point 
temperature for 
heater 1 

Motion status 
14 

Slat angle 
position 7 NHEC t-7 NHEC t-168 

Illuminance 
shadow band 
correction factor 

Set-point 
temperature for 
heater 2 

Motion 
status_Total  NHEC t-8 
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Note that the number after the name of CO2 concentration, indoor temperature, indoor relative humidity, set-point 1 
temperature for heaters, motion status, blind position, slat angle position, and window opening status means the 2 
corresponding measurement device, while the time index after NHEC illustrates the normalized hourly energy 3 
consumption at the corresponding time, t is the current time. 4 
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