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Abstract—Malware analysts often prefer reverse engineering
using Call Graphs, Control Flow Graphs (CFGs), and Data
Flow Graphs (DFGs), which involves the utilization of black-box
Deep Learning (DL) models. The proposed research introduces a
structured pipeline for reverse engineering-based analysis, offer-
ing promising results compared to state-of-the-art methods and
providing high-level interpretability for malicious code blocks
in subgraphs. We propose the Canonical Executable Graph
(CEG) as a new representation of Portable Executable (PE) files,
uniquely incorporating syntactical and semantic information into
its node embeddings. At the same time, edge features capture
structural aspects of PE files. This is the first work to present
a PE file representation encompassing syntactical, semantic,
and structural characteristics, whereas previous efforts typically
focused solely on syntactic or structural properties. Furthermore,
recognizing the limitations of existing graph explanation methods
within Explainable Artificial Intelligence (XAI) for malware anal-
ysis, primarily due to the specificity of malicious files, we intro-
duce Genetic Algorithm-based Graph Explainer (GAGE). GAGE
operates on the CEG, striving to identify a precise subgraph
relevant to predicted malware families. Through experiments
and comparisons, our proposed pipeline exhibits substantial
improvements in model robustness scores and discriminative
power compared to the previous benchmarks. Furthermore, we
have successfully used GAGE in practical applications on real-
world data, producing meaningful insights and interpretability.
This research offers a robust solution to enhance cybersecurity by
delivering a transparent and accurate understanding of malware
behaviour. Moreover, the proposed algorithm is specialized in
handling graph-based data, effectively dissecting complex content
and isolating influential nodes.

Index Terms—malware analysis, explainable AI, interpretabil-
ity, graph, genetic algorithm

I. INTRODUCTION

Malware poses an ever-growing threat in the digital land-
scape, with reports from VirusTotal1 indicating a 27% increase
in computer viruses in 2021 alone. Concurrently, a study by
Kaspersky2 highlights the detection of approximately 5.2% of
the 360,000 new malicious files each day. Traditional malware
analysis methods are struggling to cope with the influx of
this expanding and increasingly obfuscated malware [1]. In
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1https://assets.virustotal.com/reports/2021trends.pdf
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response to these challenges, this research proposed a graph-
based representation for executable files [2], aiming to enhance
the precision and accuracy of malware behaviour identification
with a robust explanation. The motivation behind this work
lies in the potential of graph representations to capture the
semantic, syntactical, and flow control aspects of programs and
data, thus enabling the more accurate detection of malicious
behaviour. To achieve this, we employ DL techniques for
graph classification. However, DL models often suffer from
the ”black-box” drawback, necessitating the development of
a state-of-the-art graph classification explanation algorithm
tailored specifically for malware analysis.

Malware analysis mainly encompasses two approaches:
static [3] and dynamic analysis [4]. Static analysis involves
extracting features from PE files, such as numerical attributes,
printable strings, and import and export information [5].
Dynamic analysis, on the other hand, observes the behaviour
of a malicious file in a controlled environment, analyzing
dynamic features like registry changes, memory utilization,
and network activity [4]. While hybrid analysis combines both
static and dynamic features, these manual-intensive methods
face limitations, including their inefficiency in handling the in-
creasing number of malware samples, struggles in distinguish-
ing between various malware families, and susceptibility to
zero-day exploits, obfuscation, or polymorphic malware. As a
result, researchers have shifted towards ML-based analysis [6],
which has its own challenges, including intensive manual
feature engineering [7] and the incorporation of various data
types, such as images and assembly code. Moreover, DL
methods have been employed, but interpretability and human
understanding of model outputs are needed [8].

Despite significant work in automated malware detection,
only few studies have thoroughly explored the potential of
graph representations for executables. The CFG [9] is a well-
known representation, followed by the DFG [10]. However,
these representations do not capture the critical function call
properties within nodes or blocks. To address this limitation,
we propose a new executable representation, the CEG, that
retains semantic information by processing code blocks us-
ing an Attention-based Autoencoder (AED). AED learns the
order of instructions and generates embeddings accordingly.
Additionally, we extract statistical distributions of opcodes and
operands, combining them with AED-generated features to



incorporate syntactical information. Following the generation
and classification of CEG, a significant challenge arises in
providing interpretable reasoning behind the classification—a
crucial aspect for human understanding and practical malware
analysis, even without prior knowledge of the model. To
address this challenge, we employ GAGE, an explanation
extraction method for subgraphs from CEGs, which offers
insights into malicious intent code blocks.

The major contributions of this research include:

• We have introduced a novel representation for PE files,
CEG, that incorporates both syntactical and semantical
details into the embedding of its nodes. Notably, CEG
is the first executable representation to feature edge
attributes that capture the control flow of both external
and intra-function calls. To generate embeddings for the
nodes within CEG, we introduced the AED. This model
has been trained on a dataset comprising one million
code blocks, enabling it to efficiently generate block-
level encodings for assembly code. These embeddings
effectively capture fine-grained information on instruction
order, semantics, and code intent. In robustness tests,
features generated by AED have demonstrated superior
performance compared to state-of-the-art methods for
detecting malware behaviour.

• We introduce GAGE, a specialized model-agnostic graph
explainer designed explicitly for the intricate task of
malware behaviour detection. Operating on CEGs, GAGE
employs a genetic algorithm to iteratively refine sub-
graphs with the primary aim of minimizing the Euclidean
distance between the original graph’s softmax proba-
bility distribution and that of the extracted subgraph.
This optimization process enables GAGE to uncover
precise subgraphs that capture vital aspects of malware
behaviour, addressing the limitations faced by previous
graph explainers in malware analysis. Prior methods,
such as gradient-based, surrogate, decomposition-based,
and model-level explainers, struggled to provide effective
explanations for graph-based malware analysis, due to
the complexities of malware files, which often encompass
mixed content and intricate relationships within graphs.
In contrast, GAGE’s innovative approach represents a
significant advancement in malware analysis and graph-
based model explainability, successfully bridging the gap
between complex malware behaviour and interpretable
model outputs.

• Through experiments and comparisons with state-of-the-
art methods, our proposed pipeline achieves a 31% im-
provement in robustness score compared to the previous
benchmarks. This significant enhancement in robustness
demonstrates the effectiveness of our approach in dis-
tinguishing between different malware families. Addi-
tionally, our approach results in a substantial improve-
ment in discriminative power, with a 9% increase in
precision, a 7% increase in recall, and a 4% increase
in accuracy. These improvements are pivotal for precise

malware detection and classification in the ever-evolving
threat landscape, making our model a valuable asset in
increasing cybersecurity measures.

• Application of the proposed algorithm to malware data,
showcasing GAGE’s novelty in graph-based learning. It
is particularly effective for challenging graph data where
identifying influential nodes is difficult. GAGE serves as
an XAI method, overcoming limitations associated with
other algorithms in handling graph data.

Generally, the innovative solution provided by GAGE can
significantly impact graph-based learning and explanation ap-
proaches by providing a novel model-agnostic graph explainer
that addresses the complexities associated with graph data.
GAGE’s utilization of a genetic algorithm to iteratively refine
subgraphs enhances its ability to capture intricate relationships
within graphs, making it applicable to various domains be-
yond malware detection. By focusing on extracting precise
subgraphs, GAGE enhances the interpretability of graph-based
models, facilitating a deeper understanding of complex data
structures and their underlying patterns. This advancement can
lead to improved decision-making in fields such as social net-
work analysis, bioinformatics, and financial risk assessment,
where understanding the relationships and interactions within
large-scale graphs is crucial. Additionally, GAGE’s approach
may inspire further developments in XAI, promoting trans-
parency and trustworthiness in graph-based machine learning
models across diverse applications.

The paper organisation is as follows: In the second section,
we discuss the background of malware analysis using graphs
and the challenges in explaining graph-based classification.
The third section covers the problem formulation, while the
fourth section details the model development process. The fifth
section presents the results and discussion, followed by the
conclusion.

II. BACKGROUND

A. Graph in malware analysis
Malware analysis has increasingly incorporated graph-based

approaches, as they provide valuable insights into function call
flows and recurring patterns within executables. Various types
of graphs are now employed by researchers for analysis using
Machine Learning (ML) and DL techniques. For instance,
CFG models control flow relationships among code’s basic
blocks, enabling the detection of malicious behaviour by cap-
turing execution paths and control transfers within malicious
files [11]–[13]. Yan et al. [11] utilized Graph Convolutional
Neural Networks (GCNN) to embed structural information
from CFGs, facilitating malware classification. In a different
approach, Nguyen et al. [12] converted CFGs into images
and performed image classification for faster and cost-effective
analysis compared to direct CFG analysis. Additionally, they
extracted statistical opcode features, created node features in
CFG, and conducted classification using GNNs, along with
providing explanations for the classification process [12].

Another commonly used graph is the Call Graph, which
illustrates calling relationships between program functions or



methods. It reveals how functions invoke each other, offering
insights into the execution flow and dependencies within
malicious files [14]. Kinable et al. [14] extracted features
and performed graph similarity-based analysis to detect sim-
ilar patterns in malware. Nevertheless, this approach shares
similarities with signature-based malware detection and can
be evaded. Likewise, Hassesn et al. [15] presented a scalable
method for malware detection based on call graph features.
However, their features lack dynamicity.

On the other hand, DFGs track data and variable flows
within a program, aiding in the analysis of data manipula-
tion, transformation, and sharing across code segments. This
enables the automated identification of potentially malicious
data operations or information leakage [16], [17]. Wuchner et
al. [16] conducted quantitative heuristic analysis on the data
flow of executables, achieving effective malware detection.
Similarly, they performed nearly identical analysis using n-
gram analysis on DFGs [17].

While the algorithms mentioned above have achieved com-
mendable classification and detection levels, they suffer from
two significant issues. Firstly, they need to consider the
semantic understanding of code analysis within these graphs,
a necessity for understanding executable functionality amidst
obfuscation and polymorphism. Secondly, they are black-box
algorithms that lack enhanced interpretability for malware
analysts or cybersecurity stakeholders. In contrast, Herath et
al. [13] discussed explainability and presented it as subgraphs
of CFGs. Nevertheless, their approach relied on statistical op-
code stratification, susceptible to manipulation through obfus-
cation or adversarial attacks. Thus, their extracted subgraphs,
while offering explainability, may not be as robust as required
for diverse malware families and benign samples.

B. Challenges in explainability methods

The field of explainability in graph-based models presents
several challenges, due to the unique characteristics of graphs
and the fact that existing methods have limitations when
applied to malware analysis tasks. In this section, we discuss
various types of explainability algorithms and why they may
not be suitable for effectively explaining malware behaviour,
highlighting the need for our proposed GAGE framework.

Methods such as Sensitive Analysis (SA) [18], Guided
Backpropagation (GBP) [18], Class Activation Mapping
(CAM) [19], and Gradient-weighted CAM (Grad-CAM) [19]
are popular gradient and perturbation-based approaches. How-
ever, these methods may face challenges when dealing with
malicious files that contain both benign and malicious code.
In such cases, these algorithms could be misled by the benign
code, resulting in incomplete or incorrect explanations. Addi-
tionally, when the graph comprises benign and malicious nodes
and edges, these methods may assign equal importance to both
types, leading to diluted explanations that fail to identify key
malicious behaviours.

Surrogate methods, such as GraphLIME [20], Relational
model explainer (RelEx) [21], and Probabilistic Graphical
Model explanations (PGM-Explainer) [22], rely on linear

classification models, which may not effectively capture the
complex and non-linear behaviour of malicious files. These
files often exhibit mixed behaviour, making it challenging
for traditional linear models to distinguish between benign
and malicious nodes and edges accurately. Moreover, building
surrogate models, such as GraphLIME [20], typically involves
creating many training samples using perturbation techniques.
However, applying perturbations to malicious code may not
reflect real-world scenarios or provide meaningful insights,
limiting the effectiveness of these surrogate models.

Excitation Backpropagation (EB) [19], GNN-layer-wise
Relevance Propagation (LRP) [23], and decomposition-based
algorithms may not be suitable for explaining malicious files.
These methods often decompose the graph randomly or mask
nodes, without considering their actual relevance to the file’s
behaviour.

Model-level explanations, such as the XGNN approach [24],
may not capture the intricate interactions between different
nodes and edges crucial for understanding malicious behaviour
at the local or file level. XGNN, based on reinforcement
learning, requires the selection of a starting node to gener-
ate explanations or subgraphs. This approach may overlook
isolated nodes or graphs not directly connected to the selected
node, limiting its ability to provide comprehensive insights
into malware behaviour.

Existing explainability methods face challenges in effec-
tively elucidating malicious behaviour in graph-based malware
analysis. These challenges arise, due to the complex nature of
malware files, which often contain mixed content and intricate
relationships between graph elements. Therefore, our proposed
GAGE framework aims to address these limitations and pro-
vide robust explanations tailored to the unique characteristics
of malware graphs.

III. PROBLEM FORMULATION

In this section, we formulate three critical problems ad-
dressed in this research, all centred around the analysis and
interpretation of disassembled binary code.

A. Problem 1: CEG construction

The first problem revolves around constructing a CEG from
disassembled binary code. We aim to represent the code as a
numerical vector in the form of features for graph nodes, while
capturing the semantic and flow aspects of code blocks through
graph edge features. Mathematically, this can be defined as

Let G = (V,E) be the constructed CEG, where:

• V represents the set of graph nodes, each corresponding
to a code block.

• E denotes the set of graph edges, signifying relationships
between code blocks.

For each node vi ∈ V , we aim to extract feature vectors Xi

such that:

Xi = FeatureExtractor(vi),∀vi ∈ V



Additionally, we seek to capture the semantics and flow
between code blocks as edge features Eij such that:

Eij = EdgeFeatureExtractor(vi, vj),∀(vi, vj) ∈ E

B. Problem 2: Malicious family detection

The second problem entails the classification of the con-
structed CEGs into malicious or benign families. We employ
a GCNN for this classification task. Formally, the problem can
be expressed as:

Given a set of CEGs {G1, G2, . . . , GN}, each annotated
with a class label yi, where yi = 1 indicates a malicious
family and yi = 0 represents a benign family, we aim to learn
a classifier f that maps CEGs to class labels:

f(Gi) → yi,∀Gi ∈ {G1, G2, . . . , GN}

The objective is to train a GCNN model to minimize the
classification loss:

L = − 1

N

N∑
i=1

(yi · log(f(Gi)) + (1− yi) · log(1− f(Gi)))

C. Problem 3: Interpretability via subgraph extraction

The third problem addresses the interpretability of the
classification results by generating subgraphs of CEGs that
highlight key code blocks responsible for classification deci-
sions. We introduce the GAGE to perform this task. Formally,
we aim to extract subgraphs Gs from CEGs G that provide
meaningful insights into the classification process:

Gs = GAGE(G, f(G), yi),∀G ∈ {G1, G2, . . . , GN}

Where f(G) represents the classification output for CEG
G, and yi is the true class label for Gi.

IV. MODEL DEVELOPMENT

A. CEG construction

The initial phase of our model development involves con-
structing the Canonical Executable Graph (CEG) through a
multi-step process (see Figure 1), which can be divided into
two main components: feature extraction for nodes and edge
features.

1) Feature extraction for nodes: Following the disassem-
bling of PE files using IDA Pro3, we extract blocks of as-
sembly instructions within functions. These instruction blocks
are then processed using the PalmTree4 library, a pre-trained
model on assembly language that has been trained extensively
on CFG and DFG to capture semantic information [25]. The
next step involves converting and reducing the dimensionality
of these embeddings at the block level. However, directly
aggregating or applying weighted sums to instruction-level
embeddings generated by PalmTree is unsuitable, as it ne-
glects the sequence’s inherent order, potentially resulting in
information loss.

3https://www.hex-rays.com/products/ida/
4https://github.com/palmtreemodel

To address this challenge, we developed AED, a model
that combines the strengths of traditional autoencoders
and sequence-to-sequence models, incorporating an attention
mechanism to adaptively focus on different parts of the input
sequence during encoding and decoding. The AED architec-
ture comprises two main components:

• Attention-Encoder The encoder employs Convolutional
Neural Networks (ConvNets) to capture spatial features
within the assembly code sequence. Subsequently, a self-
attention mechanism assigns varying weights to sequence
segments based on their significance. Mathematically, the
encoder’s output (EO) can be expressed as:

EO = Attention(Conv1D(B(m,n))) (1)

where B(m,n) represents the embedding of a block
generated by PalmTree, where m denotes the number of
instructions, and each instruction has an embedding of
size n.

• Decoder The decoder takes the encoded representa-
tion and reconstructs the original input sequence us-
ing Conv1DTranspose layers. Similar to the encoder,
it employs the attention mechanism to ensure that the
generated output focuses on relevant portions of the
encoded representation. The decoder’s output, which is
the reconstruction of instruction embeddings (Ro) from
the input (Eo), can be defined as:

Ro = Conv1DTranspose(Attention(EO)) (2)

After training AED, a feature of the Node can be obtained as:

FNode = AED(B(m,n)) (3)

The generated feature vector (FNode) captures the character-
istics of corresponding assembly instruction sequences in a
lower-dimensional embedding space, retaining essential infor-
mation such as opcode details, operand types, and operand
values. The attention mechanism enables the model to em-
phasize critical instructions and their relationships, capturing
local and global dependencies within the code. Once trained,
the AED can obtain embeddings for assembly code sequences.

2) Edge Definitions: Edges within a CEG are pivotal in
representing control-flow and data-flow relationships between
code blocks, as they are essential for understanding software
control flow. We define edges based on the following criteria:

• Consequent edges (EC) Consequent edges link the last
block of a function to the first block of the following
function, indicating sequential execution.

• Conditional/fallthrough edges (ECond) Conditional
edges represent control-flow decisions, reflecting branch-
ing within code blocks. Specific conditions determine
these edges.

• Intra-function edges (EIntra) Intra-function edges exist
within a single function and capture local control flow.
They connect blocks based on control dependencies.

• External edges (EExternal) External edges connect code
blocks across different functions or program units, sig-
nifying interactions between them. These edges provide



Fig. 1. Pipeline of AED for CEG construction

insights into inter-procedural control flow and data flow,
facilitating a deeper understanding of how various parts
of the software collaborate or communicate.

Mathematically, the embedding of an edge can be repre-
sented as a vector incorporating all the Booleans as mentioned
above:

FEdge = [EC , ECond, EIntra, EExternal] (4)

CEG construction involves the extraction of node features
representing code block characteristics and the definition of
edges to model control-flow relationships. This mathematical
representation of software structure and behaviour, enhanced
by features and edges, enables diverse software analysis tasks,
including malware analysis.

B. CEG classification

Fig. 2. CEG classification using GCNN

In our research, the classification of CEGs into benign and
malicious families is essential. To achieve this, we utilize a
GCNN, a robust framework designed for graph-based data
classification (Figure 2). The architecture of the GCNN model

is summarized in Table I, which provides an overview of its
layers, output shapes, and associated parameters.

TABLE I
ARCHITECTURE OF THE GCNN

Layer Parameters
Input N/A
Graph convolution N/A
Graph pooling N/A
Convolutional layer Filters = 16, Kernel Size =

sum(layer sizes), Strides =
sum(layer sizes)

Max pooling Pool Size = 2
Convolutional Layer Filters = 32, Kernel Size = 5,

Strides = 1
Dense Units = 128, Activation = ”relu”
Dropout Dropout rate = 0.5
Output Activation (Softmax)

Following the process outlined in the previous section
(Section IV-A) for CEG generation, we employ the GCNN
architecture, as depicted in Table I, for graph-based classi-
fication. This architecture incorporates graph convolutional
layers, convolutional layers, max-pooling operations, and fully
connected layers, collectively enabling the model to capture
intricate relationships within the graph data. The training of
the model is carried out in a batch-based manner, with early
stopping mechanisms in place to prevent overfitting. Model
performance is rigorously evaluated using an independent test
dataset, and critical metrics, including accuracy, loss, preci-
sion, recall, and F1-score, are computed for comprehensive
assessment.



C. GAGE

Fig. 3. Subgraph extraction using GA

In this section, we present the genetic algorithm (GA)
approach used to enhance graph-based classification through
subgraph extraction. The GA iteratively optimizes subgraphs
based on a fitness function derived from softmax probabilities
obtained during the classification of the original graph. The
GA comprises several crucial steps, which we detail mathe-
matically below:

1) Encoding subgraph: Given a parent graph Gp with a
set of edges, we represent a subgraph Gs as a chromosome
C of length L. Each element Ci within the chromosome
corresponds to an edge index from the encoding scheme. The
encoding process, including the use of an EdgeMapping to
relate edge indices to actual edges, is defined as:

C = [C1, C2, . . . , CL] (5)

where Ci is an integer representing an edge index, and
EdgeMapping(Ci) maps it to an edge in Gp.

2) Crossover: Crossover is a genetic operator that combines
the chromosomes of two-parent subgraphs, Ca and Cb, to
generate a child chromosome Cc. The crossover operation can
be formulated as follows:

Cc = Crossover(Ca, Cb) (6)

3) Mutation: Mutation introduces diversity into the popu-
lation by randomly altering specific elements within a chro-
mosome. The mutated chromosome Cm is expressed as:

Cm = Mutation(C,mutation rate) (7)

4) Decoding: The decoding process constructs the decoded
subgraph Gd from the chromosome C using an encoding-
decoding mapping function. This mapping translates edge
indices back to their respective edges in the parent graph Gp

using the EdgeMapping:

Gd = Decode(C,EdgeMapping) (8)

5) Fitness Calculation: Fitness evaluation measures the
quality of the decoded subgraph Gd concerning its classi-
fication performance. The fitness function is defined as the
Euclidean distance between the softmax probabilities of Gd

and Gp, calculated across all classes:

Fitness(Gd, Gp) =

√√√√ N∑
i=1

(Pi − Ci)2 (9)

where N represents the number of classes, Pi is the softmax
probability of class i for Gp, and Ci is the softmax probability
of class i for Gd.

6) Selection of Fittest Individuals: The selection process
identifies the fittest subgraphs within the population based
on their computed fitness values. The top Ntop subgraphs,
corresponding to the lowest fitness values, are chosen to
proceed to the next generation.

7) Creating a New Population: To evolve the population
towards subgraphs with improved classification performance,
crossover, mutation, and selection are applied iteratively. This
iterative process continues for a specified number of gener-
ations, resulting in the generation of increasingly optimized
subgraphs.

V. RESULT AND DISCUSSION

A. Dataset

The dataset for this research comprises malicious executa-
bles obtained from MalShare5 and VirusShare6. It comprises
612 benign files (13.6GB) and 1,799 malicious files (15.1
GB) attributed to the Bladabindi, Bundlore, Downloadadmin,
Emotet, Gamarue, and Firseria malware families. We utilized
IDA Pro, a commercial disassembler, to disassemble our
compiled executables and obtain the corresponding assembly
functions.

To train our AED, we employed a dataset consisting of
0.8 million assembly code blocks, with each block limited
to a maximum of 512 instructions. On average, each CEG
comprises 546 nodes and 3,567 edges. For our model evalu-
ation, we divided the dataset into an 80-20% train-test split.
Subsequently, the training set was further split into an 80-20%
training-validation split for model development and validation.

B. Discriminative power analysis

In this section, we present a comparative analysis of the per-
formance of our proposed model GAGE against the state-of-
the-art CFGExplainer. We evaluate their discriminative power
using precision (P ), recall (R), and F1-Score (F1) metrics
for various malware families. The results are summarized in
Table II.

We begin by examining the classification performance for
each malware family individually, using the following formu-
las:

5https://malshare.com
6https://virusshare.com



TABLE II
DISCRIMINATIVE POWER METRICS

Malware-
Family

Algorithm Precision Recall F1-
Score

Gamarue CFGExplainer 0.46 0.25 0.32
GAGE 0.68 0.44 0.53

Firseria CFGExplainer 0.93 0.98 0.95
GAGE 0.98 0.98 0.98

Bundlore CFGExplainer 1.00 0.94 0.97
GAGE 1.00 0.96 0.98

Emotet CFGExplainer 0.95 0.89 0.92
GAGE 0.89 0.86 0.88

Benign CFGExplainer 0.69 0.84 0.76
GAGE 0.75 0.89 0.81

Downloadadmin CFGExplainer 0.93 0.98 0.96
GAGE 0.96 0.99 0.97

Bladabindi CFGExplainer 0.72 0.60 0.65
GAGE 1.00 0.83 0.91

Average CFGExplainer 0.81 0.78 0.79
GAGE 0.90 0.85 0.87

Accuracy CFGExplainer 0.83
GAGE 0.87

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− Score =
2 · Precision ·Recall

Precision+Recall
(12)

Where:
• TP is the number of true positives.
• FP is the number of false positives.
• FN is the number of false negatives.
We found that GAGE outperforms CFGExplainer for almost

every malware family regarding precision, recall, and F1-
Score (see Table II). GAGE’s performance on Emotet may
differ due to CEGs’ broader syntactical and semantical scope
compared to the execution-path-centric approach of CFGs used
in CFGExplainer, highlighting the need for further research on
malware-graph interactions for different malware families.

To provide an overall assessment, we calculate the average
precision, recall, and F1-Score across all malware families.
Here are the formulas:

AveragePrecision =
1

N

N∑
i=1

Precisioni (13)

AverageRecall =
1

N

N∑
i=1

Recalli (14)

AverageF1− Score =
1

N

N∑
i=1

F1− Scorei (15)

Where:
• N is the number of malware families.
• Precisioni, Recalli, and F1−Scorei are the precision,

recall, and F1-Score values for the i-th malware family.

Here, GAGE consistently demonstrates superior perfor-
mance compared to CFGExplainer, with higher values for pre-
cision, recall, and F1-Score. In terms of accuracy, which rep-
resents the overall classification correctness, GAGE achieves
a higher accuracy score compared to CFGExplainer.

The results of our performance evaluation indicate that
GAGE outperforms CFGExplainer across multiple malware
families, achieving higher precision, recall, F1-Score, and
accuracy. These findings underscore the effectiveness of our
proposed model in the context of malware classification.
GAGE’s superior discriminative power makes it a valuable
tool for identifying and classifying various malware families,
providing enhanced security in the face of evolving threats.

C. Robustness assessment

TABLE III
EXTRACTED SUBGRAPH FEATURE TO CALCULATE ROBUSTNESS SCORE.

Feature Description
Average node features The average of node features
Edge Count The total number of edges in the graph.
Self-Loop Count The number of self-loops in the graph.
Minimum Degree The minimum degree of nodes in the graph.
Minimum In-Degree The minimum in-degree of nodes in the graph.
Minimum Out-Degree The minimum out-degree of nodes in the graph.
Average Degree The average degree of nodes in the graph.
Average In-Degree The average in-degree of nodes in the graph.
Average Out-Degree The average out-degree of nodes in the graph.
Maximum Degree The maximum degree of nodes in the graph.
Maximum In-Degree The maximum in-degree of nodes in the graph.
Maximum Out-Degree The maximum out-degree of nodes in the graph.

To assess the robustness of the explanations generated in
subgraphs, we extracted various features from these sub-
graphs, as defined in Table III. Subsequently, we computed
the Minimum Mean Discrepancy (MMD) score as a measure
of robustness. The MMD between two sets of data can be
calculated using the following formula:

MMD(X,Y ) =

∥∥∥∥∥∥ 1

nX

nX∑
i=1

ϕ(xi)−
1

nY

nY∑
j=1

ϕ(yj)

∥∥∥∥∥∥
2

2

(16)

In this formula:
• X and Y are the data points we want to compare.
• nX and nY are the number of data points in sets X and

Y , respectively.
• xi and yj are individual data points in sets X and Y .
• ϕ(·) is a feature map that maps data points into a higher-

dimensional space.
• ∥·∥2 denotes the Euclidean norm (L2 norm), the square

root of the sum of squared values.
The MMD measures the difference between the feature

distributions of the two datasets X and Y . It quantifies how
well the data points from X and Y are separated in the feature
space defined by ϕ(·). The smaller the MMD value, the more
similar the distributions of X and Y are in the feature space.

In Figure 4, we present the robustness scores compared
across different malware families for varying numbers of



TABLE IV
ROBUSTNESS SCORES ACROSS CLASSES AND COMPARISON BETWEEN CFGEXPLAINER AND GAGE USING VARYING DATA SIZES (1 TO 5 SUBGRAPHS)

Class 1 Class 2 Model #1 #2 #3 #4 #5 Average

Benign Bladabindi CFGExplainer 1.5543 0.7369 0.3386 0.3330 0.3330 0.6591
GAGE 1.9994 0.6033 0.4411 0.2763 0.2763 0.7192

Benign Bundlore CFGExplainer 1.2645 0.5018 0.2267 0.2567 0.2567 0.5012
GAGE 1.5844 1.1256 0.5205 0.3411 0.3411 0.7825

Benign Downloadadmin CFGExplainer 1.2816 0.5052 0.3944 0.2092 0.2092 0.5199
GAGE 1.7533 0.8976 0.3156 0.3424 0.3424 0.7302

Benign Emotet CFGExplainer 1.8396 0.7594 0.2701 0.3300 0.3300 0.7058
GAGE 1.8969 0.8744 0.5971 0.4938 0.4938 0.8712

Benign Firseria CFGExplainer 1.7296 0.4858 0.1948 0.1239 0.1239 0.5316
GAGE 1.9665 1.0273 0.6955 0.6822 0.6822 1.0107

Benign Gamarue CFGExplainer 1.7305 0.5022 0.3511 0.5241 0.5241 0.7264
GAGE 1.9470 0.9196 0.6569 0.5819 0.5819 0.9374

Bladabindi Bundlore CFGExplainer 1.8360 0.4603 0.2071 0.1261 0.1261 0.5511
GAGE 1.9999 0.5140 0.2462 0.3097 0.3097 0.6759

Bladabindi Downloadadmin CFGExplainer 1.8382 0.4594 0.6298 0.3204 0.3204 0.7136
GAGE 1.9999 0.6702 0.5973 0.6438 0.6438 0.9110

Bladabindi Emotet CFGExplainer 1.2777 0.3283 0.4564 0.3322 0.3322 0.5453
GAGE 1.9998 1.0183 0.6879 0.6539 0.6539 1.0027

Bladabindi Firseria CFGExplainer 0.7900 0.7978 0.7438 0.2661 0.2661 0.5727
GAGE 1.9677 1.0948 0.9265 0.9453 0.9453 1.1759

Bladabindi Gamarue CFGExplainer 0.7897 0.8955 0.7546 0.6432 0.6432 0.7452
GAGE 1.9997 0.9440 0.8394 0.8268 0.8268 1.0873

Bundlore Downloadadmin CFGExplainer 0.0474 0.0134 0.2293 0.2275 0.2275 0.1490
GAGE 1.0054 0.6276 0.6003 0.5814 0.5814 0.6792

Bundlore Emotet CFGExplainer 1.5655 0.4064 0.3020 0.4533 0.4533 0.6361
GAGE 1.9783 1.3101 0.8047 0.5597 0.5597 1.0425

Bundlore Firseria CFGExplainer 1.9635 0.6627 0.4492 0.2553 0.2553 0.7172
GAGE 1.9996 1.3952 1.0323 0.8830 0.8830 1.2386

Bundlore Gamarue CFGExplainer 1.9635 0.7297 0.6004 0.6913 0.6913 0.9352
GAGE 1.7730 1.2301 0.8073 0.5595 0.5595 0.9858

Downloadadmin Emotet CFGExplainer 1.5591 0.3978 0.3856 0.3957 0.3957 0.6267
GAGE 1.9933 1.0467 0.6443 0.5345 0.5345 0.9506

Downloadadmin Firseria CFGExplainer 1.9642 0.6613 0.4227 0.1993 0.1993 0.6893
GAGE 1.9999 1.1094 0.7824 0.6798 0.6798 1.0502

Downloadadmin Gamarue CFGExplainer 1.9640 0.7309 0.5814 0.3988 0.3988 0.8147
GAGE 1.9856 0.9951 0.6359 0.5105 0.5105 0.9275

Emotet Firseria CFGExplainer 1.8384 0.6343 0.3215 0.2616 0.2616 0.6634
GAGE 1.6169 0.5967 0.5186 0.5031 0.5031 0.7476

Firseria Gamarue CFGExplainer 0.0177 0.5050 0.3986 0.4432 0.4432 0.3615
GAGE 1.9997 1.0946 0.7195 0.6155 0.6155 1.0089

Average CFGExplainer 0.6182
GAGE 0.9267

extracted subgraphs. Our findings indicate that the proposed
algorithm consistently achieves high robustness scores across
most scenarios, with a few exceptions. Similarly, we conducted
a comparative analysis among different malware families and
observed comparatively better robustness scores for the pro-
posed algorithm (refer to Figure 5).

Table IV displays the robustness scores between all benign
and malware families across different data sizes. We also
calculate the average for each combination and the final av-
erage to facilitate a direct comparison between CFGExplainer
and GAGE. Our results show that CFGExplainer achieves a
61.82% robustness score, while GAGE attains an impressive
92.67% signifying its superiority.

D. Interpretability analysis

In this section, we analyze the explainability offered by the
proposed model from various perspectives (refer to Table V
for acronyms).

TABLE V
LIST OF ACRONYMS RELATED TO CODE ANALYSIS AND THEIR

DEFINITIONS

Acronym Definition
XOR Exclusive OR (a logical operation)
ROL Rotate Left (an assembly instruction)
ROR Rotate Right (an assembly instruction)
MOV Move (an assembly instruction)
LEA Load Effective Address (an assembly instruction)
TEST Test (an assembly instruction)
CMP Compare (an assembly instruction)
JNZ Jump if Not Zero (an assembly instruction)
JZ Jump if Zero (an assembly instruction)
JB Jump if Below (an assembly instruction)
MUTAG A dataset name related to mutagenic compounds

1) Code obfuscation: Malware frequently utilizes code
obfuscation techniques to obstruct static analysis and elude de-
tection mechanisms. A prominent instance from the extracted
code blocks involves the application of XOR operations,



Fig. 4. Robustness score/MMD between benign and various malware families.

which are commonly used for straightforward data encoding
and decoding. Additionally, the employment of arithmetic
and logic instructions, such as ROL and ROR, particularly
within loops, is discernible in the extracted code, potentially
signalling a decoding routine. Specific obfuscation instructions
have been observed in several examples from the Firseria,
Emotet, and DownloadAdmin families, as illustrated in Fig-
ure 6.

2) Evasion techniques: The proposed model, GAGE, iden-
tifies blocks that unveil evasion tactics, notably the employ-
ment of jump instructions to formulate a complex CFG,
thereby complicating static analysis. For example, dynamic
jumps and potentially packed or encrypted payloads, exempli-
fied by jmp : ds : imp DllFunctionCall in the Gamarue
family, are deemed suspicious as they are frequently utilized to
circumvent detection and analysis. Such instructions suggest
the executable’s use of external libraries or functions, poten-
tially engaging with system-level functionalities or interacting
with other processes.

3) Data manipulation: Data and memory management play
a crucial role in the functioning of malware. A prevalent uti-
lization of MOV and LEA instructions was noted, which may
involve transferring malicious payloads or altering memory ad-
dresses. Moreover, employing TEST , CMP , and conditional
jump instructions, such as JNZ, JZ, and JB, could establish
conditional logic derived from the manipulated data. Notably,
in the extracted code from the Gamarue family, an extensive
use of MOV commands was observed (Figure 6).

4) Unpacking, shellcode, or payload execution: Recogniz-
ing patterns that suggest shellcode execution or the unpacking
of additional payloads is vital. This may encompass a blend of
memory operations, function calls, and jumps that execute data
in memory. For example, the utilization of hardcoded values,
often in hexadecimal, might be linked with specific operations,
and magic numbers are atypical in benign applications. Such
signs were observed in the Gamarue family samples (Figure 6).
The Firseria samples display an unusual quantity of calls,
jumps, and conditional checks. While stack operations are
common, they can also be employed in shellcode or to set
up function calls with particular arguments.

5) Comparison with benign samples: Benign samples, scru-
tinized through the extraction of subgraphs via the GAGE al-
gorithm, display markedly distinct attributes in comparison to
malicious samples (Figure 9). The code blocks within benign
samples are systematically structured and organized, executing
particular operations or tasks (Figure 8). The following are
some pivotal findings from the malicious code extracted by
GAGE:

• Code architecture: Benign samples generally display
a modular and systematic code structure engineered to
execute specific functionalities, which stands in stark
contrast to the frequently obfuscated or packed code
observed in malware.

• Handling exceptions: Instructions pertinent to exception
handling, such as pushoffset except handler4, are
common in benign samples, ensuring the proper man-
agement of runtime errors and exceptions.



Fig. 5. Robustness score/MMD between two different malware families

Fig. 6. Malware families with malicious code interpretability. Pink lines show extensive use of MOV commands, red shows dynamic calls, blue shows magic
numbers used in malicious code, and yellow shows XOR obfuscation technique by malicious files. These samples are from malware families (Gamaru and
Firseria).

• Security protocols: Instructions concerning security,
such as moveax, security cookie, along with sub-
sequent operations, manage security cookies, a strategy
employed in benign software to thwart buffer overflow
attacks (Figure 8).

• Memory administration: Efficient memory management
is demonstrated through instructions that manage local
variables and function calls, a characteristic typically
observed in benign software, e.g., managing stack pointer
(check sky-blue lines in Figure 8).

E. Validation using MUTAG dataset

Without ground truth for evaluating the interpretability on
malicious file datasets, we turn to real-world data, specifically
the MUTAG dataset [26], to validate our results. The MUTAG
dataset comprises a collection of nitroaromatic compounds

designed for graph classification to distinguish between mu-
tagenic and non-mutagenic compounds. Our objective is to
assess the interpretability by identifying subgraphs or nodes
corresponding to mutagenic behaviour in graph structures.

We initiate this process by performing graph classification,
achieving favourable discriminative power. Subsequently, we
employ our proposed algorithm, GAGE, to obtain the inter-
pretability.

After training the model for classification and extracting
subgraphs for both mutagenic and non-mutagenic classes, we
obtain meaningful results. Non-mutagenic compounds within
the MUTAG dataset are primarily composed of carbon (C),
nitrogen (N), oxygen (O), and hydrogen (H) atoms [27],
[28]. These elements are commonly found in various organic
compounds and the building blocks for numerous biological
molecules. GAGE effectively highlights C and O nodes in the



Fig. 7. Malware families with malicious subgraph interpretability. Red nodes and edges represent the most suspicious code blocks in their respective executables
of the Emotet, Firseria, Downloadadmin, and Gamarue malware families (from left to right).

Fig. 8. Interpretability of benign sample. Green nodes indicate code-blocks
highlighted by GAGE.

Fig. 9. Interpretability of extracted code from a benign sample. The green
line relates to exception handling code, sky-blue pertains to stack pointer
management, and the blue line illustrates security-related checkpoints. In
benign samples, code blocks highlighted by GAGE indicate these aspects.

case of non-mutagenic compounds (Figure 10).
In contrast, mutagenic compounds within the MUTAG

dataset exhibit a broader spectrum of atoms than non-
mutagenic ones. While carbon (C), nitrogen (N), oxygen
(O), and hydrogen (H) atoms remain prevalent, mutagenic
compounds can also incorporate halogens such as fluorine
(F), chlorine (Cl), bromine (Br), and iodine (I) [27], [28].

Fig. 10. Non-mutagenic compound: Blue nodes represent typical nodes, while
red nodes, highlighted by GAGE, correspond to carbon (C) and oxygen (O)
atoms.

Fig. 11. Mutagenic compound: Blue nodes represent typical nodes, while red
nodes, highlighted by GAGE, correspond to halogen atoms.

In mutagenic cases, GAGE successfully identifies Cl and H
atoms (refer to Figure 11).

F. Model comparison with other tools

Table VI presents a comparative analysis of our model with
other benchmark malware detection models. Models not incor-
porating explanations, [29], [30] demonstrate high evaluation
metrics. However, further analysis is necessary to understand
the rationale behind malware identification and determine the
malware family. Model [31] offers explanations based on
system calls and exhibits relatively high accuracy, although
its precision is comparatively low. This indicates a propensity
to overpredict the positive class, resulting in numerous false
alarms or incorrect identifications. While the model’s overall
accuracy appears high, its precision suggests a need for im-
provement in identifying true positive cases without generating
excessive false positives. Models not utilizing graphs, such as



TABLE VI
GAGE’S RESULTS COMPARISON WITH OTHER BENCHMARK TOOLS E.G., CONVOLUTIONAL LONG SHORT-TERM MEMORY NETWORK (CONV-LSTM),

GRADIENT-WEIGHTED CLASS ACTIVATION MAPPING (GRAD-CAM), MALCONV (CONVOLUTIONAL NEURAL NETWORK FOR MALWARE)

Ref Input data Model/ Algo-
rithm

Precision Recall F1-Score Accuracy Explainability
method

Explainability
evaluation

[32] Gray scale images CNN 72.6 71.5 72.0 71.8 No No
[33] Malware images Grad-CAM 94.7 94.3 94.5 94.4 Most

influencing
pixels, heatmap

Yes

[29] Byte sequences CNN 95.9 96.3 96.1 96.1 No No
[30] Byte sequences CNN 93.2 93.2 93.2 93.2 No No
[34] Malware images MalConv 87.1 – 87.3 – Heatmap No
[31] System calls ANN 85.0 96.0 – 94.0 Most

influencing
system call’s
tags

Yes

[35] Features series Conv-LSTM 93.8 51.4 67.9 89.2 Subgraph No
[36] CFG GNN – – 92.7 89.6 Subgraph Yes

GAGE CEG GCNN 90.0 85.0 87.0 87.0 Subgraph Yes

the malware image based model [33], achieve relatively better
accuracy owing to their robust CNN architectures. However,
their explainability, which involves highlighting influential
pixels in images, only provides meaningful insights to malware
analysts if they reconnect those pixels to the corresponding
PE files. This process is time-consuming and requires deep
knowledge of the developed model.

Models employing graphs and providing explanations in
terms of subgraphs offer convenience to malware analysts by
directly extracting sequences of malicious code. Unlike other
models, they obviate the need to explore the model further.
However, only a few models consider malicious graphs as
input, as processing malicious graphs necessitates a different
approach due to their mixture of benign and malicious code
within a single PE. Besides CFGExplainer, models [35] utilize
graph inputs and provide explanations as subgraphs, claiming
better accuracy. However, the model [35] does not evaluate
the quality of the generated explanations. While its precision,
accuracy, and F1-score suggest overall good performance, its
low recall underscores a need to improve capturing more
true positive cases. Model [36], although evaluating their
explanation, is only applicable for Android-based malware and
not PE.

The proposed model, GAGE, demonstrates that including
explainability features does not significantly compromise its
accuracy. The precision, recall, and F1-score metrics demon-
strate GAGE’s ability to maintain high discriminative power
while providing interpretable explanations. GAGE’s ability to
offer explanations in terms of subgraphs could offer significant
advantages in understanding the underlying reasons for mal-
ware classifications. Therefore, the explainability provided by
GAGE is worth the slight decrease in accuracy, as it enhances
the transparency and trustworthiness of the model’s outputs,
facilitating informed decision-making by malware analysts and
cybersecurity professionals.

VI. CONCLUSION

Our proposed algorithm is specifically designed to address
the unique characteristics of malicious files, such as the non-

applicability of gradient and perturbation algorithms, surroga-
tion, and division methods. The proposed algorithm captures
syntax and semantic-level knowledge through node encoding,
and the resulting graph structure, CEG, retains all the details of
the executable code. Beyond malware detection, our algorithm
significantly contributes to fields where graphs represent a piv-
otal yet complex data structure. It effectively addresses issues
such as graph segregation and gradient problems associated
with previous XAI methods, offering broader applicability
and enhancing the interpretability of graph-based learning and
explanation approaches across diverse domains.

The proposed algorithm has achieved superior discrimi-
native power with an 87% accuracy rate and a lower false
positive rate. Furthermore, GAGE provides interpretability,
yielding a robustness score of 97.67%, a crucial aspect
for distinguishing between different malware families. We
conducted a manual analysis of the code extracted by the
proposed model and found it highly valuable for reverse
engineering purposes. The extracted subgraph contains some
unfamiliar and suspicious elements, which can be essential for
further investigation. In addition, we also applied the proposed
algorithm to a real-world dataset, MUTAG, and obtained
meaningful results in terms of interpretability.

In the future, we will focus on developing a graph taxonomy
to differentiate between benign and various malware families.
Taxonomies such as bunch, ring, and Barabasi-Albert (BA),
when combined, can reveal obfuscation and encoding schemes,
providing insights into the executable’s origin and association
with different malware families.
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