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Abstract—Malware, especially ransomware, has dramatically
increased in volume and sophistication in recent years. The
growing complexity and destructive potential of ransomware
demand effective countermeasures. Despite tremendous efforts
by the security community to document these threats, reliance
on manual analysis makes it challenging to discern unique
malware variants from polymorphic variants. Moreover, the easy
accessibility of source code of prominent ransomware families
in public domains has led to the rise of numerous variants,
complicating manual detection and hindering the identification
of phylogenetic relationships. This paper introduces a novel
approach that narrows the focus to analyze one such prominent
ransomware family, Virlock. Using binary code similarity, we
systematically reconstruct the lineage of Virlock, tracing its
relationships, evolution, and variants. Employing this technique
on a dataset of over 1000 Virlock samples submitted to VirusTotal
and VirusShare, our analysis unveils intricate relationships within
the Virlock ransomware family, offering valuable insights into the
tangled relationships of this ransomware.

Index Terms—Ransomware, Malware attribution, Virlock,
Contrastive learning, Concept drift

I. INTRODUCTION

The escalating threat of advanced ransomware poses serious
challenges to cybersecurity society [1] which is dependable
on cyberspace and its infrastructure, from the Internet of
Things (IoT) to critical OT elements [2], [3]. Ransomware’s
evolving nature, marked by increasing disruption and prof-
itability, underscores the urgency for innovative strategies in
threat detection and mitigation. A notable characteristic of
many malware instances lies in the substantial code similarities
exhibited with prior variants, both within the same family
and across different malware families [4]. This phenomenon,
while not novel, becomes increasingly prevalent as malicious
actors leverage code-recycling strategies, often borrowing ex-
tensively from publicly leaked sources [5]. The development
of unique variations has been made easier with the advent
of ransomware-as-a-service [6]. Over time, the efficacy of
machine learning (ML) classifiers is greatly impacted by this
trend of code repetition, as new malware profiles show more
sophisticated and distinct traits, and old malware profiles
become obsolete [7]. Using machine learning models with
such dynamic input presents a significant problem called idea
drift. When testing data gradually deviates from the initial
training data, a phenomenon known as this occurs, which

causes significant failures in deployed models [8]. The testing
data distribution should roughly mirror the training data distri-
bution for machine learning models to function. Nevertheless,
the ever-changing malware landscape [9] presents significant
problems to the models since it consistently deviates from the
initial training data. In response to concept drift, the majority
of learning-based models necessitate periodic re-training or
fine-tuning [10]. However, this process is often resource-
intensive, requiring the labeling of a substantial number of
new samples, thus incurring significant expenses. Moreover,
determining the optimal timing for model retraining poses a
considerable challenge [11]. The vulnerability of the model to
new attacks rises when retraining is deferred, as the outdated
model may struggle to effectively adapt to evolving data
distributions.

To address the effects of concept drift, this work intro-
duces a novel approach focusing on effectively detecting
drifting Virlock samples. The proposed method employs a
self-supervised contrastive learning model to learn meaningful
representations of binary assembly codes. This facilitates ob-
taining semantically rich descriptions of the input samples. By
mapping training samples to a low-dimensional latent space
through contrastive learning, the model increases the distances
between samples of different classes while decreasing dis-
tances between samples within the same class. Such a process
detects drifting samples effectively. To preserve contextual
information from assembly instructions, the study employs a
balanced instruction normalization method, providing effec-
tive comparison and distinction between different ransomware
samples. The main contributions of this study are summarized
as follows:

• We propose a novel method to address intra-family attri-
bution challenges of Virlock using contrastive representa-
tion learning. This innovative approach enables accurate
identification and classification of ransomware families
based on their unique behaviors.

• We employ a robust instruction normalization method to
retain semantic and contextual information from assem-
bly instructions.

• We facilitate future research in the field by making our
dataset of ransomware MD5 hash values and pertinent



graphs available to the research community. 1

The remainder of this paper is organized as follows. In section
II relevant related works are discussed. Section III outlines the
problem, while Section IV presents the proposed framework.
In Section V, we discuss our findings and results. In Section
VI, we provide some discussions on some of the aspects of
concept drift and highlight their relationship to our study.
Finally, in Section VII we conclude and discuss future research
directions.

II. RELATED WORK

The issue of concept drift has recently garnered consid-
erable attention, where research has been directed toward
how machine learning performs in the presence of concept
drift IoT malware, Cozzi et al. [12] investigated the lineage,
relationship, and evolution of IoT malware families using
binary code similarity. Addressing the challenge of concept
drift, Yang et al. [13] introduced a system called CADE that
detects drifting samples. Their proposed approach involves
using contrastive learning to calculate the distance and dissim-
ilarity between input samples. Dib et al. [14] presented EVO-
LIoT, which employs contrastive method to learn meaningful
representations of IoT malware binaries. The authors have
presented the tangled relationships between IoT malware and
inter-family IoT malware classification. The authors in [15]
introduced a method for tracing the lineage of 10 prominent
malware families. Their approach involves unpacking and
disassembling binaries to identify shared code within input
samples, followed by a detailed analysis to effectively trace
the lineage. Park et al. [16] utilized classification algorithms
to categorize extracted behavioral feature sets into distinct
malware families. Each cluster exhibits similar family features,
and a cluster head is selected within each cluster, serving as
a key element in the subsequent lineage inference process.

While previous studies have predominantly focused on
various malware types, including those impacting IoT and
Android, none have specifically delved into the issue of
ransomware. To the best of our knowledge, our work is the
first to investigate concept drift within ransomware families.
By utilizing assembly instructions, strings, and API calls, we
enhance the overall result of our research.

III. PROBLEM STATEMENT

The continuous emergence of new attacks and data daily
presents a challenge for models to maintain fully updated
and labeled datasets. Additionally, the laborious and costly
process of labeling incoming samples demands specialized
expertise, creating a bottleneck for security analysts who need
to address various challenges such as accurate labeling, lineage
tracing, and family attribution. A convenient approach to tackle
these challenges is to model the binary code of an executable,
providing an accurate representation of its behavior and evo-
lutionary essence, particularly regarding reusing codes and

1https://github.com/malXhunter/Virlock-lineage-inference

adding functions. Evolving ransomware strains can be framed
as a binary similarity comparison problem, where syntactic
or semantic (dis)similar feature vectors of two samples are
compared.

In this paper, we introduce a novel method that employs
contrastive learning with an autoencoder model, such as
BERT [17]. This method utilizes a contrastive learning-based
autoencoder to train the model without explicit reliance on
training data. To implement this, we leverage the evolution
of ransomware samples as an augmentation strategy, encoding
the same binary sample assembly instruction with different
dropout rates to generate two distinct word embeddings,
forming positive pairs [18]. Simultaneously, we maximize
the distance between the word embeddings of other binary
assembly codes, serving as negative pairs. This approach
allows us to focus on individual samples, discerning those that
significantly deviate from the original input data, facilitating
the detection of drifting samples and their appropriate labeling.
By identifying these ”drifting” samples, we can label them
appropriately and utilize them to re-train the machine learning
model, improving its performance. The subsequent section
delves into a detailed discussion of our proposed design
framework.

IV. DESIGN METHODOLOGY

We introduce a comprehensive framework, shown in Figure
1 designed for intra-class classification of Virlock ransomware,
addressing the challenge of concept drift. Our approach starts
with the extraction and normalization of assembly instructions.
Subsequently, we employ a contrastive learning approach to
learn a meaningful representation of the underlying meaning of
these instructions. As shown in Figure 1, the detection module
identifies the drifting samples and a lineage inference module
derives the lineage graph of Virlock variants based on these
drift and non-drifting samples. The details of our framework
are described below.

For studying ransomware evolution, we leverage assem-
bly code sequences as features. Assembly instructions are
extracted from the sample dataset using the Ghidra disas-
sembler tool [19]. Following assembly code extraction, we
perform instruction normalization to convert instructions into
tokens. We use a balanced instruction normalization method
by incorporating rules so that the contextual and semantic
information of these instructions are preserved., We then
employ a multi-layer transformer encoder called Bidirectional
Encoder Representations from Transformers (BERT), inspired
by the work in [20], that learns vector representations for
input words and sentences. Contrastive learning seeks to learn
effective data representations by bringing semantically related
samples closer (positive pairs) and pushing non-semantically
related samples far apart (negative pairs). The contrastive
learning objective function is defined as follows:

L = − log

(
exp(sim(zi, zj)/τ)∑2N

k=1 [k ̸=i] exp(sim(zi, zk)/τ)

)
(1)
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Fig. 1. Proposed workflow of our approach

where τ is a temperature parameter; sim(zi, zj) and
sim(zi, zk) represents the similarity between the representa-
tions of two samples xi, xj and xi, xk respectively.

Our contrastive learning model transforms high-dimensional
feature vectors into a lower-dimensional space, discriminating
between positive and negative pairs based on their distances.
The t-SNE plots in Figure 2 compare standard and contrastive
representations of Virlock variants in our dataset, illustrating
the effectiveness of our approach in capturing semantic simi-
larity.

A. Detection Module

Our methodology involves training the model on specified
training sets and then clustering the samples, prioritizing intra-
cluster similarity over inter-cluster similarity. The detection
module then carefully examines the testing dataset, marking
samples that noticeably differ from what the model learned
during training as ”drifting samples.” These peculiarities,
showcasing patterns different from the training set, alert us
to potential new or unusual instances that require closer
inspection. After training the BERT model with a contrastive
objective, we use its abilities to spot drifting samples. By rep-
resenting samples in a lower dimensional space, we calculate
cluster centroids and their standard deviations. Each sample
of the testing dataset is placed in this space, and we measure
the distances of each test point to the centroids of all clusters.
For each test point, we calculate the minimum distance dmin,
which denotes how close that sample is to the nearest centroid.
Distinguishing between drifting and non-drifting data points is
done by checking whether the distance dmin between a test
point and its nearest centroid is less than the standard deviation
of the closest cluster If it is, the point is assigned to the cluster;
if not, it’s identified as a drifting sample. This process helps
us find samples that significantly deviate from what the model
learned, aiding in the discovery of new or unusual instances
during testing.

V. EVALUATION RESULTS

In this section, we examine how contrastive representation
learning influences binary clustering and assess the perfor-
mance of our detection module in pinpointing drifting ran-
somware samples.

A. Dataset

Our dataset comprises Virlock samples collected from mal-
ware repositories, including VirusTotal and VirusShare. The
total Virlock samples that were collected for this study were
1061 In addition, we also collected around 1000 samples of
each Gnadcrab and Lamer ransomware samples from these
malware repositories. In dataset preparation, we conducted
pre-processing steps to eliminate corrupt files and unpacked
samples using the UPX packer tool [21]. Despite successfully
unpacking a significant number of samples, some instances
were unsuitable for this approach. For further analysis, we
used the Ghidra disassembler tool to disassemble the remain-
ing ransomware binaries. However, Ghidra encountered diffi-
culties disassembling some samples, leading to their exclusion.
Consequently, our final dataset comprises around 1000 Virlock
samples for subsequent analyses.

B. Detection of drifting samples

In this section, we discuss the functionality of the pro-
posed detection module. To evaluate the detection module,
we consider two other ransomware families namely, Gandcrab
and Lamer along with Virlock. In this way, we have three
ransomware families to form a balanced dataset. One of these
families is designated as the hidden family in each iteration,
and the other families are split into training and testing
sets. Consequently, during testing, the goal is to correctly
identify samples that belong to the hidden family as drifting
samples when the unseen family is unavailable for training.
This iterative approach allows us to thoroughly evaluate the
performance of our model across all ransomware families. Our
data is divided into an 80:20 ratio of the training and testing
datasets of any two families. Subsequently, we assigned the



Fig. 2. t-SNE plots comparing Standard (top) and Contrastive (bottom) Representations of Virlock family (intra-class)

remaining family as the unseen category and incorporated
it into the testing set to form the ultimate testing dataset.
In our evaluation process, we treat the unseen family as
negative samples, while the remaining testing samples serve
as positive samples. Following the execution of our detection
module on this dataset, we employed evaluation metrics to
assess the performance of our approach for identifying drifting
samples. Three evaluation metrics were used namely, accuracy,
precision, and recall. Accuracy is a measure of the number of
samples correctly identified as either drifting or non-drifting
within the entire testing dataset. Precision, on the other hand,
quantifies the ratio of correctly identified drifting samples to
the total number of samples classified as drifting samples in
our dataset. Finally, recall measures the ability of the model

to correctly detect drifting samples out of all the samples that
are genuinely drifting in the dataset.

Figure 3 shows the evaluation results of the proposed detec-
tion model. Overall, our model performed well in clustering
Virlock samples with accuracy and precision exceeding 88%.
While the recall value reached 100%. This shows that our
model performed well in correctly detecting drifting samples
out of all the samples that are genuinely drifting in the dataset.
Our model was able to distinguish Virlock samples clearly,
as shown in Figure 4, the clusters for Virlock were notably
isolated from those of the other families. In contrast, the
remaining families exhibited greater similarity and shared code
patterns.
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C. Lineage Inference

In Figure 4, the UMAP graph illustrates the interconnected-
ness of Virlock samples within our dataset. Darker lines signify
high similarity, whereas faint lines indicate lower similarity.
Notably, specific Virlock samples appear more connected,
resulting in closer placement on the graph. In this section,
we delve into understanding these connections among samples
within each cluster that were derived by the detection module.

In our analysis of various Virlock samples, distinct patterns
emerged in the sequences of their API calls. Common and
essential API calls were observed across multiple Virlock vari-
ants, including NtOpenFile, NTQueryInformationFile, NtPro-
tectVirtualMemory, and NtTerminateProcess, facilitating func-
tions such as file manipulation, file information retrieval, mem-
ory protection modification, and process termination, respec-
tively. Less frequently employed API calls were also identi-
fied, such as FindResourceA, StartService, RegCreateKeyExW,
CreateToolhelp32Snapshot, and IsDebuggerPresent. Notably,
samples in cluster #4, dating back to 2013 and submitted to
VirusTotal in 2021, strategically utilized the Process Environ-
ment Block (PEB) to ascertain debugger presence, employing
IsDebuggerPresent for debugger detection and ExitProcess
to evade analysis [22]. Additionally, cluster #2 employed a
technique involving CreateToolhelp32Snapshot to recognize
known debugger names within the parent process [23]. These
API calls were utilized to scrutinize system artifacts and
determine the involvement of a debugger. Notably, cluster #2
variants succeeded cluster #4 variants and were observed in
2015.

VI. DISCUSSIONS

A shift in the relationships between a model’s input fea-
tures and variables over time is known as the concept drift
phenomenon. The latter has been well investigated in the
literature. Several factors may cause concept drift, such as

Fig. 4. UMAP graph showing the connection between different variants of
the Virlock family

modifications in the environment, processes being modeled,
and user behavior. We list below some of the aspects of
concept drift and highlight their relationship to our study on
ransomware malware.

Some researchers have developed models and tools to detect
and monitor concept drift offline and live (in real-time). This
includes determining whether the model’s performance is
declining as a result of shifting data distributions by using
statistical tests, keeping an eye on performance measures, or
using ensemble approaches. Because our model is based on
contrastive representation learning, and our dataset is of a
particular kind, our approach focuses on off-life inference.
Even though we semi-automated the detection process, we
still need to make some improvements to our model to
enable the system to function in a real-time setting. When
drift is detected, the detection model’s parameters should be
dynamically adjusted or updated on a regular basis. Adaptive
learning [24] and incremental learning [25] algorithms are
briefly discussed in this domain. The latter is more useful in
real-world settings where ransomware variations are rapidly
created.

Other researchers have studied concept drift thoroughly
for evaluation and benchmarking and to understand precise
drift dynamics. In order to evaluate the effectiveness of idea
drift detection and adaptation algorithms, scientists proposed
benchmark datasets and evaluation procedures. This involves
creating realistic simulation frameworks or comparing the
efficacy of various strategies using real-world datasets with
established drift patterns. In addition, to understand the fun-
damental reasons and dynamics of concept drift in various



fields, scientists have also looked into drift dynamics. To find
the causes of drift and forecast upcoming data changes, authors
have also been required to evaluate past data, subject expertise,
and contextual data. Last but not least, authors have examined
imbalanced data and its effect on drift detection using a
variety of datasets (such as ransomware API calls, network
logs, source code, etc.). Authors have, for example, looked
into ensemble-based [26] and resampling [27] techniques to
mitigate the negative impact of drift on model effectiveness.

VII. CONCLUSION AND FUTURE WORK

In this study, we addressed concept drift by employing a
contrastive learning autoencoder model, effectively detecting
Virlock samples that deviated from the original training set.
Using an assembly instructions similarity-based approach,
we attributed more than 1000 Virlock ransomware samples,
leveraging extracted strings and API calls for lineage infer-
ence. Utilizing t-SNE plots, we illustrated that contrastive
representation learning yields superior word representations
compared to standard models. Our analysis revealed evidence
of code reuse among these Virlock variants.

Our research has some limitations. We used a dataset with
only 1061 samples, which might be considered small, affecting
the strength of our findings. Additionally, a significant number
of collected samples were packed, making it challenging to
analyze them fully. This could compromise the accuracy and
applicability of our results due to the limited dataset size. In
future work, we plan to overcome these limitations by actively
seeking more ransomware samples and including a wider va-
riety of ransomware families. Additionally, we plan to extend
our analysis to include inter-family ransomware attribution by
considering other ransomware families. Furthermore, we will
design a more robust instruction normalization method that
can maintain semantic information of malware binary code
while reducing the number of tokens used. This expansion is
aimed at making our research more credible and robust.
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