
Privacy-preserving heterogeneous health data
sharing
Noman Mohammed,1 Xiaoqian Jiang,2 Rui Chen,1 Benjamin C M Fung,1

Lucila Ohno-Machado2

▸ Additional appendices are
published online only. To view
these files please visit the
journal online (http://dx.doi.
org/10.1136/amiajnl-2012-
001027).
1Department of Computer
Science and Software
Engineering, Concordia
University, Montreal, Quebec,
Canada
2Division of Biomedical
Informatics, University of
California, San Diego,
California, USA

Correspondence to
Noman Mohammed,
Department of Computer
Science and Software
Engineering, Concordia
University, 1455 De
Maisonneuve Blvd West,
Montreal, QC H3G 1M8,
Canada; no_moham@cse.
concordia.ca

Received 20 April 2012
Revised 13 April 2012
Accepted 1 November 2012

To cite: Mohammed N,
Jiang X, Chen R, et al. J Am
Med Inform Assoc Published
Online First: 12 December
2012 doi:10.1136/amiajnl-
2012-001027

ABSTRACT
Objective Privacy-preserving data publishing addresses
the problem of disclosing sensitive data when mining for
useful information. Among existing privacy models,
ε-differential privacy provides one of the strongest privacy
guarantees and makes no assumptions about an
adversary’s background knowledge. All existing solutions
that ensure ε-differential privacy handle the problem of
disclosing relational and set-valued data in a privacy-
preserving manner separately. In this paper, we propose
an algorithm that considers both relational and set-valued
data in differentially private disclosure of healthcare data.
Methods The proposed approach makes a simple yet
fundamental switch in differentially private algorithm
design: instead of listing all possible records (ie, a
contingency table) for noise addition, records are
generalized before noise addition. The algorithm first
generalizes the raw data in a probabilistic way, and then
adds noise to guarantee ε-differential privacy.
Results We showed that the disclosed data could be
used effectively to build a decision tree induction
classifier. Experimental results demonstrated that the
proposed algorithm is scalable and performs better than
existing solutions for classification analysis.
Limitation The resulting utility may degrade when the
output domain size is very large, making it potentially
inappropriate to generate synthetic data for large health
databases.
Conclusions Unlike existing techniques, the proposed
algorithm allows the disclosure of health data containing
both relational and set-valued data in a differentially
private manner, and can retain essential information for
discriminative analysis.

INTRODUCTION
With the wide deployment of electronic health
record systems, health data are being collected at an
unprecedented rate. The need for sharing health data
among multiple parties has become evident in several
applications ,1 such as decision support, policy devel-
opment, and data mining. Meanwhile, major con-
cerns have been raised about individual privacy in
health data sharing. The current practice of privacy
protection primarily relies on policies and guidelines,
for example, the Health Insurance Portability and
Accountability Act (HIPAA)2 in the USA. HIPAA
defines two approaches to achieve de-identification:
the first is Expert Determination, which requires that
an expert certify that the re-identification risk inher-
ent in the data is sufficiently low; the second is Safe
Harbor, which requires the removal and suppression
of a list of attributes.3 Safe Harbor requires data

disclosers to follow a checklist4 to remove specific
information to de-identify the records.
However, there are numerous controversies on

both sides of the privacy debate regarding these
HIPAA privacy rules.5 Some think that the protec-
tions provided in the de-identified data are not suf-
ficient.6 Others contend that these privacy
safeguards hamper biomedical research, and that
observing them may preclude meaningful studies of
medical data that depend on suppressed attributes,
for example, fine-grained epidemiology studies in
areas with fewer than 20 000 residents or geriatric
studies requiring detailed ages in those over 89.3

There are concerns that privacy rules will erode the
efficiencies that computerized health records may
create, and in some cases, interfere with law
enforcement.5 Recently, the Institute of Medicine
Committee on Health Research and the Privacy of
Health Information concluded that the privacy
rules do not adequately safeguard privacy and also
significantly impede high-quality research.7 The
result is that patients’ health records are not well
protected at the same time that researchers cannot
effectively use them for discoveries.8 Technical
efforts are highly encouraged to make published
health data both privacy-preserving and useful.9

Anonymizing health data is a challenging task
due to inherent heterogeneity. Modern health data
are typically composed of different types, for
example relational data (eg, demographics) and set-
valued data (eg, diagnostic codes and laboratory
tests). In relational data (eg, gender, age, body mass
index), records contain only one value for each
attribute. On the other hand, set-valued data (eg,
diagnostic codes and laboratory tests) contain one
or more values (cells) for each attribute. For
example, the attribute-value {1*, 2*} of the diag-
nostic code contains two separate cells: {1*} and
{2*}. For many medical problems, different types
of data need to be published simultaneously so that
the correlation between different data types can be
preserved. Such an emerging heterogeneous data-
publishing scenario, however, is seldom addressed
in the existing literature on privacy technology.
Current techniques primarily focus on a single type
of data10 and therefore are unable to thwart
privacy attacks caused by inferences involving dif-
ferent data types. In this article, we propose an
algorithm so that heterogeneous health data can be
published yet retain essential information for sup-
porting data mining tasks in a differentially private
manner. The following real-life scenario further
illustrates the privacy threats resulting from hetero-
geneous health data sharing.
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Example 1 Consider the raw patient data in table 1 (the attribute
ID is just for the purposes of illustration). Each row in the table
represents information from a patient.

The attributes Sex, Age, and Diagnostic code are categorical,
numerical, and set-valued, respectively. Suppose that the data
owner needs to release table 1 for the purpose of classification
analysis on the class attribute, which has two values, Y and N,
indicating whether or not the patient is deceased. If a record in
the table is too specific such that not many patients can match
it, releasing the data may lead to the re-identification of a
patient. For example, Loukides et al11 demonstrated that for the
International Classification of Diseases (ICD), Ninth Revision
(ICD-9) codes (or ‘diagnostic codes’ for brevity), one source of
set-valued data could be used by an adversary for linkage to
patients’ identities. Needless to say, the knowledge of both rela-
tional and set-valued data about a victim makes the privacy
attack easier for an adversary. Suppose that the adversary knows
that the target patient is female and her diagnostic codes
contain {11}. Then, record #4 can be uniquely identified, since
she is the only Female with diagnostic codes {11,12} in the raw
data. Thus, identifying her record results in disclosure that she
also has {12}. Note that we do not make any assumption about
the adversary’s background knowledge. An adversary may have
partial or full information about the set-valued data and can try
to use any background knowledge to identify the victim.

To prevent such linking attacks, a number of partition-based
privacy models have been proposed.12–16 However, recent
research has indicated that these models are vulnerable to
various privacy attacks17–20 and provide insufficient privacy pro-
tection. In this article, we employ differential privacy,21 a
privacy model that provides provable privacy guarantees and
that is, by definition, immune against all aforementioned
attacks. Differential privacy makes no assumption about an
adversary’s background knowledge. A differentially private
mechanism ensures that the probability of any output (released
data) is almost equally likely from all nearly identical input data
sets and thus guarantees that all outputs are insensitive to any
single individual’s data. In other words, an individual’s privacy
is not at risk because of inclusion in the disclosed data set.

Motivation
Existing algorithms that provide differential privacy guarantees are
based on two approaches: interactive and non-interactive. In an
interactive framework, a data miner can pose aggregate queries
through a private mechanism, and a database owner answers these
queries in response. Most of the proposed methods for ensuring
differential privacy are based on an interactive framework.22–26 In
a non-interactive framework the database owner first anonymizes
the raw data and then releases the anonymized version for public

use. In this article, we adopt the non-interactive framework as it
has a number of advantages for data mining.10 Current techniques
that adopt the non-interactive approach publish contingency tables
or marginals of the raw data.27–30 The general structure of these
approaches is to first derive a frequency matrix of the raw data
over the database domain.

For example, table 2 shows the contingency table of table 3.
After that, noise is added to each count to satisfy the privacy
requirement. Finally, the noisy frequency matrix is published.
However, this approach is not suitable for high-dimensional
data with a large domain because when the added noise is
relatively large compared to the count, the utility of the data
is significantly destroyed. We also confirm this point in the
‘Experimental description’ section. Our proposed solution
instead first probabilistically generates a generalized contingency
table and then adds noise to the counts. For example, table 4 is
a generalized contingency table of table 3. Thus the count of
each partition is typically much larger than the added noise.

Contributions
We propose a novel technique for publishing heterogeneous
health data that provides an ε-differential privacy guarantee.
While protecting privacy is a critical element in data publishing,
it is equally important to preserve the utility of the published
data, since this is the primary reason for data release. Taking the
decision tree induction classifier as an example, we show that
our sanitization algorithm can be effectively tailored for preserv-
ing information in data mining tasks. The contributions of this
article are:

1. To our knowledge, a differentially private data disclosure
algorithm that simultaneously handles both relational and
set-valued data has not been previously developed. The
proposed differentially private data algorithm is based on
a generalization technique and preserves information for
classification analysis. Previous work31 suggests that deter-
ministic generalization techniques cannot be used to
achieve ε-differential privacy, as they depend heavily on
the data to be disseminated. Yet, we show that

Table 1 Raw patient data

ID Sex Age Diagnostic code Class

1 Male 34 11, 12, 21, 22 Y
2 Female 65 12, 22 N
3 Male 38 12 N
4 Female 33 11, 12 Y
5 Female 18 12 Y
6 Male 37 11 N
7 Male 32 11, 12, 21, 22 Y
8 Female 25 12, 21, 22 N

Table 2 Contingency table

Job Age Count

Professional (18–40) 3
Professional (40–65) 1
Artist (18–40) 4
Artist (40–65) 0

Table 3 Sample data table

Job Age

Engineer 34
Lawyer 50
Engineer 38
Lawyer 33
Dancer 20

Writer 37
Writer 32
Dancer 25
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differentially private data can be released through the add-
ition of uncertainty in the generalization procedure.

2. The proposed algorithm can also handle numerical attributes.
Unlike existing methods,30 it does not require the numerical
attributes to be pre-discretized. The algorithm adaptively deter-
mines the split points for numerical attributes and partitions
the data based on the workload, while guaranteeing
ε-differential privacy. This is an essential requirement for
obtaining accurate classification, as we show in the ‘Discussion’
section. Moreover, the algorithm is computationally efficient.

3. It is well acknowledged that ε-differential privacy provides a
strong privacy guarantee. However, the utility of data dis-
closed by differentially private algorithms has received much
less study. Does an interactive approach offer better data
mining results than a non-interactive approach? Does differen-
tially private data disclosure provide less utility than disclosure
based on k-anonymous data? Experimental results demon-
strate that our algorithm outperforms the recently proposed
differentially private interactive algorithm for building a classi-
fier26 and the top-down specialization (TDS) approach32 that
publishes k-anonymous data for classification analysis.

This article is organized as follows. The ‘Preliminaries’ section
provides an overview of the generalization technique and presents
the problem statement. Our anonymization algorithm is explained in
‘The algorithm’ section. In the ‘Experimental description’ section,
we experimentally evaluate the performance of our solution, and we
summarize our main findings in the ‘Discussion’ section.

PRELIMINARIES
In this section, we introduce the notion of generalization in the
context of data publishing, followed by a problem statement.

Generalization
Let D ¼ {r1; . . . ; rn} be a multiset of records, where each
record ri represents the information of an individual with d attri-
butes A ¼ {A1; . . . ;Ad}. We represent the data set D in a tabular
form and use the terms ‘data set’ and ‘data table’ interchangeably.
We assume that each attribute Ai has a finite domain, denoted by
VðAiÞ. The domain of D is defined as VðDÞ ¼ VðA1Þx; . . . xVðAdÞ.
To generalize a data set D, we replace the value of an attribute with a

more general value. The exact general value is determined according
to the attribute partition.

Definition 2.1 (Partition) The partitions PðAiÞ of a numerical
attribute are the intervals kI1; I2; . . . ; Ikl in VðAiÞ such that

Sk
j¼1

Ij ¼ VðAiÞ

For categorical and set-valued attributes, partitions are defined
by a set of nodes from the taxonomy tree such that it covers the
whole tree, and each leaf node belongs to exactly one partition.

For example, Anysex is the general value of Female according
to the taxonomy tree of Sex in figure 1. Similarly, age 23 and
11 can be represented by the interval ½18�40Þ and the code 1*,
respectively. For numerical attributes, these intervals are deter-
mined adaptively from the entire data.

Definition 2.2 (Generalization) Generalization is defined by a
function F ¼ {f1;f2; . . .fd}, where fi : v! p maps each
value v [ VðAiÞ to a p [ pðAiÞ.

Clearly, given a data set D over a set of attributes
A ¼ {A1; . . . ;Ad}, many alternative generalization functions are
feasible. Each generalization function partitions the attribute
domains differently. To satisfy ε-differential privacy, the algo-
rithm must determine a generalization function that is insensi-
tive to the underlying data. More formally, for any two data sets
D and D0, where jDDD0j ¼ 1 (ie, they differ on at most one
record), the algorithm must ensure that the ratio of
Pr½AgðDÞ ¼ F� and Pr½AgðD0Þ ¼ F� is bounded, where Agð�Þ is a
randomized algorithm (see online supplementary appendix A1).
One naive solution satisfying ε-differential privacy is to have a
fixed generalization function, irrespective of the input data set
(ie, by definition zero-differentially private but useless).
However, the proper choice of a generalization function is
crucial since the data mining result varies significantly for differ-
ent choices of partitioning. In the ‘Experimental description’
section, we present an efficient algorithm for determining an
adaptive partitioning technique for classification analysis while
guaranteeing ε-differential privacy. Online supplementary
appendix A1 presents an overview of ε-differential privacy and
the core mechanisms to achieve ε-differential privacy.

Problem statement
Suppose a data owner wants to release a de-identified data table
D̂ ðA#1"pr; . . .A#d"pr;A"clsÞ where the symbols Apr

� and Acls cor-
respond to predictor attributes and the class attribute, respectively,
for release to the public for classification analysis. The attributes in
D are classified into three categories: (1) an identifier Ai attribute
that explicitly identifies an individual, such as SSN (social security
number), andName. These attributes are removed before releasing
the data as per the HIPAA Privacy Rule; (2) a class attribute Acls

that contains the class value; the goal of the data miner is to build
a classifier to accurately predict the value of this attribute; and
(3) a set of d predictor attributes Apr ¼ {Apr

1 ; . . . ;A
pr
d }, whose

values are used to predict the binary label of the class attribute.

Figure 1 Taxonomy tree of attributes.

Table 4 Generalized contingency table

Job Age Count

Engineer [18–40) 2
Engineer [40–65) 0
Lawyer [18–40) 1
Lawyer [40–65) 1
Dancer [18–40) 2
Dancer [40–65) 0
Writer [18–40) 2
Writer [40–65) 0
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We require the class attribute to be categorical, and the predictor
attribute can be categorical, numerical, or set-valued. Further, we
assume that for each categorical or set-valued attribute Apr

i , a tax-
onomy tree is provided. The taxonomy tree of an attribute Apr

i
specifies the hierarchy among the values. Our problem statement
can be written as: given a data table D and the privacy parameter
1, our objective is to generate a de-identified data table bD such thatbD (1) satisfies ε-differential privacy, and (2) preserves as much
information as possible for classification analysis.

THE ALGORITHM
In this section, we present an overview of our Differentially
private algorithm based on Generalization (DiffGen). We elabor-
ate the key steps, and prove that the algorithm is ε-differentially
private in online supplementary appendix A2. In addition, we
present the implementation details and analyze the complexity
of the algorithm in online supplementary appendix A3.

Algorithm 1 DiffGen

Input: Raw data set D, privacy budget ε, and number of
specializations h Output: Generalized data set bD

1: Initialize every value in D to the topmost value (see figure 2
for details);

2: Initialize Cuti to include the topmost value (see figure 2 for
details);

3: Set a privacy budget for specification of predictors

10  10

2(jApr
n j þ 2h)

;

4: Determine the split value for each vn [ <Cuti with

probability a exp
10

2Du
uðD; vnÞ

� �
;

5: Compute the score for each candidate 8v [ <Cuti (see
online supplementary appendix A2 for details);

6: for i ¼ 1 to h do
7: Select v [ <Cuti with probability a exp

10

2Du
uðD; vÞ

� �
;

8: Specialize v on D and update <Cuti;
9: Determine the split value for each new vn [ <Cuti with
probability

a exp
10

2Du
uðD; vnÞ

� �
;

10: Update score for v [ <Cuti;
11: end for

12: return each group with count cþ Lap
2
1

� �� �
, where

Lapð�Þ denotes the probability density function of Laplacian
distribution.

Algorithm 1 first generalizes the predictor attributes Apr and
divides the raw data into several equivalence groups, where all
the records within a group have the same attribute values. Then,
the algorithm publishes the noisy counts of the groups. The
general idea is to sanitize the raw data by a sequence of specializa-
tions, starting from the topmost general state as shown in figure
2. A specialization, written as v! childðvÞ, where childðvÞ
denotes the set of child values of v, replaces the parent value v
with a child value. The specialization process can be viewed as
pushing the ‘cut’ of each taxonomy tree downwards. A cut of the
taxonomy tree for an attribute Apr

i , denoted by Cuti, contains

exactly one value on each root-to-leaf path. The value of the set-
valued attribute of a record can be generalized to a cut if every
item in the record can be generalized to a node in the cut and
every node in the cut generalizes some items in the record. For
example, the value {21;22} can be generalized to the hierarchy
cuts {2�} and {��}, but not {1�;2�}. Figure 2 shows a solution
cut indicated by the dashed curve representing table 5, which cor-
responds to de-identified data to be disseminated.

Initially, DiffGen creates a single partition by generalizing all
values in Apr to the topmost value in their taxonomy trees (line 1).
The Cuti contains the topmost value for each attribute Apr

i (line 2).
The specialization starts from the topmost cut and pushes down the
cut iteratively by specializing some value in the current cut. At each
iteration, DiffGen uses an exponential mechanism33 (see online sup-
plementary appendix A1) to select a candidate v [ <Cuti for spe-
cialization (line 7). Candidates are selected based on their score
values (see online supplementary appendix A2), and different heuris-
tics (eg, information gain and max frequency) can be used to deter-
mine the score of the candidates. Then, the algorithm specializes v
and updates <Cuti (line 8). As taxonomy trees for the numerical
attributes are not given, DiffGen again uses the exponential mechan-
ism to determine the split value dynamically for each numerical can-
didate Vn [ <Cuti (lines 4 and 9). DiffGen specializesv by
recursively distributing the records from the parent partition into dis-
joint child partitions with more specific values based on the tax-
onomy tree. For set-valued attributes, the algorithm computes the
noisy count of each child partition to determine whether it is empty
or not. Only ‘non-empty’ partitions are considered for further split
in the next iteration. We provide additional details for candidate
selection and the split value determination steps in online supple-
mentary appendix A2. DiffGen also calculates the score for each
new candidate due to the specialization (line 10). The algorithm ter-
minates after a given number of specializations. Finally, the algorithm
adds Laplace noise (see online supplementary appendix A1) to each
equivalence group of the leaf partition to construct the sanitized data
table bD. We use the following example to facilitate understanding of
how to use score functions, which are based on heuristics (eg, infor-
mation gain and max frequency), for specification.

Example 2 Consider table 1 with ε=1 and h=2. Initially, the
algorithm creates one root partition containing all the records that
are generalized to kAny#Sex; ½18� 65Þ; ��l. <Cuti includes
{Anysex; ½18� 65Þ; ��}. To find the first specialization among the
candidates in <Cuti, we compute the scores of ðAnysexÞ, [18–65),
and ��. We show how to compute the information gain (InfoGain)
and maximum frequency (Max) scores of Anysex for the specializa-
tion Anysex ! {Male;Female}. Details of these two utility func-
tions are discussed in online supplementary appendix 2.

1. Information gain:
HAnysexðTableÞ ¼ � 4

8
� log2 4

8
� 4
8
� log2 4

8
¼ 1

HMaleðTableÞ ¼ � 2
4
� log2 2

4
� 2
4
� log2 2

4
¼ 1

HFemaleðTableÞ ¼ � 2
4
� log2 2

4
� 2
4
� log2 2

4
¼ 1

InfoGainðTable;AnysexÞ ¼ 1� 4
8
� 1þ 4

8
� 1

� �
¼ 0

2. Max:
MaxðTable;AnysexÞ ¼ 2þ 2 ¼ 4

.
Let the first specialization be �� ! {1�; 2�}. The algorithm

then creates three child partitions with the child values {1�},
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{��}, and {1�;2�}, respectively, by replacing the node {��}
with different combinations of its children, leading r3, r4, r5,
and r6 to the child partition {1�} and r1, r2, r7, and r8 to the
child partition {1�; 2�}. Suppose that the noisy counts indicate
that these two child partitions are ‘non-empty’. Then further
splits are needed for them. There is no need to explore the
child partition {2�} any more, as it is considered ‘empty’.
<Cuti is updated to {Anysex½18� 65Þ;1�; 2�}. Suppose that the
next specialization is sex ! {Male;Female}, which creates
further specialized partitions. Finally, the algorithm outputs the
equivalence groups of each leaf partition along with their noisy
counts as shown in figure 2 under the dotted line.

Please refer to online supplementary appendix A2 for privacy
analysis of DiffGen and to online supplementary appendix A3
for implementation details.

EXPERIMENTAL DESCRIPTION
In this section our objectives are to study the impact of enfor-
cing differential privacy on the data quality in terms of classifi-
cation accuracy (CA), and to evaluate the scalability of the
proposed algorithm for handling large data sets. We also
compare DiffGen with DiffP-C4.5,26 a differentially private
interactive algorithm for building a classifier, and with the TDS
approach32 that publishes k-anonymous data for classification
analysis. All experiments were conducted on an Intel Core i7
2.7GHz PC with 12GB RAM.

We employed two real-life data sets: MIMIC and Adult. We
retrieved the MIMIC data set from the Multi-parameter
Intelligent Monitoring in Intensive Care II research database,34

which contains over 36 000 intensive care unit episodes.
Specifically, we picked eight features (ie, marital status, gender,
ethnicity, payment description, religion description, admission

type, admission source, and ICD-9 code) and a target variable
(ie, mortality). Of the eight features, the first seven are categor-
ical attributes while the last one is a set-valued attribute. The
publicly available Adult35 data set is the 1994 US census data set
that has been widely used for testing many sanitization algo-
rithms. Adult has 45 222 census records with six numerical
attributes, eight categorical attributes, and a binary class column
representing two income levels, ≤US$50 K or >US$50 K.
Please refer to Fung et al32 for the description of attributes.

To evaluate the impact on classification quality, we divided
the data into training and testing sets. First, we applied our algo-
rithm to sanitize the training set and determine the <Cuti.
Then, the same <Cuti was applied to the testing set to produce
a generalized test set. Next, we built a classifier on the sanitized
training set and measured the CA on the generalized records of
the test set. For classification models, we used the well-known
C4.5 classifier.36 For each experiment, we executed 10 runs and
averaged the results over the runs.

MIMIC data set
We applied DiffGen to the MIMIC data set for both utility func-
tions (ie, Max and InfoGain). Figure 3 shows the CA for Max
and InfoGain, where the privacy budget ε=0.1, 0.25, 0.5, 1,
and the number of specializations h=5. We used two thirds of
the records to build the classifier and measured the accuracy on
the remaining third of the records. Both utility functions have
similar performance, where CA spans from 86% to 89% under
different privacy budgets. The experimental result suggests that
the proposed algorithm can achieve good CA on heterogeneous
health data. We could not directly compare our method with
others for the MIMIC data set because we are not aware of an
approach that can sanitize heterogeneous data while ensuring
ε-differential privacy.

Adult data set
To better visualize the cost and benefit of our approach, we
provide additional measures: baseline accuracy (BA) is the CA
measured on the raw data without sanitization. BA−CA repre-
sents the cost in terms of classification quality for achieving a
given ε-differential privacy requirement. At the other extreme,
we measure lower-bound accuracy (LA), which is the accuracy
on the raw data with all attributes (except for the class attribute)
removed. CA−LA represents the benefit of our method over the
naive non-disclosure approach.

Figure 4A depicts the CA for the utility function Max, where
the privacy budget ε=0.1, 0.25, 0.5, 1, and the number of

Figure 2 Tree for partitioning records. A randomized mechanism was deployed for specializing predictors in a top-down manner (using half of the
privacy budget). At leaf nodes, random noise is added to the count of elements using the second half of the privacy budget to ensure overall
ε-differentially private outputs.

Table 5 Differentially private disclosed data (ε=1, h=2)

Sex Age Diagnostic code Class Count

Male [18–65) 1* Y 3
Male [18–65) 1* N 2
Female [18–65) 1* Y 1
Female [18–65) 1* N 3
Male [18–65) 1*, 2* Y 2

Male [18–65) 1*, 2* N 0
Female [18–65) 1*, 2* Y 2
Female [18–65) 1*, 2* N 4
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specializations 4≤h≤16. The BA and LA are 85.3% and 75.5%,
respectively, as shown in the figure by the dotted lines. For ε=1
and h=10, BA−CA is around 3% and CA−LA is 6.74%. For
ε=0.5, BA−CA spans from 3.57% to 4.8%, and CA−LA spans
from 5% to 6.23%. However, when ε decreases to 0.1, CA
quickly decreases to about 78% (highest point), the cost
increases to about 7%, and the benefit decreases to about 3%.
These results suggest that for an acceptable privacy budget such
as 1, the cost for achieving ε-differential privacy is small, while
the benefit of our method over the naive method is large.
Figure 4B depicts the CA for the utility function InfoGain. The
performance of InfoGain is not as good as that of Max because
the difference between the scores of a good and a bad attribute
is much smaller for InfoGain as compared to Max. Therefore,
the exponential mechanism does not work as effectively in the
case of InfoGain as it does for Max.

Figure 5A shows the CA of DiffGen, DiffP-C4.5, and TDS.
For DiffGen, we use utility function Max and fix the number of
specializations h=15. DiffP-C4.5 also uses the Adult data set
and all the results of the DiffP-C4.5 are taken from the paper by
Friedman and Schuster.26 For TDS we fixed the anonymity
threshold k=5 and conducted the experiment ourselves.
Following the same setting,26 we executed 10 runs of 10-fold
cross-validation to measure the CA.

The accuracy of DiffGen is clearly better than that of
DiffP-C4.5 for privacy budgets ε≤2. Note that the privacy
budget should be typically smaller than 1.21 Even for a higher

budget, the accuracy of DiffGen is comparable to that of
DiffP-C4.5. The major advantage of our algorithm is that we
publish data and the data miner has much better flexibility to
perform the required data analysis. On the other hand, in
DiffP-C4.5 the classifier is built through interactive queries;
therefore, the database has to be permanently shut down to
satisfy the privacy requirement after generating only one classi-
fier. The experimental result also shows that DiffGen performs
better than TDS. For a higher anonymity threshold k, the accur-
acy of TDS will be lower. One advantage of DiffGen is that,
unlike TDS, it does not need to ensure that every equivalence
group contains k records; therefore, DiffGen is able to provide
more detailed information than TDS. This result demonstrates
for the first time that, if designed properly, a differentially
private algorithm can provide better utility than a partition-
based approach.

All previous experiments can finish the sanitization process
within 30 s. We further study the scalability of our algorithm
over large data sets. We generate different data sets of different
sizes by randomly adding records to the Adult data set. For each
original record r, we create α−1 variations of the record by
replacing some of the attribute values randomly from the same
domain. Here α is the blowup scale and thus the total number
of records is α×45 222 after adding random records. Figure 5B
depicts the runtime for 200 000 to 1 million records for h=15
and ε=1.

Summary
We observed two general trends from the experiments. First, the
privacy budget has a direct impact on the CA. A higher budget
results in better accuracy since it ensures better attribute parti-
tioning and lowers the magnitude of noise that is added to the
count of each equivalence group. Second, the CA initially
increases with the increase in the number of specializations, but
decreases after a certain threshold. This is an interesting obser-
vation. The number of equivalence groups increases quite
rapidly with an increase in the number of specializations, result-
ing in a smaller count per group. Up to a certain threshold it
has a positive impact due to more precise values; however, the
influence of the Laplace noise gets stronger as the number of
specializations grows. Note that if the noise is as large as the
count, then the disclosed data are useless. This confirms that
listing all possible combinations of values (ie, contingency table)
and then adding noise to their counts is not a good approach
for high-dimensional data since the noise will be as big as the
count. Since this is a non-interactive approach, the data owner

Figure 4 Classification accuracy for the Adult data set. BA, baseline accuracy; LA, lower-bound accuracy.

Figure 3 Classification accuracy for the MIMIC data set using DiffGen
based on two scoring functions: information gain (INFOGAIN) and
maximum frequency (MAX).
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can try different values of h to find the threshold and then
release the sanitized data. Determining a good value of h adap-
tively, given the data set and the privacy budget, is an interesting
approach for future work that we plan to investigate.

DISCUSSION
Does the algorithm yield a globally optimal solution? Can the
algorithm be easily modified to anonymize sequential data? Are
noise addition and generalization-based techniques desirable for
the users of medical data sets? In this section, we provide
answers to these questions.

Globally optimal
The proposed algorithm does not yield an optimal solution cut,
rather it is suboptimal. The algorithm uses an exponential mech-
anism which probabilistically chooses a candidate with a high
score. Thus, it is possible that a different solution cut may
provide better utility. However, it is important to note that
maximizing the overall sum of the Score for specializations in
the training data does not guarantee having the lowest classifica-
tion error in the testing data.

Sequential data
While set-valued data (not considering the order) are useful for
many data analysis tasks, we acknowledge that in some other
analysis tasks the order of items could provide extra useful
information and may pose new re-identification risks. The pro-
posed anonymization algorithm can be extended to handle
sequential data as well. In order to anonymize sequential data,
we need to preprocess each item in the sequence by its order
and then consider the item–order pair as the new ‘item’. Then,
these new item sets could be used as an input to our algorithm,
which will then prevent re-identification attacks based on the
order of items. However, this is not currently implemented in
the paper.

Usefulness of our approach
One of the inputs of our algorithm is the number of generaliza-
tions. Data users could specify the desired degree of generaliza-
tions by setting a proper value for h. Concerning the negative
impact of noise (ie, on data utility) added to satisfy differential
privacy, we expect the sanitized data from our algorithm to be
useful for a few tasks (eg, classification as illustrated in this
paper), but not all data analysis tasks, especially those that focus
on attribute values of individuals. This is an inherent limitation

of differential privacy methodology, and it is the price we pay to
achieve a provable privacy guarantee. We acknowledge this limi-
tation and will seek for better solutions in future work.

In summary, the generalization technique used in DiffGen
might result in loss of information, which leads to a tradeoff
problem between data utility and privacy protection, like many
other privacy enhancement algorithms. The generalization is
also context dependent. For example, if we want to generalize
diseases (ie, asthma with respiratory disease and psoriasis with
dermatological disease), resultant outputs might be adequate to
answer some scientific questions (ie, classification tasks deter-
mined upfront) but may be insufficient to answer others, (eg,
immunologic diseases, which could encompass both asthma and
psoriasis). This is a fundamental limitation of generalization
techniques and the type of lumping must be used carefully.

CONCLUSION
This paper presents a new anonymization algorithm that
achieves ε-differential privacy and supports effective classifica-
tion analysis for heterogeneous health data. The proposed solu-
tion connects the classical generalization technique with output
perturbation to effectively sanitize raw data. Experimental
results suggest that the proposed solution provides better utility
than a pure differentially private interactive approach or an
approach to simply produce k-anonymous data.
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