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ABSTRACT
Sharing healthcare data has become a vital requirement
in healthcare system management; however, inappropriate
sharing and usage of healthcare data could threaten patients’
privacy. In this paper, we study the privacy concerns of
the blood transfusion information-sharing system between
the Hong Kong Red Cross Blood Transfusion Service (BTS)
and public hospitals, and identify the major challenges that
make traditional data anonymization methods not applica-
ble. Furthermore, we propose a new privacy model called
LKC-privacy, together with an anonymization algorithm,
to meet the privacy and information requirements in this
BTS case. Experiments on the real-life data demonstrate
that our anonymization algorithm can effectively retain the
essential information in anonymous data for data analysis
and is scalable for anonymizing large datasets.

Categories and Subject Descriptors
H.2.7 [Database Administration]: [Security, integrity,
and protection]; H.2.8 [Database Applications]: [Data
mining]

General Terms
Algorithms, Performance, Security

Keywords
Privacy, anonymity, classification, healthcare

1. INTRODUCTION
Gaining access to high-quality health data is a vital re-

quirement to informed decision making for medical practi-
tioners and pharmaceutical researchers. Driven by mutual
benefits and regulations, there is a demand for healthcare
institutes to share patient data with various parties for re-
search purposes. However, health data in its raw form often
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contains sensitive information about individuals, and pub-
lishing such data will violate their privacy. The current prac-
tice in data sharing primarily relies on policies and guidelines
on the types of data that can be shared and agreements on
the use of shared data. This approach alone may lead to
excessive data distortion or insufficient protection. In this
paper, we study the challenges in a real-life information-
sharing scenario in the Hong Kong Red Cross Blood Trans-
fusion Service (BTS) and propose a new privacy model, to-
gether with a data anonymization algorithm, to effectively
preserve individuals’ privacy and meet the information re-
quirements specified by the BTS.

Figure 1 illustrates the data flow in the BTS. After col-
lecting and examining the blood collected from donors, the
BTS distributes the blood to different public hospitals. The
hospitals collect and maintain the health records of their
patients and transfuse the blood to the patients if neces-
sary. The blood transfusion information, such as the pa-
tient data, type of surgery, names of medical practitioners
in charge, and reason for transfusion, is clearly documented
and is stored in the database owned by each individual hos-
pital. Periodically, the public hospitals are required to sub-
mit the blood usage data, together with the patient-specific
surgery data, to the BTS for the purpose of data analysis.
This BTS case illustrates a typical dilemma in information
sharing and privacy protection faced by many health insti-
tutes. For example, licensed hospitals in California are also
required to submit specific demographic data on every dis-
charged patient [5]. Our proposed solution, designed for the
BTS case, will also benefit other health institutes that face
similar challenges in information sharing. We summarize
the concerns and challenges of the BTS case as follows.

Privacy concern: Giving the BTS access to blood trans-
fusion data for data analysis is clearly legitimate. However,
it raises some concerns on patients’ privacy. The patients
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are willing to submit their data to a hospital because they
consider the hospital to be a trustworthy entity. Yet, the
trust in the hospital may not necessarily be transitive to
a third party. Many agencies and institutes consider that
the released data is privacy-preserved if explicit identifying
information, such as name, social security number, address,
and telephone number, is removed. However, substantial re-
search has shown that simply removing explicit identifying
information is insufficient for privacy protection. Sweeney
[20] showed that an individual can be re-identified by simply
matching other attributes, called quasi-identifiers (QID),
such as gender, date of birth, and postal code. Below, we
illustrate the privacy threats by a simplified BTS example.

Example 1. Consider the raw patient data in Table 1,
where each record represents a surgery case with the patient-
specific information. Job, Sex, and Age are quasi-identifying
attributes. The hospital wants to release Table 1 to the
BTS for the purpose of classification analysis on the class
attribute, Transfuse, which has two values, Y and N , indi-
cating whether or not the patient has received blood transfu-
sion. Without a loss of generality, we assume that the only
sensitive value in Surgery is Transgender. The hospital
expresses concern on two types of privacy threats:

Identity linkage: If a record in the table is so specific that
not many patients match it, releasing the data may lead
to linking the patient’s record and, therefore, her received
surgery. Suppose that the adversary knows that the target
patient is a Mover and his age is 34. Hence, record #3,
together with his sensitive value (Transgender in this case),
can be uniquely identified since he is the only Mover who
is 34 years old in the raw data.

Attribute linkage: If a sensitive value occurs frequently
together with some QID attributes, then the sensitive in-
formation can be inferred from such attributes even though
the exact record of the patient cannot be identified. Suppose
the adversary knows that the patient is a male of age 34. In
such case, even though there exist two such records (#1 and
#3), the adversary can infer that the patient has received a
Transgender surgery with 100% confidence since both the
records contain Transgender.

High-dimensionality: Many privacy models, such as
K-anonymity [18][20] and its extensions [14][23], have been
proposed to thwart privacy threats caused by identity and
attribute linkages in the context of relational databases. The
usual approach is to generalize the records into equivalence
groups so that each group contains at least K records with
respect to some QID attributes, and the sensitive values in
each QID group are diversified enough to disorient confident
inferences. However, [1] has shown that when the number
of QID attributes is large, that is, when the dimensional-
ity of data is high, most of the data have to be suppressed
in order to achieve K-anonymity. Our experiments confirm
this curse of high-dimensionality on K-anonymity [1]. Ap-
plying K-anonymity on the high-dimensional patient data
would significantly degrade the data quality. In order to
overcome this bottleneck, we exploit one of the limitations
of the adversary: in real-life privacy attacks, it is very dif-
ficult for an adversary to acquire all the information of a
target patient because it requires non-trivial effort to gather
each piece of prior knowledge from so many possible values.
Thus, it is reasonable to assume that the adversary’s prior
knowledge is bounded by at most L values of the QID at-

tributes of the patient. Based on this assumption, we define
a new privacy model called LKC-privacy for anonymizing
high-dimensional data.

The general intuition of LKC-privacy is to ensure that
every combination of values in QIDj ⊆ QID with maxi-
mum length L in the data table T is shared by at least K
records, and the confidence of inferring any sensitive values
in S is not greater than C, where L, K, C are thresholds
and S is a set of sensitive values specified by the data holder
(the hospital). LKC-privacy bounds the probability of a
successful identity linkage to be ≤ 1/K and the probability
of a successful attribute linkage to be ≤ C, provided that
the adversary’s prior knowledge does not exceed L. Ta-
ble 2 shows an example of an anonymous table that satisfies
(2, 2, 50%)-privacy by generalizing all the values from Ta-
ble 1 according to the taxonomies in Figure 2. (Ignore the
dashed curve for now.) Every possible value of QIDj with
maximum length 2 in Table 2 (namely, QID1, QID2, and
QID3 in Figure 2) is shared by at least 2 records, and the
confidence of inferring the sensitive value Transgender is
not greater than 50%. In contrast, enforcing traditional 2-
anonymity will require further generalization. For example,
in order to make 〈Professional, M, [30−60)〉 to satisfy tra-
ditional 2-anonymity, we may further generalize [1−30) and
[30− 60) to [1− 60), resulting in much higher utility loss.

Information needs: The BTS wants to perform two
types of data analysis on the blood transfusion data col-
lected from the hospitals. First, it wants to obtain some
general count statistics. Second, it wants to employ the
surgery information as training data for building a classifi-
cation model on blood transfusion. One frequently raised
question is: To avoid the privacy concern, why doesn’t the
hospital simply release the statistical data or a classifier to
the BTS? The BTS wants to have access to the blood trans-
fusion data, not statistics, from the hospitals for several rea-
sons. First, the practitioners in hospitals have no expertise
and interest in doing the data mining. They simply want to
share the patient data with the BTS, who needs the health
data for legitimate reasons. Second, having access to the
data, the BTS has much better flexibility to perform the
required data analysis. It is impractical to continuously re-
quest practitioners in a hospital to produce different types of
statistical information and fine-tune the data mining results
for research purposes.

Contributions: The contributions of this paper are sum-
marized as follows. First, we use the BTS as a real-life
example to present the challenges of privacy-aware informa-
tion sharing for data analysis. Second, to thwart the privacy
threats caused by identity and attribute linkage, we propose
a new privacy model called LKC-privacy that overcomes the
challenge of anonymizing high-dimensional relational data
without significantly compromising the data quality (Sec-
tion 3). Third, we present an efficient anonymization algo-
rithm for achieving LKC-privacy with two different adap-
tations. The first adaptation maximizes the information
preserved for classification analysis; the second one mini-
mizes the distortion on the anonymous data for general data
analysis. Minimizing distortion is useful when the particu-
lar information requirement is unknown during information
sharing or the shared data is used for various kinds of data
mining tasks (Section 4). Fourth, experiments demonstrate
that our developed algorithm is flexible and scalable enough
to handle large volumes of blood transfusion data that in-
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clude both categorical and numerical attributes. In 2008,
the BTS received 150,000 records from the public hospitals
(Section 5).

2. RELATED WORK
There is a large body of work on anonymizing relational

data. Traditional K-anonymity [18][20], `-diversity [14], and
confidence bounding [23] are based on a predefined set of
QID attributes. (α, k)-anonymity [24] further requires ev-
ery QID group to satisfy both K-anonymity and confidence
bounding. As discussed earlier, these single QID-based ap-
proaches suffer from the curse of high dimensionality [1] and
render the high-dimensional data useless for data mining.
In this paper, we solve the problem of dimensionality by as-
suming that the adversary knows at most L values of QID
attributes of any target patient. [6] proposes a new pri-
vacy model called differential privacy, which ensures that
the removal or addition of a single database record does not
significantly affect the overall privacy of the database. Yet,
the randomization approach is not applicable to the BTS
case because they require data truthfulness at the record
level. [8] presents a top-down refinement (TDR) method
to flexibly K-anonymize various types of attributes; how-
ever, their method does not take attribute linkage and high-
dimensionality into consideration.

There are some recent works on anonymizing high di-
mensional transaction data [10][21][26][27]. [10] divides the
transaction data into public and private items; the pub-
lic items are grouped together based on similarity. Each
group is then associated with a set of private items so that
the probability of linking private items from public items
is bounded. The idea is similar to the privacy model of
Anatomy [25]. The methods presented in [21][26][27] model
the adversary’s power by a maximum number of known
items as prior knowledge. This assumption is similar to
ours, but our problem has major differences. First, a trans-
action is a set of items, whereas our health data is relational.
Second, we have different privacy and utility measures. The
privacy model of [21] is based on only K-anonymity and does
not consider attribute linkages. [26] and [27] aim at mini-
mizing data distortion and preserving frequent item sets, re-
spectively, while we aim at preserving classification quality.
Finally, [26] and [27] use suppression, while we use general-
ization and discretization for anonymizing various types of
attributes.

Many techniques have been previously proposed to pre-
serve privacy, but only a few have considered the goal for
classification. [12] show that some simple statistical infor-
mation, like means and correlations, can be preserved by
adding noise and swapping values. This technique is stud-
ied in data mining for classification [3]. In these works, pri-
vacy was measured by how closely the original values of a
masked attribute can be estimated, which is very different
from the notion of anonymity that quantifies how uniquely
an individual can be linked with sensitive information. [28]
propose a privacy-preserving approach for building cox re-
gression model. However, unlike this paper, they only target
to build an analysis model and fall in the category of privacy
preserving data mining (PPDM) research.

Iyengar [11] presented the anonymity problem for classi-
fication and proposed a genetic algorithmic solution. The
idea is to encode each state of generalization as a “chromo-
some” and data distortion into the fitness function. Then

Table 1: Raw patient data
Quasi-identifier (QID) Class Sensitive

ID Job Sex Age Transfuse Surgery
1 Janitor M 34 Y Transgender
2 Doctor M 58 N Plastic
3 Mover M 34 Y Transgender
4 Lawyer M 24 N Vascular
5 Mover M 58 N Urology
6 Janitor M 44 Y Plastic
7 Doctor M 24 N Urology
8 Lawyer F 58 N Plastic
9 Doctor F 44 N Vascular
10 Carpenter F 63 Y Vascular
11 Technician F 63 Y Plastic

Table 2: Anonymous data (L = 2, K = 2, C = 0.5)
Quasi-identifier (QID) Class Sensitive

ID Job Sex Age Transfuse Surgery
1 Non-Technical M [30− 60) Y Transgender
2 Professional M [30− 60) N Plastic
3 Non-Technical M [30− 60) Y Transgender
4 Professional M [1− 30) N Vascular
5 Non-Technical M [30− 60) N Urology
6 Non-Technical M [30− 60) Y Plastic
7 Professional M [1− 30) N Urology
8 Professional F [30− 60) N Plastic
9 Professional F [30− 60) N Vascular
10 Technical F [60− 99) Y Vascular
11 Technical F [60− 99) Y Plastic

QID1 = {Job, Sex}

QID2 = {Job, Age}

QID3 = {Sex, Age}

Blue-collar White-collar

Non-Technical

Carpenter

Manager

ANY

Technical

Lawyer

Professional

Job

TechnicianMoverJanitor [1-30)

ANY

[1-99)

[1-60) [60-99)

[30-60)

Age

ANY

Male Female

Sex

Accountant

Figure 2: Taxonomy trees and QIDs

they employ the genetic evolution to converge to the fittest
chromosome. Similarly, Bayardo and Agrawal [4] also ad-
dressed the classification problem using the same classifi-
cation metric (CM) of [11]. Recently, LeFevre et al. [13]
proposed another anonymization technique for classification
using multidimensional recoding. Unlike the random genetic
evolution and the bottom-up generalization, our approach
produces a progressive generalization process that users can
step through to determine a desired trade-off of privacy and
accuracy. We also handle both categorical and numerical at-
tributes. Moreover, all the proposed models for classification
analysis do not address the problem of high-dimensionality,
which is a primary contribution of this paper.

3. PROBLEM DEFINITION
We first describe the privacy and information require-

ments, followed by a problem statement.
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3.1 Privacy Measure
Suppose a data holder (e.g., a hospital) wants to publish

a health data table T (ID, D1, . . . , Dm, Class, Sens) (e.g.,
Table 1) to some recipient (e.g., BTS) for data analysis.
ID is an explicit identifier, such as SSN , and it should be
removed before publication. Each Di is either a categorical
or a numerical attribute. Sens is a sensitive attribute. A
record has the form 〈v1, . . . , vm, cls, s〉, where vi is a domain
value of Di, cls is a class value of Class, and s is a sensitive
value of Sens. The data holder wants to protect against
linking an individual to a record or some sensitive value in
T through some subset of attributes called a quasi-identifier
or QID, where QID ⊆ {D1, . . . , Dm}.

One recipient, who is an adversary, seeks to identify the
record or sensitive values of some target victim patient V in
T . As explained in Section 1, we assume that the adversary
knows at most L values of QID attributes of the victim pa-
tient. We use qid to denote such prior known values, where
|qid| ≤ L. Based on the prior knowledge qid, the adver-
sary could identify a group of records, denoted by T [qid],
that contains qid. |T [qid]| denotes the number of records
in T [qid]. For example, T [〈Janitor, M〉] = {ID#1, 6} and
|T [qid]| = 2. Then, the adversary could launch two types of
privacy attacks:

• Identity linkage: Given prior knowledge qid, T [qid] is
a set of candidate records that contains the victim pa-
tient V ’s record. If the group size of T [qid], denoted by
|T [qid]|, is small, then the adversary may identify V ’s
record from T [qid] and, therefore, V ’s sensitive value.
For example, if qid = 〈Mover, 34〉 in Table 1, T [qid] =
{ID#3}. Thus, the adversary can easily infer that V
has received a Transgender surgery.

• Attribute linkage: Given prior knowledge qid, the ad-
versary can identify T [qid] and infer that V has sensi-

tive value s with confidence P (s|qid) = |T [qid∧s]|
|T [qid]| , where

T [qid ∧ s] denotes the set of records containing both
qid and s. P (s|qid) is the percentage of the records
in T [qid] containing s. The privacy of V is at risk if
P (s|qid) is high. For example, given qid = 〈M, 34〉 in Ta-
ble 1, T [qid ∧ Transgender] = {ID#1, 3} and T [qid] =
{ID#1, 3}, hence P (Transgender|qid) = 2/2 = 100%.

To thwart the identity and attribute linkages on any pa-
tient in the table T , we require every qid with a maximum
length L in the anonymous table to be shared by at least a
certain number of records, and the ratio of sensitive value(s)
in every group cannot be too high. Our privacy model,
LKC-privacy, reflects this intuition.

Definition 3.1 (LKC-privacy). Let L be the maxi-
mum number of values of the prior knowledge. Let S ⊆ Sens
be a set of sensitive values. A data table T satisfies LKC-
privacy if and only if for any qid with |qid| ≤ L,

1. |T [qid]| ≥ K, where K > 0 is an integer anonymity
threshold, and

2. P (s|qid) ≤ C for any s ∈ S, where 0 < C ≤ 1 is a real
number confidence threshold. Sometimes, we write C
in percentage.

The data holder specifies the thresholds L, K, and C.
The maximum length L reflects the assumption of the adver-
sary’s power. LKC-privacy guarantees that the probability

of a successful identity linkage to be ≤ 1/K and the prob-
ability of a successful attribute linkage to be ≤ C. LKC-
privacy has several nice properties that make it suitable for
anonymizing high-dimensional data. First, it only requires a
subset of QID attributes to be shared by at least K records.
This is a major relaxation from traditional K-anonymity,
based on a very reasonable assumption that the adversary
has limited power. Second, LKC-privacy generalizes several
traditional privacy models. K-anonymity [18][20] is a spe-
cial case of LKC-privacy with L = |QID| and C = 100%,
where |QID| is the number of QID attributes in the data ta-
ble. Confidence bounding [23] is also a special case of LKC-
privacy with L = |QID| and K = 1. (α, k)-anonymity [24] is
also a special case of LKC-privacy with L = |QID|, K = k,
and C = α. Thus, the data holder can still achieve the
traditional models, if needed.

3.2 Utility Measure
The measure of data utility varies depending on the data

analysis task to be performed on the published data. Based
on the information requirements specified by the BTS, we
define two utility measures. First, we aim at preserving the
maximal information for classification analysis. Second, we
aim at minimizing the overall data distortion when the data
analysis task is unknown.

In this BTS project, we propose a top-down specialization
algorithm to achieve LKC-privacy. The general idea is to
anonymize a table by a sequence of specializations starting
from the topmost general state in which each attribute has
the topmost value of its taxonomy tree [8]. We assume that
a taxonomy tree is specified for each categorical attribute in
QID. A leaf node represents a domain value and a parent
node represents a less specific value. For a numerical at-
tribute in QID, a taxonomy tree can be grown at runtime,
where each node represents an interval, and each non-leaf
node has two child nodes representing some optimal binary
split of the parent interval. Figure 2 shows a dynamically
grown taxonomy tree for Age.

A specialization, written v → child(v), where child(v) de-
notes the set of child values of v, replaces the parent value
v with the child value that generalizes the domain value in
a record. A specialization is valid if the specialization re-
sults in a table satisfying the anonymity requirement after
the specialization. A specialization is performed only if it is
valid. The specialization process can be viewed as pushing
the “cut” of each taxonomy tree downwards. A cut of the
taxonomy tree for an attribute Di, denoted by Cuti, con-
tains exactly one value on each root-to-leaf path. Figure 2
shows a solution cut indicated by the dashed curve repre-
senting the anonymous Table 2. Our specialization starts
from the topmost cut and pushes down the cut iteratively by
specializing some value in the current cut until violating the
anonymity requirement. In other words, the specialization
process pushes the cut downwards until no valid specializa-
tion is possible. Each specialization tends to increase data
utility and decrease privacy because records are more distin-
guishable by specific values. We define two utility measures
depending on the information requirement to evaluate the
“goodness” of a specialization.

3.2.1 Case 1: Score for Classification Analysis
For the requirement of classification analysis, we use infor-

mation gain, denoted by InfoGain(v), to measure the good-
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ness of a specialization. Our selection criterion, Score(v), is
to favor the specialization v → child(v) that has the maxi-
mum InfoGain(v):

Score(v) = InfoGain(v). (1)

InfoGain(v): Let T [x] denote the set of records in T gener-
alized to the value x. Let freq(T [x], cls) denote the number
of records in T [x] having the class cls. Note that |T [v]| =∑

c |T [c]|, where c ∈ child(v). We have

InfoGain(v) = E(T [v])−
∑

c

|T [c]|
|T [v]|E(T [c]), (2)

where E(T [x]) is the entropy of T [x] [17]:

E(T [x]) = −
∑

cls

freq(T [x], cls)

|T [x]| × log2
freq(T [x], cls)

|T [x]| , (3)

Intuitively, I(T [x]) measures the mix of classes for the records
in T [x], and InfoGain(v) is the reduction of the mix by spe-
cializing v into c ∈ child(v).

For a numerical attribute, the specialization of an interval
refers to the optimal binary split that maximizes information
gain on the Class attribute. See [17] for details.

3.2.2 Case 2: Score for General Data Analysis
Sometimes, the data is shared without a specific task.

In this case of general data analysis, we use discernibility
cost [19] to measure the data distortion in the anonymous
data table. The discernibility cost charges a penalty to
each record for being indistinguishable from other records.
For each record in an equivalence group qid, the penalty is
|T [qid]|. Thus, the penalty on a group is |T [qid]|2. To min-
imize the discernibility cost, we choose the specialization
v → child(v) that maximizes the value of

Score(v) =
∑

qidv

|T [qidv]|2 (4)

over all qidv containing v. Example 3 shows the computation
of Score(v).

3.3 Problem Statement
Our goal is to transform a given data set T into an anony-

mous version T ′ that satisfies a given LKC-privacy require-
ment and preserves as much information as possible for the
intended data analysis task. Based on the information re-
quirements specified by the BTS, we define the problems as
follows.

Definition 3.2 (Anonymization for data analysis).
Given a data table T , a LKC-privacy requirement, and a
taxonomy tree for each categorical attribute contained in
QID, the anonymization problem for classification analysis
is to generalize T on the attributes QID to satisfy the LKC-
privacy requirement while preserving as much information as
possible for the classification analysis. The anonymization
problem for general analysis is to generalize T on the at-
tributes QID to satisfy the LKC-privacy requirement while
minimizing the overall discernibility cost.

Computing the optimal LKC-privacy solution is NP-hard.
Given a QID, there are

(|QID|
L

)
combinations of decomposed

QIDj with maximum size L. For any value of K and C, each

Algorithm 1 Privacy-Aware Information Sharing (PAIS)

1: Initialize every value in T to the topmost value;
2: Initialize Cuti to include the topmost value;
3: while some x ∈ ∪Cuti is valid do
4: Find the Best specialization from ∪Cuti;
5: Perform Best on T and update ∪Cuti;
6: Update Score(x) and validity for x ∈ ∪Cuti;
7: end while;
8: Output T and ∪Cuti.;

combination of QIDj in LKC-privacy is an instance of the
(α, k)-anonymity problem with α = C and k = K. [24] has
proven that computing the optimal (α, k)-anonymous solu-
tion is NP-hard; therefore, computing optimal LKC-privacy
is also NP-hard. Below, we provide a greedy approach to ef-
ficiently identify a sub-optimal solution.

4. ANONYMIZATION ALGORITHM
Algorithm 1 provides an overview of our algorithm privacy-

aware information sharing (PAIS) for achieving LKC-privacy.
Initially, all values in QID are generalized to the topmost
value in their taxonomy trees, and Cuti contains the top-
most value for each attribute Di. At each iteration, PAIS
performs the Best specialization, which has the highest Score
among the candidates that are valid specializations in ∪Cuti

(Line 4). Then, apply Best to T and update ∪Cuti (Line
5). Finally, update the Score of the affected candidates due
to the specialization (Line 6). The algorithm terminates
when there are no more valid candidates in ∪Cuti. In other
words, the algorithm terminates if any further specialization
would lead to a violation of the LKC-privacy requirement.
An important property of PAIS is that the LKC-privacy
is anti-monotone with respect to a specialization: if a gen-
eralized table violates LKC-privacy before a specialization,
it remains violated after the specialization because a spe-
cialization never increases the |T [qid]| and never decreases
the maximum P (s|qid). This anti-monotonic property guar-
antees that the final solution cut is a sub-optimal solution.
PAIS is modified from TDR [8], which is originally designed
for achieving only K-anonymity, not LKC-privacy. One ma-
jor difference is the validity check in Line 6, which will be
discussed in detail in Section 4.3.

Example 2. Consider Table 1 with L = 2, K = 2, C =
50%, and QID = {Job, Sex, Age}. Initially, all data records
are generalized to 〈ANY Job, ANY Sex, [1-99)〉, and ∪Cuti

= {ANY Job, ANY Sex, [1-99)}. To find the Best special-
ization among the candidates in ∪Cuti, we compute Score
(ANY Job), Score(ANY Sex), and Score([1-99)).

A simple yet inefficient implementation of Lines 4-6 is to
scan all data records and recompute Score(x) for all candi-
dates in ∪Cuti. The key to the efficiency of our algorithm
is having direct access to the data records to be specialized,
and updating Score(x) based on some statistics maintained
for candidates in ∪Cuti, instead of scanning all data records.
In the rest of this section, we explain our scalable implemen-
tation and data structures in detail.

4.1 Find the Best Specialization
Initially, we compute Score for all candidates x in ∪Cuti.

For each subsequent iteration, information needed to calcu-
late Score comes from the update of the previous iteration
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Sex

Age

Initial

# of Recs.

[1-99)

11

RootQID Attributes

[1-99)

6

Root

ANY_Sex

Job ANY_Job Blue-collar White-collar

[1-99)

5

ANY_Sex ANY_Sex

[60-99)

2

Root

Blue-collar White-collar

[1-60)

5

ANY_Sex ANY_Sex

[1-60)

4

Link[1-99) Link[1-99) Link[1-60) Link[60-99)

ANY_Job       { White-collar, Blue-collar }

After first specialization on

[1-99)       {[1-60), [60-99)}

After second specialization on

Figure 3: The TIPS data structure

(Line 7). Finding the best specialization Best involves at
most |∪Cuti| computations of Score without accessing data
records. The procedure for updating Score will be discussed
in Section 4.3.

Example 3. Continue from Example 2. We show the
computation of Score(ANY Job) for the specialization

ANY Job → {Blue-collar,White-collar}.
For general data analysis, Score(ANY Job) = 62 +52 = 61.
For classification analysis,
E(T [ANY Job]) = − 6

11
× log2

6
11
− 5

11
× log2

5
11

= 0.994

E(T [Blue-collar]) = − 1
6
× log2

1
6
− 5

6
× log2

5
6

= 0.6499

E(T [White-collar]) = − 5
5
× log2

5
5
− 0

5
× log2

0
5

= 0.0

InfoGain(ANY Job) = E(T [ANY Job])− ( 6
11
×

E(T [Blue-collar]) + 5
11
× E(T [White-collar])) = 0.6396

Score(ANY Job) = InfoGain(ANY Job) = 0.6396.

4.2 Perform the Best Specialization
Consider a specialization Best → child(Best), where Best

∈ Di and Di ∈ QID. First, we replace Best with child(Best)
in ∪Cuti. Then, we need to retrieve T [Best], the set of
data records generalized to Best, to tell the child value in
child(Best) for individual data records. We employ a data
structure, called Taxonomy Indexed PartitionS (TIPS) [8],
to facilitate this operation. This data structure is also cru-
cial for updating Score(x) for candidates x. The general
idea is to group data records according to their generalized
records on QID.

Definition 4.1 (TIPS). TIPS is a tree structure with
each root-to-leaf path represents a generalized record over
QID. Each leaf node stores the set of data records having
the same generalized record for all the QID attributes along
the path. Each path is called a path partition. For each x in
∪Cuti, Px denotes a path partition whose generalized record
contains x, and Linkx denotes the link of all Px, with the
head of Linkx stored with x.

At any time, the generalized data is represented by the
path partitions of TIPS, but the original data records re-
main unchanged. Linkx provides a direct access to T [x],
the set of data records generalized to the value x. Initially,
TIPS has only one path partition containing all data records,
generalized to the topmost value on every attribute in QID.
In each iteration, we perform the best specialization Best
by refining the path partitions on LinkBest.

Updating TIPS: We refine each path partition PBest found
on LinkBest as follows. For each value c in child(Best), a
new partition Pc is created from PBest, and data records
in PBest are split among the new partitions: Pc contains a
data record in PBest if c generalizes the corresponding do-
main value in the record. An empty Pc is removed. Linkc

is created to link up all Pc’s for the same c. Also, link
Pc to every Linkx to which PBest was previously linked,
except for LinkBest. We emphasize that this is the only
operation in the whole algorithm that requires accessing
data records. The overhead of maintaining Linkx is small.
For each attribute in ∪QIDj and each path partition on
LinkBest, there are at most |child(Best)| “relinkings”, or at
most | ∪ QIDj | × |LinkBest| × |child(Best)| “relinkings” in
total for applying Best.

Example 4. Initially, TIPS has only one path partition
containing all data records and representing the generalized
record 〈ANY Job, ANY Sex, [1-99)〉. Let the best special-
ization be ANY Job → {White-collar, Blue-collar} on Job.
We create two new partitions under the root partition as in
Figure 3, and split data records between them. Both the
path partitions are on LinkANY Sex and Link[1-99). ∪Cuti

is updated into {White-collar, Blue-collar, ANY Sex, [1-
99)}. Suppose that the next best specialization is [1-99) →
{[1-60),[60-99)}, which specializes the two path partitions
on Link[1-99), resulting in the TIPS in Figure 3.

A scalable feature of our algorithm is maintaining some
statistical information for each candidate x in ∪Cuti for up-
dating Score(x) without accessing data records. For each
new value c in child(Best) added to ∪Cuti in the current
iteration, we collect the following count statistics of c while
scanning data records in PBest for updating TIPS: |T [c]|,
|T [d]|, freq(T [c], cls), and freq(T [d], cls), where d ∈ child(c)
and cls is a class label. These information will be used in
Section 4.3.

TIPS has several useful properties. First, all data records
in the same path partition have the same generalized record
although they may have different raw values. Second, every
data record appears in exactly one path partition. Third,
each path partition Px has exactly one generalized qid on
QID and contributes the count |Px| towards |T [qid]|. Later,
we use the last property to extract |T [qid]| from TIPS.

4.3 Update Score and Validity
This step updates Score(x) and validity for candidates

x in ∪Cuti to reflect the impact of the Best specializa-
tion. The key to the scalability of our algorithm is updating
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Score(x) using the count statistics maintained in Section 4.2
without accessing raw records again.

4.3.1 Updating Score
The procedure for updating Score is different depending

on the information requirement.
Case 1 classification analysis: An observation is that

InfoGain(x) is not affected by Best → child(Best), except
that we need to compute InfoGain(c) for each newly added
value c in child(Best). InfoGain(c) can be computed from
the count statistics for c collected in Section 4.2.

Case 2 general data analysis: Each path partition Pc

keeps the count |T [qidc]|. By following Linkc from TIPS,
we can compute

∑
qidc

|T [qidc]|2 for all the qidc on Linkc.

4.3.2 Validity Check
A specialization Best → child(Best) may change the va-

lidity status of other candidates x ∈ ∪Cuti if Best and x
are contained in the same qid with size not greater than L.
Thus, in order to check the validity, we need to keep track of
the count of every qid with |qid| = L. Note, we can ignore
qid with size less than L because if a table satisfies LKC-
privacy, then it must satisfy L′KC-privacy where L′ < L.

We present an efficient method for checking the valid-
ity of a candidate. First, given a QID in T , we identify
all QIDj ⊆ QID with size L. Then, for each QIDj , we
use a data structure, called QIDTreej , to index all qidj on
QIDj . QIDTreej is a tree, where each level represents one
attribute in QIDj . Each root-to-leaf path represents an ex-
isting qidj on QIDj in the generalized data, with |T [qidj ]|
and |T [qidj ∧ s]| for every s ∈ S stored at the leaf node. A
candidate x ∈ ∪Cuti is valid if, for every c ∈ child(x), every
qidj containing c has |T [qidj ]| ≥ K and P (s|qidj) ≤ C for
any s ∈ S. If x is invalid, remove it from ∪Cuti.

5. EXPERIMENTAL EVALUATION
In this section, our objectives are to study the impact

of enforcing various LKC-privacy requirements on the data
quality in terms of classification error and discernibility cost,
and to evaluate the efficiency and scalability of our proposed
anonymization method by varying the thresholds of maxi-
mum adversary’s knowledge L, minimum anonymity K, and
maximum confidence C.

We employ two real-life datasets, Blood and Adult. Blood
is a real-life blood transfusion dataset owned by an anony-
mous health institute. Blood has 62 attributes after remov-
ing explicit identifiers; 41 of them are QID attributes. Blood
Group represents the Class attribute with 8 possible val-
ues. Diagnosis Codes, which has 15 possible values repre-
senting 15 categories of diagnosis, is considered to be the
sensitive attribute. The remaining attributes are neither
quasi-identifiers nor sensitive. Blood contains 10,000 blood
transfusion records in 2008. Each record represents one in-
cident of blood transfusion. The publicly available Adult
dataset [16] is a de facto benchmark for testing anonymiza-
tion algorithms [4][8][11][14][15][22][23]. Adult has 45,222
census records on 6 numerical attributes, 8 categorical at-
tributes, and a binary Class column representing two in-
come levels, ≤50K or >50K. See [8] for the description of
attributes. We consider Divorced and Separated in the at-
tribute Marital-status as sensitive, and the remaining 13 at-
tributes as QID. All experiments were conducted on an
Intel Core2 Quad Q6600 2.4GHz PC with 2GB RAM.
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Figure 4: Blood Dataset

5.1 Data Utility
To evaluate the impact on classification quality (Case 1 in

Section 3.2.1), we use all records for generalization, build a
classifier on 2/3 of the generalized records as the training set,
and measure the classification error (CE) on 1/3 of the gen-
eralized records as the testing set. For classification models,
we use the well-known C4.5 classifier [17]. To better visu-
alize the cost and benefit of our approach, we measure ad-
ditional errors: Baseline Error (BE) is the error measured
on the raw data without generalization. BE − CE repre-
sents the cost in terms of classification quality for achieving
a given LKC-privacy requirement. A naive method to avoid
identity and attributes linkages is to simply remove all QID
attributes. Thus, we also measure upper bound error (UE),
which is the error on the raw data with all QID attributes
removed. UE − CE represents the benefit of our method
over the naive approach.

To evaluate the impact on general analysis quality (Case
2 in Section 3.2.2), we use all records for generalization and
measure the discernibility ratio (DR) on the final anony-

mous data. DR =
∑

qid |T [qid]|2
|T |2 . DR is the normalized dis-

cernibility cost, with 0 ≤ DR ≤ 1. Lower DR means higher
data quality.

5.1.1 Blood Dataset
Figure 4a depicts the classification error CE with ad-

versary’s knowledge L = 2, 4, 6, anonymity threshold 20 ≤
K ≤ 100, and confidence threshold C = 20% on the Blood
dataset. This setting allows us to measure the performance
of the algorithm against identity linkages for a fixed C.
CE generally increases as K or L increases. However, the
increase is not monotonic. For example, the error drops
slightly when K increases from 20 to 40 for L = 4. This is
due to the fact that generalization has removed some noise
from the data, resulting in a better classification structure in
a more general state. For the same reason, some test cases on
L = 2 and L = 4 have CE < BE, implying that generaliza-
tion not only achieves the given LKC-privacy requirement
but sometimes may also improve the classification quality.
BE = 22.1% and UE = 44.1%. For L = 2 and L = 4,
CE − BE spans from -2.9% to 5.2% and UE − CE spans
from 16.8% to 24.9%, suggesting that the cost for achieving
LKC-privacy is small, but the benefit is large when L is not
large. However, as L increases to 6, CE quickly increases to
about 40%, the cost increases to about 17%, and the benefit
decreases to 5%. For a greater value of L, the difference be-
tween LKC-privacy and K-anonymity is very small in terms
of classification error since more generalized data does not
necessarily worse classification error. This result confirms
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Figure 5: Adult Dataset

that the assumption of an adversary’s prior knowledge has
a significant impact on the classification quality. It also in-
directly confirms the curse of high dimensionality [1].

Figure 4b depicts the discernibility ratio DR with adver-
sary’s knowledge L = 2, 4, 6, anonymity threshold 20 ≤ K ≤
100, and a fixed confidence threshold C = 20%. DR gen-
erally increases as K increases, so it exhibits some trade-off
between data privacy and data utility. As L increases, DR
increases quickly because more generalization is required to
ensure each equivalence group has at least K records. To
illustrate the benefit of our proposed LKC-privacy model
over the traditional K-anonymity model, we measure the
discernibility ratio, denoted DRTradK , on traditional K-
anonymous solutions produced by the TDR method in [8].
DRTradK−DR, representing the benefit of our model, spans
from 0.1 to 0.45. This indicates a significant improvement on
data quality by making a reasonable assumption on limiting
the adversary’s knowledge within L known values. Note,
the solutions produced by TDR do not prevent attribute
linkages although they have higher discernibility ratio.

5.1.2 Adult Dataset
Figure 5a depicts the classification error CE with ad-

versary’s knowledge L = 2, 4, 6, anonymity threshold 20 ≤
K ≤ 100, and confidence threshold C = 20% on the Adult
dataset. BE = 14.7% and UE = 24.5%. For L = 2,
CE − BE is less than 1% and UE − CE spans from 8.9%
to 9.5%. For L = 4 and L = 6, CE − BE spans from 1.1%
to 4.1%, and UE − CE spans from 5.8% to 8.8%. These
results suggest that the cost for achieving LKC-privacy is
small, while the benefit of our method over the naive method
is large.

Figure 5b depicts the CE with adversary’s knowledge
L = 2, 4, 6, confidence threshold 5% ≤ C ≤ 30%, and
anonymity threshold K = 100. This setting allows us to
measure the performance of the algorithm against attribute
linkages for a fixed K. The result suggests that CE is insen-
sitive to the change of confidence threshold C. CE slightly
increases as the adversary’s knowledge L increases.
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Figure 6: Scalability (L = 4, K = 20, C = 100%)

Figure 5c depicts the discernibility ratio DR with ad-
versary’s knowledge L = 2, 4, 6, anonymity threshold 20 ≤
K ≤ 100, and confidence threshold C = 20%. DR some-
times has a drop when K increases. This is due to the fact
that our greedy algorithm identifies only the sub-optimal
solution. DR is insensitive to the increase of K and stays
close to 0 for L = 2. As L increases to 4, DR increases sig-
nificantly and finally equals traditional K-anonymity when
L = 6 because the number of attributes in Adult is rela-
tively smaller than in Blood. Yet, K-anonymity does not
prevent attribute linkages, while our LKC-privacy provides
this additional privacy guarantee.

Figure 5d depicts the DR with adversary’s knowledge
L = 2, 4, 6, confidence threshold 5% ≤ C ≤ 30%, and
anonymity threshold K = 100. In general, DR increases as
L increases due to a more restrictive privacy requirement.
Similar to Figure 5b, the DR is insensitive to the change of
confidence threshold C. It implies that the primary driving
forces for generalization are L and K, not C.

5.2 Efficiency and Scalability
One major contribution of our work is the development

of an efficient and scalable algorithm for achieving LKC-
privacy on high-dimensional healthcare data. Every previ-
ous test case can finish the entire anonymization process
within 30 seconds. We further evaluate the scalability of
PAIS with respect to data volume by blowing up the size
of the Adult data set. First, we combined the training and
testing sets, giving 45,222 records. For each original record
r in the combined set, we created α − 1 “variations” of r,
where α > 1 is the blowup scale. Together with all original
records, the enlarged data set has α× 45, 222 records.

Figure 6 depicts the runtime from 200,000 to 1 million
records for L = 4, K = 20, C = 100%. The total runtime for
anonymizing 1 million records is 107s, where 50s are spent
on reading raw data, 33s are spent on anonymizing, and 24s
are spent on writing the anonymous data. Our algorithm is
scalable due to the fact that we use the count statistics to
update the Score, and thus it only takes one scan of data per
iteration to anonymize the data. As the number of records
increases, the total runtime increases linearly.

5.3 Summary
The experimental results on the two real-life datasets can

be summarized as follows. (1) Our anonymization method
PAIS can effectively preserve both privacy and data utility
in the anonymous data for a wide range of LKC-privacy re-
quirements. There is a trade-off between data privacy and
data utility with respect to K and L, but the trend is less
obvious on C. (2) Our proposed LKC-privacy model retains
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more information than the traditional K-anonymity model
and provides the flexibility to adjust privacy requirements
according to the assumption of adversary’s background knowl-
edge. (3) PAIS is highly scalable for large data sets. These
characteristics make PAIS a promising component for anony-
mizing healthcare data.

6. CONCLUSION AND LESSON LEARNED
We have proposed a privacy-aware information sharing

method for healthcare institutes with the objective of sup-
porting data mining. Motivated by the BTS’ privacy and
information requirements, we formulated the LKC-privacy
model for high-dimensional relational data. Moreover, our
developed algorithm can accommodate two different infor-
mation requirements according to the BTS’ information need.
Our proposed solution is different from privacy-preserving
data mining (PPDM) due to the fact that we allow data
sharing instead of data mining result sharing. This is an es-
sential requirement for the BTS since they require the flex-
ibility to perform various data analysis tasks. We believe
that our proposed solution could serve as a model for data
sharing in the healthcare sector.

Finally, we would like to share our collaborative expe-
rience with the healthcare sector. Health data are com-
plex, often a combination of relational data, transaction
data, and textual data. So far, our project focuses only on
the relational data, but we notice that some recent works,
e.g., [9][10][21][27], are applicable to solve the privacy prob-
lem on transaction and textual data in the BTS case. Be-
sides the technical issue, it is equally important to edu-
cate health institute management and medical practition-
ers about the latest privacy-preserving technology. When
management encounters the problem of privacy-aware in-
formation sharing as presented in this paper, their initial
response is often to set up a traditional role-based secure ac-
cess model. In fact, alternative techniques, such as privacy-
preserving data mining and data publishing [2][7], are avail-
able to them provided that the data mining quality does not
significantly degrade.
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