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Abstract. Mining frequent itemsets is an essential data mining prob-
lem. As the big data era comes, the size of databases is becoming so large
that traditional algorithms will not scale well. An approach to the issue
is to parallelize the mining algorithm, which however is a challenge that
has not been well addressed yet. In this paper, we propose a MapReduce-
based algorithm, Peclat, that parallelizes the vertical mining algorithm,
Eclat, with three improvements. First, Peclat proposes a hybrid vertical
data format to represent the data, which saves both space and time in
the mining process. Second, Peclat adopts the pruning technique from
the Apriori algorithm to improve efficiency of breadth-first search. Third,
Peclat employs an ordering of itemsets that helps balancing the work-
loads. Extensive experiments demonstrate that Peclat outperforms the
existing MapReduce-based algorithms significantly.

Keywords: Big data · Data mining · Frequent itemsets · Vertical for-
mat · MapReduce · Parallel algorithms

1 Introduction

Discovering frequent itemsets is always an essential problem in data mining
research and database applications. This problem is formulated as follows: Given
a transaction database, find all frequent itemsets where a frequent itemset is one
that occurs in at least a user-specified number or percentage of transactions,
that is, its support is no less than the threshold.

The best-known breadth-first algorithm is Apriori [2] by Agrawal et al.
Apriori finds frequent itemsets in a level-wise manner. At each level k, it scans
the database once to compute the supports of the k-itemsets whose subsets at
level k−1 are all frequent. Therefore, Apriori scans the database as many passes
as the largest size of frequent itemsets, which incurs high I/O overhead. The
FP-growth algorithm [9] by Han et al. is the best-known depth-first algorithm.
It uses a novel frequent pattern tree (FP-tree) held in memory to represent the
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database in a compressed form, and mines all frequent itemsets by recursively
projecting the FP-trees. FP-growth as well as any depth-first algorithm does not
work as efficiently as supposed when faced with huge and sparse databases.

While most previous works inspired by Apriori [2] and FP-growth [9] employ a
horizontal data format, a number of algorithms [6,15,16,19,20] use vertical data
format. In a vertical data format, each item is associated with its tidset, the set of
identifiers of transactions that contain the item. The best-known vertical mining
algorithm is Eclat [19] by Zaki et al., which uses the tidset format. But, when the
database is large and dense, Eclat suffers from huge intermediate storage cost.
Thus, Zaki proposed the diffset format [20] for dense databases. However, large
databases cannot be simply categorized as sparse or dense, with which neither
single vertical format can scale well.

From the above analysis, we can observe that sequential mining algorithms
do not scale well when databases become huge. Thus, some works [1,3,17,21]
proposed parallel algorithms that make use of computing paradigms in the form
of multi-processors. But, such parallelization paradigms have issues in balancing
workloads and in recovering from hardware or communication failures.

Therefore, Google proposed the MapReduce paradigm [5]. Since then, a few
parallel algorithms [4,7,8,10–14,18] based on MapReduce have been proposed
for mining frequent itemsets, among which the DPC [13] algorithm is the best
derived from Apriori, and PFP [10] is the best derived from FP-growth.

DPC [13] targets the problem of high I/O overhead with Apriori. It gener-
ates candidate itemsets and counts supports for as many levels as possible in a
MapReduce job, and therefore may reduce the number of database scans. How-
ever, DPC still suffers for dense databases as it can only mine one level in one
database scan in such a case.

PFP [10] targets a problem with FP-growth, that is, the FP-tree may be
too large to be held in memory. It solves the problem by breaking the FP-
tree into small subtrees that can be held in memory. But, PFP suffers from data
redundancy as the subtrees overlap, which results in a huge amount of redundant
data to be sent across the cluster. To alleviate the issue, the PFP implementation
by Apache Mahout [22] only outputs the top-k frequent closed itemsets.

In summary, while the best sequential mining algorithms such as Apriori,
FP-growth, and Eclat do not work for processing huge databases, the existing
parallel algorithms either follow a parallelization paradigm that is not fault-
tolerant or do not adequately address the issues with sequential algorithms.

This paper proposes the first algorithm that parallelizes the Eclat algo-
rithm [19] for addressing the shortcomings of the existing MapReduce-based par-
allel algorithms. We take full advantage of parallelization provided by
MapReduce [5], and propose an opportunistic vertical mining approach that
improves the Eclat algorithm. Concretely, our contributions are as follows:

– We propose to employ hybrid vertical data formats in the mining process. The
novelty is to make a choice on a per itemset basis in selecting a vertical data
format that results in a smaller storage footprint. In particular, an itemset can
be derived from two itemsets that use different data formats in representing
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their transactions. Our approach improves not only scalability but also effi-
ciency as the intermediate storage space, I/O overhead, and computation time
all decrease in the mining process.

– We improve the breadth-first search by adopting the pruning technique from
the Apriori algorithm [2]. That is, we avoid unnecessary set-intersection oper-
ations for computing supports of itmesets whose subsets are infrequent.

– We dynamically rearrange itemsets in the ascending order of supports, which
results in more groups of itemsets grouped by prefixes and smaller group sizes.
Such an ordering helps breaking the computation workloads into smaller pieces
that can be processed in parallel, i.e., balancing the workloads.

The rest of the paper is organized as follows. Section 2 defines the mining prob-
lem, Sect. 3 proposes our opportunistic vertical mining approach, Sect. 4 presents
our algorithm, Sect. 5 evaluates our work, and Sect. 6 concludes the paper.

2 Problem Statement and Preliminaries

This section first defines the mining problem, and then analyzes mining strategies
and data formats that will be adapted and improved by our algorithm.

2.1 Problem Statement

The frequent itemset mining problem is stated as follows [2].

Definition 1 (Itemset and Subset). Let I be a set of items. A set of items
from I is also called an itemset. An itemset consisting of k items is called a
k-itemset. An itemset S is called a subset of an itemset X if all items in S are
also in X, denoted as S ⊆ X.

Definition 2 (Frequent Itemset). Let D be a transaction database over a
set of items I, where each transaction t in D contains a set of items from I and
has a unique identifier called tid, denoted as t.tid. The support of an itemset
X, denoted as σ(X), is the number of transactions that have X as a subset.
The itemset X is frequent or large if its support, σ(X), is no less than a user-
specified minimum support threshold, denoted as minsup.

The problem is to find the set of all frequent or large itemsets, i.e., L = {X ⊆
I | σ(X) ≥ minsup}. For example, for the transaction database D in Table 1
and minsup = 3, the set L of all frequent itemsets consists of {a}, {b}, {c}, {f},
{m}, {p}, {a,c}, {a,f}, {a,m}, {c,f}, {c,m}, {c,p}, {f,m}, {a,c,f}, {a,c,m},{a,f,m},
{c,f,m}, and {a,c,f,m}.

2.2 Strategies for Mining Frequent Itemsets

Conceptually, all itemsets form a lattice based on a partial order, i.e., the subset
relation on the set of itemsets. For example, Fig. 1 is a lattice on the powerset
of {a,b,c,f,m,p}. To find all frequent itemsets, all algorithms adopt a bottom-up
strategy to search a lattice of itemsets starting with the empty itemset, and
employ the downward closure property partially or fully.
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Table 1. Transaction database D

Tid Items

1 {a, c, d, f, g, i, m, p}
2 {a, b, c, f, l, m, o}
3 {b, f, h, j, o}
4 {b, c, k, p, s}
5 {a, c, e, f, l, m, n, p}

Lemma 1 (Downward Closure Property). All subsets of frequent itemset
must be frequent. An itemset is infrequent if one of its subsets is infrequent.
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Fig. 1. Lattice of itemsets in the lexicographic order

The Apriori algorithm [2] fully utilizes the downward closure property in its
bottom-up, breadth-first search of the lattice. In particular, it generates the set
Ck of candidates, i.e., k-itemsets to be search at level k, from the set Lk−1 of
frequent (k-1)-itemsets by two functions, join and pruning.

– The join function forms a k-itemset, i.e., a candidate, by joining two (k-1)-
itemsets that share a (k-2)-prefix.

– The pruning function prunes a candidate that has an infrequent subset of size
k-1 (which may not be a prefix).

Definition 3 (Prefix). Let X be a k-itemset, the h-prefix of X is the set
of the first h items in X by a given ordering Ω of items, which is denoted as
prefix(X,h,Ω) with h ≤ k and abbreviated as prefix(X,h) when the ordering
is obvious.

The FP-growth algorithm [9] partially utilizes the downward closure property
in its bottom-up, depth-first search of the lattice. In particular, for each frequent
itemset X, it recursively searches the union of X and an item locally frequent in
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Table 2. The tidsets and diffsets of frequent items

Frequent item Tidset Diffset

a {1, 2, 5} {3,4}
b {2, 3, 4} {1,5}
c {1, 2, 4, 5} {3}
f {1, 2, 3, 5} {4}
m {1, 2, 5} {3,4}
p {1, 4, 5} {2,3}

the conditional database of X, which is similar to the working of the Apriori’s join
function. The Eclat algorithm [19] also partially utilizes the downward closure
property in its bottom-up search of the lattice. In particular, it also employs a
join function similar to Apriori’s in determining itemsets to be searched.

2.3 Support Counting and Data Formats

When bottom-up searching the lattice of itemsets, algorithms will count the
support of each itemset currently being examined, which depends on the data
format for representing the database. There are two categories of data formats,
horizontal and vertical.

The Apriori algorithm [2] determines the supports of itemsets by directly
scanning the database in the horizontal format. The FP-growth algorithm [9]
reads off the supports from the FP-tree that compresses the horizontal database.

The Eclat algorithm [19] turns the database into the tidset format as in
Definition 4, and calculates the support of an itemset by intersecting the tidsets
of the subsets of the itemset. Another vertical format related to tidset, is the
diffset format [20].

Definition 4 (Tidset). Let D be a transaction database over a set of items
I. The tidset of an itemset X is denoted by tidset(X) = {t.tid | t ∈ D,X ⊆ t}.
Thus, σ(X) = |tidset(X)|.
Definition 5 (Diffset). The diffset of X is the difference between the tidset of
prefix(X, k-1) and the tidset of X, that is, diffset(X) = tidset(prefix(X, |X|−
1)) − tidset(X). Thus, σ(X) = σ(prefix(X, |X| − 1)) − |diffset(X)|.

For example, Table 2 shows both tidsets and diffsets of frequent items for D in
Table 1 and minsup = 3. Moreover, the tidset of itemset {a,c} is the intersection
of the tidsets of {a} and {c}, that is, {1, 2, 5} ∩ {1, 2, 4, 5} = {1, 2, 5}. Simi-
larly, tidset({c,p}) = tidset({c}) ∩ tidset({p}) = {1,4,5}, and tidset({a,c,p}) =
{1, 2, 5} ∩ {1, 4, 5} = {1,5}. Given the lexicographic order, diffset({a,c}) = {}
and diffset({a,c,p}) = {2}, and σ({a,c,p}) = σ({a,c}) - |diffset({a,c,p})| = 2.
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3 Opportunistic Vertical Mining Approach

We propose an opportunistic vertical mining approach that improves the Eclat
algorithm [19] by employing a hybrid vertical data format per itemset, by push-
ing additional pruning into breadth-first search, and by facilitating balanced
parallelization of depth-first search.

3.1 Our Hybrid Vertical Format

Traditional vertical mining algorithms [6,15,16,19,20] utilize only one vertical
format, either tidset or diffset. When databases are sparse, the tidset is the pre-
ferred choice. When databases are dense, the diffset may perform better. But
when databases get huge, neither single vertical format scales well. A good app-
roach is to independently choose the vertical format for each individual itemset
by considering the resulting storage footprint.

For example, the tidset is good for {a,b} as tidset({a,b}) = {2} and diffset
({a, b}) = {1, 5} while the diffset is good for {a,c,p} as tidset({a,c,p}) = {1,5}
and diffset({a,c,p}) = {2}, given the lexicographic ordering of items.

To accommodate such a good approach, we present a hybrid vertical format,
mixset, as in Definition 6.

Definition 6 (Mixset). The mixset of an itemset X, denoted as mixset(X)
is defined as

mixset(X) =
{

tidset(X) if |tidset(X)| ≤ |diffset(X)|
diffset(X) otherwise

For example, mixset({a, b}) = tidset({a, b}) = {2}, and mixset({a, c, p}) =
diffset({a, c, p}) = {2}.

Notice that mixset is an instrument for facilitating our approach, that is, to
automatically select the tidset format or the diffset format on a per itemset basis,
which is made possible both in breadth-first search and in depth-first search. Our
approach is greatly different from approaches that use only the tidset format [19]
or the diffset format for all itemsets, or manually determine at which level to
switch from one format to another [20].

3.2 Enabling Our Opportunistic Vertical Mining

To enable our opportunistic vertical mining approach, we need to compute the
mixset for any itemset that is a union of two k-itemsets X and Y that share a
(k-1)-prefix, which we denote as mixset(X ∪ Y ) = mixset(X) ∩ mixset(Y ).

Notice that there is no prior work that computes the tidset and diffset of the
union of two itemsets when only given the tidset of one itemset and the diffset of
the other. Therefore, we investigate in six cases by Theorem 1 how to compute
mixset(X) ∩ mixset(Y ).
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Theorem 1. Given an ordering Ω where itemset X is listed before itemset Y ,
and |X| = |Y | = k and prefix(X, k-1) = prefix(Y , k-1), we have:

tidset(X ∪ Y ) = tidset(X) ∩ tidset(Y ) (1)
= tidset(X) − diffset(Y ) (2)
= tidset(Y ) − diffset(X) (3)

diffset(X ∪ Y ) = tidset(X) − tidset(Y ) (4)
= tidset(X) ∩ diffset(Y ) (5)
= diffset(Y ) − diffset(X) (6)

For example, for D in Table 1 with the lexicographic ordering, we have tidset
({a}) = {1, 2, 5}, tidset({c}) = {1,2,4,5}, and tidset({p}) = {1,4,5} in Table 2.
According to Theorem 1, we get tidset({a,c}) = {1,2,5} and tidset({a,p}) = {1,5}
by (1), and diffset({a,c}) = {} and diffset({a,p}) = {2} by (4). Furthermore,
we can get tidset({a,c,p}) = {1,5} by (1), by (2), or by (3), and diffset({a,c,p}) =
{2} by (4), by (5), or by (6).

3.3 Our Search Strategy

To avoid repetitively enumerating itemsets in bottom-up searching the lattice,
all algorithms assume an ordering of itemsets. Thus, all algorithms can also be
thought of as top-down searching an itemset enumeration tree, and fall into three
categories, breadth-first, depth-first, or the hybrid.

First, we push additional pruning into the breadth-first search. Notice that
Eclat [19] determines the support of any k-itemset by directly intersecting the
tidsets of any two of its size (k-1) subsets. In other words, Eclat executes the
itemset-union (Apriori’s join) and tidset-intersection (support-counting) without
Apriori’s pruning. We propose to push the Apriori’s pruning to avoid unnecessary
tidset-intersection operations since all frequent (k-1)-itemsets are available when
enumerating k-itemsets in a breadth-first search.

Second,we facilitateparallelizationofdepth-first searchbydynamicallyarrang-
ing sibling itemsets with the same parent itemset from left to right in the ascending
order of supports. With such an ordering, more frequent itemsets will root smaller
subtrees to be further searched, which results in a smaller and more balanced item-
set enumeration tree. Clearly, such an ordering helps balance the workload when
depth-first searchingthe subtrees inparallel, andultimately improves theefficiency.

4 New Parallel Algorithm Based on MapReduce

This section presents our new parallel algorithm for mining frequent itemsets
based on MapReduce [5]. We call our algorithm Parallel Eclat or Peclat for
short to note the connection between our algorithm and Eclat [19].

Our algorithm significantly differs from Eclat as discussed in Sect. 3, and
parallelizing our approach based on the MapReduce paradigm as presented in
this section is nontrivial.
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4.1 Our Peclat Algorithm

The pseudo code of our Peclat algorithm is listed in Algorithm 1, which works
as follows. First, Peclat invokes a MapReduce job, mrCountingItems, to find all
frequent items and to output a list of frequent items together with the mixset
for each frequent item (at line 1).

Algorithm 1. Peclat
Input: D, minsup
Output: all frequent itemsets
1: L1 ← mrCountingItems(D,minsup);
2: for ( k = 2; k ≤ m ∧ Lk−1 
= {}; k++ ) do
3: Lk ← mrLargeK(Lk−1,minsup);
4: end for
5: L ← mrMiningSubtrees(Lm,minsup);

Second, Peclat calls a MapReduce job, mrLargeK, in a maximum m rounds
to search the itemset enumeration tree in a breadth-first manner (at lines 2 – 4).
The breadth-first search will also terminate if all frequent itemsets are found.

Finally, Peclat switches to a depth-first search by invoking a MapReduce job,
mrMiningSubtrees that mines subtrees of the itemset enumeration in parallel (at
line 5). The output Lk of the MapReduce jobs is a list of 〈key = itemset, value =
mixset〉 pairs.

4.2 The mrCountingItems Job

This MapReduce Job first produces the tidset for each item in its map phase,
and then outputs each frequent item with its mixset in its reduce phase.

Concretely, in the map phase, the map function is invoked as many times as
the number of transactions. Each time the map function reads one transaction
and outputs an 〈item, tid〉 pair for every item in the transaction.

For example, given D in Table 1 and minsup = 3, one invocation of the map
function will read the first transaction (tid =1) and will output the following
〈item, tid〉 pairs: 〈a, 1〉, 〈c, 1〉, 〈d, 1〉, 〈f, 1〉, 〈g,1〉, 〈i, 1〉, 〈m, 1〉, and 〈p, 1〉, which
will be passed to the reduce phase.

In the reduce phase, the reduce function is invoked as many times as the
number of distinct items. Each time the reduce function gets a distinct item
and a list of tids of the transactions that contain the item. If the item is fre-
quent, it outputs the item with its mixset. For example, the pairs 〈a, 1〉, 〈a, 2〉,
and 〈a, 5〉 produced in the map phase will be fed into one invocation of the
reduce function, which will first get tidset({a}) = {1, 2, 5} and output {a} with
mixset({a}) = diffset({a}) = {3, 4} as diffset is smaller than tidset.
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MapReduce Job: mrCountingItems
Input: D, minsup
Output: L1

Map ( key = null, value = transaction Ti)
1: for each item ∈ Ti do
2: output 〈item, Ti.tid〉 ;
3: end for
Reduce ( key = item, value = list-of -tids )
1: tidset(item) ← {};
2: for each value t ∈ list-of -tids do
3: tidset(item) ← tidset(item) ∪ {t};
4: end for
5: if σ(item) ≥ minsup then
6: output 〈item,mixset(item)〉 ;
7: end if

The reduce phase for the previous example eventually outputs the following
〈1-itemset, mixset〉 pairs: 〈{a}, {3,4}diffset〉, 〈{b}, {1,5}diffset〉, 〈{c}, {3}diffset〉,
〈{f}, {4}diffset〉, 〈{m}, {3,4}diffset〉, and 〈{p}, {2, 3}diffset〉.

In examples, additional information for each 〈itemset, mixset〉 pair expressed
as labels, e.g., 〈{a}, {3,4}diffset〉 indicates that {a} is with its diffset {3,4}.

4.3 The mrLargeK Job

This MapReduce job mines all frequent k-itemsets for a given k. First of all, the
map phase is initialized by reading the frequent (k-1)-itemsets Lk−1 and calling
the join and pruning functions in Sect. 2.2 to generate the candidate k-itemsets
Ck. For example, given D in Table 1 and minsup = 3, when calling the job with
k = 3, we get C ′

3 = {{a,c,f}, {{a,c,m}, {a,f,m}, {c,f,m}, {c,f,p}, {c,m,p}} after
join, and C3 = {{a,c,f}, {{a,c,m}, {a,f,m}, {c,f,m}} after pruning.

After initialization, each invocation of the map function will reads a 〈X,
mixset(X)〉 pair and match the itemset X with each candidate c in Ck, and
will produce a 〈c, mixset(X)〉 pair if X is a subset of c and shares a common
(k-2)-prefix with c, which will be passed to the reduce phase for computing
mixset(c).

For example, when calling the job with k = 3, one invocation of the reduce
function inputs 〈{a,c}, {}diffset〉, and outputs 〈{a,c,f}, 〈{a,c}, {}diffset〉〉 and
〈{a,c,m}, 〈{a,c}, {}diffset〉〉. Another invocation inputs 〈{a,f}, {}diffset〉, and
outputs 〈{a,c,f}, 〈{a,f}, {}diffset〉〉 and 〈{a,f,m}, 〈{a,f}, {}diffset〉〉.

In the reduce phase, each invocation of the reduce function will get a candi-
date itemset c and the mixsets of two itemsets X1 and X2 that share a common
prefix with c, and will compute mixset(c) as in Sect. 3.2. If the candidate is
frequent, it outputs a 〈c,mixset(c)〉 pair.
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MapReduce Job: mrLargeK
Input: Lk−1, minsup
Output: Lk

Initialization of Map Phase:
1: read Lk−1;
2: C ′

k ← join(Lk−1);
3: Ck ← pruning(C ′

k, Lk−1);
Map (key = itemset X, value = mixset(X))
1: load Ck;
2: for each candidate c ∈ Ck do
3: if X ⊂ c ∧ prefix(c, k-2) = prefix(X, k-2)
4: then output 〈c,mixset(X)〉;
5: end for
Reduce (key = candidate c, value = list-of -mixsets)
1: mixset(X1) ← the first in list-of -mixsets;
2: mixset(X2) ← the second in list-of -mixsets;
3: mixset(c) ← mixset(X1) ∩ mixset(X2);
4: if σ(c) ≥ minsup then output 〈c,mixset(c)〉;
For example, when calling the job with k = 3, one invocation of the reduce

function takes {a,c,f} and the list of 〈{a,c},{}diffset〉 and 〈{a,f},{}diffset〉 as input,
and outputs 〈{a,c,f}, {}diffset〉. The reduce phase eventually outputs 〈{a,c,f},
{}diffset〉, 〈{a,c,m}, {}diffset〉, 〈{a,f,m}, {}diffset〉, and 〈{c,f,m}, {}diffset〉 for
the job with k = 3.

MapReduce Job: mrMiningSubtrees
Input: Lk, minsup
Output: k′-frequent itemsets for k′ ≥ k
Map (key = k-itemset X, value = mixset(X))
1: output 〈prefix(X, k-1), 〈X,mixset(X)〉〉;
Reduce (key = (k-1)-prefix, value = siblings)
1: mine(siblings,minsup);
Subroutine: mine(siblings,minsup)
1: for each 〈X,mixset(X)〉 ∈ siblings do
2: children.clean();
3: for each 〈Y,mixset(Y )〉 ∈ siblings after X do
4: Z ← X ∪ Y ;
5: mixset(Z) ← mixset(X) ∩ mixset(Y );
6: if σ(Z) ≥ minsup then
7: children.push(〈Z,mixset(Z)〉);
8: output Z;
9: end if
10: end for
11: if children 
= ∅ then mine(children,minsup);
12: end for
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Table 3. Features of datasets used in experiments

Dataset numTrans Items maxLenTrans avLenTrans Category

BMS-WebView-1 59,602 497 267 2.5 sparse

BMS-WebView-2 77,512 3,340 161 5.6 sparse

Connect4 67,557 150 43 43.0 dense

Pumsb* 49,045 2,088 63 50.5 dense

T40I10D100k 99,999 150 68 37.0 mixed

T30I10D100k 99,998 120 53 27.8 mixed

4.4 The mrMiningSubtrees Job

This MapReduce job splits the itemset enumeration tree into small subtrees, and
then mines the subtrees in parallel.

In the map phase of this job, each invocation of the map function inputs an
〈itemset, mixset〉 pair, and outputs the prefix of the itemset as the key and the
〈itemset, mixset〉 pair as the value.

In the reduce phase, each invocation of the reduce function can get a list,
siblings, of all the itemsets with a same prefix together and their mixsets as
the input value, and the prefix as the input key. Therefore, the branches of the
itemset enumeration tree rooted at siblings can be recursively searched by the
mine subroutine.

For example, given all the frequent 2-itemsets, {a,c}, {a,f}, {a,m}, {c,f},
{c,m}, {c,p}, and {f,m} together with their mixsets as the input, the map phase
will distribute these pairs into three groups with {a}, {c}, and {f} as their
prefixes respectively if the lexicographic order is used, or into four groups with
{a}, {m}, {p}, and {c} respectively if the ascending order of supports is used.
The subtree holding the itemsets in a group, e.g., {a,c}, {a,f}, and {a,m}, will
be mined by one invocation of the reduce function.

5 Experimental Evaluation

We evaluate our Peclat by experimentally comparing with DPC [13] and mahout
(closed) [22], an implementation of PFP [10], that mines frequent closed itemsets.
All algorithms were implemented in Java.

Six datasets1,2,3 are used in experiments and described in Table 3. All exper-
iments were performed on a Hadoop-0.20.2 cluster of three nodes, 1 master and
2 workers, where each node is equipped with an Intel(R) Core(TM) i5-2400
3.10GHz CPU, 2GB RAM, and a 500GB hard disk running Ubuntu11.10.

1 http://www.sigkdd.org/kdd-cup-2000/.
2 http://fimi.ua.ac.be/data/.
3 http://sourceforge.net/projects/ibmquestdatagen/.

http://www.sigkdd.org/kdd-cup-2000/
http://fimi.ua.ac.be/data/
http://sourceforge.net/projects/ibmquestdatagen/
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5.1 Performance Comparison with Other Algorithms

We compare the running time of DPC [13], mahout(closed) [22], and our Peclat
on six datasets. Peclat runs in a breadth-first search for two levels and then
switch to a depth-first search. The result is summarized by Fig. 2.

For sparse datasets as in Fig. 2(a)(b), the algorithms from the least efficient
to the most efficient are DPC, mahout(closed), and Peclat. For example, when
minsup = 0.1 % for BMS WebView 1, DPC takes 282 s, mahout(closed) 153,
and Peclat 97. When minsup = 0.3 % for BMS WebView 2, DPC takes 313 s,
mahout(closed) 141, and Peclat 102.
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Fig. 2. Running-time (seconds) of three algorithms vs. minsup(%)

For datasets of mixed characteristics as in Fig. 2(c)(d), DPC is the least
efficient, and Peclat is the most efficient. For example, when minsup = 15 % for
T40I10D100k, DPC takes 22,432 s, mahout(closed) 1,150, and Peclat 254. When
minsup = 10 % for T30I10D100k, DPC takes 14,690 s, mahout(closed) 401, and
Peclat 227.

For dense datasets as in Fig. 2(e)(f), Peclat beats mahout(closed), and
mahout(closed) beats DPC. For example, when minsup = 92 % for Connect4,
DPC takes 32,41 s, mahout(closed) 136, and Peclat 78. When minsup = 40 %
for Pumsb*, DPC takes 27,548 s, mahout(closed) 450, and Peclat 98.

The observations are as follows.

– Our Peclat is the most efficient algorithm, and DPC [13] is the least efficient
for all the six datasets.

– Although the evaluation favours mahout(closed) as it only finds frequent
closed itemsets, i.e., it works on a much easier mining problem, our Peclat
still outperforms mahout(closed) significantly.

5.2 Anatomy of Opportunistic Vertical Mining Approach

To explain the observed results in the last subsection, this subsection analyzes
the three techniques in our opportunistic vertical mining approach.



Parallel Eclat 413

Selecting Vertical Format per Itemset. We first study the numbers of
tidsets and diffsets chosen by our Peclat algorithm in the mining process, denoted
as tidset num and diffset num respectively.

The aggregate tidset num and diffset num with varying minsup are shown
in Fig. 3(a)(b), and tidset num and diffset num at each level of the itemset enu-
meration tree (i.e. grouped by the size of itemsets) are shown in Fig. 3(c)–(f). For
T40I10D100k, our Peclat algorithm selects the tidset format for 25 % of mixsets
and the diffset format for 75 %. For T30I10D100k, 45 % of mixsets are in the
tidset format, and 55 % are in the diffset format.
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Fig. 3. Numbers of tidsets and diffsets (aggregate and per level)

Our Peclat, depicted as Peclat mixset in Fig. 4(a)(b) as it employs the mixset
format, is compared with variants that employ the tidset and diffset formats. By
piecing together the results in Figs. 3 and 4(a)(b), we observe the following.

– Our mixset format is superior to both tidset and diffset since no dataset is
purely sparse or purely dense. Selecting a data format on a per itemset basis
greatly reduces the computation cost and the space usage.

– Our Peclat algorithm is good for all datasets regardless of data characteristics
while other algorithms [20] may need manual fine-tuning by users and cannot
take full advantage of a hybrid data format.

Ordering Itemsets in Ascending Supports. We study the improvement by
sorting itemsets in the ascending order of supports by comparing our Peclat with
its variant, Peclat Lexi, that sorts itemsets in the lexicographic order.

Such an improvement is significant as shown in Fig. 4(c)(d). For example,
when minsup = 8% for T40I10D100k, Peclat takes 443 s while Peclat Lexi takes
640 s. When minsup = 1% for T30I10D100k, Peclat takes 983 s while Peclat Lexi
takes 4,403 s.



414 J. Liu et al.

Pushing Additional Pruning. Finally, we analyze the effect of applying the
Apriori’s pruning in improving the breadth-first search. To do so, we compare
two variants of our algorithm, Peclat BF that integrates the Apriori’s pruning
in the breadth-first search and Peclat BF noPrune that does not.

The result is that the improvement by integrating the Apriori’s pruning
is significant as shown in Fig. 4(e)(f). For example, when minsup = 15% for
T40I10D100k, Peclat BF takes 1,168 s while Peclat BF noPrune takes 2,551 s.
When minsup = 10% for T30I10D100k, Peclat BF takes 1,320 s while Peclat
BF noPrune takes 2,306 s.
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Fig. 4. Running-time of (a)(b) using tidsets, diffsets, mixsets; (c)(d) with/without
ascending order of supports; (e)(f) with/without more pruning on 2 datasets

6 Conclusion

This paper has proposed Peclat, a parallel Eclat-like algorithm based on
MapReduce. Peclat outperforms the existing algorithms because it improves the
Eclat algorithm in three aspects including a hybrid data format that saves both
time and space, an ordering of itemsets that helps balancing workloads, and
additional pruning for breadth-first search.
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