IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.5, MAY 2016

1245

Mining High Utility Patterns in One Phase
without Generating Candidates

Jungiang Liu, Member, IEEE, Ke Wang, Senior Member, IEEE, and
Benjamin C.M. Fung, Senior Member, IEEE

Abstract—Utility mining is a new development of data mining technology. Among utility mining problems, utility mining with the itemset
share framework is a hard one as no anti-monotonicity property holds with the interestingness measure. Prior works on this problem all
employ a two-phase, candidate generation approach with one exception that is however inefficient and not scalable with large
databases. The two-phase approach suffers from scalability issue due to the huge number of candidates. This paper proposes a novel
algorithm that finds high utility patterns in a single phase without generating candidates. The novelties lie in a high utility pattern growth
approach, a lookahead strategy, and a linear data structure. Concretely, our pattern growth approach is to search a reverse set
enumeration tree and to prune search space by utility upper bounding. We also look ahead to identify high utility patterns without
enumeration by a closure property and a singleton property. Our linear data structure enables us to compute a tight bound for powerful
pruning and to directly identify high utility patterns in an efficient and scalable way, which targets the root cause with prior algorithms.
Extensive experiments on sparse and dense, synthetic and real world data suggest that our algorithm is up to 1 to 3 orders of
magnitude more efficient and is more scalable than the state-of-the-art algorithms.

Index Terms—Data mining, utility mining, high utility patterns, frequent patterns, pattern mining

1 INTRODUCTION

INDING interesting patterns has been an important data

mining task, and has a variety of applications, for exam-
ple, genome analysis, condition monitoring, cross mar-
keting, and inventory prediction, where interestingness
measures [17], [36], [41] play an important role. With fre-
quent pattern mining [2], [3], [18], [43], a pattern is regarded
as interesting if its occurrence frequency exceeds a user-
specified threshold. For example, mining frequent patterns
from a shopping transaction database refers to the discovery
of sets of products that are frequently purchased together by
customers. However, a user’s interest may relate to many
factors that are not necessarily expressed in terms of the
occurrence frequency. For example, a supermarket manager
may be interested in discovering combinations of products
with high profits or revenues, which relates to the unit prof-
its and purchased quantities of products that are not consid-
ered in frequent pattern mining.

Utility mining [41] emerged recently to address the
limitation of frequent pattern mining by considering the
user’s expectation or goal as well as the raw data. Utility
mining with the itemset share framework [19], [39], [40], for
example, discovering combinations of products with high

e . Liu is with the School of Information and Electronic Engineering,
Zhejiang Gongshang University, Hangzhou 310018, China.
E-mail: jjliu@alumni.sfu.ca.

o K. Wang is with the School of Computing Science, Simon Fraser Univer-
sity, Burnaby, BC V5A 156, Canada. E-mail: wangk@cs.sfu.ca.

e B.C.M. Fung is with the School of Information Studies, McGill Univer-
sity, Montreal, QC H3A 1X1, Canada. E-mail: ben.fung@mcgill.ca.

Manuscript received 23 Mar. 2014; revised 12 Nov. 2015; accepted 10 Dec.
2015. Date of publication 17 Dec. 2015; date of current version 30 Mar. 2016.

Recommended for acceptance by B. Goethals.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2015.2510012

profits or revenues, is much harder than other categories of
utility mining problems, for example, weighted itemset
mining [10], [25], [30] and objective-oriented utility-based
association mining [11], [35]. Concretely, the interestingness
measures in the latter categories observe an anti-monotonic-
ity property, that is, a superset of an uninteresting pattern is
also uninteresting. Such a property can be employed in
pruning search space, which is also the foundation of all fre-
quent pattern mining algorithms [3]. Unfortunately, the
anti-monotonicity property does not apply to utility mining
with the itemset share framework [39], [40]. Therefore, util-
ity mining with the itemset share framework is more chal-
lenging than the other categories of utility mining as well as
frequent pattern mining.

Most of the prior utility mining algorithms with the item-
set share framework [4], [15], [24], [29], [38], [39] adopt a
two-phase, candidate generation approach, that is, first find
candidates of high utility patterns in the first phase, and
then scan the raw data one more time to identify high utility
patterns from the candidates in the second phase.

The challenge is that the number of candidates can be
huge, which is the scalability and efficiency bottleneck.
Although a lot of effort has been made [4], [15], [24], [38]
to reduce the number of candidates generated in the first
phase, the challenge still persists when the raw data
contains many long transactions or the minimum utility
threshold is small. Such a huge number of candidates
causes scalability issue not only in the first phase but also in
the second phase, and consequently degrades the efficiency.
One exception is the HUIMiner algorithm [28], which is
however even less efficient than two-phase algorithms
when mining large databases due to inefficient join opera-
tions, lack of strong pruning, and scalability issue with its
vertical data structure.

1041-4347 © 2015 |IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires |IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1246

To address the challenge, this paper proposes a new
algorithm, d?HUP, for utility mining with the itemset share
framework, which employs several techniques proposed
for mining frequent patterns, including exploring a regular
set enumeration in a reverse lexicographic order [43] and
heuristics for ordering items [18], [43]. Our contributions
are as follows:

e A high utility pattern growth approach is proposed,
which we argue is one without candidate genera-
tion because while the two-phase, candidate genera-
tion approach employed by prior algorithms first
generates high TWU patterns (candidates) with
TWU being an interim, anti-monotone measure and
then identifies high utility patterns from high TWU
patterns, our approach directly discovers high util-
ity patterns in a single phase without generating
high TWU patterns (candidates). The strength of
our approach comes from powerful pruning techni-
ques based on tight upper bounds on utilities.

e A lookahead strategy is incorporated with our
approach, which tries to identify high utility patterns
earlier without recursive enumeration. Such a strat-
egy is based on a closure property and a singleton
property, and enhances the efficiency in dealing
with dense data.

e A linear data structure, CAUL, is proposed to rep-
resent original utility information in raw data,
which targets the root cause with prior algorithms,
that is, they all employ a data structure to maintain
the utility estimates instead of the original utility
information, and thus can only determine the can-
didacy of a pattern but not the actual utility of the
pattern in their first phase.

The rest of the paper is organized as follows. Section 2
defines the utility mining problem. Section 3 surveys related
works. Section 4 proposes our pattern growth approach.
Section 5 presents our algorithm. Section 6 discusses the
data structure and implementation. Section 7 experimen-
tally evaluates our algorithm. Section 8 analyzes individual
techniques. Section 9 concludes the paper.

2 UTiLity MINING PROBLEM

This section defines the utility mining problem with the
itemset share framework that we study.

Let I be the universe of items. Let D be a database of trans-
actions {t1,...,t,}, where each transaction ¢; C I. Each item
in a transaction is assigned a non-zero share. Each distinct
item has a weight independent of any transaction, given by
an eXternal Utility Table (XUT). The research problem of
finding all high utility patterns is formally defined as follows.

Definition 1. The internal utility of an item i in a transaction t,
denoted by iu(i,t), is the share of i in t. The external utility of
an item i, denoted by eu(i), is the weight of i independent of
any transaction. The utility of an item i in a transaction t,
denoted by u(i,t), is the function f of iu(i,t) and eu(s), that
is, u(i,t) = f(iu(i,t), eu(i)). We assume that the range of f is
non-negative, that is, u(i, t) > 0.

Although the utility function f may not be non-negative
in an application, it is generally agreed that we can

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.5, MAY 2016

TABLE 1
Database D and eXternal Utility Table XUT

(b) XUT: prices

(a) D: shopping transactions
ITEM

ITEM | PRICE

TID [a[b[c[d]e|[f]g a 1
t1 1 1 1 b 3
to 6 2|2 5 c 5
t3 1| 1[1]2]6 5 d 2
[311 4|3 e 2
ts 2 |1 2 2 f 1
g 1

transform the utility function f into a non-negative function
as discussed by Yao et al. [41].

Running example. Consider the data of a supermarket.
Table 1a lists the quantity (share) of each product (item) in
each shopping transaction where I = {a, b, ¢, d, e, f, g} and
D = {t, ty, t3, ty, ts}, and Table 1D lists the price (weight) of
each product. For transaction t; = {a, b, ¢, f}, we have
w(a, ty) = 6, iu(b, ty) = 2, tu(c, ty) = 2, iu(f, t2) =5, eu(a) =1,
eu(b) = 3, eu(c) =5, and eu(f) = 1. Here, u(i, t) is the prod-
uct of iu(i,t) and eu(i). Thus, u(a,ty) =6, u(b,ty) =6,
u(c, ty) = 10, u(f, ty) = 5, and so on.

Definition 2. (1) A transaction t contains a pattern X if X isa
subset of t, that is, X C t, which means that every item i in X
has a non-zero share in t, that is, iu(i, t) # 0. (b) The transac-
tion set of a pattern X, denoted by TS(X), is the set of trans-
actions that contain X. The number of transactions in TS(X)
is the support of X, denoted by s(X).

Definition 3. (a) For a pattern X contained in a transaction t,
that is, X C t, the utility of X in t, denoted by uw(X,t), is the
sum of the utility of every constituent item of X in t, that is,

u(X,t) = Y uli,t).

ieXCt

(b) The utility of X, denoted by w(X), is the sum of the utility

of X in every transaction containing X, that is,

doouXx,)= Y > ulib).

teTS(X) teTS(X) 1€X

u(X) =

Definition 4. A pattern X is a high utility pattern, abbreviated
as HUP, if the utility of X is no less than a user-defined mini-
mum utility threshold, denoted by minU. High utility pat-
tern mining is to discover all high utility patterns, that is,

HUPset = {X|X C Iu(X) > minU}.

In the running example, the manager wants to know
every combination of products with sales revenue no less
than 30, that is, minU = 30. Since T'S({a, b}) = {to, t3, tu, t5},
we have u({aa b}) = u({aa b}7 tQ) + u({a7 b}7 t3) + u({av b}v
ts) +u({a, b}, t5) = u(a, ts) + u(b,ty) + u(a, t3) + u(b, t3) +
u(a, ty) + u(b,ty) + u(a,t;) + u(b,ts) = 27. Similarly, u({a,
c}) =28, u({b,c}) = 24, u({a,b,c}) = 31, u({a,b,c,d}) = 13,
and so on. Therefore, HUPset = {{a, b, c}, {a, b, d}, {a, d, e},
{a,b,d, e}, {b,d, e}, {d, e}, {a b, d e g}l

An observation is that the utilities of patterns are neither
anti-monotone nor monotone.

LIU ETAL.: MINING HIGH UTILITY PATTERNS IN ONE PHASE WITHOUT GENERATING CANDIDATES

3 RELATED WORKS

High utility pattern mining problem is closely related to fre-
quent pattern mining, including constraint-based mining.
In this section, we briefly review prior works both on fre-
quent pattern mining and on utility mining, and discuss
how our work connects to and differs from the prior works.

3.1 Frequent Pattern Mining

Frequent pattern mining was first proposed by Agrawal et al.
[2], which is to discover all patterns whose supports are no
less than a user-defined minimum support threshold. Fre-
quent pattern mining employs the anti-monotonicity prop-
erty: the support of a superset of a pattern is no more than
the support of the pattern. Algorithms for mining frequent
patterns as well as algorithms for mining high utility pat-
terns fall into three categories, breadth-first search, depth-
first search, and hybrid search.

Apriori by Agrawal and Srikant [3] is a very famous
breadth-first algorithm for mining frequent patterns, which
scans the disk-resident database as many times as the maxi-
mum length of frequent patterns. FP-growth by Han et al.
[18] is a well-known depth-first algorithm, which com-
presses the database by FP-trees in main memory. Eclat by
Zaki [43] is a famous hybrid algorithm. It keeps a database
or a database partition [34] in memory by a vertical tid-list
layout [21] and can work in either depth-first or breadth-
first manner.

This paper adopts a depth-first strategy since breadth-
first search is typically more memory-intensive and more
likely to exhaust main memory and thus slower. Concretely,
our algorithm depth-first searches a reverse set enumeration
tree, which can be thought of as exploring a regular set enu-
meration tree [1], [18], [33] right-to-left in a reverse lexico-
graphic order [43]. While Eclat [43] also explores such an
order, our algorithm is the first fully exploiting the benefit
in mining high utility patterns.

3.2 Constraint-Based Mining

Constraint-based mining is a milestone in evolving from fre-
quent pattern mining to utility mining. Works on this area
mainly focus on how to push constraints into frequent pat-
tern mining algorithms.

Pei et al. [32] discussed constraints that are similar to
(normalized) weighted supports [10], and first observed an
interesting property, called convertible anti-monotonicity,
by arranging the items in weight-descending order. The
authors demonstrated how to push them into the FP-growth
algorithm [18] .

Bucila et al. [9] considered mining patterns that satisfy a
conjunction of anti-monotone and monotone constraints,
and proposed an algorithm, DualMiner, that efficiently
prunes its search space using both anti-monotone and
monotone constraints.

Bonchi et al. [6] introduced the ExAnte property which
states that any transaction that does not satisfy the given
monotone constraint can be removed from the input data-
base, and integrated the property with Apriori-style algo-
rithms. Bonchi and Goethals [7] applied the ExAnte property
with the FP-growth algorithm. Bonchi and Lucchese [8] gen-
eralized the data reduction technique to a unified framework.

1247

De Raedt et al. [14] investigated how standard constraint
programming techniques can be applied to constraint-based
mining problems with constraints that are monotone, anti-
monotone, and convertible.

Bayardo and Agrawal [5], and Morishita and Sese [31]
proposed techniques of pruning based on upper bounds
when the constraint is neither monotone, anti-monotone,
nor convertible. This paper also employs such a standard
technique. Our contribution is to develop tight upper
bounds on the utility.

3.3 Some Categories of Utility Mining

Interestingness measures can be classified as objective
measures, subjective measures, and semantic measures [17].
Objective measures [20], [37], such as support or confidence,
are based only on data; Subjective measures [13], [36], such
as unexpectedness or novelty, take into account the user’s
domain knowledge; Semantic measures [41], also known as
utilities, consider the data as well as the user’s expectation.
Below, we discuss three categories in detail.

Hilderman et al. [19] proposed the itemset share frame-
work that takes into account the weights both on attributes,
for example, the price of a product, and on attribute-value
pairs, for example, the quantity of a product in a shopping
basket. Then, support and confidence measures can be gen-
eralized based on count-shares as well as on amount-shares.
Yao et al. [39], [40] proposed a utility measure equivalent to
Definition 3 that instantiates this framework. This paper
falls into that category.

Cai et al. [10] proposed weighted itemset mining. Lin
et al. [25] proposed value added association mining. Both
works assigns each item a weight representing its impor-
tance, which results in (normalized) weighted supports,
also known as horizontal weights. Lu et al. [30] proposed to
assign a weight to each transaction representing the signifi-
cance of the transaction, also known as vertical weights.

Shen et al. [35] and Chan et al. [11] proposed objective-ori-
ented utility-based association mining that explicitly models
associations of a specific form “Pattern — Objective” where
Pattern is a set of nonobjective-attribute value pairs, and
Objective is a logic expression asserting objective-attributes
with each objective-attribute value satisfying (violating)
Objective assigned a positive (negative) utility.

3.4 Algorithms with the Iltemset Share Framework
As the utility measure with the itemset share framework is
neither anti-monotone, monotone, nor convertible, most
prior algorithms resort to an interim measure, (TWU), pro-
posed by Liu et al. [29], and adopt a two-phase, candidate
generation approach.

Transaction weighted utilization of a pattern is the sum of
the transaction utilities of all the transactions containing the
pattern. For the running example, TWU({a, b}) = 88, the
sum of the utilities of transactions t», t3, t;, and t5;, TWU
({a, b, c}) = 57, that of t; and t3, and TWU({a, b, ¢, d}) = 30,
that of t;. Clearly, TWU is anti-monotone.

TWU or its variants is employed by most prior algo-
rithms, which first invoke either Apriori [3] or FP-growth
[18] to find high TWU patterns (candidates), and then scan
the raw data once more to identify high utility patterns
from the candidates. An exception is that Yao et al. [40], [41]

1248

presented an upper bound property, that is, the utility of a
size-k pattern is no more than the average utility of its size-
(k-1) subsets, which is however looser than the TWU
property.

Liu et al. [29] proposed the anti-monotonicity property
with TWU, based on which they developed the TwoPhase
algorithm by adapting Apriori [3].

Li et al. [24] proposed an isolated items discarding strat-
egy (IIDS). An isolated item is one that is not contained in
any length-k candidate, and hence it will not occur in any
candidate with a length greater than k. Any multi-pass,
level-wise algorithm can employ IIDS to reduce the number
of redundant candidates.

Lan et al. [23] proposed an projection-based algorithm,
based on the TWU model [29], that speeds up the execution
by an indexing mechanism.

Erwin et al. [15] proposed the CTU-PROL algorithm for
mining high utility patterns that integrates the TWU anti-
monotonicity property and pattern growth approach [18] in
the first phase, which is facilitated by a compact utility pat-
tern tree structure, CUP-tree.

Ahmed et al. [4] proposed a tree-based algorithm,
IHUPryy, for mining high utility patterns, which uses an
IHUPy-tree to maintain the TWU information of transac-
tions, and mines the set of candidates of high utility patterns
by adapting FP-growth [18]. Notice that CTU-PROL [15]
and IHUPyy; produce the same amount of candidates in
the first phase.

Tseng et al. [38] proposed the latest, FP-growth based
algorithm, UP-Growth, which uses an UP-tree to maintain
the revised TWU information, improves the TWU property
based pruning, and thus generates fewer candidates in the
first phase.

Yun et al. [42] and Dawar and Goyal [12] improved UP-
Growth [38] by pruning more candidates, while the inher-
ent issue of the two-phase approach remains.

Our preliminary work [27] and Liu and Qu [28], simul-
taneously and independently, proposed to mine high util-
ity patterns without candidate generation. The HUIMiner
algorithm by Liu and Qu [28] employs a vertical data
structure to represent utility information, which employs
inefficient join operations and is also not scalable. HUI-
Miner is even less efficient than an improved version of
UP-Growth [38] when mining large databases. Therefore,
scalability and efficiency remains to be a challenge with
HUIMiner [28]. Our work addresses such a challenge with
large databases.

Fournier-Viger et al. [16] improved HUIMiner [28] by
pre-computing the TWUs of pairs of items to reduce the
number of join operations. Krishnamoorthy [22] improved
HUIMiner [28] by a partition strategy. Their improvement
is within a factor of 2 to 6, while our algorithm is up to 45
times faster than HUIMiner [28] on the same databases.

This paper has enhanced our preliminary work [27] with
efficient computation by pseudo projection, and with opti-
mizations by partial materialization and controlled irrele-
vant item filtering. We have put more thoughts into our
algorithm and improved the implementation. Moreover,
comparative experiments with state-of-art algorithms and
experimental anatomy of our individual techniques have
been performed.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.5, MAY 2016

127@{

Fig. 1. Reverse set enumeration tree where each node is numbered in
the order of depth-first search.

15(2) 23(a)

4 HiGH UTILITY PATTERN GROWTH

The general approach to mining high utility pattern is to
enumerate each subset X of I, and test if X has a utility
over the threshold. However, an exhaustive enumeration is
infeasible due to the huge number of subsets of 7, and hence
it is critical to employ strong pruning techniques.

This section proposes a new approach to the problem, that
is, a high utility pattern growth approach. We first introduce
a reverse set enumeration tree as a way to enumerate pat-
terns, and then propose strong pruning techniques that dras-
tically reduces the number of patterns to be enumerated,
which lays the theoretical foundation for our algorithm.

4.1 Growing Reverse Set Enumeration Tree

Our pattern growth approach can be thought of as growing
or searching a reverse set enumeration tree in a depth-first
manner as shown in Fig. 1.

The construction of the reverse set enumeration tree fol-
lows an imposed ordering () of items. Concretely, the root
is labelled by no item, each node N other than the root is
labelled by an item, denoted by item(N), the path from N to
the root represents a pattern, denoted by pat(N), and the
child nodes of N are labelled by items listed before item(N)
in Q. It follows that the sequence of items along the path
from N to the root is in accordance with ().

Definition 5. The imposed ordering of items, denoted by (), is
a pre-determined, ordered sequence of all the items in I.
Accordingly, for items i and j, i < j denotes that i is listed
before j; i < X denotes that i <j for every je X, and
W < X denotes that i < X for every i € W, in accordance
with Q).

The imposed ordering () of items can be determined by a
heuristic proposed by [43]. Given (), a pattern can also be
represented as an ordered sequence. For brevity, we use
the set notation, for example, {a, b, c}, in place of the
sequence notation, for example, <a, b, c>. For example in
Fig. 1, the imposed ordering is the lexicographic order, i.e.,
Q={ab,cdef g} thena<b,a~<c a=<{b, c}, {a b}
=< {c,d}, and so on.

The reverse set enumeration tree is equivalent to a regu-
lar set enumeration tree [1], [18], [33] that is imposed with a
reverse lexicographic order [43] and explored right-to-left,
which yields a property: a pattern is always enumerated
before its supersets [43] in a depth-first search. For example,
{a} and {b} are before {a, b}, and {a, b} and {c} before
{a,b, c}.

Most importantly, by such a construction, the transaction
set supporting the enumerated pattern can be determined

LIU ETAL.: MINING HIGH UTILITY PATTERNS IN ONE PHASE WITHOUT GENERATING CANDIDATES

by a pseudo projection, for example, 7'S({a, b}) can be pro-
jected from T'S({b}) without materialization, and thus we
can compute the utility of the pattern and a utility upper
bound used for pruning in an efficient and scalable way.

4.2 Pruning by Utility Upper Bounding

It is computationally infeasible to enumerate all patterns,
and a standard technique is to prune the search space. How-
ever, for utility mining with the itemset share framework,
no anti-monotonicity property can be employed for prun-
ing. An alternative is pruning based on utility upper bound-
ing [5], [31].

With our pattern growth approach, it is to estimate an
upper bound on utilities of all possible patterns represented
by nodes in the subtree rooted at the node currently being
explored, when growing the reverse set enumeration tree. If
such an upper bound is less than minU, the subtree can be
pruned as all patterns in the subtree are not high utility
patterns.

Notice that a pattern Y represented by a node C' in the
subtree rooted at a node N is a prefix extension of the pat-
tern X represented by NNV, which leads to a way to estimate
an upper bound on the utility of Y.

Definition 6. Given an ordering (), a pattern Y is a prefix
extension of a pattern X, if X is a suffix of Y, that is, if
Y = WU X for some W with W < X in ().

Definition 7. Given an ordering Q, a pattern Y is the full prefix
extension of a pattern X w.r.t. a transaction t containing X,
denoted as Y = fpe(X,t), if Y is a prefix extension of X
derived by adding exactly all the items in t that are listed before
X in Q, that is, if Y =WUX with W={ilictni=
XAXCt}

For the running example, the full prefix extensions of {c}
wrt t and t, are fpe({c}, t;) ={a, ¢} and fpe({c},
t2) = {a, b, ¢} respectively.

Theorem 1 (Basic upper bounds). For a pattern X, the sum of
the utility of the full prefix extension of X w.r.t. each transac-
tion in TS(X), denoted by uBj,.(X), is no less than the utility
of any prefix extension Y of X, that is,

uBpe(X) = > u(fpe(X,t),t) > u(Y). (1)
teTS(X)

Proof. The premise, Y is a prefix extension of X, means
X CY, and thus has two implications. First, TS(Y) C
TS(X). Second, ¥Vt € TS(Y), Y C fpe(X,t). As the utility
function is non-negative, we have

uBpe(X) = > u(fpe(X,1),t)

1eTS(X)

> Y ulfpe(X,0,0)> Y uw)=uY).

teTS(Y) teTS(Y)

For example, when enumerating {} by Node 0 in Fig. 1,
we get TS({a})=D and uBp.({a})=u({a}) =13 <
minU = 30, TS({b}) = {tQ, t3, ty, t5} and Uprc({b}) =
u({a, b}) =27 < minU, TS({c}) = {ti, to, t3} and uBp,({c})
=u({a, c}, t1) +u({a, b, c}, ;) +u({ a, b, ¢}, t3) =37 >

1249

minU, and so on. Thus, Nodes 1 and 2 (with Node 3) are
pruned, and Nodes 4, 8, 16, 32, and 64 will be visited.

Clearly, the tighter the upper bound, the stronger the
pruning. An observation is that many items never occur in
high utility patterns when raw data are sparse [24]. It is pos-
sible to exclude them to tighten the upper bound.

Corollary 2 (Relevance of an item). For a pattern X and an
item i < X, the sum of the utility of the full prefix extension of
X w.r.t. every transaction in TS({i} UX), denoted by
UBitem (1, X), is no less than the utility of a prefix extension Y
of X that contains i, that is,

WBiten (i, X) = u(fpe(X,1),8) > u(Y). (@)
teTS({ihUX)

Proof. The extra premise in addition to Theorem 1 is that
i CY, which results in that {i} UX C Y. In the light of
Theorem 1, we get this corollary. O

Corollary 2 states that an item i < X is irrelevant to any
high utility pattern that is a prefix extension of X if
uBitem (i, X) < minU, and can be ignored in enumerating
prefix extensions of X.

For example, when enumerating {d, e} by Node 24 in
Fig. 1, we have uBj.n(a, {d, e}) = uBjen(b, {d, e}) =
u({a, b, ¢, d, e}, t3) +u({a, b, d, e}, ty) = 45 > minU, and
uBjem(c, {d, e}) = u(fa, b, ¢, d, e}, t3) = 25 < minU. Thus,
items a and b are relevant, and item c is irrelevant in enu-
merating prefix extensions of {d, e}. Furthermore, we can
apply Corollary 2 iteratively as excluding an irrelevant item
may decrease uBj.,, and uBy,. of other items.

Corollary 3 (Tighter upper bounds). For a pattern X and its
prefix extension Y that is relevant in growing high utility pat-
terns, a tighter upper bound on the utility of Y is

ST oulfpe (X 4),1) > u(Y), (3)

teTS(X)

ub

.fpe(X) =
where fpe'(X,t) is derived from fpe(X,t) by excluding all
irrelevant items i < X by Corollary 2.

For example, as item c is irrelevant in enumerating prefix
extensions of {d, e} represented by Node 24 in Fig. 1, we
compute uBjs., the second time by excluding item ¢, which
yields uBjin(a, {d, e}) = uBjen(b, {d, e}) = u(la, b, d, e},
t3) +u({a, b, d, e}, ts) = 40. The bounds get tighter though
the set of relevant items does not shrink.

4.3 Avoiding Enumeration by Lookahead
It is always beneficial to look ahead in a search process if it
incurs little extra computation. Inspired by closed frequent
pattern mining [44], we observe that when all the prefix
extensions of the pattern currently enumerated have the
same support, in particular for two cases, it is inexpensive
to look ahead.

Case 1: Every prefix extension of a pattern has the same
support and has a utility no less than minU, which can be
tested by Theorem 4 with little overhead.

Theorem 4 (Closure). For a pattern X and a set W of items with
X NW =0, if a property denoted as Closure(X, W, minU) is
satisfied, i.e., if s({i} UX) = s(X) and u({i} UX) > minU

1250

forall i € W, then

w(SUX) > minU, VS CW AS 0. 4)

Proof. Vi € W, it is always true that 7'S({i} U X) C T'S(X) as
X C {i} UX; by the premise, s({i} U X) = s(X), we have
TS({i} UX)=TS(X), which results in TS(SUX) =
TS(X) for S C W. Therefore, VS C W A S #),

u(SUX) = u(SUX,t) =
teTS(SUX) teTS({i}UX), ieS

u(SUX,t)

Y

u({i} UX,t) = u({i} UX) > minU.
teTS({i}UX),ieW

a

For example, when enumerating {d, e} by Node 24 in
Fig. 1, we get s({a} U{d, e}) =s({b} U {d, e}) =s({d, e}) =
2, and u({a} U{d, e}) =34 > minU and u({b} U{d, e}) =
36 > minU while items a and b are relevant items and item
c is not. Therefore, we know that all the prefix extensions of
{d, e} with relevant items a and b, enumerated by Nodes 24-
27, are high utility patterns without searching the rest of the
subtree rooted at Node 24.

Case 2: All the prefix extensions of a pattern have the
same support, but among which only the longest has a util-
ity no less than minU. Such a case can be identified by Theo-
rem 5 with little computation.

Theorem 5 (Singleton). For a pattern X and a set W of items
with XN W =0, if a property denoted as Singleton(X, W,
minU) holds, that is, if s({i} U X) = s(X) forall i € W and

minU < u(W U X) < minU + min g u({j},t)
jew
then 1eTS(X)

u(SUX) < minU,VS C W. (5)

Proof. In the light of Theorem 4, T'S(SU X) = TS(X) for
S C W. It follows that VS Cc W,

u(SUX) = u(SUX,t)
teTS(SUX)

w(W\ S, t)

= Y wWuX.t)-
teTS(WUX) teTS(W\SUX)

<u(WUX) - u({j},1)
ETS({71UX)AJEW\S

- o ‘)
<u(WUX) min Z u({j},t) < minU.
teTS(X)

For example, when enumerating {g} by Node 64 in
Fig. 1, items a, b, ¢, d, and e are relevant, and s({a} U
{g}) = s({by U{g}) = s({c} U{g}) = s({d} U{g}) = s({e} U
{g}) =s({g}) =1, and u({a, b, c,d, e} U{g}) = 30 = minU.
Thus, we know that {a, b, ¢, d, e, g} is a high utility pattern
and all its proper subsets are not without traversing the rest
of the subtree.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.5, MAY 2016

5 MINING PATTERNS IN ONE PHASE WITHOUT
CANDIDATE GENERATION

This section presents our algorithm, d2HUP, namely
Direct Discovery of High Utility Patterns, which is an
integration of the depth-first search of the reverse set
enumeration tree, the pruning techniques that drastically
reduces the number of patterns to be enumerated, and a
novel data structure that enables efficient computation
of utilities and upper bounds which will be detailed in
Section 6.1.

Moreover, our algorithm lists items in the descending
order of uBj., based on a heuristic proposed by [43]. The
pseudo code of d?’HUP is shown in Algorithm 1, which
works as follows.

Algorithm 1. d?HUP(D, XUT, minU)

1 build TS({}) and Q from D and XUT
2 N « root of reverse set enumeration tree
3 DFS(N,TS(pat(N)), minU,)

Subroutine: DFS(N, T'S(pat(N)), minU,)

if u(pat(N)) > minU then output pat(N)

W — {i]i < pat(N) A uBjjen, (i, pat(N)) > minU}

if Closure(pat(N), W, minU) is satisfied

then output nonempty subsets of W U pat(N)

else if Singleton(pat(N), W, minU) is satisfied
9 then output W U pat(N) as an HUP

10 else foreach item i € W in Q) do

11 if uBge ({1} Upat(N)) > minU

12 then C' « the child node of N for i

13 TS(pat(C)) < Project(TS(pat(N)),)

14 DFS(C, TS(pat(C)), minU, Q)

15 end foreach

N O U1 W~

d?HUP builds TS({}) by scanning the database D
and the external utility table XUT to compute s({i}), u({i}),
uBijtem(i,{}), and uBj,.({i}) for each item ¢ by
Definitions 2 and 3, Corollary 2, and Theorem 1 or Corol-
lary 3, and makes) in the descending order of uBj,
(at line 1). d?HUP starts searching high utility patterns from
the root of reverse set enumeration tree (at lines 2-3) by
calling the DFS(N, T'S(pat(N)), minU,) subroutine.

For the node N currently being visited, DFS prints
pat(N)) as a high utility pattern if its utility is no less than
the threshold (at line 4), makes the set W of relevant items
(at line 5), and then gets through one of the three branches
as follows.

If the closure property holds, DFS outputs every prefix
extension of pat(N) with relevant items as a high utility pat-
tern by Theorem 4 (at lines 6-7);

If the singleton property holds, DFS prints the union of
all the relevant items and pat(N) as a high utility pattern by
Theorem 5 (at lines 8-9);

For each relevant item ¢ € W, if the upper bound on the
utilities of prefix extensions of {i} Upat(N) is no less the
threshold, DFS prepares T)S(pat(C')) for the child node C
with item(C) «— i and pat(C) «— {i} Upat(N), and recur-
sively searches the subtree rooted at C' (at lines 10-15).
Note that DFS computes T'S(pat(C)) by a pseudo projection
from T'S(pat(N)), which is implemented as Algorithm 2
in Section 6.3.

LIU ETAL.: MINING HIGH UTILITY PATTERNS IN ONE PHASE WITHOUT GENERATING CANDIDATES

0, —

1251

s u uBy.uB, Q
iy G 2
als5[13[96]13
b|4[15]88 |27 e
c|3]20]68 |37 g,
d|3| 166136 NN
etd|20(58]|53 D N
P > ~
P ARAETIET Ct27) i
" glils[30]30 — \ﬁ\
4 8. 16. 61>
€320) d4.3,16) (e3.20) (15)
s u uByuBLTT S u uBu BT S u uBy uBLIT s u "Bilrnuprrso‘l
a|3]|28]37 [2 al3[22[36]22 al3[25]s3]25 a16306<c“7>
2[24]31[31 b|3]25]36 31 b|2]24]| 4528 bl1]8[30] 9 o
cl1fof13]13 c|2]24]33]29 c110301488I
al2|30] 45 |45 ali] 93018 Qi,l.zQ
24 el1/17]30]30 I
6. . 10,—— 92
(b224) b,325) 42,30 (o128
s u uB,,e,,ﬂBF/ s u uB,-,e,,uBk’/ s u uB BT N
S
a 1 a[3[31]31 31 a 6
[2]31]31 [31] [3131 31 [31] 2[34] 45 [34 0 9(4%3
2[36] 45 [40 @ N
7. 11 clt|21}2§8 95

25

Fig. 2. Pruned version of the reverse set enumeration tree in Fig. 1, showing how d>HUP works given minU = 30.

5.1 Revisit the Running Example

The execution process of d*HUP can be thought of as
searching a pruned version of a reverse set enumeration
tree, which is shown in Fig. 2 for our running example
where each node N is labelled with item(N), s(pat(N)), and
u(pat(N)).

d?HUP starts by computing 7'S({}) and by enumerating
Node 0 (at lines 1-3). For each node N to be enumerated,
d?HUP represents TS(pat(N)) by the data structure
detailed in Section 6.1, part of which is a summary table
indicating s({i}), u({i}), uBjen(i,{}), and uBy,.({i}) for
each item ¢ in TS(pat(NN)). Such a summary table is also
attached to V in Fig. 2.

Node 0 represents the empty pattern {}, which is not a
high utility pattern (at line 4). According to the summary
table of T'S({}) attached to Node 0 in Fig. 2, all items are
relevant, that is, W = {a, b, ¢, d, e, f, g} (at line 5), and
neither the closure property nor the singleton property
holds (at lines 6-9).Nodes 1 and 2 will not be enumer-
ated as uBy,({a}) and uBy,({b}) are below the thresh-
old. DFS will search Nodes 4, 8, 16, 32, and 64 (at lines
8-11) as uBy,.({t}) > minU for i €lc, d, e, £, g}.

When visiting Node 4, the utilities and bounds for
i € {a, b} are already maintained in 7)S({c}) which is derived
from TS({}) by a pseudo projection presented in Section 6.3.
It turns out that {c} represented by Node 4 is not a high util-
ity pattern, neither the closure property nor the singleton
property holds, and Node 5 is pruned as uBj,.({a, c}) <
minU. Subsequently, DFS will recursively visits Node 6
where the closure property holds and hence {a, b, ¢} is out-
put as a high utility pattern without visiting Node 7.

The remaining nodes that will be explored in the order of
depth-first search are Node 8, Node 10 where the closure
property holds, Node 16, Node 24 where the closure prop-
erty also holds, Node 32, and Node 64 where the singleton
property holds and hence {a, b, ¢, d, e, g} is identified as the
only high utility pattern without searching the subtree
under Node 64.

In short, dHUP only enumerates Nodes 0, 4, 6, 8, 10,
16, 24, 32, and 64, a total of nine nodes, in finding all the
high utility patterns, while the entire reverse set enumera-
tion tree consists of 27 = 128 nodes.

6 EFFICIENT IMPLEMENTATION BY REPRESENTING
TRANSACTIONS SCALABLY

When growing the reverse set enumeration tree, the d?’HUP
algorithm needs to determine T'S(pat(N)) for each node N
being visited for computing utilities and utility upper bounds
for prefix extensions of pat(N) as shown at line 1 and line 13
in Algorithm 1. How to represent and maintain 7:S(pat(N))
together with related utilities and upper bounds is the key to
the scalability and efficiency of the proposed algorithm.

This section introduces a linear data structure, CAUL,
namely a Chain of Accurate Utility Lists, which is not tree-
based, nor graph-based, but simply consists of linear lists.
CAUL maintains the original utility information for each
enumerated pattern in a way that enables us to compute the
utility and to estimate tight utility upper bounds efficiently.

6.1 Scalable Representation of Utility Information
For the pattern, pat(NN), represented by a reverse set enumer-
ation tree node N currently visited by a depth-first search,
we use CAUL to maintain the utility information in the
transaction set 7'S(pat(N)) of the node N, denoted by
TSequ(pat(N)), which is necessary for computing the utilities
and upper bounds of its prefix extensions. TScqu(pat(N))
consists of two parts, utility lists and a summary table.

For each transaction t € T'S(pat(N)), there is a utility list
holding the utilities of all the items in ¢ relevant in growing
prefix extensions of pat(N). That is, Vj € fpe(pat(N),t)
\pat(N), u(j,t) are stored in the utility list in the imposed
ordering). In addition, an extra element is appended to the
utility list to maintain u(pat(N),t).

The summary table maintains an entry for each distinct
item j relevant in growing prefix extensions of pat(/N'), which

1252

s u uB,, upr

1319613
15)88 | 27
20(65|37
16] 61| 36
20(58 |53
713838
513030

g = 0o Q6 TR
Ll L P LR LV N (0}

Fig. 3. TS..u({}): CAUL representing transaction set T.S({}), derived
from D in Table 1, for the null root of the reverse set enumeration trees
in Figs. 1and 2.

is denoted as a quintuple, summary[j] = (s[j], u[j], uBitemlJ],
uBfpej], link[j]), as described in the following. Summary
entries are also arranged in the imposed ordering ().

s[j] for s({j} U pat(N)) by Definition 2;

ulj] for u({j} U pat(N)) by Definition 3;

UBitem [j] fOr uBitem (j, pat(N)) by Corollary 2;

uBfpelj] for uBp({j} Upat(N)) by Theorem 1, or
Corollary 3;

e link[j] for a chain threading together the occurrences

of the same item j in the utility lists.

TSequ({}) is built by scanning the database D and the
external utility table XUT, filtering out globally irrelevant
items, and computing s[j], u[j], uBiiem[j], and uBy,.[j] for
each relevant item j.

For example, Fig. 3 shows TS, ({}) for Node 0 in Figs. 1
and 2. The first list represents t; with its first element storing
item a and u(a, t;) = 1, its second element storing item ¢ and
u(c, t1) = 5, and so on. In any of the five lists, there is no extra
element to hold the utility of {} in the transaction since it is 0.
The occurrences of item a in all the five lists are threaded by
link]a] of the first summary entry. The other components, s[a],
ula), uBjienm[a), and uBj,[a], of the first summary entry keep
s({a}), u({a}), uBien(a, {}), and uBy,.({a}) respectively.

6.2 Approach Generating No Candidates Enabled
One difference between our CAUL and the data structures
by prior algorithms [4], [15], [24], [29], [38] is that CAUL
keeps the original utility information for each transaction,
while the latter keep the utility estimate, TWU, instead. This
is the root cause why we are able to mine high utility patterns
without generating candidates, while the prior algorithms
have to take a two-phase, candidate generation approach.

We characterize our approach as one without candidate
generation in the following senses.

e While the two-phase, candidate generation approach
first generates high TWU patterns (candidates) and
then identifies high utility patterns from high TWU
patterns, our approach directly finds high utility pat-
terns without generating any high TWU patterns
(candidates).

e For pattern X being enumerated and represented by a
reverse set enumeration tree node N, the utility of X
is already computed in the CAUL of the parent node
Pof N,ie., in TS, (pat(P)). Therefore, our approach
can read off the utility of X from the CAUL and deter-
mine if X is a high utility pattern before X is enumer-
ated, and thus X is not a candidate.

e Our approach keeps in main memory only the pat-
tern currently being enumerated, i.e., only the path

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.5, MAY 2016

of the reverse set enumeration tree that is being
explored, while the prior algorithms materialize all
high TWU patterns (candidates) in main memory in
order to identify high utility patterns in an addi-
tional screening step.

6.3 Efficient Computation by Pseudo Projection

For any node N and its parent node P with pat(N) =
{i} Upat(P) on the reverse set enumeration tree, T'S..y
(pat(N)) can be efficiently computed by a pseudo projection
[26], where the pseudo T'S.qu(pat(N)) shares the same mem-
ory space with TS ., (pat(P)).

The utility lists of the pseudo TScqu(pat(N)) are delim-
ited by following link[i] in T'S..u(pat(P)), and the summary
entry for each item j < i of the pseudo TS (pat(N)) is
computed by scanning each delimited utility list.

Algorithm 2. PseudoProject(T'S,qu(pat(P)),)

1 foreach relevant item j < i do
2 (sljlsulsl, uBuen il uB e[l linkj)) — 0
3 end foreach
4 foreach utility list ¢ threaded by link[:] do
5 u(pat(N),t) «— u(pat(P),t) + u(i,t)
6 3, «— u(pat(N),t)
7 foreach relevant item j € t A j < i by) do
8 slj] — sl +1
9 ulj] — ulj] + u(j,) + u(pat(N), 1
10 S —3+u(yt)
11 uBjpelf] — uBppels] + =
12 end foreach
13 foreach relevant item j € t A j < i by Q) do
14 UBitem []} — U/Bitem [.7] + 2
15 thread ¢ into the chain by link]j]

16 end foreach
17 end foreach

This computation process is implemented by Algorithm 2,
namely PseudoProject, which is called by d?’HUP at line 13
in Algorithm 1.

For example, Fig. 4a shows the pseudo TS .. ({c}) for
Node 4 derived from TS, ({}) for Node 0 in Figs. 1 and 2.
Three utility lists, t;, ts, and t3, are delimited from within
TSequ({}), and the first two entries of the summary table of
TScqu({}) are updated, which forms the pseudo 7'S..i({c}).
We can do pseudo projection recursively in two senses.

First, T'Scqu (pat(P)) for a reverse set enumeration tree node
P can be projected to the pseudo TS, (pat(N) for a child
node N of P, which in turn can be projected to the pseudo
TS.qui(pat(C) for a grand child node C' of P. For example,
Fig. 4b shows the pseudo TS, ({b, c}), for Node 6 in Figs. 1
and 2, by calling PseudoProject (the pseudo T'S . ({c}), b).

Second, although TS, (pat(P)) is partially modified in
projecting to the pseudo TSc.u(pat(N)) and to the pseudo
TSequi(pat(C)), we can derive the pseudo T'S .. (pat(S)) for a
sibling node S of node N from this modified TS . (pat(P)).
For example, we can build the pseudo TS, ({d}) when visit-
ing Node 8 since the threading chain starting from link[d] in
TScqui({}) is untouched before visiting Node 8.

6.4 Materialization versus Pseudo Projection
We may only keep TS ({}) in memory and get TS, for
all patterns by recursive pseudo projection, which is the

LIU ETAL.: MINING HIGH UTILITY PATTERNS IN ONE PHASE WITHOUT GENERATING CANDIDATES

s u uBjemuBpp.

28|37 | 28
2413131
20) 65 | 37
16| 61 | 36
20|58 | S3
7138 |38
513030

u uBjemuBy, Pm t, ts

313131
2413131
20 65 | 37
16| 61 | 36
20|58 |53
713838
513030

@ - e o6 T o
= [[[[o]

=2 R

gQ = e 6 T o
Ll L P LV LR S L

(b) pseudo 7S,...({b,c})

s U uBjemuBg, 6 ty+ts
al2]28]37]28 [a,1]
bl1]24]31 31 |5] b9 |

(¢) materialized 7S, ({c})

Fig. 4. Projections from T'S.q.u({})-

most scalable way to maintain original utility information
and is the core of our approach. Furthermore, we can opti-
mize our approach by considering two trade-offs.

Maximum number of rounds y for irrelevant item filtering.
The body of the PseudoProject algorithm iterates multiple
rounds to filter out irrelevant items. We introduce a para-
meter, y, to make a tradeoff between the benefit of more
pruning by tightening upper bounds and the additional
computational overhead for iterative irrelevant item filter-
ing. When no more irrelevant items are identified by Corol-
lary 2 or a maximum number of rounds has been reached,
the iteration terminates.

Materialization threshold ¢ for space-time tradeoff. We intro-
duce a materialization threshold ¢ to make a tradeoff between
the scalability resulted from representing 7'S.q,i(pat(N)) by
pseudo projection and the efficiency resulted from leaving
out irrelevant items by materializing TS, (pat(N)). When
the percentage of relevant items is below the threshold, a
materialized copy will be made by copying the pseudo
TSequ(pat(N)) to memory space separate from 7'S,q,;(pat(P))
so that irrelevant items are left out, wu(pat(N), t) =
u(pat(P), t) + u(i, t) is stored in an extra element for each
list ¢, and lists with an identical set of items are merged.

For example, Fig. 4c shows the materialized TS.q.({c})
where the summary entries are copied from 4a, the first list
has an element for the only relevant item, a, in t;, and a spe-
cial element for u({c}, t;). As the sets of relevant items are
identical, t» and t3 are merged into the second list.

7 COMPARATIVE EVALUATION

We evaluate our d*HUP algorithm by comparing with
the state-of-the-art algorithms, TwoPhase [29], IHUPry1/
[4], UP-Growth [38], and HUIMiner [28]. The code of

1253
TABLE 2
Characteristics of Six Datasets

Dataset |t] |1 |D| Type
T10I6D1M 10:33 1,000 933,493 mixed
WebView-1 2.5 : 267 497 59,602 sparse
Chess 37:37 76 3,197 dense
Chain-store 7.2:170 46,086 1,112,949 sparse
T20I6D1M 20 : 49 1,000 999,287 mixed
Foodmart 4.8:27 1,559 34,015 dense

TwoPhase [29] and HUIMiner [28] were provided by the
original authors. Due to unavailability, we implemented
an improved version of IHUPzy [4] and an improved
version of UP-Growth [38], namely IHUP;;;, and UP;,
respectively. The latter employ a search tree to compactly
represent all candidates, facilitate fast matching between
candidates and transactions, and improve the efficiency of
the second phase greatly. When mining large databases,
UP;PG is even faster than HUIMiner [28], and UP-Growth
[38] simply did not report the running time of the second
phase because it is too long [38].

Six datasets are used in comparative experiments.
T10I6D1M and T20I6D1M with utility information are exactly
the same dataset as in [29], and Chain-store is the same as in
[4], [28], [29], [38]. WebView-1 and Chess contain no utility
information originally. We generate the utility information
by following the method in [29]. So do [28], [38]. Thus, Chess
with utility information used by [28], [38] and us share the
same features, but are not the same datasets. Foodmart is
from the Microsoft foodmart database. The datasets are sum-
marized by Table 2 where the first column is the name of a
dataset, the second (|t|) is the average and maximum length
of transactions, the third (|7|) is the number of distinct items,
the fourth (|DJ) is the number of transactions, and the fifth
(Type) is a rough categorization based on the number of high
utility patterns to be mined, partially depending on the mini-
mum utility threshold as in Table 3.

The minimum utility thresholds minU(percent) in terms
of the percentage of overall utility for each dataset are
selected in a way that the results can be verified with [4],
[28], [29], [38]. The experiments were performed on a PC
with 1.80 GHz CPU and 8 GB memory running CentOS 6.3.
The parameter setting of y =3 and ¢ =0.5 is used as
the default for d?HUP unless specified otherwise, which is
discussed in Section 8.1.

7.1 Enumerated Patterns and Candidates

Table 3 shows the number of high utility patterns (hups), the
maximum length of high utility patterns (ml), the numbers
of patterns enumerated by our d?HUP algorithm and HUI-
Miner respectively, and the numbers of candidates gener-
ated in the first phase by UP},, IHUP;;,;, and TwoPhase
respectively, with different datasets and varying minU.

Our d?HUP algorithm enumerates less patterns than
HUIMiner, and the numbers of candidates generated by
UP} ,, IHUP}y,,;, and TwoPhase are 1 to 2 orders, 2 to 4
orders, and over 3 orders of magnitude more than the num-
ber of patterns enumerated by d?’HUP respectively. The rea-
sons are as follows.

1254

TABLE 3
Patterns Enumerated by d?HUR, HUIMiner, and Candidates
by UP/ ,, IHUP/,,, TwoPhase

(a) T10I6D1M

mainlU hups(ml) d*HUP HUIM. UP+ IHUP+ T.P.
0.5% 25 (1) 639 639 673 711 226K
0.1% 389 (8) 1,092 1,871 8,735 32K 611K
.01% 873K (17) 1.06M 12IM 1.7M 21M -
.005% 1.6M (17) 1.8M 2M 24M 29M -
(b) WebView-1

manlU hups(ml) d’HUP HUIM. UP+ IHUP+ T.P.
3.2% 2(1) 11 19 159 71K 95K
3% 2(1) 21 27 171 12M -
2.1% 6 (1) 203 15.7M 1,809 - -
1.9% 11K (148) 160K - - - -
(c) Chess

manlU hups(ml) d*HUP HUIM. UP+ IHUP+ T.P.
60% 0(0) 0 0 34 299K 304K
30% 7.4K (16) 139K 16.8K 1.34M 43.7M -
20% 1.IM (20) 1.08M 1.61IM 43.7M - -
10% 124M (25) 83.6M 158M - - -
(d) Chain-store

mainlU hups(ml) d’HUP HUIM. UP+ IHUP+ T.P.
0.25% 17 (1) 152 135 1,123 1,577 628K
0.1% 80 (2) 1,661 1,629 3876 7,117 7.3M
0.01% 3,839 (6) 214K 284K 66.6K 286K -
.005% 12K (11) 431K 712K 225K 9.48M -
(e) T20I6D1IM

manlU hups(ml) d*HUP HUIM. UP+ IHUP+ T.P.
0.5% 25 (1) 786 786 798 3,311 334K
0.1% 669 (11) 2,302 10.3K 664K 207K -
.01% 923K (17) 1.24M 1.54M 292M 6.1M -
.005% 1.8M (17) 235M 281M 9.55M 23.4M -
(f) Foodmart

minlU hups(ml) d*HUP HUIM. UP+ IHUP+ T.P.
0.1% 198 (1) 1,553 1,556 1,559 1,559 1.2M
0.02% 1,467 27) 1,590 2,097 26.1K - -
0.015% 1.72M (27) 1.58M 3.78M - - -
0.01% 742M (27) 175M 91.5M - - -

e Our utility upper bounds are tighter than the upper
bounds by HUIMiner and the TWUs by UP/ .,
IHUP#;;;,, and TwoPhase respectively, which results
in stronger pruning.

e We propose the lookahead strategy to improve the
pruning while HUIMiner does not.

e CAUL enables tightening upper bounds iteratively
in the mining process while the data structures by
UP} 1, IHUP};,, and TwoPhase cannot.

7.2 Running Time and Memory Usage

Fig. 5 shows the running time by the five algorithms. For

example, for T10I6D1IM with minU = 0.01%, d?HUP takes 27

seconds, HUIMiner 154, UP}, 101, IHUP};;;; 109, and Two-

Phase runs out of memory. The observations are as follows.
First, d*HUP is up to 1 to 3 orders of magnitude more

efficient than UP}} ., IHUP;;,,, and TwoPhase. In particular,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.5, MAY 2016

—+— d2HUP —— d2HUP(f1) —8— UP+ —&— I[HUP+ —*— TwoPhase —6— HUIMiner
n n 10°
T T
c =
Q o
o S
8 $ 10
5
l“é 1 MY .g 1&%5%###: T
=10 =10
0.001 0.05 0.5 2 3 4
(b) WebView-1 varying minU (%)
& 10° & 10
2 °,
g 10° 9 g 10
(0] Q
L L 1
o o 10 3
E 10 E
= —o=8=8 F 10
10 30 50 70 0.005 0.05 0.5
(d) Chain-store varying minU (%)
0 w2
BT o 10
S S 10’
Q O i
e, o
o 10 o 1
£ E
'_ '_ 10’ el - -
0.001 0.01 0.05 0.1

(e) T2016D1M varying minU (%) (f) Foodmart varying minU (%)

Fig. 5. Running time versus minU (percent).

d’HUP is up to 6.6, 6.8, 7.8, 261, 472, and 1,502 times faster
than UPaDG on T20I6D1M, T10I6D1M, Chain-store, Web-
View-1, Foodmart, and Chess respectively. The reasons are
as follows:

e The number of patterns enumerated by d?HUP is
much smaller than the number of candidates gener-
ated by UP[,,, IHUP},,, and TwoPhase. Thus,
d?HUP even takes less time than the first phase of
the latter algorithms.

e The latter materialize candidates and need a second
phase to match each candidate with transactions in
the database, which causes scalability issue when
the number of candidates is large, and has efficiency
issue when the database is large.

Second, d*HUP is up to 1 order of magnitude more effi-
cient than HUIMiner [28]. Concretely, d’HUP is up to 6.3,
6.5, 16.8, 45, 49, and 875 times faster than HUIMiner on
T10I6D1M, T20I6D1M, Chess, Chain-store, Foodmart, and
WebView-1 respectively. The reasons are:

e d?HUP has stronger pruning and enumerates less
patterns than HUIMiner.

e d2HUP proposes the data structure, CAUL, that ena-
bles efficient computation, while HUIMiner employs
inefficient join operations on a vertical data struc-
ture, which is also not scalable.

Third, for a small and dense dataset like Chess,
d?HUP with the parameter setting ¢ =1, depicted by
‘d2HUP(f1)" in Fig. 5¢, outperforms HUIMiner by over 1
order of magnitude, but d*HUP with the default setting
is a little bit less efficient than HUIMiner. The reason is
that although the pseudo CAUL benefits scalability, it
entails additional computation due to keeping irrelevant
items. In this case, due to a huge number of high utility
patterns, the scalability benefit does not excel while the
additional computation cost is amplified. A good choice

LIU ETAL.: MINING HIGH UTILITY PATTERNS IN ONE PHASE WITHOUT GENERATING CANDIDATES

+— d2HUP —&— UP+ IHUP+ —&— HUIMiner
a 6
=
>
<]
2
5 7| +4
Q =0
0.001 0.05 0.5 2 3 4
(a) T1016D1M varying minU (%) (b) WebView-1 varying minU (%)
~ ' — 160
m m
s2 S 120
>
212 2 80
£ 8 £ 40
O 4 T (o] N
= i s a =
10 30 5 70 0.005 0.05 0.5

(c) Chess varying minU (%)

(d) Chain-store varying minU (%)

Memor

200
0.001 0.05 1
(e) T2016D1M varying minU (%)

0.05 0.1
(f) Foodmart varying minU (%)

Fig. 6. Peak memory usage versus minU (percent).

for d*HUP is to make a materialized copy of the pseudo
CAUL (¢ = D).

Memory usage. We collect the peak memory usage sta-
tistics by every algorithm during its execution except
TwoPhase as shown in Fig. 6. For example, for T10I6D1M
with minU = 0.1%, the peak memory usage by d?’HUP is
147 MB, and that by HUIMiner, by UP},., and by
IHUP%W are 191, 153, and 154 MB respectively. The fol-
lowing is a summary.

e Our d’HUP algorithm uses the least amount of mem-
ory because d*HUP uses CAUL that is more compact
than the vertical data structure by HUIMiner, and
d?HUP does not materialize candidates in memory
while UP}, ., IHUP;;;,,, and TwoPhase do.

e The memory usage by UP},, and IHUP};,;, are 50
percent to 2 orders, and 90 percent to 2 orders of
magnitude more than d?HUP respectively. Two-
Phase uses the most, and usually runs out of mem-
ory when minU is small.

7.3 Comparison with Varying Data Characteristics
We compare our d?’HUP algorithm with the best prior algo-
rithms, HUIMiner and UP;,,, on varying data characteris-
tics, including different utility distributions, changing
number of items, different average length of transactions,
and changing data size based on the T10I6D1M dataset as it
is large and of a mixed type.

First, we generate external utilities anti-proportional to
supports and proportional to supports, in addition to gener-
ating external utilities randomly. Fig. 7a shows the running
time of the three algorithms on the respective resulting data-
set with minU ranging from 0.1 percent down to 0.001 per-
cent. The running time with external utilities anti-
proportional to supports, as depicted by ‘(a)’, is less than
that proportional to supports, as depicted by ‘(p)’, and the

1255
—%— §2HUP(a) —— d2HUP(p) —+— G2HUP —#— UP+(a) —p— UP+(p) —B— UP+ —A— HUIMiner(a) —<— HUIMiner(p) —&— HUIMiner
10° 600
% 0
e £ 400
4 3
k))
(]
: £
= = —a 5 8
= ¢
2 4 6 8 10

(a) diff. uti. dist. varvina minU(%) (b) #items (K) (minU=0.01%)
—+— d2HUP —8— UP+ —©— HUIMiner —%— d2HUP(T20) —%— UP+(T20) —A— HUIMiner(T20)

10 150

=)
S

o
S

Time (seconds)
Time (seconds)

10° 10 107 200 400 600 800 1000
(c) i trans. len. varying minU(%) (d) #Transactions (K) (minU=0.01%)

Fig. 7. Running time with varying data characteristic.

latter is less than that generated randomly. For every utility
distribution, d2HUP takes much less time than HUIMiner
and UP/..

Second, we conduct a comparative experiment with the
number of items ranging from 1K to 10K as shown in
Fig. 7b. The running time by d’HUP and by UP}, do not
change much because relevant items do not increase much
with the increase of items. However, the running time by
HUIMiner increases sharply with the increase of items.

Third, we evaluate the effect of the transaction lengths by
comparing results both on T10I6D1M and on T20I6D1M. As
in Fig. 7c where the results with T20I6D1M are depicted by
‘(T20)’, the running time increases with the average length
of transactions since both the average length and the num-
ber of high utility patterns also increase, so do the running
time gaps among d*HUP, HUIMiner, and UP};.

Finally, Fig. 7d shows the scalability evaluation result
with |D| varying from 100K to 1000K. Clearly, d?’HUP has
better scalability than HUIMiner and UP} . according to
the slopes of the curves.

8 EXPERIMENTAL ANATOMY OF D*HUP

8.1 Analysis of Additional Pruning Techniques

First of all, let us note that our “basic approach” is to
depth-first search the reverse set enumeration tree with
pruning by basic upper bounding (Theorem 1) which is
enabled by the pseudo projection of CAUL. In terms of
the maximum number of rounds y for iterative irrelevant
item filtering and the materialization threshold ¢, our
“basic approach” corresponds to the setting of y =1 and
¢ = 0 without lookahead.

Fig. 8 reports the running time with y ranging from 1 to 6
and ¢ ranging from 0 to 1 both with and without lookahead.
By comparing with Fig. 5 we can find that our “basic
approach” already outperforms prior algorithms signifi-
cantly. For example, for the T10I6D1IM dataset (minU =
0.001%), the running time of our “basic approach” is 36 sec-
onds while that of UP},, and IHUP},, is 294 and 374
respectively.

Second, for all datasets and every setting of y and ¢, our
lookahead strategy (Theorems 4 and 5) is beneficial in terms
of decreasing the running time as depicted by ‘with LK’ in

1256

—4A—rec. w/o LK —+—rec. with LK ~ —8—mat. w/o LK —— mat. with LK

501 2 3" 4 546 1001 2 3 - 4 596
3 : 3§
c c
3 40 3
8 § 50
g £
e 30 =
0 === 4
0 0.5 ¢ 1 0 0.5 9 1
(a) T1016D1M (MinU=0.001%) (b) WebView—1 (minU=1.9%)
1 2 3 " 4 5 Y 6 1 2 3 - 4 5 Y6
20
T,;soQ = ‘\ -
kel ¥ f * kel
5 60 5
(5] (5]
3 40 a
[0} [0}
E 20 E
= | 5
0
0 0.5 o 1 0 0.5 61

(c) Chess (minU=20%) (d) Chain-store (minU=0.005%)

Fig. 8. Running time of d>HUP with varying y and ¢.

Fig. 8. The lookahead is extremely helpful with dense data-
sets, for example, for Chess, and large datasets, for example,
for T10I6D1M.

Third, in terms of pruning the search space, more irrele-
vant item filtering (Corollaries 2 and 3) by increasing y, as
depicted by ‘rec’, and more CAUL materialization by
increasing ¢, as depicted by ‘mat’, are very helpful as the
utility upper bounds become tighter, which also decreases
the running time with sparse data, for example, for
WebView-1. However, it comes with additional computa-
tional overhead and thus the running time does not always
decrease with the increase of y and ¢, for example, for
Chain-store.

In short, while the setting of y = 1 and ¢ = 0 with look-
ahead is good, we recommend to use the setting of y =3
and ¢ = 0.5 with lookahead as the default.

8.2 Evaluating the Transaction Representation

We evaluate the memory footprints of the pseudo CAUL and
the materialized CAUL by d*HUP, the memory footprint of
the tree based structure, UP-tree [38], by UP;;PG, and the ver-
tical data structure, U-Lists [28], by HUIMiner. The results as
shown in Fig. 9 can be summarized as follows.

First, both the pseudo and materialized CAUL have a
smaller memory footprint than UP-tree for large datasets,
like Chain-store and T10I6D1M. The reason is that transac-
tions in a large dataset are diversified, the memory saved by
merging common prefixes of transactions does not offset
the additional memory spent on auxiliary fields in each UP-
tree node for maintaining the tree structural information.

Second, for small and dense datasets, UP-tree has higher
compression ratio, and thus UP-tree has smaller memory
footprint than CAUL, which is however not significant as in
such a case CAUL also uses little memory, for example, less
than 6 MB for Chess.

Third, U-List has the largest memory footprint because
U-List has no compression at all.

Finally, materializing CAUL usually increases the mem-
ory footprint by a small percentage, but by a large percent-
age for a dense dataset, like Chess. In the latter case, the
overall memory footprint may still be small as a dense data-
set is usually not that large.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.5, MAY 2016

—v— pseudo CAUL —<— materialized CAUL —&— UP-tree —6— U-Lists

200 6
s 180 Sy
>
2 160 2
B[T ey 2
= ¢ =
120 0
0.001 0.05 0.5 1.8 2.4 3.2
(a) T1016D1M varying minU(%) (b) WebView-1 varying minU(%)
10 : 200 :
o o q
2 2
>
25 £ 100
£ £
Q < (4]
0 9 0
10 30 50 70 0.005 0.05 0.5

(c) Chess varying minU(%) (d) Chain-store varying minU(%)

Fig. 9. Memory footprints of trans. representations.

9 CONCLUSION AND FUTURE WORK

This paper proposes a new algorithm, d*HUP, for utility
mining with the itemset share framework, which finds
high utility patterns without candidate generation. Our
contributions include: 1) A linear data structure, CAUL,
is proposed, which targets the root cause of the two-
phase, candidate generation approach adopted by prior
algorithms, that is, their data structures cannot keep the
original utility information. 2) A high utility pattern
growth approach is presented, which integrates a pattern
enumeration strategy, pruning by utility upper bound-
ing, and CAUL. This basic approach outperforms prior
algorithms strikingly. 3) Our approach is enhanced sig-
nificantly by the lookahead strategy that identifies high
utility patterns without enumeration.

In the future, we will work on high utility sequential pat-
tern mining, parallel and distributed algorithms, and their
application in big data analytics.

ACKNOWLEDGMENTS

This work was supported in part by the National Natu-
ral Science Foundation of China (61272306), and the Zhe-
jlang Provincial Natural Science Foundation of China
(LY12F02024). The authors would like to express their
gratitude to the anonymous reviewers.

REFERENCES

[1]1 R. Agarwal, C. Aggarwal, and V. Prasad, “Depth first generation
of long patterns,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, 2000, pp. 108-118.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining association
rules between sets of items in large databases,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 1993, pp. 207-216.

[3] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules,” in Proc. 20th Int. Conf. Very Large Databases, 1994,
pp- 487-499.

[4] C.F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Efficient
tree structures for high utility pattern mining in incremental data-
bases,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 12, pp. 1708-
1721, Dec. 2009.

[5] R.Bayardo and R. Agrawal, “Mining the most interesting rules,”
in Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
1999, pp. 145-154.

LIU ETAL.: MINING HIGH UTILITY PATTERNS IN ONE PHASE WITHOUT GENERATING CANDIDATES

(6]

(7]

[8]

[1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “ExAnte: A
preprocessing method for frequent-pattern mining,” IEEE Intell.
Syst., vol. 20, no. 3, pp. 25-31, May/Jun. 2005.

F. Bonchi and B. Goethals, “FP-Bonsai: The art of growing and
pruning small FP-trees,” in Proc. 8th Pacific-Asia Conf. Adv. Knowl.
Discovery Data Mining, 2004, pp. 155-160.

F. Bonchi and C. Lucchese, “Extending the state-of-the-art of
constraint-based pattern discovery,” Data Knowl. Eng., vol. 60,
no. 2, pp. 377-399, 2007.

C. Bucila, J. Gehrke, D. Kifer, and W. M. White, “Dualminer: A
dual-pruning algorithm for itemsets with constraints,” Data Min-
ing Knowl. Discovery, vol. 7, no. 3, pp. 241-272, 2003.

C. H. Cai, A. W. C. Fu, C. H. Cheng, and W. W. Kwong, “Mining
association rules with weighted items,” in Proc. Int. Database Eng.
Appl. Symp., 1998, pp. 68-77.

R. Chan, Q. Yang, and Y. Shen, “Mining high utility itemsets,” in
Proc. Int. Conf. Data Mining, 2003, pp. 19-26.

S. Dawar and V. Goyal, “UP-Hist tree: An efficient data structure
for mining high utility patterns from transaction databases,” in
Proc. 19th Int. Database Eng. Appl. Symp., 2015, pp. 56-61.

T. De Bie, “Maximum entropy models and subjective interesting-
ness: An application to tiles in binary databases,” Data Mining
Knowl. Discovery, vol. 23, no. 3, pp. 407-446, 2011.

L. De Raedt, T. Guns, and S. Nijssen, “Constraint programming
for itemset mining,” in Proc. ACM SIGKDD, 2008, pp. 204-212.

A. Erwin, R. P. Gopalan, and N. R. Achuthan, “Efficient mining of
high utility itemsets from large datasets,” in Proc. 12th Pacific-Asia
Conf. Adv. Knowl. Discovery Data Mining, 2008, pp. 554-561.

P. Fournier-Viger, C.-W. Wu, S. Zida, and V. S. Tseng, “FHM:
Faster high-utility itemset mining using estimated utility co-
occurrence pruning,” in Proc. 21st Int. Symp. Found. Intell. Syst.,
2014, pp. 83-92.

L. Geng and H. J. Hamilton, “Interestingness measures for data
mining: A survey,” ACM Comput. Surveys, vol. 38, no. 3, p. 9, 2006.
J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without can-
didate generation,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2000, pp. 1-12.

R. J. Hilderman, C. L. Carter, H. J. Hamilton, and N. Cercone,
“Mining market basket data using share measures and character-
ized itemsets,” in Proc. PAKDD, 1998, pp. 72-86.

R. J. Hilderman and H. J. Hamilton, “Measuring the interesting-
ness of discovered knowledge: A principled approach,” Intell.
Data Anal., vol. 7, no. 4, pp. 347-382, 2003.

M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen, “A per-
spective on databases and data mining,” in Proc. 1st Int. Conf.
Knowl. Discovery Data Mining, 1995, pp. 150-155.

S. Krishnamoorthy, “Pruning strategies for mining high utility
itemsets,” Expert Syst. Appl., vol. 42, no. 5, pp. 2371-2381, 2015.
G.-C. Lan, T.-P. Hong, and V. S. Tseng, “An efficient projection-
based indexing approach for mining high utility itemsets,” Knowl.
Inf. Syst., vol. 38, no. 1, pp. 85-107, 2014.

Y.-C. Li,].-S. Yeh, and C.-C. Chang, “Isolated items discarding
strategy for discovering high utility itemsets,” Data Knowl. Eng.,
vol. 64, no. 1, pp. 198-217, 2008.

T.Y.Lin, Y. Y. Yao, and E. Louie, “Value added association rules,”
in Proc. 6th Pacific-Asia Conf. Adv. Knowl. Discovery Data Mining,
2002, pp. 328-333.

J. Liu, Y. Pan, K. Wang, and J. Han, “Mining frequent item sets by
opportunistic projection,” in Proc. 8th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2002, pp. 229-238.

J. Liu, K. Wang, and B. Fung, “Direct discovery of high utility
itemsets without candidate generation,” in Proc. IEEE 12th Int.
Conf. Data Mining, 2012, pp. 984-989.

M. Liu and J. Qu, “Mining high utility itemsets without candidate
generation,” in Proc. ACM Conf. Inf. Knowl. Manage., 2012, pp. 55-64.
Y. Liu, W. Liao, and A. Choudhary, “A fast high utility itemsets
mining algorithm,” in Proc. Utility-Based Data Mining Workshop
SIGKDD, 2005, pp. 253-262.

S. Lu, H. Hu, and F. Li, “Mining weighted association rules,”
Intell. Data Anal., vol. 5, no. 3, pp. 211-225, 2001.

S. Morishita and J. Sese, “Traversing itemset lattice with statistical
metric pruning,” in Proc. 19th ACM Symp. Principles Database Syst.,
2000, pp. 226-236.

J. Pei, J. Han, and V. Lakshmanan, “Pushing convertible con-
straints in frequent itemset mining,” Data Mining Knowl. Discov-
ery, vol. 8, no. 3, pp. 227-252, 2004.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

1257

J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M. Hsu,
“PrefixSpan: Mining sequential patterns efficiently by prefix-
projected pattern growth,” in Proc. 17th Int. Conf. Data Eng., 2001,
pp. 215-224.

A. Savasere, E. Omiecinski, and S. B. Navathe, “An efficient algo-
rithm for mining association rules in large databases,” in Proc.
21st Int. Conf. Very Large Databases, 1995, pp. 432—444.

Y. Shen, Q. Yang, and Z. Zhang, “Objective-oriented utility-based
association mining,” in Proc. IEEE Int. Conf. Data Mining, 2002,
pp- 426-433.

A. Silberschatz and A. Tuzhilin, “On subjective measures of inter-
estingness in knowledge discovery,” in Proc. ACM 1st Int. Conf.
Knowl. Discovery Data Mining, 1995, pp. 275-281.

P.N. Tan, V. Kumar, and J. Srivastava,, “Selecting the right objec-
tive measure for association analysis,” Inf. Syst., vol. 29, no. 4,
Pp- 293-313, 2004.

V. S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, “Efficient algo-
rithms for mining high utility itemsets from transactional data-
bases,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 8, pp. 1772-1786,
Aug. 2013.

H. Yao and H. J. Hamilton, “Mining itemset utilities from transac-
tion databases,” Data Knowl. Eng., vol. 59, no. 3, pp. 603-626, 2006.
H. Yao, H. J. Hamilton, and C. J. Butz, “A foundational approach
to mining itemset utilities from databases,” in Proc. SIAM Int.
Conf. Data Mining, 2004, pp. 482—486.

H. Yao, H. J. Hamilton, and L. Geng, “A unified framework for
utility-based measures for mining itemsets,” in Proc. ACM
SIGKDD 2nd Workshop Utility-Based Data Mining, 2006, pp. 28-37.
U. Yun, H. Ryang, and K. H. Ryu, “High utility itemset mining
with techniques for reducing overestimated utilities and pruning
candidates,” Expert Syst. Appl., vol. 41, no. 8, pp. 3861-3878, 2014.
M.]J. Zaki, “Scalable algorithms for association mining,” IEEE
Trans. Knowl. Data Eng., vol. 12, no. 3, pp. 372-390, May /Jun. 2000.
M. J. Zaki and C. Hsiao, “Efficient algorithms for mining closed
itemsets and their lattice structure,” IEEE Trans. Knowl. Data Eng.,
vol. 17, no. 4, pp. 462478, Apr. 2005.

Junqgiang Liu received the BSc degree from
Peking University in China, and the PhD degrees
from Simon Fraser University in Canada and Zhe-
jiang University in China, respectively. He is cur-
rently a professor at Zhejiang Gongshang
University. His research interests include informa-
tion security, privacy protection, data mining, and
software engineering. He has published over
50 papers in prestigious journals and international
conferences, including ACM SIGKDD, IEEE ICDE,
and |IEEE ICDM. He is a member of the IEEE.

Ke Wang received the PhD degree from the Geor-
gia Institute of Technology. He is currently a pro-
fessor at Simon Fraser University. His research
interests include database technology, data min-
ing, and knowledge discovery, with emphasis on
massive data sets, graph and network data, and
data privacy. He has published more than 100
research papers in database, information
retrieval, and data mining conferences. He is cur-
rently an associate editor of the ACM TKDD Jour-
nal. He is a senior member of the IEEE.

Benjamin C.M. Fung is the Canada Research
chair in Data Mining for Cybersecurity and an
associate professor in the School of Information
Studies (SIS), McGill University. He has over
80 refereed publications that span the research
forums of data mining, privacy protection, cyber
forensics, services computing, and building engi-
neering. His data mining works in crime investiga-
tion and authorship analysis have been reported
by media worldwide. He is a senior member of
the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

