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Abstract—In modern digital communication, chat platforms
generate vast amounts of unstructured conversational data.
However, the fluid, informal, and cross-timeframe nature of
these chats challenges traditional supervised topic detection
approaches. Addressing this gap, we propose an entirely unsu-
pervised framework for detecting topic shifts in chat logs. Our
method first converts individual messages into contextual em-
beddings using DistilBERT, thereby capturing nuanced semantic
features. Next, rather than simply segmenting messages based
on fixed temporal windows, we analyze the temporal evolution
of these embeddings using a novel smoothing algorithm that
highlights significant changes in the semantic trajectory of the
conversation. Candidate topic shift points are then identified
through an unsupervised peak detection process applied to the
smoothed signal. Finally, an adaptive clustering algorithm groups
the segmented data to refine topic boundaries without any manual
labeling, ensuring the approach remains completely unsuper-
vised. This method not only better accommodates the dynamic
characteristics of chat logs but also robustly distinguishes fine-
grained topic transitions. Experimental results demonstrate that
our unsupervised framework outperforms traditional lexical and
statistical techniques in detecting nuanced topic changes, making
it highly effective for applications in social media analysis and
real-time chat monitoring.

Index Terms—Topic Shift Detection, Unsupervised Learning,
Group Chat, DistilBERT, Temporal Convolutional Networks.

I. INTRODUCTION

Group chat applications, for example, Slack, Microsoft
Teams, WhatsApp, etc., have become ubiquitous for personal
and professional communication, generating an ever-growing
volume of unstructured conversation data [1]. In large and
active group chats, multiple topics are often discussed concur-
rently or in rapid succession, creating streams of interwoven
dialogues [2]. Managing and understanding such conversations
is challenging in practice: important information can be lost
or overlooked when discussion threads switch or overlap
without clear markers. For example, a project team’s chat
might shift from brainstorming ideas to discussing logistics
within minutes, confusing participants and hindering efficient
information retrieval [3]. This practical need to organize
conversational data motivates the task of topic shift detection
in group chats, which aims to automatically identify bound-
aries where the discussion topic changes. Accurate topic shift
detection would greatly benefit real-world applications such as
conversation summarization, context-aware virtual assistants,
and chat archive management, by disentangling mixed-topic
dialogues into coherent segments [4].

Detecting topic shifts in multi-party chats is a non-trivial
problem due to several core challenges. First, group chats
lack explicit structure: unlike well-formatted documents or
threaded forums, chat messages are chronologically ordered
but not hierarchically organized by topic. Participants can
introduce new topics abruptly, often without explicit cues, e.g.,
no section headings or formal turn-taking signals, resulting in
sudden context switches that are difficult to catch [5]. Second,
conversations in group chats are highly dynamic and overlap-
ping. It is common for several threads of discussion to proceed
in parallel within the same channel, especially in busy chats
with many participants [6]. This leads to entangled context, a
single message might refer to an earlier topic while the very
next message starts a different subject. Traditional dialogue
segmentation methods struggle in this setting, as they typically
assume a single thread of discourse [3]. Third, the language
in informal chats is often noisy and context-dependent: the
use of slang, emojis, abbreviations, or implicit references is
prevalent, making it harder for automated approaches to judge
semantic continuity.

Several related lines of research address parts of this
problem, but they do not provide a comprehensive solution.
Topic segmentation [7] has been extensively studied in mono-
logues and formal texts, e.g., news articles, transcripts. Other
work has applied segmentation methods to spoken meetings
or two-person conversations [8]. These techniques often rely
on vocabulary distribution changes or supervised classifiers
to mark segment boundaries. However, they usually assume
a linear conversation flow and cannot easily disentangle
multiple interleaved topics [9]. Conversation disentanglement
techniques attempt to separate interleaved threads in group
chats or online forums [10]. More recent models incorporate
neural methods or metadata to improve clustering [11]. While
disentanglement is related to topic shift detection, it generally
focuses on grouping messages into threads post hoc, rather
than detecting the exact transition points between topics in real
time. Moreover, many existing approaches, whether for seg-
mentation or disentanglement, require large annotated datasets
for training [12], which are scarce for group chats due to
annotation cost and privacy concerns. Consequently, there is a
clear gap in current research: no existing method adequately
addresses real-time topic shift detection in unstructured multi-
party chats with minimal supervision, which is crucial for
practical deployment in modern chat platforms.

To address these challenges, this paper introduces a fully



unsupervised framework, called ChatSense, designed explic-
itly to detect topic shifts in group chat conversations. Chat-
Sense integrates contextual semantic embeddings using Dis-
tilBERT, temporal dependency modeling through Temporal
Convolutional Networks (TCN), and adaptive heuristic feature
extraction (e.g., time gaps, sentiment changes, and speaker role
shifts). Finally, an adaptive clustering algorithm is employed
to automate topic segmentation.

The contributions of this work are summarized as follows:
• Unsupervised topic shift detection: ChatSense does not

rely on manual labeling or annotated datasets, which
makes it highly practical for analyzing extensive and
continuously expanding group chat datasets. This unsu-
pervised approach is particularly advantageous for real-
world applications where obtaining labeled data is costly
and impractical.

• Effective handling of topic overlap and topic entangle-
ment: ChatSense is specifically designed to handle com-
plex conversation structures that are common in group
chats, such as overlapping topics, rapid topic transitions,
and multiple topics entanglement. Its sophisticated tem-
poral modeling through Temporal Convolutional Net-
works (TCNs) enables accurate tracking of topic tran-
sitions despite the inherent complexity and asynchronous
nature of the data.

• Comprehensive feature integration: ChatSense integrates
semantic embeddings derived from DistilBERT, temporal
features through TCN, and adaptive heuristic signals (e.g.,
message timing, sentiment shifts, and participant roles).
This multi-dimensional approach significantly improves
the accuracy and robustness of topic shift detection, out-
performing methods that rely solely on lexical, statistical,
or isolated semantic analysis.

The rest of this paper is organized as follows. Sec-
tion II reviews related work on dialogue segmentation and
disentanglement. Section IV details the proposed ChatSense
methodology, including the chat encoding and topic shift
detection algorithm. Section V presents the experimental setup
and results. Section VI provides further discussion. Finally,
Section VII concludes the paper and outlines the directions
for future work.

II. RELATED WORK

Topic detection in group chats and social media has
become an important research area, but many existing methods
still have limitations, especially when dealing with short texts,
dynamic topic changes, and complex context. While various
techniques have been proposed to improve topic detection,
they are often optimized for traditional long-text corpora and
do not consider the unique characteristics of short, informal
texts.

Firstly, traditional text analysis techniques such as TF-IDF
[13] and LDA [14] may not be applicable to group chat or
social media data. These methods perform well in document-
level topic modeling, where long texts provide sufficient con-

text. However, short texts in group chats are fragmented and
lack complete context, making it difficult for these methods
to capture the temporal and fragmented nature of chat data.
Furthermore, traditional word frequency analysis and lexical
overlap methods may not be able to effectively handle complex
linguistic phenomena such as polysemy, synonyms, and slang
commonly found in group chats.

To address these challenges, deep learning methods have
been widely explored, particularly Recurrent Neural Networks
(RNNs) [15] and Convolutional Neural Networks (CNNs) [16],
which are capable of capturing temporal relationships within
the text. However, these models still struggle with long-
range dependencies, especially in group chats where responses
may be delayed by hours or even days. Furthermore, these
models often assume sequential continuity, which is typically
disrupted in asynchronous conversation environments, leading
to performance degradation.

On the other hand, Word2Vec [17] and GloVe [18] word
embeddings improve semantic understanding by capturing
relationships between words, especially in longer contexts.
However, these methods perform poorly on short texts be-
cause they lack effective context awareness and struggle with
handling polysemy and slang. Recently, Gupta et al. [19] has
attempted to improve word embeddings for short texts, but the
variability and contextual complexity of short texts remain a
significant challenge.

Another issue is the measurement of topic coherence.
In group chats, topics can change rapidly, and methods for
measuring topic coherence often fail to capture long-term con-
sistency. Traditional word frequency-based similarity measures
do not account for contextual and temporal variations, making
it difficult to accurately reflect the evolution of the topic.

Moreover, many existing methods overlook the importance
of contextual awareness in group chat data. Group chat con-
versations are not simply a cumulative collection of individual
texts, but rather contain rich, dynamic contexts that change
rapidly over time and in different situations. Traditional mod-
els often fail to effectively capture these variations, limiting
their applicability in real-world scenarios. Our work introduces
DistilBERT embeddings, which incorporate contextual word
representations, enabling better handling of polysemy, syn-
onyms, and other complex language phenomena in group chat
data. DistilBERT embeddings significantly improve semantic
understanding of short texts, and through an unsupervised
learning approach, we can model effectively without the need
for labeled data.

Furthermore, our approach introduces Temporal Convolu-
tional Networks (TCN) to address the limitations of traditional
RNN and CNN in handling long-range dependencies. TCN is
well-suited for capturing long-range dependencies in group
chat data, especially with the long time intervals between
responses. Unlike sequence-based models, TCN does not
assume sequential continuity, making it more suitable for
asynchronous conversation environments.

In summary, while various methods have been proposed for
topic detection, effective topic detection techniques for short



texts, such as those found in group chats and social media,
still face significant challenges. Future work should focus on
improving the understanding of short texts, capturing tempo-
ral and contextual information effectively, and continuously
tracking topic changes in dynamic environments. Our research
addresses these gaps by introducing context-aware embeddings
and methods to handle long-range dependencies, providing
a more efficient and accurate solution for topic detection in
group chats.

III. PROBLEM DEFINITION

Based on the characteristics of group chat texts and the
needs of this experiment, we define three core concepts:
Chatlog, Utterance, and Dialogue. These concepts serve as
the foundation for the methods of topic shift detection and
topic segmentation that will be discussed later.

C = [ u1, u2, . . . , un], Dj ⊆ C, ui = ⟨timei, idi, texti⟩
(1)

where:
• Chat log (C): A sequence of utterances representing a

multi-turn conversation. Formally, we denote a chat log
as C = [u1, u2, . . . , un], where ui is the i-th utterance in
the conversation.

• Utterance (ui): A single message or turn in the chat.
Each utterance ui typically consists of text written by
one participant at a particular time. It is the basic unit of
the conversation.

• Dialogue (Dj): A contiguous subsequence of utterances
in C that are topically coherent. In other words, Dj =
[up, . . . , uq] is a segment of the chat log such that all
utterances in Dj pertain to the same topic. Once the topic
of conversation changes, a new dialogue Dj+1 begins.

Thus, a single chat log C may be segmented into M
dialogues D1, D2, . . . , DM chronologically. By definition, a
topic shift occurs at the boundary between two consecutive
dialogues in the chat log. If dialogue Dj ends with utterance ui

and the next dialogue Dj+1 begins with utterance ui+1, then
we say that a topic shift occurs between ui and ui+1. The
goal of chat log topic shift detection is: given the sequence
of utterances C = [u1, . . . , un], identify all indices i (with
1 ≤ i < n) such that a topic shift occurs between ui and ui+1.
Similarly, the task is to predict the boundaries that divide C
into dialogues D1, . . . , DM that correspond to distinct topics.

We can also formulate the task as a sequence labeling
problem. For each position i between ui and ui+1 in the chat
log, we assign a binary label yi to indicate whether a topic
shift begins at that point (1 if yes, 0 if no). The sequence
of labels y1, y2, . . . , yn−1 thus encodes the locations of topic
changes in C. The aim of the topic shift detection model is to
predict the correct topic shift label sequence for a given chat
log.

IV. METHODOLOGY

Our proposed framework, ChatSense, is a fully unsuper-
vised approach that combines deep semantic modeling, tempo-

ral context integration, and heuristic cues to detect topic shifts
in multi-party chats. In contrast to prior methods, ChatSense
does not require labeled data and is thus highly scalable.
It is designed to handle the non-linear, asynchronous, and
interwoven nature of group conversations by capturing both
the semantic content of messages and structural indicators of
topic change. An overview of the system architecture is shown
in Figure 1, which illustrates the flow from raw chat messages
through feature extraction and context modeling to the final
clustering that identifies the boundaries of the topic change.

A. Data Preprocessing

Each raw chat log is first preprocessed to facilitate down-
stream analysis. Non-text elements such as HTML tags and
system notifications are removed to clean message content
and normalize timestamps into a standard datetime format.
For every pair of consecutive messages, we compute the
time interval between them as a feature (e.g., ∆ti = time
gap between message ui and ui−1). We also assign each
participant a unique anonymized ID for tracking speaker
turns. After preprocessing, only essential columns are retained:
timestamp, user_id, message, and time_diff.

B. Semantic Embedding via DistilBERT

To capture the semantic content of each utterance, we
transform the message text into a high-dimensional vector
using DistilBERT. Given an utterance ui, we obtain its em-
bedding ei ∈ R768 by feeding ui into the pre-trained Distil-
BERT model to output token representation as the sentence
vector. This 768-dimensional embedding encodes the nuanced
meaning of the message in context, helping to disambiguate
polysemous words and capture synonyms or slang usage
common in chat conversations. The use of a transformer-
based semantic representation ensures that even short, informal
messages are mapped to a rich semantic space, addressing the
limitations of traditional lexical similarity measures.

C. Feature Construction and Context Modeling

Each message is represented by concatenating three key
features: (1) ei ∈ R768 DistilBERT embedding, (2) a time fea-
ture computed as log(1+time diff), and (3) a 100-dimensional
user embedding. This results in an 869-dimensional vector for
each message.

These vectors {z1, z2, . . . , zn} are input into a Temporal
Convolutional Network (TCN), which uses 1D convolutions
with dilation to capture sequential dependencies. The TCN is
structured with several convolutional layers followed by a fully
connected layer. The output of this component is a sequence
of enriched feature vectors, each summarizing the content of
an utterance in the context of its surrounding dialogue.

By using a TCN, our framework can learn dependencies
between distant utterances without the recurrence constraints
of RNN-based models, enabling more effective handling of
asynchronous or interleaved dialogue flows. The TCN pro-
cesses the entire sequence of message features and produces
a context-aware embedding for each message. In essence,
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Fig. 1. Chatsense framework architecture.

it constructs higher-level features for each utterance that
incorporate information from its neighboring messages within
a certain temporal window defined by the TCN’s receptive
field. This context modeling allows the system to detect when
an utterance does not fit smoothly with its predecessors –
a strong indication of a topic shift. We optionally augment
the TCN with a localized self-attention mechanism to let the
model weigh the importance of words or features in recent
messages when forming each context-aware representation,
further enhancing its ability to pinpoint subtle shifts. Overall,
the TCN-based context modeling enables ChatSense to track
multiple overlapping topics and abrupt transitions, addressing
the non-linear conversational structure challenge.

D. Heuristic Feature Extraction

In parallel with DistilBERT embeddings, we derive several
heuristic features from each message and its context to capture
linguistic and structural cues of topic shifts. These features
include:

• Message Length, Keyword Overlap, and Punctuation Ra-
tio: The number of tokens/characters in the message,
lexical similarity, e.g., shared content words, and the
fraction of punctuation marks, e.g., “?”, “!”, in a message,
all of which tend to change at topic boundaries.

• Topic Deviation, Speaker Change, and Silence Indicator:
We measure semantic deviation between messages using
cosine distance between their DistilBERT embeddings.
Larger distances indicate topic transitions.A binary flag
for whether the speaker has changed, and a flag for
prolonged silence, all of which help signal mood shifts,
new subjects, or topic changes.

• Sentiment Score and Shift: The sentiment score of a
message and its change compared to the previous mes-
sage. Sentiment polarity is computed using the SnowNLP
library for Chinese Characters and TextBlob for English
Characters (range [0, 1]). We then calculate the sentiment
shift as the absolute difference between consecutive sen-
timent scores, capturing mood transitions.

These heuristic features complement the semantic embeddings
by providing information about conversational structure and
dynamics. They are computed in an unsupervised manner
from the raw data and require no domain-specific labeling.
By capturing aspects like lexical continuity, discourse pauses,

and speaker turns, these features help the system detect topic
boundaries even in the face of interleaved and asynchronous
chat threads.

E. Feature Standardization and Fusion

Since the extracted features have different scales and units,
we apply standardization by using StandardScaler to process
the data, ensuring that each feature has a mean of 0 and
a standard deviation of 1, thus eliminating the dimensional
differences between the features and ensuring that they are
comparable on the same scale. Specifically, each continuous
feature, both in the TCN embedding vector and in the heuristic
feature set, is z-normalized across the chat log. Specifically,
we subtract the mean and divide by the standard deviation
for that feature. The fused vector {t1, . . . , tn} incorporates
semantic information from the transformer embedding along
with temporal and structural cues from the heuristics, yielding
a comprehensive representation of utterance i. This multi-
dimensional feature encapsulates various signals that are po-
tentially relevant to identifying a topic shift.

F. Clustering for Topic Shift Detection

Finally, we identify topic shift points in an entirely unsu-
pervised manner by clustering the context-enhanced utterance
representations. We employ the k-means algorithm with k = 2
clusters to partition the set of message feature vectors. The
idea is that one cluster will contain vectors corresponding to
“continuation” utterances within an ongoing topic, and the
other cluster will contain vectors that represent “boundary”
utterances where a new topic begins. In practice, we run k-
means on the set {t1, . . . , tn} for each chat log. Because
k = 2 is fixed, this clustering essentially classifies each
message as either a topic-boundary or a non-boundary point.
Notably, this decision is made without any ground-truth labels
or supervised training: clustering leverages the natural sepa-
ration in the feature space created by our semantic, temporal,
and heuristic integration. A message that deviates significantly
in semantic context or structural pattern from its predecessors
is likely to be isolated by clustering as a topic shift. After
clustering, we interpret the two resulting clusters by assigning
one cluster to the “no shift” ( yi = 0) class and the other
to the “shift boundary” (yi = 1) class. The sequence of
labels y1, y2, . . . , yn−1 thus encodes the locations of topic



TABLE I
SUMMARY OF THE SELF-COLLECTED GROUP CHAT DATASETS.

Dataset Domain #Messages Avg. Msg Length Topic Shifts ≤ 10 min (%)

D5 Job Search and Employment 11,590 23.34 16.81%
D2 Student Daily Life 15,035 24.53 17.76%
D3 Renting and Housing 6,731 45.10 6.65%

changes for each ui. We can determine which is which by
examining features such as time gap or content change, which
are expected to be higher in the shift cluster. The boundary
detection for the chat is then given by the set of message
indices that were assigned to the topic-shift cluster, i.e., if
message ui falls in the shift cluster, we mark a topic boundary
before ui.

Our clustering-based segmentation approach has the ad-
vantage of being completely data-driven and adaptive. Since
no manual annotation is used at any stage, the entire method
remains unsupervised. This makes ChatSense highly scalable
to large or continuously streaming chat data, as it does not
require retraining when new data arrives or when porting to
a different domain. In summary, by combining deep seman-
tic embeddings, temporal context modeling with TCN, and
heuristic conversational features within an unsupervised clus-
tering framework, ChatSense is able to robustly detect topic
shifts in complex group chats without any labeled training
data.

V. EXPERIMENTAL SETUP AND RESULT

This section presents the experimental results of our
proposed topic shift detection framework on three datasets,
comparing it with various baseline methods. The primary
goal of the experiment is to validate the effectiveness and
efficiency of the proposed framework, especially in terms of
protecting privacy while maintaining classification accuracy
when handling complex anonymization requirements. The
experiment was conducted a Nvidia 2080Ti GPU with Python
3.8, Pytorch 2.0, scikit-learn 0.24, pandas 1.2.4, and NumPy
1.20. The source code of ChatSense can be obtained from
GitHub1.

A. Datasets

We conducted experiments on three self-collected social
media group chat datasets, covering different discussion do-
mains and annotated with topic shift information. Each chat
log in the dataset is a multi-turn dialogue involving a group of
participants. The time interval for the message ranges vary, and
we specifically calculate the proportion of replies made within
10 minutes to capture rapid topic shifts. We segmented each
chat log into dialogues by labeling the utterances where a new
topic begins. These datasets come from group chat information
on platforms, encompassing multiple topics ranging from
casual discussions to task-oriented dialogues, including but
not limited to job searching, student life, housing, etc. Certain

1https://github.com/McGill-DMaS/ChatSense

platforms do not support direct extraction of group chat
records. Therefore, we used specialized software to decrypt the
database and extract real conversation data. Additionally, due
to privacy concerns, including sensitive personal information,
the dataset cannot be made public. To ensure the accuracy
and integrity of the data, we filtered out incomplete or invalid
messages. After this processing, the datasets provide a com-
prehensive view of topic segmentation in various real-world
scenarios. Table I provides a summary of the datasets used in
our experiments.

After filtering out incomplete messages, the datasets pro-
vide a comprehensive view of topic segmentation in various
real-world scenarios.

B. Evaluation Metrics

To quantify performance, we compare the predicted topic
boundaries with the ground truth annotated boundaries using
standard evaluation metrics: Accuracy and WindowDiff [20].
Accuracy represents the proportion of correctly predicted
boundaries that correspond to true topic shifts, reflecting the
model’s precision in detecting topic change points. WindowD-
iff is a standard segmentation quality measure that penalizes
near-miss errors in boundary placement, meaning it penalizes
small errors in boundary detection. WindowDiff provides a
direct reflection of how well the overall segmentation structure
of the conversation is preserved, with lower values indicating
better alignment with the ground truth boundaries.

We report these metrics on the test set and compare them
with the baseline models. All metrics are computed for each
chat log and then averaged across the entire test set. By com-
bining Accuracy and WindowDiff, we comprehensively assess
the model’s performance in topic change detection, ensuring
that the model not only detects topic changes accurately but
also maintains a good segmentation structure.

C. Baselines

To benchmark our proposed model, we compare it against
the following baselines that mentioned in the related work
under identical experimental conditions: TF-IDF + k-means,
a traditional clustering approach using term frequency fea-
tures and k-means; LDA + k-means, which combines Latent
Dirichlet Allocation for topic modeling with k-means clus-
tering; Word2Vec + k-means, using Word2Vec embeddings
and k-means for topic detection. For the supervised baseline
(Word2Vec), we divided the dataset into training, validation,
and test sets at the chat log level. Specifically, 70% of the
chat logs were used for training, 10% for validation , and
the remaining 20% for testing; DistilBERT + k-means, an



TABLE II
PERFORMANCE COMPARISON OF TOPIC SHIFT DETECTION METHODS ACROSS DATASETS

Method Dataset 2 Dataset 3 Dataset 5

Accuracy (%) WindowDiff Accuracy (%) WindowDiff Accuracy (%) WindowDiff

LDA 67.88% 0.94 76.23% 0.91 79.93% 0.98
TF-IDF 68.76% 0.95 81.96% 0.88 94.77% 0.88
Word2Vec 84.92% 0.99 83.65% 0.88 96.74% 0.53
DistilBERT 71.64% 0.94 82.82% 0.90 61.48% 1.00
Chatsense 72.65% 0.94 75.75% 0.94 74.95% 0.99

advanced method using DistilBERT embeddings with k-means
for contextualized segmentation; and Heuristic Features + k-
means, which combines syntactic and discourse features such
as sentence length and punctuation with k-means for topic
boundary detection. Note that the k-means clustering method
in all these baselines is analyzed using the same approach as
in our proposed model.

D. Results

We evaluated ChatSense against several baseline methods
on three real-world group chat datasets (D2, D3, D5). The
baselines include four unsupervised approaches (TF-IDF + k-
means, LDA + k-means, Word2Vec + k-means, DistilBERT +
k-means), as well as a supervised baseline, which uses learned
Word2Vec features and requires model training on annotated
data. We report Accuracy, Precision and WindowDiff for each
method on each dataset (see Table II). This comprehensive
comparison highlights ChatSense’s performance advantages in
detecting topic shifts, as well as the trade-offs in efficiency
compared to a supervised approach. Overall, ChatSense deliv-
ers competitive or superior performance, especially on multi-
topic shifts and short text, on key metrics such as accuracy
and WindowDiff, demonstrating its effectiveness in capturing
topic boundaries in multi-topic chats.

In addition to the unsupervised baselines, we also consider
a supervised baseline method: a model trained on a portion of
annotated chat logs. In this case, we are using Word2Vec-
based features with a learning algorithm. Supervised topic
shift detection models (e.g., neural networks or classifiers)
typically achieve higher raw performance metrics on test data
similar to the data they were trained on. In our experiments,
the supervised baseline performed slightly higher than that
of ChatSense, and it showed a better segmentation error, as
WindowDiff indicates after learning the specific patterns of the
domain. However, ChatSense offers critical advantages in time
efficiency and resource utilization, making it highly practical
for real-world applications, often compensating for these small
performance gaps.

VI. DISCUSSION

Our experiments confirm that ChatSense effectively ad-
dresses the challenges outlined in the introduction. By using
an unsupervised strategy, ChatSense detects topic shifts in

group chats without relying on manual labels, avoiding the
data-dependence of supervised methods. The system integrates
semantic embeddings and temporal modeling, proving robust
to the asynchronous nature of multi-party conversations and
capturing even subtle topic changes. The following sections
discuss key aspects of our approach and outline future work
in the areas of Window Size, Embedding Model, Clustering,
Dataset, Heuristic Features, Multilinguality, and Real-Time
Tracking. Each subsection highlights how our methodology
ties back to the original goals and anticipates potential con-
cerns.

A. Dataset, Window Size, Heuristic Features, and Clustering

The evaluation of ChatSense depends on several factors:
dataset, window size, and clustering technique, all of which di-
rectly influence segmentation quality and model performance.

The dataset used for evaluation is crucial in shaping
the model’s effectiveness. While our current dataset contains
multi-party conversations with varying topics, its scope is
limited and may not fully represent the variety of online
conversations. Future work will expand testing to a broader
set of conversation types, including formal dialogues, e.g.,
meeting transcripts, and informal discussions, e.g., group
chats, online forums, to assess ChatSense’s robustness across
different environments. We will also explore scaling ChatSense
to handle larger datasets, such as millions of messages, to
ensure its scalability.

In terms of window size, ChatSense avoids relying on a
fixed segmentation window, thus mitigating issues like over-
segmentation or under-segmentation. However, the pacing of
conversations still affects the system’s responsiveness. Future
work could improve this by developing adaptive smoothing
techniques that adjust sensitivity to conversation dynamics,
enabling the system to handle both rapid and slower-paced
discussions effectively.

The final component, clustering, groups semantically simi-
lar messages to detect topic boundaries. Our current approach
uses k-means clustering, which requires setting the number
of clusters (k) beforehand. This can lead to over-clustering
or under-clustering, especially in long or multi-threaded con-
versations. Future work will explore hierarchical clustering or
Bayesian non-parametric models to automatically determine k,
as well as density-based clustering methods to better handle



topics that evolve gradually or overlap.
In our experiments, heuristic features, such as message

length, sentiment shifts, punctuation ratios, and speaker change
indicators, played a critical complementary role alongside
semantic embeddings and temporal context modeling. Specif-
ically, heuristic features help the model detect subtle conver-
sational cues not directly encoded in semantic embeddings,
such as abrupt changes in participant behavior or prolonged
conversational pauses, both of which are indicative of topic
shifts. However, heuristic features alone may lack general-
izability across diverse conversational domains due to their
domain-specific or stylistic variations.

Future improvements in heuristic feature extraction should
consider adaptive feature weighting or automatic heuristic
selection methods to dynamically emphasize the most infor-
mative features in different conversation contexts. Another
promising direction is the inclusion of conversational meta-
features, such as reaction patterns (e.g., emoji usage), reply
structure depth, or explicit user role distinctions, which may
further enhance the detection accuracy of nuanced topic tran-
sitions.

In summary, the combination of dataset characteristics,
window size, heuristic features, and clustering methods sig-
nificantly influences ChatSense’s performance. Further refine-
ments in these areas, including dataset diversification and
improved clustering techniques, will ensure better handling of
various conversational contexts and scale.

B. Embedding Model and Multilinguality

Using DistilBERT embeddings, ChatSense captures the
semantic context of each message and detects nuanced topic
shifts. Unlike supervised classifiers, our embedding-based
approach generalizes to new vocabulary and slang, enabling
the system to adapt to dynamic language use. While domain-
specific nuances, e.g., slang, acronyms, code-switching, etc.,
present challenges, ChatSense’s design allows for easy substi-
tution of different embedding models, thus enabling flexibility
and better handling of evolving language and terminology.

A key area of future improvement lies in multilinguality,
particularly with code-switching and cross-lingual semantics.
While the current DistilBERT model is primarily focused on
single language, its performance can be limited when dealing
with other languages or mixed-language messages. To enhance
its capabilities, we plan to integrate multilingual models.
These models will allow ChatSense to understand semantic
connections across multiple languages, thereby improving
topic continuity detection even in conversations that switch
between languages. Moreover, integrating language detection
and language-specific models could address issues with low-
resource languages or dialects, enabling ChatSense to handle
a broader range of conversational contexts.

In future work, we aim to fine-tune the embedding model
on larger multilingual chat corpora, incorporating lexical
knowledge bases and context-dependent language models to
further improve its sensitivity to nuances in informal and
multilanguage conversations.

VII. CONCLUSION

The unsupervised and adaptive approach of ChatSense
shows significant potential to detect topic changes in group
chats. The results of our experiments demonstrate that this
method can effectively identify topic changes in conversations
without the need for manual annotations, making it particularly
suitable for applications in information retrieval and dialogue
analysis. With further refinements, including improvements
to clustering techniques, multilingual support, and real-time
capabilities, ChatSense will be better equipped to handle a
variety of dynamic and diverse conversational contexts.

ChatSense is specifically designed for the detection of
topic shifts in real-time ongoing conversations. Future work
will focus on adapting the system for live deployment, em-
phasizing incremental processing and dynamic management
of topic continuity. Incorporating features such as incremen-
tal clustering and topic reactivation mechanisms will enable
ChatSense to track and update topics in real time, enhancing
its applicability in areas such as live chat moderation, dynamic
conversation summarization, and other real-time communica-
tion environments.
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