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Abstract—Pretraining large language models is a complex en-
deavor influenced by multiple factors, including model architec-
ture, data quality, training continuity, and hardware constraints.
In this paper, we share insights gained from the experience
of training DMaS-LLaMa-Lite, a fully open source, 1.7-billion-
parameter, LLaMa-based model, on approximately 20 billion
tokens of carefully curated data. We chronicle the full training
trajectory, documenting how evolving validation loss levels and
downstream benchmarks reflect transitions from incoherent text
to fluent, contextually grounded output. Beyond pretraining, we
extend our analysis to include a post-training phase focused on
instruction tuning, where the model was refined to produce more
contextually appropriate, user-aligned responses. We highlight
practical considerations such as the importance of restoring
optimizer states when resuming from checkpoints, and the impact
of hardware changes on training stability and throughput. While
qualitative evaluation provides an intuitive understanding of
model improvements, our analysis extends to various perfor-
mance benchmarks, demonstrating how high-quality data and
thoughtful scaling enable competitive results with significantly
fewer training tokens. By detailing these experiences and offering
training logs, checkpoints, and sample outputs, we aim to guide
future researchers and practitioners in refining their pretraining
strategies.

I. INTRODUCTION

Large language models (LLMs) have achieved unprece-
dented performance across a variety of natural language un-
derstanding and generation tasks. These advancements have
been driven by innovations in model architectures, pretrain-
ing methodologies, and the availability of large-scale, high-
quality data [1]–[3]. However, despite significant progress,
many aspects of LLM training remain underexplored. Practical
challenges—ranging from data curation and training stability
to qualitative and quantitative evaluation—play a critical role
in determining model performance but are often overlooked in
favor of final benchmark results.

In this paper, we present our experience pretraining
and post-training DMaS-LLaMa-Lite, a 1.7-billion-parameter
LLaMa-based model, on 20 billion tokens of carefully curated
data. Unlike many existing studies that focus solely on the
final outputs of large-scale training, we emphasize the training
process itself and the insights gleaned from it. Specifically, we
document the following key aspects of our work:

* Corresponding author.

1) Training Dynamics: We analyze how validation loss
and downstream benchmarks (e.g., Hellaswag, ARC)
evolve over 40,000+ training steps and correlate these
metrics with improvements in text fluency, coherence,
and factual accuracy.

2) Practical Lessons Learned: We demonstrate the critical
importance of restoring optimizer states when resuming
training from checkpoints, as failure to do so results
in abrupt loss spikes and degraded model performance.
We also explore the effects of hardware transitions (e.g.,
switching between single-GPU and multi-GPU setups)
on training stability and efficiency.

3) The Impact of High-Quality Data: By leveraging a
carefully curated subset of the FineWeb-Edu dataset,
we show that high-quality training data enables strong
model performance, even when trained on significantly
fewer tokens compared to other models such as TinyL-
LaMa.

4) Qualitative Observations: Using diverse evaluation
prompts, we track how the model transitions from
repetitive, semantically incoherent outputs to fluent, con-
textually appropriate completions. These observations
highlight how different stages of training contribute to
linguistic and factual improvements.

5) Post-Training Instruction Tuning We refine the pre-
trained model using parameter-efficient fintuning, lever-
aging high-quality instruction datasets. We documented
the model’s behavioral change from the process and the
model’s sensitivity to the prompt.

Our findings collectively offer insights into the practical
challenges and trade-offs encountered during the pretraining of
LLMs. By sharing detailed training logs, checkpoint artifacts,
and sample completions, we aim to support reproducibility
and provide guidance for both researchers and practitioners
seeking to optimize their own training strategies. Importantly,
this work serves as a foundation for future studies that may
uncover additional best practices, methodological refinements,
or novel evaluation techniques in the pretraining of large
language models.

To facilitate reproducibility and open science, we make our



training script publicly available on GitHub*. Additionally, the
model checkpoints are accessible on Huggingface†.

The remainder of this paper is organized as follows: Section
II describes the model architecture, training setup, and data
preprocessing. Section III presents our findings from the
pretraining experience, including quantitative and qualitative
evaluations, and a discussion of broader implications. Section
IV details the post-training phase, including instruction tuning
and qualitative analysis. Finally, Section V concludes with
key takeaways and directions for future work.

II. MODEL CONFIGURATION AND TRAINING SETUP

A. Model Architecture

Our model, DMaS-LLaMa-Lite, is a 1.7B-parameter
(1716M) variant of LLaMa [3] adapted to use a GPT-2
tokenizer. The configuration details are presented in Table I.
The model features 36 transformer layers, each with a hidden
size of 2048 and an intermediate size of 5120 in the feed-
forward layers. We employ 32 attention heads, grouped into
8 key-value heads, and use a rotary positional embedding
scheme. Norm layers use RMS normalization [4], and the
model’s non-linear activation is SiLU [5]. The model is trained
on tokens produced by the GPT-2 tokenizer.

Attribute Value

Architectures LlamaForCausalLM
Attention Bias False
Attention Dropout 0.0
Hidden Activation SiLU
Hidden Size 2048
Intermediate Size 5120
Max Position Embeddings 1024
MLP Bias False
Number of Attention Heads 32
Number of Hidden Layers 36
Number of Key-Value Heads 8
RMS Norm Epsilon 1× 10−5

ROPE Scaling Null
ROPE Theta 500000
Vocabulary Size 50257

TABLE I
MODEL CONFIGURATION FOR THE 1.7B-PARAMETER

DMAS-LLAMA-LITE MODEL.

B. Training Data and Preprocessing

The training was conducted using a subset of the
HuggingFaceFW/fineweb-edu 100BT [6] dataset, de-
rived from the broader FineWeb dataset. FineWeb-Edu com-
prises approximately 1.3 trillion tokens of high-quality ed-
ucational content, curated through a meticulous multi-stage
filtering process. FineWeb itself is a 15-trillion-token dataset
sourced from 96 Common Crawl snapshots, designed to
improve LLM performance through advanced filtering and
deduplication methods.

*https://github.com/McGill-DMaS/DMaS-LLaMa-Lite-Training-Code
†https://huggingface.co/collections/McGill-DMaS/

dmas-llama-lite-6761d97ba903f82341954ceb

FineWeb-Edu emphasizes educational text, selected using
a classifier trained on synthetic annotations generated by
Llama-3-70B-Instruct [7]. This classifier was fine-tuned to
prioritize grade-school and middle-school-level knowledge
while excluding overly technical content. The dataset employs
custom filters targeting document structure and content qual-
ity, ensuring a high proportion of semantically coherent and
educationally relevant text.

Deduplication was performed on a per-snapshot basis using
MinHash clustering, which identifies and removes highly sim-
ilar documents, thus preventing redundancy while preserving
dataset diversity. Additional heuristic filters were applied to
refine text quality, such as removing documents with low
punctuation density or high proportions of repeated lines.

The use of FineWeb-Edu, with its emphasis on quality and
diversity, contributed to the model’s ability to perform well
on text completion tasks, supporting efficient training with a
reduced token count.

C. Optimizer and Learning Rate Schedule

We employ the AdamW optimizer [8] with an initial learn-
ing rate of 6×10−4. The learning rate is linearly warmed up for
a short initial phase (e.g., ∼X steps; exact value omitted here)
and then decayed following a schedule that we will report in
the final version of the paper. Gradient clipping is applied with
a maximum norm threshold to maintain training stability.

TABLE II
EVALUATION SCORES FOR DIFFERENT TRAINING STEPS (UPDATED)

Model Steps C F R FA D Cr Average

2700 4 4 5 2 3 3 3.50
3300 5 5 6 3 4 4 4.50
5100 5 5 6 3 4 4 4.50
7500 6 6 6 3 4 5 5.00
15700 6 6 7 4 5 5 5.50
20000 6 6 7 4 5 5 5.50
23900 7 6 7 4 6 6 6.00
35000 7 7 7 4 6 6 6.17
40500 7 7 7 5 6 6 6.33
43250 7 7 8 5 7 7 6.83

D. Training Procedure and Checkpoints

The model is trained for more than 40,000 steps, each
step consuming 0.5 million tokens, resulting in a substan-
tial fraction of the 100-billion-token corpus being processed.
Checkpoints are saved every 100 steps, allowing for a fine-
grained inspection of the training trajectory. This frequent
checkpointing also enables systematic evaluation of interme-
diate models across a range of cross-entropy validation losses.

The training was conducted on one or two RTX A6000
GPUs, reflecting realistic constraints in research and produc-
tion environments. When using two GPUs, PyTorch’s Dis-
tributedDataParallel (DDP) [9] was employed to ensure effi-
cient data and model parallelism. Transitions in the hardware
setup (e.g., moving from a single RTX A6000 GPU to dual
RTX A6000 GPUs) served as natural breakpoints, allowing us

https://github.com/McGill-DMaS/DMaS-LLaMa-Lite-Training-Code
https://huggingface.co/collections/McGill-DMaS/dmas-llama-lite-6761d97ba903f82341954ceb
https://huggingface.co/collections/McGill-DMaS/dmas-llama-lite-6761d97ba903f82341954ceb


Fig. 1. Training logs visualizing training and validation loss, Hella accuracy, learning rate decay, norm behavior, and tokens processed per second over the
course of 40,000+ steps.

to examine how changes in training continuity, combined with
optimizer state restoration or omission, affected validation loss
and model quality.

III. PRETRAINING

A. Validation Loss Trajectories and Training Metrics

Figure 1 provides a comprehensive visualization of the
training process, capturing critical metrics such as training
and validation loss, Hella accuracy, learning rate, gradient
norm, and tokens processed per second. This visualization
supplements the validation loss curve with additional context
about the dynamics of training.

As shown in Figure 1, validation loss decreases steadily over
the course of 40,000+ steps. The upward trajectory of Hella
accuracy mirrors the decline in validation loss, providing an
additional indicator of the model’s qualitative improvements.
Hella accuracy reflects the alignment of generated outputs
with task-specific correctness criteria, reinforcing that lower
validation loss corresponds to better adherence to instructions
and prompts.

A notable finding is the impact of resuming training without
restoring optimizer states. This practice led to temporary

spikes of validation loss, Hellaswag accuracy, gradient norm
and degraded performance. For example, Figure 1 (A) shows
the difference in validation loss trajectories before and after
training restart at step 8750 and step 10250. From Figure 1
(D) we can tell that the reason was that we switched between
training on one and two GPUs, resuming training without
optimizer states resulted in a increase in validation loss,
requiring several thousand steps to recover.

Key Takeaways: The combined view of validation loss,
Hella accuracy, and other metrics reveals a strong correla-
tion between decreasing loss and qualitative improvements in
model outputs. Furthermore, the importance of maintaining
training continuity is reinforced by the observed loss spikes
and reduced performance when optimizer states are not re-
stored during checkpoint-based restarts.

B. Qualitative Evaluation of Generated Text

We evaluated the model outputs at various checkpoints using
a set of prompts designed to test several criteria:

• Coherence (C): Does the completion logically follow
from the given prompt? Are the ideas well-connected and
form a consistent narrative or argument?



• Fluency and Grammar (F): Is the text grammatically
correct and stylistically natural? Are there spelling or
punctuation errors?

• Relevance to Prompt (R): Does the completion address
the topic or instruction provided in the prompt? Does it
stay on-point rather than drifting into unrelated content?

• Factual Accuracy (FA): Are factual claims correct?
Does the model misstate well-known facts or historical
information?

• Depth and Completeness (D): Does the completion
provide a thorough and informative response given the
complexity of the prompt?

• Creativity (Cr): For narrative or imaginative prompts,
does the model produce original, interesting, or vivid
content?

Table II summarizes the averaged scores across the eval-
uated criteria for each checkpoint. Initially, the model re-
ceives middling marks on attributes such as Coherence and
Fluency, reflecting a nascent grasp of narrative construction
and linguistic form. Over time, as training steps increase,
the gradual upward trend in categories like Depth and Com-
pleteness suggests that the model becomes not only more
reliable at presenting known information but also more adept
at elaborating thoughtfully on prompts. Nevertheless, the Fac-
tual Accuracy (FA) score remains more modest, with even
the most extensively trained checkpoint (43250) receiving
only a 5 in this category. This relatively muted improve-
ment in factual accuracy underscores the inherent difficulty
of producing historically and contextually precise content,
even at later stages of model refinement. It indicates that
the model is still not sufficiently trained in factual domains,
reinforcing observations that large language models often
require extensive training—and targeted data coverage—to
reduce hallucinations. This also helps explain why earlier-
generation models (such as ChatGPT-3.5 or LLaMa 1 [3] and
2 [10]), trained with fewer tokens, were more prone to factual
distortions, whereas newer models (ChatGPT-4 [11], LLaMa
3 [7] and Qwen 2.5 [12]) with more comprehensive training
corpora tend to display far fewer factual errors. In essence,
these aggregated scores provide a quantitative reflection of a
well-known progression in language model development: as
training deepens and data coverage broadens, models transition
from producing disjointed or factually dubious content toward
more coherent, contextually appropriate, and accurate out-
puts—though even the most advanced checkpoints still leave
room for improvement in factual domains.

Table III presents completions for three prompt examples.
The first prompt, ”The Pyramids of Giza in Egypt are some
of the oldest man-made structures in the world. Visitors
often note”, is relatively straightforward and factually well-
known, focusing on describing a widely recognized historical
landmark. The second prompt, ”The Mona Lisa, painted by
Leonardo da Vinci, is one of the most famous artworks in
the world. It is notable for”, also deals with a familiar
cultural artifact whose key attributes (e.g., enigmatic smile,

Renaissance painting techniques) are commonly referenced.
In contrast, the third prompt, ”The Battle of Hastings, a key
event in English history, occurred in the year 1066. It resulted
in significant changes to the ruling class of England. Following
this battle”, involves historical specificity and requires more
precise factual recall.

For the Pyramids of Giza and Mona Lisa prompts, even
early checkpoints produced relatively coherent and factually
aligned completions. At checkpoint 2700, the generated text
for the Pyramids of Giza prompt accurately describes their
“impressive size and precision,” a well-established fact often
cited in historical and travel literature. Similarly, the com-
pletion for the Mona Lisa at the same checkpoint references
its “enigmatic smile and the use of sfumato,” demonstrating
the model’s ability to align with canonical art historical
commentary. These early-stage outputs suggest that the model
may have more readily internalized broadly known cultural
and historical touchpoints, resulting in fewer factual distortions
for prompts centered on widely recognized content.

As training progresses, the completions for these two
prompts become more polished, with improved stylistic flu-
ency and contextual depth. While the essence of the con-
tent remains consistent—emphasizing mystery, engineering
feats, aesthetic qualities, and cultural significance—the later
checkpoints (e.g., 35000 and 43250) refine these attributes.
For the Mona Lisa, checkpoint 43250 highlights its “timeless
beauty” and “profound influence,” offering a more themati-
cally rich and contextually appropriate summary. Similarly,
by the later checkpoints, the descriptions of the Pyramids
incorporate nuanced phrases like “enduring mystery” or reflect
“advanced knowledge” of ancient engineers, demonstrating an
increasingly sophisticated grasp of the subject matter.

In contrast, the more historically complex Battle of Hastings
prompt initially posed greater challenges. For early check-
points (e.g., checkpoint 2700, checkpoint 3300), the generated
text is often incoherent and factually incorrect. For instance,
checkpoint 2700 introduces King Henry VIII (born centuries
after the Battle of Hastings) as the crowned king. Such
completions highlight the model’s early inability to handle
historical contexts accurately.

For intermediate checkpoints (e.g., checkpoint 5100, check-
point 15700), the outputs improve in coherence, but factual
inaccuracies persist. For example, checkpoint 5100 incorrectly
states that Harold II, who died in the battle, was crowned
as king. At checkpoint 15700, the model overgeneralizes,
attributing exaggerated territorial control to the Normans.

By checkpoint 35000, the text becomes significantly more
coherent and contextually relevant, though it introduces mi-
nor inaccuracies, such as the association with Henry VIII.
At checkpoint 43250, the output demonstrates marked im-
provement, correctly identifying William I as ”William The
Conqueror” and providing accurate dates and titles.

Overall, these results suggest that while the model can
produce coherent, factually aligned completions for widely
known cultural and historical subjects from relatively early
training stages, it requires more extensive training to han-



TABLE III
GENERATED COMPLETIONS AT DIFFERENT TRAINING STEPS.

Checkpoint Generated Text

Prompt ”The Pyramids of Giza in Egypt are some of the oldest man-made structures in the world. Visitors often note”

2700 ”The Pyramids of Giza in Egypt are some of the oldest man-made structures in the world. Visitors often note the impressive size and
precision of the structures, marveling at how such feats of engineering were accomplished thousands of years ago without modern tools.”

3300 ”The Pyramids of Giza in Egypt are some of the oldest man-made structures in the world. Visitors often note the mystery surrounding their
construction, as well as the stunning alignment with celestial bodies.”

5100 ”The Pyramids of Giza in Egypt are some of the oldest man-made structures in the world. Visitors often note the grandeur and historical
significance of these monuments, which continue to captivate people from around the globe.”

15700 ”The Pyramids of Giza in Egypt are some of the oldest man-made structures in the world. Visitors often note their intricate design, which
reflects the advanced knowledge of ancient Egyptian engineers and architects.”

35000 ”The Pyramids of Giza in Egypt are some of the oldest man-made structures in the world. Visitors often note the awe-inspiring scale and
the enduring mystery of how they were constructed with such precision.”

43250 ”The Pyramids of Giza in Egypt are some of the oldest man-made structures in the world. Visitors often note the breathtaking beauty and
the remarkable testament to the ingenuity of ancient civilizations.”

Prompt ”The Mona Lisa, painted by Leonardo da Vinci, is one of the most famous artworks in the world. It is notable for”

2700 ”The Mona Lisa, painted by Leonardo da Vinci, is one of the most famous artworks in the world. It is notable for its enigmatic smile and
the use of sfumato technique to create a lifelike expression.”

3300 ”The Mona Lisa, painted by Leonardo da Vinci, is one of the most famous artworks in the world. It is notable for its detailed background,
which demonstrates da Vinci’s mastery of perspective.”

5100 ”The Mona Lisa, painted by Leonardo da Vinci, is one of the most famous artworks in the world. It is notable for its captivating expression,
which has intrigued viewers and art historians for centuries.”

15700 ”The Mona Lisa, painted by Leonardo da Vinci, is one of the most famous artworks in the world. It is notable for the subtle play of light
and shadow on the subject’s face, a hallmark of Renaissance art.”

35000 ”The Mona Lisa, painted by Leonardo da Vinci, is one of the most famous artworks in the world. It is notable for its mysterious allure and
the innovative techniques da Vinci employed to bring the portrait to life.”

43250 ”The Mona Lisa, painted by Leonardo da Vinci, is one of the most famous artworks in the world. It is notable for its timeless beauty and
the profound influence it has had on art and culture throughout history.”

Prompt ”The Battle of Hastings, a key event in English history, occurred in the year 1066. It resulted in significant changes to the ruling class of
England. Following this battle”

2700 ”The Battle of Hastings, a key event in English history, occurred in the year 1066. It resulted in significant changes to the ruling class of
England. Following this battle, King Henry VIII was crowned king of England on January 1st 1485 at Westminster Abbey. King John’s
War (1315-14).”

3300 ”The Battle of Hastings, a key event in English history, occurred in the year 1066. It resulted in significant changes to the ruling class of
England. Following this battle, the Normans were able to establish their own rule over England and established a powerful military force
that would be able to defeat any other army in Europe at the time.”

5100 ”The Battle of Hastings, a key event in English history, occurred in the year 1066. It resulted in significant changes to the ruling class of
England. Following this battle, King Harold II was crowned as king by his Norman supporters and became known as ’the Conqueror’.”

15700 ”The Battle of Hastings, a key event in English history, occurred in the year 1066. It resulted in significant changes to the ruling class of
England. Following this battle was an era where the Normans were able to conquer and control much of Europe including France, Spain,
Italy, Germany, Poland, Hungary, etc.”

35000 ”The Battle of Hastings, a key event in English history, occurred in the year 1066. It resulted in significant changes to the ruling class of
England. Following this battle, William became King and his descendants would rule over Britain for many years until Henry VIII broke
away from Rome’s authority by declaring himself Head of the Church (the Pope).”

43250 ”The Battle of Hastings, a key event in English history, occurred in the year 1066. It resulted in significant changes to the ruling class of
England. Following this battle, William I became King and he was known as William The Conqueror (1066-1087).”

dle historically specific prompts with precision. This pattern
highlights the interplay between general cultural knowledge,
which may be more readily accessible to the model, and
the acquisition of precise historical facts, which appear to be
more challenging and demand longer training or more targeted
historical representations.

These observations align with the scores shown in Table II:
less sufficiently trained language models are more prone to
“hallucination”—the production of factually incorrect or con-
textually inconsistent details—while more extensively trained
models show a marked reduction in such errors. As the model’s
training proceeds, it appears to acquire a stronger grounding
in historical context, produce more thematically coherent
narratives, and adhere more closely to factual accuracy. In

other words, increased training not only enhances fluency
and coherence but also mitigates the tendency to fabricate
details, resulting in outputs that are both stylistically refined
and factually sound.

This example underscores the relationship between decreas-
ing validation loss and qualitative improvements in text gen-
eration. As the model trains, it transitions from producing se-
mantically incoherent text to generating accurate and contextu-
ally relevant outputs. However, occasional factual inaccuracies
even at advanced checkpoints highlight limitations inherent in
the current training approach. These findings suggest that eval-
uating the model using prompts rich in historical, scientific, or
geographical content reveals nuanced performance shifts over
training steps. Task-specific evaluation metrics (e.g., factual



Fig. 2. Performance comparison of DMaS-LLaMa-Lite checkpoints and TinyLLaMa (2T) across various benchmarks. Solid lines represent DMaS-LLaMa-Lite
performance at different training steps, while horizontal dotted lines indicate TinyLLaMa 2T results.

accuracy, coherence, and instruction following) complement
standard metrics like perplexity and cross-entropy loss.

TABLE IV
VALIDATION LOSS AND HELLASWAG SCORES ACROSS TRAINING STEPS

Steps Validation Loss Hellaswag Score

2700 3.00 31.9
3300 2.93 32.9
5100 2.79 37.7
7500 2.71 40.5
15700 2.65 46.9
20000 2.55 49.6
23900 2.50 50.2
35000 2.48 52.5
40500 2.46 53.2
43250 2.47 56.1

In addition to subjective assessment, we further analyzed
the relationship between the average qualitative score and
three key variables: training steps, validation loss, and Hel-
laswag [13] scores (see Table IV for the progression of these
metrics). Correlation analysis yielded the following results:

• Steps vs. Average Score: r = 0.928, R2 = 0.860. As the
number of training steps increases, the model’s qualitative
performance improves substantially.

• Validation Loss vs. Average Score: r = −0.945,
R2 = 0.893. The strong negative correlation indicates
that decreasing validation loss closely aligns with im-
provements in the overall quality of generated text.

• Hellaswag Score vs. Average Score: r = 0.963, R2 =
0.927. Hellaswag scores correlate most strongly with
qualitative improvements, suggesting that as the model
becomes better at commonsense reasoning tasks, it also
tends to produce higher-quality text across our evaluation
criteria.

These findings confirm that while decreasing validation loss
is a useful proxy for enhanced quality, complementary metrics
like Hellaswag can provide even stronger predictive power.
In other words, as the model’s performance on downstream
benchmarks improves, so does its overall text quality as judged
by human evaluators. The strong alignment between subjective
judgments and objective metrics reinforces the notion that
combining standard validation loss monitoring with targeted
evaluations (such as Hellaswag) offers a robust framework
for guiding and understanding the training process of large
language models.

C. Comparison and Discussion

The performance of DMaS-LLaMa-Lite is compared against
TinyLLaMa’s 2T checkpoint [14], a series of lightweight
LLaMa-based models trained with significantly larger token
counts. TinyLLaMa’s 2T checkpoint, a 1.1B-parameter model
trained on 2 trillion tokens using the SlimPajama dataset [15],
represents an established baseline for small-scale LLMs.

The benchmarks used for evaluation are as follows:
1) ARC Challenge: A subset of the AI2 Reasoning Chal-

lenge [16], which focuses on grade-school science ques-



tions that require reasoning and commonsense knowl-
edge.

2) ARC Easy: The easier subset of ARC questions, de-
signed to be straightforward but still requiring knowl-
edge retrieval.

3) BoolQ: A yes/no question-answering benchmark [17]
that requires reading comprehension and contextual rea-
soning.

4) HellaSwag: A commonsense reasoning benchmark [13]
where the goal is to select the most plausible continua-
tion of a given sentence.

5) OpenBookQA: A multiple-choice question benchmark
[18] that requires reasoning over a small “open book”
of facts.

6) PIQA: The Physical Interaction QA benchmark [19],
which tests commonsense physical reasoning, such as
how objects are used.

7) Winogrande: A large-scale Winograd Schema Chal-
lenge [20] dataset, focusing on resolving pronoun am-
biguity using commonsense reasoning.

Figure 2 illustrates the performance of DMaS-LLaMa-Lite
(solid lines with dots) across various training steps alongside
TinyLLaMa 2T (horizontal dotted lines). Each benchmark is
color-coded for clarity. Key observations include:

DMaS-LLaMa-Lite demonstrates superior performance on
most benchmarks, such as ARC Challenge, ARC Easy, and
OpenBookQA over the TinyLLaMa checkpoint, which was
trained on 2 trillion tokens. We attribute these improvements
to two key factors:

• Data Curation: Our model was trained on the
HuggingFaceFW/fineweb-edu 100BT‡ dataset, a
more carefully curated corpus compared to the SlimPa-
jama§ dataset used for TinyLLaMa. The higher quality of
our training data likely facilitated more efficient learning,
allowing the model to achieve strong performance on
Hellaswag with far fewer tokens.

• Model Scaling: Although parameter count is not the
sole determinant of downstream performance, increasing
model capacity can enable more effective knowledge
storage and representation. In this case, the jump from
1.1B to 1.7B parameters, combined with a better dataset,
contributed to improved downstream task performance.

A notable exception to the general trend is the BoolQ
benchmark [17]. Our model’s performance not only lags
behind TinyLLaMa at 2T tokens but also diminishes slightly
as training progresses. Intriguingly, this degradation in BoolQ
performance parallels a similar pattern observed in TinyL-
LaMa: while TinyLLaMa initially achieves a BoolQ accuracy
of around 63.21% at 2T tokens, its accuracy declines to
57.83% by the time it reaches 3T tokens of training. This phe-
nomenon suggests a shared difficulty that may not stem from
data quality or scale alone but from the intrinsic complexity
of BoolQ-style yes/no question answering.

‡https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
§https://huggingface.co/datasets/cerebras/SlimPajama-627B

BoolQ questions often require more than pattern matching
or simple retrieval of facts; they demand nuanced understand-
ing and inference. For instance, consider the BoolQ example:

Passage: ”Windows Movie Maker (formerly known
as Windows Live Movie Maker in Windows 7) is a
discontinued video editing software by Microsoft. It
is a part of Windows Essentials software suite and
offers the ability to create and edit videos as well
as to publish them on OneDrive, Facebook, Vimeo,
YouTube, and Flickr.”
Question: ”Is Windows Movie Maker part of Win-
dows Essentials?”
Answer: ”Yes”

On the surface, identifying that Windows Movie Maker
is part of Windows Essentials might seem straightforward.
However, the presence of a potentially misleading term like
“discontinued” can prompt the model—or even a human
reader—to second-guess the relevance of the information to
the current state of the software. This subtlety reveals that
the model must not only locate relevant information but also
correctly interpret it in context. Superficial pattern matching
fails because the model has to navigate a small but meaningful
inferential step: recognizing that being “discontinued” does not
negate the fact that it was historically part of the Windows
Essentials suite.

This subtlety underscores that BoolQ tasks require inter-
pretable reasoning. Yet, the benchmark format itself does
not give the model an opportunity to produce an ex-
plicit chain-of-thought or reasoning trace to use test time
computation [21], but rather the task is framed to predict
”yes” or ”no” based on the passage content. Without such
a mechanism, the model must supply an immediate yes/no
answer, leaving no room to display intermediate reasoning
steps that might help ensure correctness. Thus, the challenge
is twofold: models need robust reasoning capabilities, and
the benchmark structure (which does not request or evaluate
reasoning traces) limits the model’s ability to leverage explicit
reasoning strategies that could improve performance.

As a result, smaller models—trained only through standard
next-token prediction—may not naturally acquire the level of
interpretative reasoning necessary to excel at tasks like BoolQ.
They have neither the inherent capability nor the format in the
benchmark to showcase a reasoning process. This shortcom-
ing suggests that more specialized training (e.g., instruction
tuning) or evaluation formats that encourage reasoning traces
might be required to handle nuanced yes/no inference tasks
effectively.

IV. POSTTRAINING

Following the initial pretraining phase, we conducted a post-
training step to refine the model’s capacity for following user
instructions and producing contextually appropriate, helpful
responses. This stage leverages techniques akin to instruction
tuning, where a base model—already competent in general text
generation—is further specialized to respond more effectively
to prompts in a conversational format.

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/cerebras/SlimPajama-627B


TABLE V
COMPARISON OF RESPONSES BEFORE AND AFTER POST-TRAINING INSTRUCTION TUNING

Prompt Before Post-Training After Post-Training

Who invented
the first
practical light
bulb?

Thomas Edison. The first practical light bulb was invented
by Thomas Edison in 1879. He was a
prolific inventor and held over 1,000 patents
in his name...

What are the
Pyramids of Giza
known for?

They are known for being the largest struc-
tures ever built by man.

The Pyramids of Giza are known for
their architectural and engineering bril-
liance. They were built by the ancient
Egyptians as burial monuments for their
pharaohs. The pyramids are considered to
be the most famous and largest of the three
pyramids in the Giza...

A. Instruction-Following Data and Template

For the post-training stage, we used the
yahma/alpaca-cleaned ¶ dataset, a widely utilized
instruction-tuning corpus derived from the Stanford Alpaca
dataset [22]. To present this data to the model in a consistent,
conversational manner, we applied a Vicuna 1.1-style
chat template [23], which structures the interaction as a
user-assistant conversation:
A chat between a curious user and an

artificial intelligence assistant. The
assistant gives helpful, detailed, and
polite answers to the user’s questions.
USER: input
ASSISTANT: output<|endoftext|>
Here, input is replaced with the user’s query or instruc-

tion, and output with the model’s expected answer. The
¡—endoftext—¿ token serves as a signal for the model to stop
generating text at the appropriate point.

This template encourages the model to produce answers
in a polite, contextually aligned, and helpful manner, while
also teaching it to respect conversational boundaries. Since the
training data already includes well-structured instructions and
expert-crafted responses, the model can internalize the patterns
and nuances of effective assistant behavior.

B. Model Initialization and Parameter-Efficient Fine-Tuning

We began the post-training step from the 43,500-step check-
point of DMaS-LLaMa-Lite. Rather than fine-tuning all pa-
rameters, we employed a parameter-efficient technique based
on Low-Rank Adaptation (LoRA) [24]. We injected LoRA
adapters into attention-related parameters (e.g., q_proj,
k_proj, v_proj, o_proj, and feed-forward projections)
using a rank of r = 128, a LoRA α = 16, and no dropout. This
approach reduces the memory footprint and computational

¶https://huggingface.co/datasets/yahma/alpaca-cleaned

overhead while enabling efficient adaptation of the model to
the instruction-following domain.

The model’s training precision and device configuration
were automatically adjusted based on hardware capabilities.
In this case, half-precision (FP16) or bfloat16 was used
where available. Batch sizes, gradient accumulation steps, and
other hyperparameters were chosen to balance computational
feasibility with adequate training signal. Specifically, we set
a per-device batch size of 32 and a gradient accumulation of
16 to maintain stable gradient updates, and we employed the
AdamW 8-bit optimizer for memory-efficient training.

C. Training Dynamics

The post-training step encompassed approximately 400
steps of fine-tuning, with a linear learning rate schedule
peaking at 5×10−5. We applied a brief warmup period of five
steps to mitigate instability at the onset. During this process,
the training loss steadily decreased from approximately 2.25
at the start of instruction tuning to about 1.20 by the end of
the 400 steps, reflecting substantial gains in the model’s ability
to generate coherent, contextually appropriate answers aligned
with user instructions.

It is worth noting that the fine-tuning process does not rely
on massive training resources or prolonged runs; instead, the
combination of LoRA adapters and a high-quality instruction
dataset enables rapid improvements. These modifications help
the model internalize the format, style, and content typical
of user-posed questions and the expected assistant-style re-
sponses, ultimately guiding the model toward more useful and
context-sensitive outputs.

D. Qualitative Improvements in Responses

Table V compares the conversational behaviors of the mod-
els before and after post-training using two example prompts.
Interestingly, the model demonstrates an ability to answer
questions even prior to post-training. This phenomenon can

https://huggingface.co/datasets/yahma/alpaca-cleaned


be attributed to two factors. First, the Vicuna 1.1 prompting
format aligns closely with natural conversational scenarios
and clearly indicates that the assistant is expected to provide
answers. Consequently, the model can generate responses
based on its pretraining alone, without requiring additional
fine-tuning. Second, it is possible that the pretraining dataset
includes instruction-tuning samples formatted similarly to
Vicuna 1.1 prompts, as this format predates the pretraining
corpus’s knowledge cutoff.

Another noteworthy observation is that instruction tuning
during post-training significantly enhances the detail and con-
textual depth of the model’s responses. Compared to the
pretraining-only model, the post-trained version consistently
generates more elaborate and contextually rich answers, re-
flecting improved understanding and engagement with the
prompts.

E. Sensitivity to Prompt Variations
An intriguing phenomenon we observed is the model’s

sensitivity to a small change in the prompt formatting. For
example, simply appending a space after “ASSISTANT:” can
alter the generated response. Without the space, the model
might produce a normal answer. With the space, it often
continues with a more elaborate completion:
ASSISTANT: _____________________________
The first practical light bulb was

invented by Thomas Edison in 1879...
One plausible explanation involves the underlying tokenizer

and how it handles spaces. In GPT-2-style tokenizers, spaces
are generally prefixed to words rather than suffixed. This
leads to subtle differences in the tokenization of seemingly
similar inputs. For example, for an answer in the training set:
”ASSISTANT: Berlin was founded in the 13th century.”, it is
tokenized as: [”ASS”, ”IST”, ”ANT”, ”:”, ”ĠBerlin”, ”Ġwas”,
”Ġfounded”, ”Ġin”, ”Ġthe”, ”Ġ13”, ”th”, ”Ġcentury”, ”.”].
Here, “Ġ” represents a space token. If the prompt ends
with ”ASSISTANT: ”, however, the tokenization changes to:
[”ASS”, ”IST”, ”ANT”, ”:”, ”Ġ”]. The inclusion of the extra
”Ġ” token alters the model’s understanding of the input and
significantly shifts the probability distribution for the next
token. This is due to the statistical co-occurrence patterns
learned during pretraining, which differ depending on the
presence of the additional space token.

This observation underscores the model’s inherent sensitiv-
ity to input formatting and highlights the critical role of precise
prompt engineering, even down to seemingly trivial details like
whitespace handling.

V. CONCLUSION

In this paper, we documented the pretraining experience of
DMaS-LLaMa-Lite, a fully open-source, 1.7-billion-parameter
LLaMa-based language model trained on approximately 20
billion tokens of a carefully curated dataset. By chronicling
the model’s training trajectory through validation loss, down-
stream benchmarks, qualitative evaluations, and practical chal-
lenges, we demonstrated how the training process influences
model outputs and performance.

Our analysis showed that model quality and coherence im-
prove steadily as validation loss decreases. Early checkpoints
produce semantically incoherent or factually dubious content,
but with more training steps, completions become increasingly
fluent, contextually relevant, and factually accurate. Correla-
tion analyses further indicate that improvements in validation
loss and downstream scores (e.g., Hellaswag) closely mirror
enhancements in subjective quality measures.

The training journey underscored key best practices and
pitfalls. We found that maintaining continuity in training
is paramount; resuming training without restoring optimizer
states led to abrupt increases in validation loss and required
substantial additional steps for recovery. Transitioning between
different hardware configurations also impacted stability and
throughput, suggesting that consistent training environments
and procedures can enhance model performance and conver-
gence speed.

Post-training instruction tuning further refined the model’s
capabilities, enabling it to respond more elaborately to a wide
variety of prompts. By using parameter-efficient fine-tuning
with high-quality instruction datasets, we observed significant
behavioral shifts in the model. And we observed the sensitivity
of the model to prompting details.

Importantly, we demonstrated that fewer tokens of high-
quality data can outperform vast but less curated corpora, as
evidenced by comparisons against models like TinyLLaMa.
By leveraging a carefully filtered dataset, our model achieved
competitive downstream performance with significantly fewer
training tokens. However, some persistent challenges—such as
reduced performance on BoolQ and limited factual accuracy
early in training—highlight that certain tasks demand more
complex reasoning capabilities. For these tasks, additional
instruction tuning or training techniques that elicit reasoning
traces may be necessary.

Our findings, along with the provided training logs, check-
points, and sample outputs, aim to guide future researchers
and practitioners in refining both pretraining and post-training
strategies. By documenting the full trajectory from pretraining
dynamics to post-training refinement, we emphasize a process-
focused perspective where transparency and detailed insights
foster reproducibility and more effective model development.
This approach lays a foundation for future studies to explore
additional best practices, methodological refinements, and
novel techniques in both pretraining and instruction-tuning
phases of large language models.
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