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Abstract—Deep learning models have achieved state-of-the-art
performance in many classification tasks. However, most of them
cannot provide an explanation for their classification results.
Machine learning models that are interpretable are usually linear
or piecewise linear and yield inferior performance. Non-linear
models achieve much better classification performance, but it is
usually hard to explain their classification results. As a counter-
example, an interpretable feedforward neural network (IFFNN)
is proposed to achieve both high classification performance and
interpretability for malware detection. If the IFFNN can perform
well in a more flexible and general form for other classification
tasks while providing meaningful explanations, it may be of
great interest to the applied machine learning community. In
this paper, we propose a way to generalize the interpretable
feedforward neural network to multi-class classification scenarios
and any type of feedforward neural networks, and evaluate its
classification performance and interpretability on interpretable
datasets. We conclude by finding that the generalized IFFNNs
achieve comparable classification performance to their normal
feedforward neural network counterparts and provide meaning-
ful explanations. Thus, this kind of neural network architecture
has great practical use.

I. INTRODUCTION

Deep learning models are achieving state-of-the-art perfor-
mance in an increasing number of tasks [1]–[4]. They work
as black-boxes, in which when a large number of training
samples are fed to them, they learn patterns that correlate with
different classes and then the patterns are used to classify
unseen samples. However, most deep neural networks only
implicitly learn and use the patterns, and do not explicitly
explain the reasons for which a sample belongs to a class. This
causes concerns about applying deep learning in some critical
fields, such as healthcare and automatic pilot systems [5]–[9].

That being said, there are interpretable machine learning
classification models, such as linear regression, softmax re-
gression, and decision trees [10]. These models can explain
their classification results in a clear and simple way. However,
as linear or piecewise linear models, their expressive abilities
are very limited, i.e., they cannot model complex interactions
between different features. Linear regression and softmax
regression can be seen as neural networks with no hidden
layers. They can tell to what extent each feature contributes
to a classification result. The interpretability comes from that

* Corresponding author.

fact that the relation between a feature and the class of a
sample is computed independently without any interactions.
Even though this simplicity allows the model to explain its
classification results, it yields inferior results compared to
multi-layer neural networks. In this era, classification per-
formance typically has higher priority than interpretability.
Hence, these simple models are usually less useful than the
complex and non-interpretable models [7].

In an attempt to solve the dilemma of choosing either high
classification performance or interpretability, some techniques
have been proposed to explain the classification results of
complex machine learning models. For example, integrated
gradients [11] and permutation feature importance [12]–[14]
can explain many kinds of machine learning models. How-
ever, the model needs to be run many times to explain one
prediction. The computational cost for an explanation is too
expensive. Some others, such as surrogate model methods [15],
[16], use another interpretable model (e.g., a decision tree)
as a surrogate to approximate the target model and use the
surrogate model’s explanation to explain the target model’s
prediction. However, the expressive ability of a surrogate
model is usually not as good as a complex target model; thus,
the former cannot very accurately approximate the latter, and
the explanation also cannot be accurate.

To address the aforementioned limitations, some researchers
have turned to creating deep neural networks that are intrinsi-
cally interpretable. Choi et al. [5] propose RETAIN for classi-
fying sequential data with an explanation on how much each
variable in a sequence contributes to the classification result. Li
et al. [17] propose an interpretable feedforward neural network
(IFFNN) for malware detection. It classifies vectorial data and
provides an explanation on how much each feature in the
vector contributes to the detection result. The proposed IFFNN
architecture is promising for solving the dilemma between
classification performance and interpretability. However, their
exploration of IFFNN is very limited because it was only
applied to binary classification, and the architecture contains
fully connected layers and only accepts vectors as its input.
In addition, the classification performance and interpretability
were not comprehensively evaluated on general classification
problems.

To explore whether the IFFNN [17] can be extended to



general classification scenarios and achieve excellent classifi-
cation performance and provide meaningful explanations, in
this paper we generalize IFFNN to multi-class classification
scenarios and any type of feedforward neural networks, and
perform a comprehensive evaluation on the classification per-
formance and interpretability of two interpretable datasets.
The source code of this work is released at https://github.
com/McGill-DMaS/IFFNN. The contributions of this paper
are summarized as follows:
• We propose ways to generalize the IFFNN to multi-class

classification and any type of feedforward neural network
that takes any tensors of a fixed shape as its input.

• We conduct comprehensive experiments to evaluate the
classification performance and interpretability of the
IFFNNs. We compare the classification accuracy of the
IFFNNs with their non-interpretable counterparts to show
that they have similar classification performance.

• We propose a synthetic interpretability benchmark dataset
to evaluate the interpretability of classification models. It
can generate an unlimited number of samples with the
reasons why they belong to a specific class.

II. RELATED WORKS

The terms explainability and interpretability can be con-
fusing. There has been works that try to address the distinc-
tion [6], [18]. Explainability is the ability of a post-hoc method
to explain the prediction of a model, while interpretability
is the intrinsically self-explaining ability of a model without
relying on a post-hoc explanation process.

Explanations for machine learning models can be acquired
in different ways. For linear or piecewise linear models, such
as linear regression, softmax regression, decision trees, and k-
nearest neighbors, their simple classification mechanics make
them intrinsically interpretable. Their expressive ability is
quite limited so they achieve inferior classification perfor-
mance when the features have complex interactions [7]–[9].

Most complex machine learning models are not easily inter-
pretable in themselves. Some post-hoc explanation techniques
have been proposed to explain their classification results. Some
explanation methods do not require knowledge of the models.
They just need the input and output pairs of the models to
provide an explanation. The permutation feature importance
method [12]–[14] is one example of a model-agnostic method.
The values of the features are permuted and then their impact
on the classification results give a clue on how important they
are. The computational cost is high since a model needs to be
run multiple times. Surrogate model methods [15], [16] train
an interpretable model, such as a decision tree, to approximate
the target model to explain, and use the explanations given
by the surrogate models to explain the results of the target
model. As the expressive abilities of the surrogate models are
usually lower than the target models, neither the approximation
nor the explanations are accurate. There are other explanation
techniques that work in a model-agnostic manner [19], [20].

Other techniques are proposed to explain certain types
of machine learning models. The integrated gradients

method [11] is proposed to explain the classification results
of neural networks (i.e., differentiable models) by cumulating
the gradients along the path from a base sample to the target
sample. As this also requires running the target model multiple
times, its efficiency is still limited. The fuzzy rule extraction
method is proposed especially for explanation of classification
results for support vector machines [21]. Other explanation
techniques are proposed for different types of neural networks,
such as feedforward neural networks [17], [22], recurrent
neural networks [5], [23], convolutional neural networks [24]–
[26], and deep graphical models [22].

III. PROBLEM DEFINITION

The term explanation can be defined in different ways. To
clarify the explanation we discuss in this paper, we give the
following formal definition of explanation in a classification
problem.

Definition 1 (Explanation): Let a sample be a p-th-order
tensor X ∈ Rm1×m2...×mp . The sample belongs to one
of c classes. An interpretable classification model should
predict its class y ∈ {1, 2, .., c} and give an explanation
I ∈ Rc×m1×m2...×mp . Ij,i1,i2,...,ip represents the impor-
tance/contribution of feature Xi1,i2,...,ip for classifying the
sample X to class j.

As can be seen from the definition of explanation, it
provides the importance value of a feature not only for the
predicted class, but also for other classes. In practice, the
explanation does not have to be organized as a tensor I .
As long as an importance score of each element in X for
each class can be computed, it is equivalent to having I .
The interpretability mentioned in this paper, refers to the
intrinsic ability of classification models to provide the kind
of explanation we define.

IV. INTERPRETABLE FEEDFORWARD NEURAL NETWORK

The interpretable feedforward neural network proposed by
Li et al. [17] contains a series of fully connected layers,
which is similar to a normal feedforward neural network. The
difference is that the output of the top layer w(x) is a vector
that has the same dimension as the input feature vector and
is used as a dynamically computed weight for the features.
The last step is the same as logistic regression, which uses the
dot product of the w(x) and x, followed by sigmoid as the
probability that a sample is positive.

The full computation is as follows. Let x ∈ Rm be the
feature vector of a sample. It is fed to l fully connected hidden
layers:

vl(x) = FCl(...FC1(x)...) (1)

where FCi(vi−1(x)) = f(W i
1vi−1(x) + bi1) (2)

where W i
1 ∈ Rdi×di−1

, bi1 ∈ Rdi

, f is the activation
function (e.g., Relu, tanh), and vl(x) ∈ Rdl

. Another normal
fully connected layer where the output vector has the same
dimension as x is applied:

w(x) = W2vl(x) + b2 (3)

https://github.com/McGill-DMaS/IFFNN
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where W2 ∈ Rm×dl

, b2 ∈ Rm, and w(x) ∈ Rm. w(x) serves
as a weight vector for each feature in x. The final confidence
that the input sample belongs to the positive class (in malware
detection, positive means malicious) is calculated as follows:

y = IFFNN(x) =σ(w(x)Tx+ b) (4)

where σ(z) =
1

1 + e−z
, b ∈ R (5)

This IFFNN has the expressive ability of a non-linear
model since w(x) is computed through a multi-layer fully
connected neural network. The interpretability of it is like
logistic regression: the contribution of feature xi to the positive
class is calculated as w(x)ixi and the contribution of feature
xi to the negative class is −w(x)ixi.

V. GENERALIZATION OF INTERPRETABLE FEEDFORWARD
NEURAL NETWORKS

The IFFNN can be generalized in different ways to be a
more versatile neural network architecture for additional clas-
sification scenarios. We describe our methods of generalization
in this section.

A. Generalization to Multi-class Classification

The original IFFNN is proposed for binary classification.
It works as a logistic regression function with ”dynamically”
computed weights. Thus, a generalization of the original
IFFNN to multi-class classification is to make it a software
regression with ”dynamically” computed weights.

Let c be the number of classes and W ∈ Rc×m be a
parametric matrix. Softmax regression can be expressed as
follows:

y =softmax(Wx+ b) (6)

where softmax(z) =
1∑c

j=1 e
zj
(ez1 , ..., ezc), b ∈ Rc (7)

The output is a vector of dimension c, and each element is
the probability that the sample belongs to a class. Therefore,
Wi,jxj is the contribution of feature xj to class i.

For a multi-class classification scenario, rather than mapping
the output of the last fully connected layer to a vector
of dimension m, in the generalized IFFNN, the last fully
connected layer requires a tensor to map the feature vector
to a matrix that has the shape c×m.

The complete computation of the generalized IFFNN for
multi-class classification can be expressed as follows:

vl(x) = FCl(...FC1(x)...) (8)
W (x) = Tvl(x) +B2 (9)

y = softmax(W (x)x+ b) (10)

where T ∈ Rc×m×dl

, B2 ∈ Rc×m, W (x) ∈ Rc×m, and
b ∈ Rc. The contribution of feature xi to class j is W (x)j,ixi.

In practice, it is equivalent to replace the tensor T with a
matrix W2 ∈ R(cm)×dl

. This matrix maps vl(x) to a vector
of dimension cm, which can be reshaped to a matrix with the
expected shape c ×m. The complete equivalent computation

of the generalized IFFNN for multi-class classification can be
expressed as follows:

vl(x) = FCl(...FC1(x)...) (11)
W (x) = Reshape(W2vl(x), (c×m)) +B2 (12)

y = softmax(W (x)x+ b) (13)

where the Reshape(z, target shape) operation re-organizes
the elements of z to the target shape.

B. Generalization to Any Feedforward Neural Networks with
Any Tensor of Fixed Shape as Input

The original IFFNN can only be applied on vectors of fixed
dimensions and only includes fully connected layers. These
two constraints can be removed to build more expressive
feedforward neural networks for wider applications. Rather
than being a vector of a fixed dimension, the input can be
any tensor of a fixed shape. Vectors as first-order tensors are
the most commonly seen feature form. Matrices as second-
order tensors are also common as the input to feedforward
neural networks. Greyscale images serve as a good example
of this type. Furthermore, RBG images can be represented
as third-order tensors. The feedforward neural networks that
classify these high order tensors usually contain other kinds
of layers besides fully connected layers, such as convolutional
layers and pooling layers. We describe ways to handle the
generalized situations as follows.

Let X ∈ Rm1×m2...×mp be an order p tensor representing
the features of a sample. Let m = m1×m2...×mp. For binary
classification, we have:

v(X) = f(X) (14)
w(X) = W2v(X) + b2 (15)

x′ = flatten(X) (16)

y = σ(w(X)Tx′ + b) (17)

where f represents an arbitrary feedforward neural network
with any kind of layers, v(X) ∈ Rd, W2 ∈ Rm×d, b2,x′ ∈
Rm, the flatten operation re-organizes the elements of a ten-
sor to a 1d array to form a vector, and b ∈ R. The contribution
of feature Xi1,...,ip to the positive class is w(X)ix

′
i where

i = (i1−1)×(m2m3...mp)+(i2−1)×(m3m4...mp)+...+ip.
For multi-class classification, we have:

v(X) = f(X) (18)
W (X) = Reshape(W2v(X), (c×m)) +B2 (19)

x′ = flatten(X) (20)
y = softmax(W (X)x′ + b) (21)

where v(X) ∈ Rd, W2 ∈ R(cm)×d, B2 ∈ Rc×m, x′ ∈ Rm,
and b ∈ Rc. The contribution of feature Xi1,...,ip to class j is
W (X)j,ix

′
i where i = (i1 − 1)× (m2m3...mp) + (i2 − 1)×

(m3m4...mp) + ...+ ip.
It should be noted that assuming v(X), the output of f(X)

to be a vector of a fixed dimension does not cause the loss of
generality. When f(X) is a higher order tensor rather than a



vector, its shape is still fixed, so it can always be converted to
a vector by applying a flatten operation.

C. Discussion
In some cases, in the input tensor, multiple elements cor-

respond to the same object. When the contribution of each
object is expected, the contributions of these elements should
be added up. For instance, an RGB image can be represented
as a third-order tensor X ∈ R3×h×w. X1,i,j , X2,i,j , and
X3,i,j are the red, green, and blue values of the same pixel.
The contribution of pixel (i, j) is the summation of the
contributions of X1,i,j , X2,i,j , and X3,i,j .

VI. EXPERIMENTS

In this section, we evaluate various versions of IFFNNs on
different datasets. The objectives are to answer the following
questions:
• Is classification performance harmed when the feedfor-

ward neural networks are organized in our interpretable
way compared to normal feedforward neural networks?

• Do the explanations given by the IFFNNs make sense?
• Do the generalized versions of IFFNNs work well in

terms of classification performance and interpretability?

A. Datasets
We evaluate the models on two datasets: MNIST and

INBEN. They complement each other in the evaluation pro-
cedure. MNIST is an image classification dataset that allows
us to evaluate IFFNNs with convolutional layers and to qual-
itatively evaluate the interpretability of IFFNNs. However, it
cannot be used to quantitatively evaluate their interpretability,
since there is no exact answer on how important each pixel is
for the classification results. With our created dataset INBEN,
the gold standard explanations of the samples are known, and
thus allows us to achieve this purpose.

TABLE I
STATISTICS OF THE DATASETS USED FOR EVALUATION.

Dataset Training Valid Test X Shape
MNIST 10 cls 50,000 10,000 10,000 (28,28)
MNIST 2 cls 10,554 2,111 2,115 (28,28)
INBEN 10 cls 100,000 10,000 10,000 (1000,)
INBEN 2 cls 20,000 2,000 2,000 (1000,)

1) MNIST: MNIST is a handwritten digit dataset. It is
a common benchmark for image classification models. This
dataset works well for our purposes because of its easily in-
terpretable characteristic. The IFFNNs applied on this dataset
can point out which pixels are important to classify a sample
to a certain digit. It is easy for humans to determine whether
these pixels are good indicators for the predictions.

We create two scenarios with MNIST. Scenario 1 uses
samples of all 10 classes. In this scenario, we can evaluate the
versions of IFFNNs for multi-class classification. Scenario 2
uses samples of only two classes (digits of ”0” and ”1”). In
this scenario, we can evaluate the versions of IFFNNs for both
binary classification and multi-class classification.

2) INBEN: By visualizing the importance of each pixel
of an image in MNIST, we can only qualitatively evaluate
the interpretability of the IFFNNs. To quantitatively evaluate
the interpretability, we propose a synthetic INterpretablility
BENchmark (INBEN) dataset. It can be described as follows:

1) Each sample belongs to 1 of c classes.
2) Each sample is a vector of dimension m. Each entry

corresponds to a fixed feature, and the value of it could
be 0 or 1. For example, if m = 5, a sample could be (1
0 1 1 0).

3) For each class, there is a set of randomly generated pat-
terns, where if a sample contains one of these patterns,
it belongs to that class. For example, (1,3) is a pattern
for class 2. It means that a sample x belongs to class 2
if x1 = 1 and x3 = 1. (1 0 1 1 0) is an example that
contains this pattern.

4) There is a class priority sequence (e.g., [3,2,4,1,5]). If a
sample contains patterns of multiple classes, it belongs
to the class with the highest priority among them. For
example, if a sample contains the patterns of both class
2 and class 5, it belongs to class 2.

5) There is a default class. If a sample contains no patterns,
it belongs to the default class.

We also create two scenarios with INBEN datasets. Sce-
nario 1 contains samples of 10 classes, and Scenario 2
contains samples of 2 classes.

The statistics of the datasets are given in Table I.

B. Models

We include four kinds of feedforward neural networks in
our experiments to illustrate the classification performance and
interpretability of the IFFNN architecture. They are fully con-
nected neural networks (FC), convolutional neural networks
(CNN) [27], fully connected neural networks with highways
(HW) [28], and residual neural networks (ResNET) [29]. For
each of the four kinds of neural networks, we have eight
different variants. We use FC as the example to describe the
variants:
• FC-BC1 A feedforward neural network with fully con-

nected layers for binary classification. The top fully
connected layer maps the feature vector to a real number
followed by a sigmoid layer. This is only applicable to
Scenario 2.

• FC-MC1 A feedforward neural network with fully con-
nected layers for multi-class classification. The top fully
connected layer maps the feature vector to a vector of
dimension c followed by a softmax layer.

• FC-IFFNN-BC The interpretable version of FC-BC1
achieved by replacing the top layer with Eq.15∼17. This
is only applicable to Scenario 2.

• FC-IFFNN-MC The interpretable version of FC-MC1
achieved by replacing the top layer with Eq.19∼ 21.

• FC-BC2 Similar to FC-BC1, with the total number of
trainable parameters about the same as FC-IFFNN-BC by
increasing the dimensions of the layers but not increasing



TABLE II
CLASSIFICATION PERFORMANCE EVALUATION ON MNIST AND INBEN.

Model 10-class MNIST 2-class MNIST 10-class INBEN 2-class INBEN
Params Acc Params Acc Params Acc Params Acc

FC-MC1 898.5K 98.46 894.5K 99.93 1.0M 97.80 1.0M 98.23
FC-MC2 4.8M 98.54 1.7M 99.94 6.0M 98.83 2.0M 98.45
FC-MC3 4.8M 98.49 1.7M 99.92 6.0M 98.69 2.0M 98.37

FC-IFFNN-MC 4.8M 98.06 1.7M 99.91 6.0M 98.19 2.0M 99.06
HW-MC1 2.4M 98.13 2.4M 99.93 2.5M 97.99 2.5M 98.57
HW-MC2 6.3M 98.10 3.2M 99.92 7.5M 97.81 3.5M 98.69
HW-MC3 6.3M 97.67 3.2M 99.93 7.5M 97.41 3.5M 98.68

HW-IFFNN-MC 6.3M 97.96 3.2M 99.90 7.5M 97.58 3.5M 99.28
ResNET-MC1 226.2K 99.50 201.1K 99.92 NA NA NA NA
ResNET-MC2 24.7M 99.41 5.1M 99.99 NA NA NA NA
ResNET-MC3 24.7M 99.39 5.1M 99.93 NA NA NA NA

ResNET-IFFNN-MC 24.8M 98.92 5.1M 99.95 NA NA NA NA
CNN-MC1 1.2M 98.88 1.2M 99.89 NA NA NA NA
CNN-MC2 72.3M 98.95 14.5M 99.92 NA NA NA NA
CNN-MC3 72.3M 98.99 14.5M 99.93 NA NA NA NA

CNN-IFFNN-MC 72.3M 98.69 14.5M 99.96 NA NA NA NA
SR 7.8K 92.82 1.6K 99.95 10.0K 87.53 2.0K 97.67
DT NA 88.19 NA 99.66 NA 76.75 NA 98.93

FC-BC1 NA NA 894.0K 99.95 NA NA 1.0M 98.04
FC-BC2 NA NA 1.3M 99.92 NA NA 1.5M 98.47
FC-BC3 NA NA 1.3M 99.91 NA NA 1.5M 98.58

FC-IFFNN-BC NA NA 1.3M 99.94 NA NA 1.5M 98.67
HW-BC1 NA NA 2.4M 99.92 NA NA 2.5M 98.71
HW-BC2 NA NA 2.8M 99.91 NA NA 3.0M 98.55
HW-BC3 NA NA 2.8M 99.92 NA NA 3.0M 98.57

HW-IFFNN-BC NA NA 2.8M 99.94 NA NA 3.0M 99.34
ResNET-BC1 NA NA 197.9K 99.98 NA NA NA NA
ResNET-BC2 NA NA 2.7M 99.95 NA NA NA NA
ResNET-BC3 NA NA 2.7M 99.96 NA NA NA NA

ResNET-IFFNN-BC NA NA 2.7M 99.91 NA NA NA NA
CNN-BC1 NA NA 1.2M 99.93 NA NA NA NA
CNN-BC2 NA NA 7.2M 99.93 NA NA NA NA
CNN-BC3 NA NA 7.2M 99.91 NA NA NA NA

CNN-IFFNN-BC NA NA 7.2M 99.94 NA NA NA NA
LR NA NA 0.8K 99.95 NA NA 1.0K 97.66

the number of layers. This is only applicable to Scenario
2.

• FC-MC2 Similar to FC-MC1, with the total number of
trainable parameters about the same as FC-IFFNN-MC by
increasing the dimensions of the layers but not increasing
the number of layers.

• FC-BC3 Similar to FC-BC1, with the total number of
trainable parameters about the same as FC-IFFNN-BC
by increasing the number of layers, and adjusting the
dimension of each layer. This is only applicable to
Scenario 2.

• FC-MC3 Similar to FC-MC1, with the total number of
trainable parameters about the same as FC-IFFNN-MC
by increasing the number of layers, and adjusting the
dimension of each layer.

For the other three kinds of neural networks, there are the
same eight variants. When we apply FC and HW networks
on the MNIST dataset, we flatten the input to a vector. We
don’t apply CNN and ResNET on INBEN because those
two networks are mainly for input of matrices or third-order
tensors.

We also compare with other interpretable models, including

logistic regression (LR), softmax regression (SR), and decision
trees (DT). We use grid search to tune the hyper-parameters
of decision trees, including its split criterion and maximum
depth. The candidate values are given in Table III.

TABLE III
CANDIDATE VALUES FOR HYPER-PARAMETERS OF DECISION TREE.

Hyperparameter Candidate Values
Split Criterion gini,entropy

Maximum Depth 10,25,50,100,200,300,400,500,1000

C. Evaluation Metrics

We describe the evaluation metrics for classification perfor-
mance and interpretability in this section.

For the classification performance, following the tradition,
we use accuracy as the metric, which is the number of
correctly classified samples over the total number of samples.

We cannot use MNIST to quantitatively evaluate the in-
terpretability of the models, but we can use INBEN. With
INBEN, we know the reason why a sample belongs to a
class. It is the pattern(s) that decides its class. The ideal



explanations should give the features included in the patterns
the greatest contribution values. Therefore, we use the average
of accuracy@N as our evaluation metric for interpretability.
We formally define it as follows:

Definition 2 (Accuracy@N): Let S1 be the set of features
in the pattern(s) that determines a sample x belong to class
c. Let N = |S1|. Let S2 be the set of top N important
features for classifying x to class c by an interpretable
classification system. Let S3 = S1 ∩ S2 and n = |S3|. Then,
Accuracy@N = n/N .

As can be seen, N is variant to different samples. Below is
an example.

A sample x belongs to class 2 because it contains the
two patterns of class 2: (113,251) and (35,72,99,217,251).
We thus have S1 = {35, 72, 99, 113, 217, 251} and N =
6. Let the top six most important features for classify-
ing it to class 2 determined by an interpretable classifica-
tion model be: 113,251,7,35,12,308. Then, we have S2 =
{7, 12, 35, 113, 251, 308}, S3 = {35, 113, 251} and thus n =
3. Accuracy@N = 3

6 = 0.5.
We use the average of accuracy@N over all correctly clas-

sified test samples as the evaluation metric for interpretability.
We do not include wrongly classified samples because the
Accuracy@N of explanations for wrong predictions do not
mean anything.

D. Experiment Setting

We train and evaluate the models on a server with two Xeon
E5-2697 CPUs, 384 GB of memory, and four Nvidia Titan XP
graphics cards. Only one graphics card is used for each run.
The operating system is Windows Server 2016. We use Python
3.7.9 and PyTorch 1.6.0 [30] to implement the models. We use
the implementation of DT in scikit-learn 0.23.2 [31].

We use Adam [32] with the initial learning rate 1e − 3 to
train all the neural networks including LR and SR. The batch
size is 256 and maximum epoch is 200. The accuracy on the
test set at the epoch in which the accuracy on the validation
set is the best is reported.

We repeat each group of experiments five times and report
the average. We use random seeds from 0 to 4 for model
initialization.

E. Classification Results

The classification performance of all models is shown in
Table II. The IFFNN version of different types of feedforward
neural networks achieves slightly higher or lower accuracy
compared with the non-interpretable ones in most cases (i.e.,
the difference is at most 1%). Between the same kind of neural
networks with different amounts of trainable parameters, the
difference in accuracy is minor as well. On datasets with 10
classes of samples, we can see a significant gap (> 5%)
between SR, DT, and the neural networks. This means that
forming feedforward neural networks in the proposed inter-
pretable way does not harm the classification performance
and is as effective as a normal multi-layer feedforward neural
network. The generalized versions of IFFNNs on different

feedforward neural networks for multi-class classification also
perform well in terms of accuracy.

F. Interpretability Results

TABLE IV
EVALUATION OF INTERPRETABILITY WITH ACCURACY@N ON INBEN.

Model 10-class INBEN 2-class INBEN
SR 86.81 83.96

FC-IFFNN-MC 98.55 91.39
HW-IFFNN-MC 98.43 95.46

LR NA 83.90
FC-IFFNN-BC NA 90.58
HW-IFFNN-BC NA 95.50

1) Quantitative Analysis: The Accuracy@N of LR, SR, and
the IFFNNs on INBEN are reported in Table IV. As shown,
the Accuracy@N of IFFNNs is always larger than 90%, which
means when a sample is correctly classified, the IFFNNs can
correctly point out the features in the patterns that determine
its class. This indicates that the explanations provided by them
are accurate.

We can also see that the explanations given by IFFNNs
are even more accurate than those given by LR and SR. The
reason is that the INBEN dataset we created is non-linear,
thus these linear models cannot always capture the patterns
that determine the class of a sample. To be more specific, LR
and SR can only model the relation between a feature and a
class independently, however, the patterns require the models
to be able to model the co-occurrences of different features.
Multi-layer neural networks model interactions of different
features through the computations in the hidden layers. This
also reflects the fact that as multi-layer networks, the IFFNNs
have the pattern recognition ability of non-linear models.

2) Qualitative Analysis: In addition to the quantitative eval-
uation, we also qualitatively evaluate the models on MNIST
to manually check whether the explanations make sense. We
show the importance of a pixel to a class in a greyscale
image that has the same shape as the original image, and
the greyscale of a pixel is the importance of the pixel in
the same position. The greyscale of the background in the
original images is always 0, so their importance is also 0.
Therefore, the pixels that are lighter than the background
provide a positive contribution to the class and the darker
pixels provide a negative contribution. We use the scenario
with only ”0” and ”1” for the evaluation because there are
areas of the images that only contain white pixels for only
one of them and these pixels are good indicators of the digits.

Figure 1 show some images from the test set and the
importance images of them for all classes. We can see that for
the images of ”0”, the important pixels for the right class (i.e.,
”0”) determined by all IFFNNs focus on the pixels of the left
and right parts of the circle. This makes sense because ”1” is
usually close to a vertical bar, so its white pixels rarely appear
in those areas of the images of ”1”. Therefore, it makes sense
that white pixels appearing in these areas contribute more to



Fig. 1. Examples of images and the explanations for the classifications on MNIST with only 0 and 1.

the class of ”0”. The important pixels for images of ”1” are
more concentrated in the center part of the stroke. This is also
valid because there are rarely white pixels in the center areas
of images of ”0”.

VII. CONCLUSION

In this paper, we propose ways to generalize the IFFNN
proposed by Li et al. [17] to multi-class classification and
any type of feedforward neural networks. We also conduct
comprehensive experiments to evaluate the classification per-
formance and interpretability of the IFFNNs. We reached
the conclusion that the IFFNNs achieve similar classification
accuracy as their non-interpretable feedforward neural network
counterparts and provide meaningful explanations. Therefore,
the generalized IFFNN architecture is an excellent choice for
real-world applications when explanations for classification
results are expected for various reasons.
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