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Abstract: Malware is the crux of cyber-attacks, especially in the attacks of critical cyber(-physical) infrastructures, such
as financial systems, transportation systems, smart grids, etc. Malware classification has caught extensive
attention because it can help security personnel to discern the intent and severity of a piece of malware before
appropriate actions will be taken to secure a critical cyber infrastructure. Existing machine learning-based
malware classification methods have limitations on either their performance or their abilities to interpret the
results. In this paper, we propose a novel malware classification model based on functional analysis of malware
samples with the interpretability to show the importance of each function to a classification result. Experiment
results show that our model outperforms existing state-of-the-art methods in malware family and severity
classification and provide meaningful interpretations.

1 Introduction

In the Internet age, malicious software (malware),
as the major means for cyber attacks, has been an
increasing threat to legitimate Internet users, finan-
cial systems, and government organizations (Ye et al.,
2017; Abusitta et al., 2021). It is not uncommon to
receive phishing emails, accidentally download ad-
ware/ransomware1, or experience privacy informa-
tion breach from a giant financial corporation2 in re-
cent years. There is thus a pressing need to identify
malware and discern its intent and severity before it
achieves its nefarious goals.

Manual reverse engineering, as the primary step
taken to gain an in-depth understanding of a piece of
malware, is a time-consuming process. Due to the
increasing volume and complexity of malware, au-
tomatic malware analysis techniques have to be ap-
plied so as to recognize malware in a timely man-
ner. Signature-based methods have been extensively
applied in antivirus engines. Filename, text strings,
and regular expressions of byte code etc., can be
used as signatures to recognize known malware sam-
ples and their non-significant variants. However, they
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cannot be used to recognize new malware or signif-
icant variants of malware samples with evasive tech-
niques (Abusitta et al., 2021). Machine learning based
malware classification methods have been proposed
to have better generalizability to identify new mal-
ware samples and significant variants.

Different static features have been applied for
malware classification, such as PE headers (Bal-
dangombo et al., 2013), byte sequences (Schultz
et al., 2001; Saxe and Berlin, 2015), printable
strings (Schultz et al., 2001; Saxe and Berlin,
2015), PE imports (Schultz et al., 2001; Saxe and
Berlin, 2015), and assembly code (Li et al., 2021b;
Moskovitch et al., 2008) etc. Among these methods,
Li et al. (2021b) propose to group semantically equiv-
alent assembly code functions into clusters and clas-
sify an unknown sample based on the matching be-
tween its assembly functions and the known assem-
bly function clusters. Comparing with previous mal-
ware classification methods, it has the ability to tell
which functions of the unknown sample contribute to
the classification result. Their work is then extended
through integrating a feedforward neural network as
the classification module (Li and Fung, 2022). The
extended method yields more accurate classification
results for severity classification but loses the inter-
pretability to tell the contribution of each assembly
function to the classification result.

When malware analysts analyze a malware sam-
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Figure 1: Workflow of our interpretable malware classification model.

ple, they usually do not examine the full set of assem-
bly functions of the sample. Rather, they try to locate
and examine only the core functions that are related
to the major malicious behaviors so as to discern the
intent of the sample or to validate the result of an au-
tomatic malware classification system.

In this paper, we improve the aforementioned mal-
ware classification method Li and Fung (2022) by
integrating an interpretable feedforward neural net-
work (Li et al., 2022) to enhance both the classifica-
tion performance and interpretability. The proposed
classification model is the first that can show the im-
portance/contribution of each assembly function to
determine the unknown sample’s class. This interpre-
tation capability can significantly improve malware
analysts efficiency in analyzing an unknown sample.
Experiment results show that our proposed malware
classification model outperforms previous classifica-
tion methods based on different kinds of static fea-
tures and provide meaningful interpretations.

We organize this paper as follows. Section 2 dis-
cusses related work. Section 3 describe the proposed
malware classification model. Section 4 show the ex-
periment setting and results. Section 5 concludes this
paper.

2 Related Work

Malware analysis can be conducted dynamically or
statically. Dynamic analysis methods require a vir-
tual machine (VM) or simulator to execute the tar-
get sample and record its executed assembly instruc-
tions (Royal et al., 2006; Anderson et al., 2011),
memory image (Dahl et al., 2013; Huang and Stokes,
2016), invoked system calls (Fredrikson et al., 2010),
or its high level behaviors (Bayer et al., 2006), such as
stealing credentials, key logging, downloading pay-

load etc. The execution process is time-consuming
and dynamic analysis methods can be evaded with an
embedded sandbox detector3. The focus of this pa-
per is static methods that do not require any execu-
tion of the target sample. The analysis is conducted
on the binary content of the sample itself. The com-
mon static features extracted from a sample include
byte sequences (Schultz et al., 2001; Saxe and Berlin,
2015), assembly code (Li et al., 2021b; Moskovitch
et al., 2008), PE header numerical fields (Baldan-
gombo et al., 2013), PE imports (Schultz et al., 2001;
Saxe and Berlin, 2015), printable strings (Schultz
et al., 2001; Saxe and Berlin, 2015), and malware
images (Nataraj et al., 2011; Mourtaji et al., 2019)
etc. These features can be represented as sequences,
vectors, matrices, and graphs. A variety of machine
learning models have been applied on those features
for malware classification, such as naive Bayes, deci-
sion trees, support vector machines, and artificial neu-
ral networks.

Among the malware classification studies, the
dedicated machine learning model for malware clas-
sification proposed by Li et al. (2021b) and then ex-
tended with a feedforward neural network (Li and
Fung, 2022) is the most related to our proposed
method. Their methods are based on grouping seman-
tically equivalent functions in known malware sam-
ples into clusters, and classify an unknown malware
sample based on the matching between its functions
and the known function clusters in different classes.
The nature of this kind of methods allows them to
show malware analysts the reason for the classificas-
ion so that they can examine or justify a classification
result. The limitation with their methods is that they
cannot tell the importance of each function among the
tens or hundreds of matched functions to the classifi-
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Figure 2: An example to show the IFFNN to classify a sample of dimension 4 and to explain the contribution of each feature
to each class. For example, I1,2 is the importance of feature 2 to class 1.

cation result.
Li et al. (2021a) propose an interpretable feedfor-

ward neural network (IFFNN) for binary classifica-
tion that can show the importance of each feature to
the classification result. The IFFNN is then general-
ized for multi-class classification and the classifica-
tion performance and interpretability have been com-
prehensively evaluated and experiment results show
that the classification performance of IFFNNs is sim-
ilar to their non-interpretable counterparts (i.e., nor-
mal feedforward neural networks) and the interpreta-
tions are accurate (Li et al., 2022). In this work, we
integrate the IFFNN to the dedicated malware classi-
fication model (Li et al., 2021b) so that it forms the
first interpretable malware classification model that
can show the importance of each assembly function
to the classification result.

3 Methodology

Figure 1 presents the workflow of our interpretable
malware classification engine for both training and
test. We provide the details of the training and test

steps in this section.

3.1 Executable Disassembling

As the malware classification model is based on func-
tional analysis, we disassemble every sample for
training or test to get its assembly code functions.
IDA Pro4 and Ghidra5 are two commonly used dis-
assemblers to achieve this purpose.

3.2 Assembly Function Representation
Learning

For training, we apply Asm2Vec, an assembly func-
tion function representation learning method pro-
posed for assembly function clone search, to the as-
sembly functions of all training samples. The training
of Asm2Vec and the generation of vector representa-
tions for the assembly functions in the training sam-
ples happen simultaneously. The vectors represent-
ing semantically equivalent assembly functions have a
large cosine similarity. For test, we feed the assembly

4https://www.hex-rays.com/products/ida/
5https://ghidra-sre.org/
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Figure 3: An example of the Summary page of the classification result.

functions of a target sample to the trained Asm2Vec,
to generate their vector representations.

3.3 Discriminative Assembly Function
Clustering

In the training process, we then group the semanti-
cally equivalent assembly functions into clusters. The
assembly functions in each cluster are programmed
to achieve the same (or at least similar) purpose. As a
clone search engine, Asm2Vec uses the vector repre-
sentations it generates to determine whether two as-
sembly functions are equivalent to each other. We
apply a Union-Find algorithm, namely the Weighted
Quick-Union with Path Compression algorithm, to
gradually aggregate semantically equivalent assembly
functions to a cluster. This algorithm is optimized by
locality-sensitive hashing (LSH).

The family of LSH functions (Charikar, 2002) can
be described as follows: each hash function corre-
sponds to a random vector r which has the same di-
mension as the vector representation of an assembly
function. The hash value of an assembly function rep-
resented as vector u is computed as follows:

hr(u) =
{

1 u · r > 0
0 u · r ≤ 0

The probability that two assembly functions rep-
resented as u and v have the same hash value is as

follows:

Pr[hr(u) = hr(v)] = 1− θ(u,v)

π
(1)

By applying a set of n such LSH functions to the
representation of an assembly function, we obtain an
n-bits signature of it. Assembly functions that are
semantically equivalent have a large probability to
have the same signature. Therefore, we only apply
the Union-Find algorithm to the assembly functions
that have the same signatures. We apply l sets of
LSH functions to create l signatures for each assem-
bly function to increase the chance that the assembly
functions with equivalent semantics to have the same
signature at least once so that they can be grouped
to the same cluster. We use the way proposed by Li
et al. (2021b) to determine the hyper-parameters n and
l. We refer the readers to their paper to find the com-
plete details.

After we get the assembly function clusters with
the aforementioned method, we need to filter them
based on their discriminative power. This is because
some clusters are the sets of assembly functions that
are commonly seen in all classes, and they cannot
be used to determine the class of a sample that has
a function belongs to them. Hence, they should be fil-
tered. Formally, the discriminative power of a cluster
can be defined as follows.

Let ∥com f (Gi,C j)∥ be the number of assembly
function shared by class C j and cluster Gi divided by



Table 1: Statistics of the datasets.

Malware family classification dataset Malware severity classification dataset
Family Number of Samples Severity Number of Samples
Autoit 102 Level 1 237

Bundlore 218 Level 2 1052
Emotet 223 Level 3 175

Fireseria 147 Level 4 109
Gamarue 141 Level 5 128
Hotbar 144 Level 6 64
Imali 136 Level 7 66

Loadmoney 200 Level 8 99
Softpulse 93

Speedingupmypc 107
Total 1,511 Total 1,930

the number of executables in class C j. The popular-
ity of malware class C j in cluster Gi is defined as fol-
lows:

pop(Gi,C j) =
∥com f (Gi,C j)∥

∑
m
j=1 ∥com f (Gi,C j)∥

(2)

The discriminative power of cluster Gi is
d p(Gi) = 0 if Gi contains only 1 function; and
d p(Gi) = max j{pop(Gi,C j)} − min j{pop(Gi,C j)}
otherwise.

We filter clusters of which the discriminative
power is lower than a threshold θ and only keep the
rest for use in the next steps.

3.4 Assembly Function Clone Search

For a target sample, we use the trained Asm2Vec
to determine whether each of its assembly functions
is equivalent to an assembly function in one of the
discriminative assembly function clusters. This is
achieved by comparing the vector representations of
the assembly functions of the target sample and the
vector representations of the assembly functions in
the clusters. If an assembly function of the target sam-
ple is semantically equivalent to an assembly function
of a cluster, the function belongs to that cluster and
the test sample is related to the cluster.

3.5 Feature Vector Formation

For each training sample and test sample, we form a
feature vector of dimension m, where m is the total
number of discriminative assembly function clusters.
The value of each entry is 1 if there is at least one
assembly function of the sample belongs to the corre-
sponding cluster; otherwise, the value is 0.

3.6 Classification With Interpretable
Feedforward Neural Network

To classify a sample to a malware class, we feed the
feature vector formed in the previous step to an in-
terpretable feedforward neural network (IFFNN) pro-
posed by Li et al. (2022). In addition to the classifica-
tion result, the IFFNN also shows the importance of
the clusters for the classification result. An example
is shown in Figure 2. The details of the IFFNN are
as follows. Let x ∈ Rm represent the vector formed in
the previous step. It is fed to l fully-connected (FC)
hidden layers with Relu as the activation function:

vl(x) = FCl(...FC1(x)...) (3)

FCi(v) = Relu(Wiv+bi) (4)
W (x) = Reshape(W2vl(x),(c×m))+B2 (5)

y = so f tmax(W (x)x+b) (6)

The contribution/importance of cluster i for classify-
ing the sample to class j is W (x) j,ixi. This is the
interpretation for the classification result. The most
important clusters and the corresponding functions in
the target sample are supposed to be examined by a
malware analyst with high priority.

In the training phase, we use the feature vectors
of training samples and their class labels to train the
IFFNN. We use cross entropy loss as the objective
function and Adam (Kingma and Ba, 2014) as the op-
timizer with the initial learning rate 1e−4. In the test
phase, we use the trained IFFNN to classify an un-
known sample and interpret the result. An example
of the user interface to display the interpretation of a
classification result is shown in Figure 3.



4 Experiments

We conducted experiments to evaluate the proposed
interpretable malware classification model in terms of
classification performance and interpretability. Fol-
lowing the literature of multi-class classification re-
search, the accuracy of the classification results is
used to indicate the classification performance. Accu-
racy is the ratio of correctly classified samples to all
test samples. We use student t-test to indicate statisti-
cally significant difference in accuracy between other
models and our model.

4.1 Datasets

We evaluate our interpretable malware classification
model on malware family classification and severity
classification. The malware family dataset contains
malicious executables of 10 malware families. The
gold standard labels are acquired with the AVClass
malware labeling tool (Sebastián et al., 2016) based
on analysis reports from VirusTotal6. The malware
severity dataset contains malicious executables of 8
severity levels that are labelled based on the Kasper-
sky Lab Threat Level Classification tree 7. We ex-
clude packed or encrypted samples, so that the as-
sembly functions of the malware samples can be ana-
lyzed. We use Pefile8 and Yara rules9 to detect pack-
ing. The statistics of the datasets are given in Table 1.
We use k-fold cross-validation where k = 5 to evalu-
ate the models. One fold is chosen as the validation
set, and one fold is chosen as the test set.

4.2 Malware Classification Methods For
Comparison

In the evaluation, we use the following state-of-the-
art malware classification methods to compare with
our model:

• Mosk2008OpBi: Moskovitch et al. (2008) pro-
pose to use TF or TF-IDF of opcode bi-grams as
features and to use document frequency (DF), in-
formation gain ratio, or Fisher score as the cri-
terion for feature selection. They apply Arti-
ficial Neural Networks, Decision Trees, Naïve
Bayes, Boosted Decision Trees, and Boosted

6https://www.virustotal.com/
7https://encyclopedia.kaspersky.com/knowledge/

rules-for-classifying/
8https://gist.github.com/islem-esi/

334d223b3088e0bec5adc75f010c83c2
9https://gist.github.com/islem-esi/

cef15f99db844fe1cfe596656dfe9bb2#file-detect_packer_
cryptor-py

Naïve Bayes as their malware classification mod-
els.

• Bald2013Meta: Baldangombo et al. (2013) pro-
pose to extract multiple raw features from PE
headers and to use information gain and calling
frequencies for feature selection and PCA for di-
mension reduction. They apply SVM, J48, and
Naïve Bayes as their malware classification mod-
els.

• Saxe2015Deep: Saxe and Berlin (2015) propose
a deep learning model that works on four differ-
ent features: byte/entropy histogram features, PE
import features, string 2D histogram features, and
PE metadata numerical features.

• Mour2019CNN: Mourtaji et al. (2019) convert
malware binaries to grayscale images and apply a
convolutional neural network on malware images
for malware classification. Their CNN network
has two convolutional layers followed by a fully-
connected layer.

• Li2021Func: Li et al. (2021b) propose to group
assembly functions to clusters, and compute the
similarity of a query executable to a malware fam-
ily based on the comparison of the number of clus-
ters of the family related to it and the number of
clusters related to a median sample of the training
set in the family.

• Li2022Sev: Li and Fung (2022) extend
Li2021Func with a normal feedforward neural
network and they show that the new model
achieves better accuracy on malware severity
classification.

We use grid search to tune the hyper-parameters
for all methods on the validation set.

4.3 Classification Performance

Table 2 shows the experiment results of state-of-the-
art malware classification methods for comparison
and our interpretable malware classification engine.
As can be seen, the new interpretable malware classi-
fication engine outperforms all other methods in both
malware family classification and severity classifica-
tion. It achieves much higher classification perfor-
mance than Li2021Func and slightly higher perfor-
mance than Li2022Sev in malware family classifica-
tion and severity classification. The advantage of our
model compared to Li2022Sev is the interpretability.
In many cases, there is a common trade-off between
classification performance and interpretability (Arri-
eta et al., 2020; Rai, 2020). However, the integration
of the explainable AI into our engines does not harm
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Table 2: Classification results of different methods on the test sets for malware family classification and severity classification.

Method
Family Classification Severity Classification
Accuracy P-value Accuracy P-value

Mosk2008OpBi 82.9 1.1e-11 78.7 1.0e-12
Bald2013Meta 89.5 3.5e-8 88.2 2.6e-3
Saxe2015Deep 92.8 2.7e-2 88.1 2.1e-4
Mour2019CNN 51.3 2.9e-17 22.8 7.5e-18

Li2021Func 87.1 9.9e-11 70.3 2.9e-15
Li2022Sev 93.2 0.36 89.0 0.22
Our Model 93.5 N/A 89.1 N/A

the classification performance. In addition, it does not
bring much extra computational overhead. This is be-
cause the explainable AI module, namely, IFFNN, is
intrinsically interpretable, rather than a post-hoc ex-
planation method.

Table 3: The Spearman’s Rank Correlation Coefficients be-
tween the feature importance rank given by our novel in-
terpretable malware classification engine, Gini importance
(GI), and information gain (IG).

Malware family classification
IG GI Our Engine

IG 1 0.61 0.58
GI 0.61 1 0.62
Malware severity classification

IG GI Our Engine
IG 1 0.06 0.19
GI 0.06 1 0.72

4.4 Interpretability

4.4.1 Quantitative Evaluation

We compute the Gini importance (GI) and informa-
tion gain (IG) of the clusters for the classification re-
sults, and then rank them based on those criteria. We
also rank the clusters by their importance for individ-
ual predictions. The i-th important cluster among all
m is given a score of 1/m for individual predictions.
We then accumulate the scores of the clusters on all
test samples. The clusters are then ranked by their
accumulated scores. Table 3 shows the Spearman’s
Rank Correlation Coefficients between the ranks of
these three methods. As can be seen, for malware
family classification, the importance ranks of clusters
by IG, GI, and our engine have high correlation; for
malware severity classification, the ranks given by GI
and our engine have higher correlation and they have
relatively lower correlation with the rank given by IG.
This means that our engine relies more on the clusters

that are statistically more important clusters.

4.4.2 Qualitative Evaluation

We also require a malware analyst to manually evalu-
ate the interpretations. He uses the Softpulse and Hot-
bar malware families for the case study. He first sum-
marizes the most common behaviors of the samples in
those malware families. Then, he finds that the most
important assembly functions/clusters determined by
the engine are indeed part of the characteristic behav-
iors/patterns of the respective malware families, such
as loading malicious DLLs, writing unwanted con-
tent to disks, establishing connections to external ma-
licious servers for Softpulse, creating pop-up adver-
tisements, establishing a connection to another socket
application, and manipulation of browsers for Hotbar.
This result confirms that the interpretations given by
our engine are valid.

5 Conclusion

In this paper, we propose a novel interpretable mal-
ware classification model that can show the impor-
tance of each assembly function cluster to the clas-
sification result of a sample. It is an improved ver-
sion of a malware classification model based on func-
tional analysis (Li et al., 2021b). Experiment re-
sults show that our classification model outperforms
existing state-of-the-art models in terms of classifi-
cation accuracy and provide meaningful interpreta-
tion. Therefore, in addition to identifying the malware
class in a timely manner, the proposed malware clas-
sification method can also tremendously improve the
efficiency of malware analysts in real-world malware
analysis scenarios.
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