
A Novel Neural Network-based Malware Severity
Classification System

Miles Q. Li1[0000−0001−7091−3268] and Benjamin C. M. Fung2[0000−0001−8423−2906]

1 School of Computer Science, McGill University, Montreal, Canada
miles.qi.li@mail.mcgill.ca

2 School of Information Studies, McGill University, Montreal, Canada
ben.fung@mcgill.ca

Abstract. Malware has been an increasing threat to computer users. Different
pieces of malware have different damage potential depending on their objectives
and functionalities. In the literature, there are many studies that focus on automat-
ically identifying malware with their families. However, there is a lack of focus
on automatically identifying the severity level of malware samples. In this pa-
per, we propose a dedicated neural network-based malware severity classification
method. It is developed based on the clustering analysis of malware functions.
Experimental results show that the proposed method outperforms previously pro-
posed machine learning methods for malware classification on the severity clas-
sification problem.

Keywords: cybersecurity · malware severity classification · neural networks

1 Introduction

Malware programs are becoming more sophisticated and diverse with time [16,1]. They
are developed for different purposes. Some could harm only individual computers and
their users, and the damage can be recovered. Some could cause permanent loss to large
groups of computers and their users. Thus, the severity of malware programs can vary.
The resources of malware defenders allocated to deal with different malware programs
should depend on their severity to minimize the potential losses they can cause. To this
end, it is crucial to have an AI-based severity classification system that helps malware
analysts recognize the severity level of a malware program in a timely manner.

Signature-based methods are the most commonly used kind of malware classifica-
tion method in commercial antivirus products. If an executable contains a signature that
is labelled with a certain class of malware, it belongs to that class. The signatures are
crafted by malware analysts through manual analysis of their collected malware sam-
ples. The problem with this type of method is that it is limited in recognizing significant
variants of existing malware samples or new malware samples since malware authors
could avoid the signature while still keeping its functionalities [42,13,1]. Therefore,
machine learning-based malware classification methods are proposed to identify signif-
icant variants of known malware or new malware samples based on the patterns that are
recognized from known malware samples [36,23,27,35,26].

2 M. Li and B. Fung

As a classification problem, malware severity classification is more challenging than
malware family classification, while the latter is more intensively studied. One reason
that malware family classification is less challenging is that in each malware family,
the samples have the same purposes and behaviors, so they are programmed similarly
to each other [9,25]. The similarity makes it easier to recognize a new sample of that
malware family based on the knowledge of known samples of that family. However,
the malware programs at each severity level could present different behaviors and func-
tionalities. Thus, there are many different and independent patterns that can indicate
the severity levels of malware programs. This increases the complexity of the malware
severity classification problem. The second challenge with malware severity classifica-
tion is that severity classification is not a normal classification problem in which the
relations between all classes are balanced. In severity classification, a higher severity
level dominates a lower severity level. In other words, if a program has behaviors at
different severity levels, it should be classified as the level of the most severe behaviors.
A third challenge is that the malware family classification can be done by analyzing
the functional similarity between an unknown sample and a malware family, but sever-
ity ranking cannot. When a malware program contains more than the average number
of behaviors of programs at a certain level, it should be classified to a higher level, or
when most behaviors of a malware program are at a low severity level and only a few
behaviors at a high severity level, it belongs to the higher level. For example, when
a malware program has multiple Trojan-related functions, it should be classified to a
higher severity level than a program that contains only one [21].

The contribution of this paper is a novel and dedicated neural network-based mal-
ware severity classification model. It is a neural network extension of the malware fam-
ily classification model proposed by Li et al. [25], which is based on the similarity
analysis of functions of malware samples. Since it is developed based on functional
similarity, it will fail the severity classification problems for the reasons we mentioned
in the previous paragraph. As artificial neural networks are good at comprehensively
capturing the correlation between inputs and outputs rather than just similarity accu-
mulation, we introduce artificial neural networks into the framework proposed by Li et
al. [25] for the malware severity classification problem.

The rest of the paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 formally defines the malware severity classification problem. Section 4 describes
our proposed method. Section 5 presents the evaluation of the proposed method. Sec-
tion 6 discusses the limitations and our future work. Section 7 concludes the paper.

2 Related Work

2.1 Malware Classification

Most existing malware classification studies focus on malware detection or family clas-
sification. The former aims to differentiate malware and benign software, while the
latter aims to identify the malware family.

Malware classification methods can be categorized as static, dynamic, and hybrid
methods [1]. Static methods examine the static content of an executable, and dynamic

A Novel Neural Network-based Malware Severity Classification System 3

Executable Disassembling
Asm2Vec

Representation
Learning

Function
Representation

Database

Discriminative
Clustering

Function
Cluster

Database

Function
Clone

Search

Classification
with Neural

Network

Training

Test

Feature
Vector

Formation

Feature Vector
Formation

Neural
Network
Training

Trained
Neural

Network

Fig. 1: Workflow of our severity classification model.

methods run it to analyze its behaviors. Common features used by static methods are se-
quences of bytes [36,23,4,35,32,17], sequences of assembly code [27,11,3,4,34,17,26],
numerical PE header fields [4,6,35,26], PE imports/API calls [36,6,35,29,17,26], print-
able strings [36,20,35,26], and malware images [28,41,40]; those used by dynamic
methods are memory images [24,10,19], executed instructions [33,11,3,4], invoked sys-
tem calls or behaviors [7,15,4,10,20,34,19,2]. Hybrid methods use both static and dy-
namic features for malware classification [4,20,34,12].

2.2 Severity Ranking

The severity level of malware can be defined based on different criteria. In this subsec-
tion, we introduce some severity ranking theories.

Malware Rating System. Bagnall and French [5] suggest three criteria to define the
severity of a malware program, namely: (1) its payload potential, (2) its proliferation
potential, and (3) its hostility level. The payload means the potential of the code to de-
grade or damage its target. The proliferation potential means the ability to spread itself
across the file system or over the network. The hostility level means how malicious the
intent is behind the payload. The payload potential and proliferation potential are clas-
sified to 10 ratings and hostility to 5. All three criteria considered, there are 5 severity
ratings.

Threat Severity Assessment. Symantec Corporation also suggests three criteria to
define severity [38]. They are (1) in-the-wild, (2) damage caused, and (3) rate of dis-
tribution. In-the-wild measures the extent to which a virus has already spread among
computers. Damage caused measures the amount of damage that a given infection can
inflict. The distribution component measures how quickly a program spreads itself. It
can be seen that damage caused corresponds to the payload potential and the hostility
level in the classification criteria proposed by Bagnall and French [5]. Both in-the-wild
and rate of distribution measure the spread of the malware program, with the differ-
ence being that the former is about the facts of existing spread and the latter is about

4 M. Li and B. Fung

its ability to spread. They correspond to the proliferation potential in the classification
criteria proposed by Bagnall and French [5]. Therefore, both of these two severity level
definition systems mainly cover two aspects: proliferation and damage.

Kaspersky Lab Threat Level Classification. Kaspersky Lab uses a tree structure to
describe their definition of the severity levels of all types of malware programs [21].
Kaspersky Lab does not provide their specific criteria, but it can be seen that the types
of malware that are programmed to wildly spread and that may cause tremendous dam-
age are in the upper part of the tree, and the reverse are in the lower part of the tree.
This means that the criteria they use are consistent with the first two systems. Kaspersky
Lab suggests that the following principles should be taken into consideration to deter-
mine the severity: 1) each behavior is assigned its own severity level, and the behaviors
that pose less of a threat are outranked by behaviors that pose more of a threat, 2) if a
program can be categorized as a number of different behaviors, it should be classified
as the most threatening level of those behaviors, 3) if a malicious program has two or
more functions with equal severity levels, which could be covered by Trojan Ransom,
Trojan ArcBomb, Trojan Clicker, Trojan DDoS, Trojan Downloader, Trojan Dropper,
Trojan IM, Trojan Notifier, Trojan Proxy, Trojan SMS, Trojan Spy, Trojan Mailfinder,
Trojan GameThief, Trojan PSW or Trojan Banker, then the program will be classified
as a Trojan. These principles make sense not only for their severity classification sys-
tem, but also for the general severity ranking problem. The last principle also makes
this classification problem different from normal classification problems in which the
relations between all classes are balanced.

3 Problem Definition

Definition 1 (Malware Severity Classification). Consider a collection of executables
E and a collection of labels L that indicate the severity levels of executables in E.
Let exe be an unknown executable that exe /∈ E. The malware severity classification
problem is to build a classification model M based on E and L such that M can be used
to determine which severity level the executable exe belongs to.

4 Methodology

The workflow of our proposed method is shown in Figure 1. The classification is per-
formed based on the functionality analysis of malware samples. For training the system,
we use IDA Pro3 to disassemble the training samples to get their assembly functions.
Then, we apply Asm2Vec [14] on the assembly functions to compute their vector rep-
resentations such that semantically similar assembly functions have large cosine sim-
ilarities with their vector representations. With the vector representations, we perform
a discriminative clustering algorithm to group semantically equivalent assembly func-
tions in a cluster. A feedforward neural network is trained on the vectors representing

3 https://www.hex-rays.com/products/ida/

A Novel Neural Network-based Malware Severity Classification System 5

whether a sample contains a function that belongs to each cluster as input, and predicts
the severity level of the sample. In the test phase, a target sample is disassembled and the
vector representations of its assembly functions are computed with the trained Asm2Vec
model. The vector representations are then used to determine whether the functions be-
long to a cluster or not. We form a vector representation of the target sample based on
whether it has any assembly function that belongs to each cluster. The trained feedfor-
ward neural network takes this vector as input to predict the severity level of the target
sample.

The disassembling, function representation learning, clustering, and function clone
search steps are inherited from the malware family classification system proposed by
Li et al. [25]. The feature vector formation and feed-forward neural network classifier
are our improvements to that system for the severity classification problem.

4.1 Function Representation Learning

An assembly function consists of one or more blocks of assembly instruction sequences.
Assembly functions that achieve the same purpose may appear quite differently when
obfuscations or optimizations are applied. Therefore, in its original form, it is hard to
directly compare the similarity of assembly functions.

Asm2Vec [14] is a representation learning method for assembly code functions. The
vector representations of semantically similar functions have a large cosine similarity
so that they can be used to detect clone relations (i.e., similarity larger than a threshold)
between different assembly functions. In the training phase, we use the assembly func-
tions of training samples to train Asm2Vec, and at the same time, Asm2Vec computes
the vector representations of the assembly code functions.

The result of this step is the trained Asm2Vec and the vector representations of the
assembly code functions of the training samples.

4.2 Discriminative Function Clustering

In this step, we put assembly code functions that are semantically equivalent to each
other in a cluster. Some clusters are good representatives of certain malware classes
since only malware samples from these classes contain assembly code functions that
belong to these clusters. They are called discriminative assembly code function clus-
ters. They could be groups of functions related to certain malicious behaviors, such as
key logging, proliferation, or corrupting file systems. We identify these clusters with
their discriminative power. This concept relies on another concept called the popu-
larity of a malware class in a cluster. Let Gi be a cluster, and C j be a malware class.
Let ‖com f (Gi,C j)‖ be the percentage of executables in class C j that has one or more
functions in cluster Gi. The popularity of malware class C j in cluster Gi is defined as
follows:

pop(Gi,C j) =
‖com f (Gi,C j)‖

∑
m
j=1 ‖com f (Gi,C j)‖

(1)

The discriminative power of cluster Gi is as follows:

d p(Gi) =

{
0 if Gi contains only 1 function
max j{pop(Gi,C j)}−min j{pop(Gi,C j)} otherwise

6 M. Li and B. Fung

In plain words, the discriminative power of a cluster is the difference between the
popularity of the class with the maximal popularity and the popularity of the class with
the minimal popularity in the cluster. The clusters with high discriminative power char-
acterize the malware classes that have large popularity. In other words, when an exe-
cutable contains a function that belongs to the cluster, there is a large probability that it
belongs to the clusters with large popularity in the cluster as opposed to the rest of the
malware classes. Therefore, they can be used to discriminate against the classes with
low popularity. On the contrary, in the clusters with low discriminative power, the pop-
ularity of all malware classes are similar, thus containing a function of these clusters
can not bring much knowledge on which malware classes it is likely to belong to.

To get the discriminative assembly code function clusters from the set of assem-
bly code functions of the training samples, we use a discriminative clustering algo-
rithm [25]. The basic is a Union-Find algorithm to gradually aggregate assembly func-
tions to each cluster and its efficiency is optimized by locality-sensitive hashing (LSH).
The LSH function family we use is proposed by Charikar [8]. In the hash function,
the only parameter is a random vector rrr, which has the same dimension as the vector
representation of an assembly code function. The entries of rrr are independently drawn
from standard Gaussian distribution. The hash value of an assembly code function rep-
resented as uuu is computed as follows:

hrrr(uuu) =
{

1 uuu · rrr > 0
0 uuu · rrr ≤ 0

Charikar [8] proved that for two vectors uuu and vvv, the probability that they have the
same hash value is as follows:

Pr[hrrr(uuu) = hrrr(vvv)] = 1− θ(uuu,vvv)
π

(2)

Therefore, the larger their cosine similarity is, the larger the probability that they
have the same hash value. Thus, semantically similar assembly code functions tend to
have the same hash values. The way we use LSH to group the assembly code functions
can be described as follows:

1. We apply a set of LSH functions on the assembly code functions. The assembly
code functions that have the same hash values are put in the same bucket. In each
bucket, the assembly functions are potentially equivalent to each other. The number
of LSH functions should guarantee that in each bucket, the number of assembly
code functions should be smaller than a threshold.

2. We apply the Weighted Quick-Union with Path Compression algorithm [37] on the
vector representations of the assembly code functions in each bucket to aggregate
them in clusters.

3. We filter the clusters with low discriminative power since they are not informative
for discriminating samples of a malware class to other classes.

We refer the readers to the original paper [25] for more details about the discrimi-
native clustering algorithm. We keep the same hyper-parameters as theirs for the algo-
rithm. The idea of processing the training executables for clustering is shown in Fig-
ure 2.

A Novel Neural Network-based Malware Severity Classification System 7

Fig. 2: The procedure to cluster assembly functions.

4.3 Function Clone Search

The classification of a sample is based on its relation to the discriminative assembly
code function clusters. The relation of each training sample to the clusters is already
known, since the assembly code functions in the clusters are all from training samples.
In the test phase, the trained Asm2Vec will be applied onto the assembly functions of
the test samples to generate the vector representations of the functions. Based on the
vector representations, Asm2Vec determines whether each assembly function of a test
sample is equivalent to an assembly function in a cluster. If it is, the function belongs
to that cluster and the test sample is related to the cluster.

4.4 Feature Vector Formation

Let m be the number of discriminative clusters that are formed in the discriminative
function clustering step. For each training or test sample, we form a feature vector of
dimensions m. Each entry of the vector corresponds to a cluster. The value of an entry is
1 if there is at least one assembly function of the executable that belongs to the cluster
(i.e., is equivalent to the functions in the cluster) and 0 otherwise.

4.5 Feed-forward Neural Network Classification

Malware samples in a family are functionally similar to each other. That is the reason
that the classification method based on accumulating the functional similarity proposed
by [25] could work. However, it would not work for the severity classification prob-
lem because similarity does not determine the severity level of a sample. If a malware
program contains much more than the average number of functions at a certain level,
its severity level is boosted to a higher level. If a malware program contains only a few
functions at a higher level and most functions at a lower level, it should still be classified
to the higher level [21].

8 M. Li and B. Fung

Fig. 3: The procedure to classify an executable.

To solve the aforementioned problem, we replace the functional similarity accumulation-
based classification module with an artificial neural network. As is well-known, artifi-
cial neural networks are good at pattern recognition for classification. They implicitly
learn the patterns that are correlated with each class from the training data. And they
can approximate any function to arbitrary accuracy [18]. Therefore, we incorporate a
neural network in our proposed malware severity classification model.

The neural network is a feedforward neural network. The input is a feature vector
of dimension m formed in the previous step. It is fed to l fully-connected (FC) hidden
layers with Relu as the activation function:

vl(x) = FCl(...FC1(x)...)

where FCi(vi−1(x)) = Relu(Wivi−1(x)+bi)

Then vl(x) is fed to another FC layer with the output of dimension c, which is the
number of classes (i.e., severity levels), and followed by a so f tmax layer:

y(x) = so f tmax(Wovl(x)+bo) (3)

The output y(x) ∈ Rc is the probability distribution that the query sample is at each
severity level. Figure 3 shows the procedure to process an executable and classify it
with the feed forward neural network.

In the training phase, we use the feature vectors of training samples and their sever-
ity level labels to train the feed forward neural network. We use cross entropy loss as
the objective function and Adam [22] as the optimizer with the initial learning rate
1e−4. The number of hidden layers and the dimensions of the hidden layers are hyper-
parameters. We consider 1,2,3 hidden layers and 256,128,64 as the candidate dimen-
sions. We use grid search for tuning hyper-parameters.

In the test phase, we just feed the feature vectors of test samples to the neural net-
work and it computes the probability that the samples belong to each severity.

A Novel Neural Network-based Malware Severity Classification System 9

5 Experiments

In this section, we present the evaluation of our proposed severity classification method.
The major evaluation metric is accuracy:

accuracy =
number o f correctly classi f ied samples

number o f samples to classi f y
(4)

We also report the precision, recall, and F1 for each severity level (class):

precision =
number o f samples correctly classi f ied to the class

number o f samples classi f ied to the class

recall =
number o f samples correctly classi f ied to the class

number o f samples belonging to the class

F1 =
2∗ precision∗ recall

precision+ recall

5.1 Dataset

Table 1: Statistics of the dataset.

Severity
Training Validation Test

of exec # of func # of exec # of func # of exec # of func
Level 1 169 67,933 56 23,541 56 21,869
Level 2 724 177,361 216 54,849 216 59,178
Level 3 181 10,066 39 2,952 39 3,126
Level 4 181 6,391 53 2,075 53 1,690
Level 5 96 30,443 19 5,650 19 6,719
Level 6 181 2,223 55 344 55 695
Level 7 31 6,178 7 2,712 7 2,909
Level 8 56 5,934 11 1,478 11 2,238
Total 1,619 306,529 456 93,601 456 98,424

Based on the Kaspersky Lab Threat Level Classification tree [21], we create a
dataset of 8 severity levels. There are 1619 malware samples in the training set, 456
in the validation set, and 456 in the test set. We use SHA256 checksum to ensure that
there is no repetition between those three sets. The statistics of the dataset is given in
Table 1. The types of malware included in our dataset at each severity level are shown
in Table 2.

10 M. Li and B. Fung

Table 2: Types of malware included in each severity level.
Severity Malware types
Level 1 Hoax,HackTool
Level 2 Trojan-Banker,Trojan-Downloader,Trojan-PSW,Trojan-Ransom,Trojan-Spy
Level 3 Trojan
Level 4 Backdoor
Level 5 Virus
Level 6 Worm
Level 7 Email-Worm
Level 8 Net-Worm

Table 3: Accuracy of different methods on the test set.

Method Accuracy
Our method 91.9%

Mosk2008OpBi 82.2%
Bald2013Meta 90.4%
Saxe2015Deep 87.5%
Mour2019CNN 27.0%

Li2021Func 73.2%

5.2 Malware Classification Methods For Comparison

In the evaluation, we use the following state-of-the-art malware classification methods
to compare with our model:

– Mosk2008OpBi: Moskovitch et al. propose to use TF or TF-IDF of opcode bi-
grams as features and use document frequency (DF), information gain ratio, or
Fisher score as the criterion for feature selection [27]. They apply Artificial Neu-
ral Networks, Decision Trees, Naı̈ve Bayes, Boosted Decision Trees, and Boosted
Naı̈ve Bayes as their malware classification models.

– Bald2013Meta: Baldangombo et al. propose to extract multiple raw features from
PE headers and use information gain and calling frequencies for feature selection
and PCA for dimension reduction [6]. They apply SVM, J48, and Naı̈ve Bayes as
their malware classification models.

– Saxe2015Deep: Saxe and Berlin propose a deep learning model that works on four
different features: byte/entropy histogram features, PE import features, string 2D
histogram features, and PE metadata numerical features [35].

– Mour2019CNN: Mourtaji et al. convert malware binaries to grayscale images and
apply a convolutional neural network on malware images for malware classifica-
tion [28]. Their CNN network has two convolutional layers followed by a fully-
connected layer.

– Li2021Func: Li et al. propose to group assembly functions to clusters, and compute
the similarity of a query executable to a malware family based on the comparison

A Novel Neural Network-based Malware Severity Classification System 11

of the number of clusters of the family related to it and the number of clusters
related to a median sample of the training set in the family [25]. We directly replace
malware families with severity levels as the class labels to apply their method to this
severity classification problem.

5.3 Experiment Settings

The experiments are conducted on a server with two Xeon E5-2697 CPUs, 384 GB of
memory, and four Nvidia Titan XP graphics cards. The operating system is Windows
Server 2016.

Our proposed severity classification system and Li2021Func are developed with
Java 11, and the feedforward neural network is developed with Deeplearning4j [39].
Other baseline methods are implemented with Python 3.7.9. The traditional machine
learning models are implemented with scikit-learn 0.23.2 [31], and neural networks are
implemented with PyTorch 1.6.0 [30].

5.4 Results

The classification accuracy of different methods is shown in Table 3. Our proposed
model achieves the best classification accuracy among all methods. Bald2013Meta
achieves the second best accuracy, which means the features extracted from PE head-
ers are also informative. However, PE headers only provide peripheral information of
an executable, thus, it would not provide as much insight and interpretability as our
method since our method is based on the analysis of the malware functionality.

Even though Li2021Func is also based on the functionality analysis of malware,
it achieves inferior accuracy because of the way it computes the class that a sample
belongs to. The severity level of a malware sample is determined by the level of its
most threatening behavior, and a greater than average number of behaviors existing
in one executable boosts its severity level. However, Li2021Func would classify an
executable to the level of most behaviors because it is correlated to the most number of
clusters at that level. This leads to incorrect classification results.

The precision, recall, and F1 of our model on each severity level is shown in Table 4.
Our model performs well for most severity levels except severity level 7. The inferior
F1 on level 7 is because we have fewer training samples at severity level 7.

5.5 Classification Result Interpretation

Figure 4 shows an example of the interpretation module of our model. On the left, it
lists the assembly functions of a query executable and the function ”sub 408CF3” is
selected. On the right, it shows the assembly functions in a cluster that are semantically
equivalent to ”sub 408CF3”. They are all from the same cluster ”level 1 Cluster95”,
which is a cluster of severity level 1.

12 M. Li and B. Fung

Table 4: Experiment results on each severity level.
Severity Level Precision Recall F1-score

Level 1 1.00 0.79 0.88
Level 2 0.87 1.00 0.93
Level 3 0.97 0.90 0.93
Level 4 1.00 0.81 0.90
Level 5 0.83 0.79 0.81
Level 6 1.00 0.95 0.97
Level 7 0.73 0.69 0.71
Level 8 1.00 0.82 0.90

Weighted avg 0.93 0.92 0.92

Fig. 4: An example of interpretation for classification results.

6 Discussions

As is shown in the previous section, our malware severity classification model can ex-
plain its classification results by pointing out which functions of the query executable
and which function clusters contribute to the classification result. This is the inter-
pretability inherited from the method proposed by Li et al. [25]. However, the neural
network module is not directly interpretable. This is a limitation since different func-
tions are not equally important to determining its severity level and it cannot explain
how much each assembly function contributes to the classification result. One direction
of our future work is to improve the interpretability of the severity classification system
so that it can quantify the importance of each assembly function related to its severity.

7 Conclusion

In this paper, to classify the severity levels of malware programs, we propose a neural
network-based model that is applied on assembly code function clusters. The method
has the same interpretability as the method proposed by Li et al. [25] to point out which

A Novel Neural Network-based Malware Severity Classification System 13

functions contribute to the classification, and it has a better ability to implicitly learn
patterns of functionalities to provide accurate severity level estimation of unknown mal-
ware samples. It also outperforms previously proposed methods for malware classifica-
tion on the severity classification task.

Acknowledgment

This research was funded by NSERC Discovery Grants (RGPIN-2018-03872), Canada
Research Chairs Program (950-230623), and the Canadian National Defence Innovation
for Defence Excellence and Security (IDEaS W7714-217794/001/SV1). The IDEaS
program assists in solving some of Canada’s toughest defence and security challenges.
The Titan Xp used for this research was donated by the NVIDIA Corporation.

References

1. Abusitta, A., Li, M.Q., Fung, B.C.M.: Malware classification and composition analysis: A
survey of recent developments. Journal of Information Security and Applications (JISA)
59(102828), 1–17 (June 2021)

2. Amer, E., Zelinka, I.: A dynamic windows malware detection and prediction method based
on contextual understanding of api call sequence. Computers & Security 92, 101760 (2020)

3. Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware detection using
dynamic analysis. Journal in Computer Virology 7(4), 247–258 (2011)

4. Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the
static/dynamic gap. In: Proceedings of the 5th ACM workshop on Security and artificial
intelligence. pp. 3–14. ACM (2012)

5. Bagnall, R.J., French, G.: The malware rating system (mrs)™ (2001)
6. Baldangombo, U., Jambaljav, N., Horng, S.J.: A static malware detection system using data

mining methods. arXiv preprint arXiv:1308.2831 (2013)
7. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code. Journal in

Computer Virology 2(1), 67–77 (2006)
8. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings

of the 34th annual ACM Symposium on Theory of Computing. pp. 380–388 (2002)
9. Chen, J., Alalfi, M.H., Dean, T.R., Zou, Y.: Detecting android malware using clone detection.

Journal of Computer Science and Technology 30(5), 942–956 (2015)
10. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random

projections and neural networks. In: Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. pp. 3422–3426. IEEE (2013)

11. Dai, J., Guha, R.K., Lee, J.: Efficient virus detection using dynamic instruction sequences.
JCP 4(5), 405–414 (2009)

12. Damodaran, A., Di Troia, F., Visaggio, C.A., Austin, T.H., Stamp, M.: A comparison of
static, dynamic, and hybrid analysis for malware detection. Journal of Computer Virology
and Hacking Techniques 13(1), 1–12 (2017)

13. Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K., Corona, I., Giacinto,
G., Roli, F.: Yes, machine learning can be more secure! a case study on android malware
detection. IEEE Transactions on Dependable and Secure Computing (2017)

14. Ding, S.H.H., Fung, B.C.M., Charland, P.: Asm2Vec: Boosting static representation robust-
ness for binary clone search against code obfuscation and compiler optimization. In: Pro-
ceedings of the 40th International Symposium on Security and Privacy (S&P). pp. 38–55.
IEEE Computer Society (May 2019)

14 M. Li and B. Fung

15. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-optimal
malware specifications from suspicious behaviors. In: Security and Privacy (SP), 2010 IEEE
Symposium on. pp. 45–60. IEEE (2010)

16. Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: A survey. Journal of
Information Security 2014 (2014)

17. Gibert, D., Mateu, C., Planes, J.: Hydra: A multimodal deep learning framework for malware
classification. Computers & Security p. 101873 (2020)

18. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal ap-
proximators. Neural networks 2(5), 359–366 (1989)

19. Huang, W., Stokes, J.W.: Mtnet: a multi-task neural network for dynamic malware clas-
sification. In: Proceedings of the International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. pp. 399–418. Springer (2016)

20. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on integrated
static and dynamic features. Journal of Network and Computer Applications 36(2), 646–656
(2013)

21. Kaspersky, L.: Rules for classifying (2020), https://encyclopedia.kaspersky.com/
knowledge/rules-for-classifying/

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

23. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In: Proceed-
ings of the 10th ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD). pp. 470–478. ACM (2004)

24. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection
using structural information of executables. In: International Workshop on Recent Advances
in Intrusion Detection. pp. 207–226. Springer (2005)

25. Li, M.Q., Fung, B.C.M., Charland, P., Ding, S.H.H.: A novel and dedicated machine learning
model for malware classification. In: Proceedings of the 16th International Conference on
Software Technologies. pp. 617–628 (2021)

26. Li, M.Q., Fung, B.C., Charland, P., Ding, S.H.: I-mad: Interpretable malware detector using
galaxy transformer. Computers & Security p. 102371 (2021)

27. Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., Elovici, Y.: Un-
known malcode detection using opcode representation. In: Proceedings of the IEEE Interna-
tional Conference on Intelligence and Security Informatics, pp. 204–215. Springer (2008)

28. Mourtaji, Y., Bouhorma, M., Alghazzawi, D.: Intelligent framework for malware detection
with convolutional neural network. In: Proceedings of the 2nd International Conference on
Networking, Information Systems & Security. p. 7. ACM (2019)

29. Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E.D., Ross, G., Stringhini, G.: Ma-
madroid: Detecting android malware by building markov chains of behavioral models (ex-
tended version). ACM Transactions on Privacy and Security (TOPS) 22(2), 1–34 (2019)

30. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., Lerer, A.: Automatic differentiation in pytorch. Neural Information Processing
Systems NIPS 2017 Autodiff Workshop (2017)

31. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

32. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.: Malware detection
by eating a whole exe. arXiv preprint arXiv:1710.09435 (2017)

33. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: Automating the
hidden-code extraction of unpack-executing malware. In: Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC’06). pp. 289–300. IEEE (2006)

https://encyclopedia.kaspersky.com/knowledge/rules-for-classifying/
https://encyclopedia.kaspersky.com/knowledge/rules-for-classifying/

A Novel Neural Network-based Malware Severity Classification System 15

34. Santos, I., Devesa, J., Brezo, F., Nieves, J., Bringas, P.G.: Opem: A static-dynamic approach
for machine-learning-based malware detection. In: Proceedings of the International Joint
Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions. pp. 271–280. Springer (2013)

35. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimensional
binary program features. In: Proceedings of the 10th International Conference on Malicious
and Unwanted Software (MALWARE). pp. 11–20. IEEE (2015)

36. Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection of new
malicious executables. In: Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on. pp. 38–49. IEEE (2001)

37. Sedgewick, R., Wayne, K.: Algorithms. Addison-Wesley Professional (2011)
38. symantec: Severity assessment: Threats, events, vulnerabilities, risks (2006)
39. Team, E.D.D.: DL4J: Deep Learning for Java (2016), https://github.com/eclipse/

deeplearning4j
40. Vasan, D., Alazab, M., Wassan, S., Safaei, B., Zheng, Q.: Image-based malware classification

using ensemble of cnn architectures (imcec). Computers & Security p. 101748 (2020)
41. Verma, V., Muttoo, S.K., Singh, V.: Multiclass malware classification via first-and second-

order texture statistics. Computers & Security 97, 101895 (2020)
42. Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S.: A survey on malware detection using data mining

techniques. ACM Computing Surveys (CSUR) 50(3), 41 (2017)

https://github.com/eclipse/deeplearning4j
https://github.com/eclipse/deeplearning4j

	A Novel Neural Network-based Malware Severity Classification System

