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Abstract
Software vulnerabilities are a challenge in cybersecurity. Manual
security patches are often difficult and slow to be deployed, while
new vulnerabilities are created. Binary code vulnerability detection
is less studied and more complex compared to source code, and this
has important practical implications. Deep learning has become an
efficient and powerful tool in the security domain, where it pro-
vides end-to-end and accurate prediction. Modern deep learning
approaches learn the program semantics through sequence and
graph neural networks, using various intermediate representation
of programs, such as abstract syntax trees (AST) or control flow
graphs (CFG). Due to the complex nature of program execution, the
output of an execution depends on the many program states and
inputs. Also, a CFG generated from static analysis can be an overes-
timation of the true program flow. Moreover, the size of programs
often does not allow a graph neural network with fixed layers to
aggregate global information. To address these issues, we propose
DeepEXE, an agent-based implicit neural network that mimics the
execution path of a program. We use reinforcement learning to en-
hance the branching decision at every program state transition and
create a dynamic environment to learn the dependency between
a vulnerability and certain program states. An implicitly defined
neural network enables nearly infinite state transitions until con-
vergence, which captures the structural information at a higher
level. The experiments are conducted on two semi-synthetic and
two real-world datasets. We show that DeepEXE is an accurate and
efficient method and outperforms the state-of-the-art vulnerability
detection methods.

CCS Concepts
• Security and privacy → Software reverse engineering; •
Computing methodologies → Neural networks.
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1 Introduction
Software vulnerabilities have been an ongoing challenge in the
cybersecurity domain. It is an inevitable problem, as the scale of
software grows in complexity. Many malicious cyber attacks exploit
vulnerabilities within systems and can cause tremendous economi-
cal and security damages. Often, the security analysts cannot even
patch vulnerabilities fast enough, as new ones are created [2, 18].
CommonVulnerability Exposures (CVE) show that the total number
of vulnerabilities more than doubled from 2016 to 2017 and it con-
tinued to increase throughout the recent years1. Many traditional
static and dynamic analysis methods are manually expensive and
inefficient. This motivates automated and end-to-end approaches,
such as neural networks.

Vulnerabilities can be detected at either the source code or binary
code level. Source code provides much more meaningful semantics,
syntax, and structures, which in turn help both analysts and ma-
chine learning models to track vulnerabilities. Existing methods at
the source code level are accurate and capable of finding complex
vulnerabilities [24, 37]. For binary code, as much information is
lost during the compilation process, it is much harder to detect
vulnerabilities. Moreover, the absence of the original source is a
practical problem under many circumstances, such as third-party
or off-the-shelf programs. Binary code is best analyzed as assembly
code, a form of intermediate representation that provides analysts
readable content. Assembly code contains instructions that provide
some semantics and structures of the program. In this paper, we

1Statistics on Common Vulnerabilities and Exposures (CVE) Details
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are only interested in binary code vulnerability detection, as it is
still a prevalent challenge in the security domain.

Deep learning methods aim to learn the latent representation
of a piece of binary code for classification. Existing works for bi-
nary code learning can be categorized into two main streams. The
first approach focuses on text-based representation learning to
extract the token semantics. The instructions are broken down
and embedded into vectors through some unsupervised learning
such as Word2Vec [39], then these vectors are fed into a sequen-
tial deep learning model for classification. Instruction2Vec [33],
HAN-BSVD [53], and BVDetector [46] all use this semantic-based
approach for detection. The second method involves collecting and
aggregating structural information at a higher level. Usually, CFGs
are parsed from the assembly code basic blocks, which create de-
pendencies between different blocks of code. This is crucial in
vulnerability detection, since programs are complex and hierar-
chical, and vulnerabilities are often triggered in specific program
states. Using only the semantics of instruction tokens are often
insufficient. Gemini [52], Diff [38], Order [54], InnerEye [57],
and BinDeep [45] all use graph-based methods for binary code
structure embedding.

Unfortunately, there are major drawbacks to either approach that
can hinder the performance or scalability of the model. The more
obvious disadvantage is the scalability when large programs are
present. Semantic-based approaches usually introduce a maximum
input length, in order to prevent vanishing gradient, especially
for large and deep sequence models. Structure-based approaches
perform graph neural network (GNN) for aggregating node informa-
tion. The number of layers dictates the receptive field of the model
by performing 𝑘-hop message passing, thus limiting the amount
of global information that can be learned. Both of them need to
carefully manage the memory footprint during training. The other
drawback is the absence of modelling how programs naturally run.
Unlike natural language, programs are executed dynamically. The
state of a program can be different, depending on the input and
its previous states. By using fixed graph learning techniques, the
dynamic nature of the program structure is difficult to capture and
thus lead to undesired performance.

Given assembly code, one has to respectively find a program
execution path that can potentially yield the same final program
state. In general, a sound and complete static analysis method gen-
erates a representation of the code (i.e., CFG) with overestimation.
This means paths created in a graph can potentially never execute.
Ideally, symbolic execution [6, 27] is one of the formal methods that
enable one to compare and verify all the possible paths through
equivalence checking. However, its applicability is limited, as it
requires storing all the possible program states associated with
all possible execution paths. This will cause the path explosion
problem [51], especially for large functions with loops. Existing
works try to address the pathfinding problem statically from an in-
complete view, focusing on partial or local structures. For example,
DeepBinDiff [16] and InnerEye [57] match the CFGs based on
semi-exhaustive path comparison, which is not scalable, and also
misses the iterative graph learning. Genius [52], BinGo [9], and
Tracelet [13] use partial path matching, which lacks robustness
when programs are easily altered through artificial means. Bina-
ryAI [54] uses graph convolution for message passing. However,

this approach does not consider mutually exclusive dependencies
among edges, covering invalid paths. The message passing mecha-
nism also assumes a static adjacency matrix, which lacks high-level
guidance from a global state. The current research in this domain
lacks a dedicated way to simulate the program state transitions
along the guided valid execution path, with a focus on a higher
order of node neighbourhood proximity.

Inspired by symbolic execution for path-finding, we propose a
neural network model, DeepEXE, which mimics a program state-
guided execution process over the CFG to detect binary code vulner-
abilities at the function or file level. DeepEXE relies on an execution
agent that simulates and learns which direction to take, resulting
in simulated paths across different epochs. The combined node
embedding represents the program state, and the branching ac-
tions guiding the program flow are based on the program state and
code semantics of the current node. DeepEXE leverages the implicit
neural network paradigm, where only the final program state is
stored before back-propagation. This enables a large simulation
step over the execution flow. Compared to the existing methods
with only local or partial graph information, DeepEXE enables
modelling on the highest global-level view over the execution path.
Our contributions are as follows:

• We propose DeepEXE, a neural program execution model
over a CFG for binary vulnerability detection. It simulates
a semantic-guided decision process for stepping through a
given function’s CFG.

• To simulate the program execution steps over the graph, we
propose a learning agent for making branching decisions with
an implicit neural network structure for program state tran-
sitions. It enables modelling program semantics on a higher
level views over the execution path.

• To address the scalability and limited receptive field of graph
neural networks, we use the implicit deep learning paradigm
for nearly infinitemessage passing, which significantly enables
global information aggregation in the graph and reduces the
memory footprint.

• We conduct experiments on two semi-synthetic datasets and
two real world vulnerability datasets. We compare our meth-
ods against several state-of-the-art approaches and show that
DeepEXE can consistently outperform the baselines in all sce-
narios.

2 Related Work
Vulnerability Detection While vulnerability detection can be
conducted at either the source code or binary code level, we will
discuss them together, since most methods can be applied to both
levels, with some modifications. Machine learning-based (non-deep
learning) methods involve the manual extraction of metrics and
the input of these metrics as features [22, 44]. The metrics can be
multi-level and leverage the complexity characteristics of a pro-
gram, such as the number of nested loops within a function. Manual
feature extraction is more expensive and requires expert knowledge.
Also, the features need to be constantly updated to accommodate
changes in the codebase. Text-based deep learning is very popular
for source code vulnerability detection, where different granularity
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levels can be leveraged in order to obtain text features or embed-
dings. Li et al. group tokens based on semantics and syntax into
slices or gadgets [36, 37, 56], and feed them into a LSTM model.
For binary code, Instruction2Vec [34] and Bin2img [33] use instruc-
tion embedding as a preprocessing step. Similar to Word2Vec, the
embedding contains contextual dependency and can be used to
detect vulnerabilities at a later stage, which is a 1D CNN model.
These models solely focus on the semantics of the tokens, where the
structural information is omitted. There are several GNN models at
the source code that use different graphs that can be parsed from
source code, such as abstract syntax trees, data dependence graphs,
and control flow graphs [8, 41, 55]. For GNNmessage passing, there
are multiple styles that we will discuss next.

Graph Neural Networks and Implicit Models In binary code,
GNN methods aim at learning the structures by first parsing the
assembly code into control flow graphs and performing message
passing. There are multiple variants related to graph neural net-
works. The pioneer works of graph neural networks are mostly
associated with recurrent graph neural networks [11, 19, 20, 35, 43],
where the node representations are aggregated with a fixed set
of parameters. Convolutional graph neural networks [23, 29, 47]
expand the GNN by using multiple layers with different parameters.
This approach addresses the cyclic mutual dependencies architec-
turally [50] and is more efficient and powerful. However, GNNs
struggle to capture long-range dependencies in large graphs, due
to the finite number of message passing iterations. One potential
solution is the recently studied implicit neural networks. The im-
plicit learning paradigm is different from traditional deep learning,
as it solves the solution for a given equilibrium problem, which is
formulated as an nearly infinite layer network. Implicit models have
previously shown success in domains such as sequence learning [5],
physics engine [14], and graph neural networks [21].

3 Preliminaries
CFGs and Basic Blocks The input of the model is a binary file in
assembly code. The assembly functions and their CFGs are both ob-
tained from the IDA Pro disassembler 2. Each function is regarded
as a graph G that contains segmented code blocks called basic
blocks, which are sequences of instructions without any jump or
call to other blocks. As the input to the neural network, a graph
G = (𝑽 ,𝑨) has the blocks 𝑽 ∈ R𝑛×𝑣 with 𝑛 nodes, 𝑣 tokens, and
the adjacency matrix𝑨 ∈ R𝑛×𝑛 .𝑨 defines all directed edges within
the graph and is obtained by extracting call statements between
the blocks. Note that 𝑨 has 0 across the diagonal element and is
non-symmetrical. Moreover, we apply the re-normalization trick
to 𝑨 [29], in order to prevent numerical instabilities during deep
network training. For file level classification, we merge the function
graphs as a whole, based on the function call information. More-
over, additional information, such as comments and names, are
removed. The basic block 𝑽 only contains operations and operands
of instructions.

Graph Neural Network GNN is a topological learning tech-
nique for input data with graph structures. A graph is represented as
G = (𝑉 , 𝐸) that contains 𝑛 := |𝑉 | nodes and 𝑒 := |𝐸 | edges. An edge

2IDA Pro

𝐸𝑖 𝑗 := (𝑉𝑖 ,𝑉𝑗 ) represents the directed or un-directed connection be-
tween node (𝑖, 𝑗). In practice, the edge information is represented in
the form of an adjacency matrix 𝑨 ∈ R𝑛×𝑛 . Generally, one can ob-
tain some initial node embedding𝑈 ∈ R𝑛×ℎ before feeding into the
network. The message passing (i.e. node aggregation) is performed
at each GNN layer as follows:

𝑋 𝑡+1 = 𝜙 (𝑋 𝑡𝑊 𝑡𝑨𝑡 ) (1)

where𝑊 𝑡 ∈ Rℎ×ℎ is a trainable parameter at layer 𝑡 . Each mes-
sage passing step aggregates 1-hop neighbour information into the
current node given that an edge exists in 𝑨. The final node vector
𝑋𝑇 then learns the topological information from all 𝑇 -hop away
neighbours. In case of graph classification, a pooling layer such as
add pooling can be used to obtain the graph embedding 𝑮:

𝑮 =

𝑛∑︁
𝑖

𝑋𝑇
𝑖,𝑗 ,∀ 𝑗 = 1, ..., ℎ (2)

REINFORCE Algorithm Reinforcement learning is a class of
algorithms that specify the actions within an environment that op-
timizes the reward 𝑟 . In particular, the REINFORCE algorithm [49]
is a form of policy gradient algorithm that computes the stochastic
gradient with respect to the reward. It involves a state 𝑠 that can
be obtained from a neural network, an agent 𝑎 that specifies the
action space A, and a policy 𝜋 (𝑎 |𝑠) that takes the action 𝑎 given a
state 𝑠 with probabilities. Usually, the policy is randomly initialized
and the algorithm iterates through epochs, where backpropagation
is performed at each epoch to update the policy in the context of a
neural network setup.

Problem StatementWe define several neural network modules
within our architecture 𝐹 = (𝐹𝑆 , 𝐹𝐼 , 𝐹𝐴), where 𝐹𝑆 is the sequential
model for semantics embedding, 𝐹𝐼 is the implicit graph neural
network model for structure and node embedding, and 𝐹𝐴 is the
reinforcement learning agent for dynamic pathing optimizer, given
certain program states. The goal is to predict whether each function
contains a vulnerability. Given the input graph G = (𝑽 ,𝑨), our
model learns several levels of information and aggregates them
together for the final output of the model, which is a binary clas-
sification score 𝐹 : G → 𝑦 ∈ R. Formally, we define the following
learning task parameterized by 𝜃 :

𝑦 = argmax
𝑦′∈0,1

𝐹𝜃 (𝑦′ |G, 𝜃 );𝜃 = argmax
𝜃

𝐹𝜃 (𝑦′ = 𝑦 |G, 𝜃 ) (3)

4 Neural Control Flow Execution
We design the DeepEXE architecture with semantic-driven and
execution-guided principles. We show the overall architecture in-
cluding the input preprocessing, semantics learning, state transition,
and predictions and training in Figure 1.

CFGs extracted from disassembly contain crucial information
about the program logic and paths, which dictates the outputs and
functionalities of assembly code. An important characteristic to
differentiate CFGs from graphs in other domains, such as social
networks or chemistry, is that node states should be dependent on
the execution logic. Programs are executed following specific orders
based on the dependencies among the edges conditioned by the
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Layer Norm
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መ𝐴𝑡
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𝑋𝑡+1 = 𝜙(𝑊𝑋𝑡 መ𝐴𝑡 + 𝑏Ω 𝑈 )

Node State: 𝑋𝑡 (𝑋0 = 𝑈)

Prediction Layer

Labels

Loss

𝑋∗ = 𝜙(𝑊𝑋∗ መ𝐴∗ + 𝑏Ω 𝑈 )

Upon Equilibrium

CFG

0 1 1 0 1 0 0
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

𝐴 =𝑉 =

Preprocessing and 
Tokenization

Data Process:

Forward Pass:

Backward Pass:

×

Direct Gradient Computation on Equilibrium 𝑋∗

State Transitions are looped within one epoch

Input/Preprocess Semantics Learning State Transitions/Topology Learning Prediction/LossColor Legend:

Figure 1: Overall architecture of DeepEXE. Four major segments of our model include input preprocessing, node embedding
through sequential model, state transition and structure learning, and prediction and training. DeepEXE combines the local
instruction semantics with high-level topological information, where program dependencies are captured through the use of a
REINFORCE agent and a GNN with much larger receptive field.

𝑋1
0

𝑋2
0

𝑋4
0 𝑋5

0

Start 

𝑋6
0

𝑋1
0, 
𝑋1
3

𝑋2
4 𝑋3

1

𝑋4
5 𝑋5

0

Start 

𝑋6
2

End End

1: 𝑋3
1 = 𝑋1

0𝑋3
0

Not executed

EndEnd

𝑋1
0

𝑋2
0 𝑋3

1

𝑋4
0 𝑋5

2

Start 

𝑋6
0

End

Not executed

End

Not executed

Not executed

Full CFG Epoch 1 Epoch 2

𝑋3
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0
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1𝑋5
0

Figure 2: In each epoch, the model simulates one execution session with a specific execution path consisting of multiple steps.
At step 𝑖, the executor chooses the most likely branch for node 𝑗 to move next based on program state and node semantics. This
is one execution with a loop (Epoch 1) and one without (Epoch 2). The model then updates the program state by combining the
next node’s code semantics.

program state, where the results and semantics can substantially
differ when orders vary.

We borrow the idea of symbolic execution [6] and create a neural
CFG executor. A training epoch contains a full iteration of the
executive session, which corresponds to a concrete execution path.
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Note that each epoch can have completely different execution paths,
as the model learns.

An example of the learning process is shown in Figure 2. The
training consists of many training epochs. In Figure 2, the path for
Epoch 1 goes into a loop, while Epoch 2 directly goes into the exit
point. The execution agent performs multiple steps within an epoch.
It starts from the entry node, then transitions to other possible nodes
in each step. The decision on which branch to select depends on
the program state 𝑋 , and 𝑋 𝑖

𝑗
indicates the updated program state at

step 𝑖 for node 𝑗 . After jumping to the next node, the agent updates
the program state and repeats the decision process until it reaches
an equilibrium state.

4.1 Token Semantics
In this section, we discuss the preprocessing, embedding, and se-
quential learning task. A basic block contains a stream of instruc-
tions, which can be further broken down into operations and operands,
and be tokenized. We treat the entire block as one sentence and ap-
ply a subword and unigram [30, 31] model for the token encoding,
which mitigates the out-of-vocabulary problem. Assembly code
is compiler dependent and can easily result in out-of-vocabulary
(OOV) tokens. A way to address the OOV issue is to break down the
tokens into characters for encoding. Even with a fixed vocabulary
size, unseen tokens can be encoded by matching the subword to
their closest known tokens. Moreover, it is not language dependent
and can be trained from scratch very efficiently. We increase the
subspace representation power by simply applying an embedding
layer 𝐸 : 𝑽 → R𝑛×𝑟×ℎ next, where 𝑟 denotes the sequence length
and ℎ denotes the hidden dimension. Note that we use ℎ as the
hidden dimension throughout the paper for simplicity, but different
dimensions can be used for any layers in practice. The sequential
model used in this task is a bi-directional GRU [10]. The output of
the GRU layer 𝑼 ∈ R𝑛×𝑟×ℎ further embeds the token semantics by
taking contextual information into account. In order to obtain a
representation for the entire basic block, a maximum or average
pooling along the time dimension is used to compute 𝑼 ∈ R𝑛×ℎ for
block embedding.

4.2 Program State Guided Execution and
Functional Representation

Program State Initial node representation𝑈 establishes the seman-
tics within basic blocks, but it is not sufficient to simply globally
aggregate 𝑈 for a high-level representation of the graph. In this
regard, a reinforcement agent 𝑎𝑡 (𝑠𝑡−1) that decides the next execu-
tion path is defined, given the previous program state 𝑠𝑡−1. Unlike
traditional neural networks that perform forward and backward
pass one at a time, our approach internally loops through multiple
states 𝑡 within a training epoch. We define the program state as
a linear transformation of the node state 𝑋 𝑡 , where 𝑋 0 = 𝑈 , and
some trainable parameter𝑊𝑠 ∈ Rℎ×1:

𝑠𝑡 = 𝜎 (𝑋 𝑡𝑊𝑠 ) (4)

Agent Reparameterization Due to the backpropagation algo-
rithm, categorical variables are hard to train in this stochastic envi-
ronment in the neural network. This layer effectively becomes non-
differentiable when using normal sampling process such as argmax.

A solution is to use the Gumbel softmax [26] to re-parameterize
the state while maintaining the ability to backpropagate efficiently
during training. Gumbel softmax is a continuous and differentiable
distribution that can sample categorical distribution, it is given by:

𝑧𝑡𝑖 =
𝑒𝑥𝑝 ((𝑙𝑜𝑔(𝑠𝑡−1

𝑖
) + 𝑔𝑖 )/𝜏)

Σ𝑘
𝑗
𝑒𝑥𝑝 ((𝑙𝑜𝑔(𝑠𝑡−1

𝑗
) + 𝑔 𝑗 )/𝜏

, for 𝑖 = 1, ..., 𝑘 (5)

where 𝑧𝑡
𝑖
is the sample drawn from the state, 𝑔𝑖 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙 (0, 1)

are samples drawn i.i.d from the Gumbel distribution, and 𝜏 is
the temperature controlling the discreteness of the new samples.
Gumbel softmax works better with a lower value for 𝜏 ∈ [0,∞] as
it approaches to argmax smoothly, whereas setting a large value
makes the samples become uniform.

AdjacencyMatrix Update In each state update, the agent walks
through the graph with updated program state to capture the inter-
mediate execution path that leads to certain results. We have the
flexibility to design the agent to be either hard or soft. A soft agent
𝑎𝑡 = 𝑧𝑡 preserves the probabilities drawn from Gumbel softmax,
which implies that a program information can flow in different ex-
ecution paths at the same time based on the probabilities

∑
𝑖 𝑧

𝑡
𝑖
= 1.

A hard agent mimics the execution path and is one-hot, leading to
one strictly one execution at a time. The agent 𝑎𝑡 ∈ R𝑛×1 is then
used to select a path and generate the state-dependent adjacency
matrix 𝑨̃𝑡 , which is updated as: 𝑨̃𝑡 = 𝑨𝑎𝑡 .

4.3 Executor Stepping Via Implicit GNN
Implicit GNN With the updated adjacency matrix from the agent,
one can perform graph neural network on the CFG to aggregate
neighbour information into the nodes. However, assembly code
can be large for various reasons. For example, a GCC compiler
can use an optimization level that minimizes the execution size
and reduces the size of CFGs. While GNN is a suitable approach
to learn the structural dependency of a function, it requires a pre-
defined number of layers, where each layer usually performs 1-hop
message passing. Intuitively, the vanilla GNNs do not scale well
with large graphs and can fail to capture global information. The
dependency between further nodes can be crucial to understand
the overall semantics of a program. Such long range dependency is
difficult to capture with longer edges. To alleviate the above stated
problem, we perform the program state transitions in an implicitly
defined style. In general, the transition at state 𝑡 can be written as
an implicit form of the GNN layer:

𝑋 𝑡+1 = 𝜙 (𝑋 𝑡𝑊 𝑡𝑨𝑡 +𝑈 ) (6)

𝑦′ = 𝑓𝜓 (𝑋 ∗) (7)

Such form of layer does not explicitly output a vector to be fed into
the next layer. Instead, it uses a fixed point iteration in equation 6
that aims to find the equilibrium vector state 𝑋 ∗ as 𝑡 → ∞. The
equilibrium state is then used for the prediction task in equation 7,
where 𝑓𝜓 is an output function parameterized by𝜓 for the desired
classification task. With the reinforcement agent embedded in the
updated adjacency matrix 𝑨̃∗ = 𝑨̃𝑡 : 𝑡 → ∞, our equilibrium
solution is formulated as follows:

𝑋 ∗ = 𝜙 (𝑋 ∗𝑊 𝑨̃∗ + 𝑏Ω (𝑈 )) (8)
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𝑊 ∈ Rℎ×ℎ and Ω ∈ Rℎ×ℎ are parameters, and 𝑈 is the initial
node feature. Note that only a single layer is required to produce
the updated node representation 𝑋 iteratively instead of multiple
stacking layers. We also inject𝑈 into the equation through some
affine transformation 𝑏Ω . This ensures that original node semantics
is preserved throughout the iterations when solving for the fixed
point [5].

Fixed Point Acceleration Although the equilibrium point can
be obtained from iterating equation 8 infinitely, it is not the most
efficient and stable method for convergence. More importantly, it
does not guarantee convergence. Anderson acceleration [48] is an
accelerated algorithm for finding fixed points. Given a function 𝑓 to
solve, which is equation 8 in our case, we define (1)𝑚𝑘 =𝑚𝑖𝑛{𝑚, 𝑡}
as the parameter for controlling past iteration memory by setting
𝑚 to any positive integer; (2) 𝑔(𝑥) = 𝑓 (𝑥) − 𝑥 as the residual with
the matrix 𝐺𝑡 = [𝑔𝑡−𝑚𝑡

, ..., 𝑔𝑡 ]. The root solving process using
Anderson acceleration is formulated as:

𝛼𝑡 = argmin
𝛼

| |𝐺𝑡𝛼 | |2,

where 𝛼 = (𝛼0, ..., 𝛼𝑚𝑡
) ∈ R𝑚𝑡+1 :

𝑚𝑡∑︁
𝑖=0

𝛼𝑖 = 1
(9)

𝑥𝑡+1 =
𝑚𝑡∑︁
𝑖=0

(𝛼𝑡 )𝑖 𝑓 (𝑥𝑡−𝑚𝑡+𝑖 ) (10)

Instead of computing for 𝑥𝑡+1 directly from 𝑥𝑡 , Anderson accel-
eration solves for a coefficient 𝛼 in an optimization problem that
minimizes the norm of 𝑔(𝑥).

State Transition Termination The executor terminates in
three different scenarios. (1) If the executor reaches the exit point
on the CFG, there will not be any updates to 𝑋 𝑡+1 after Equation 8,
naturally leading to an equilibrium state. (2) If the executor reaches
an equilibrium state, but not at the program exit point, it logically
indicates that further execution will not result in changes in the pro-
gram state. Therefore, it is natural to terminate. (3) If the executor
reaches a configured maximum steps.

Once 𝑋 ∗ is at equilibrium, we apply layer normalization [4] and
global average pooling layer to obtain the graph representation 𝑮:

𝑮 = LayerNorm(
∑𝑛
𝑖 𝑋

𝑇
𝑖,𝑗

𝑛
),∀𝑗 = 1, ..., ℎ (11)

The prediction task can be simply computed by a linear transfor-
mation to get the logits:

𝑦′ =𝑊𝑝𝑮,where𝑊𝑝 ∈ R1×ℎ (12)

We want to emphasize that through the use of an implicitly defined
GNN layer, it is no longer required to have multiple stacking GNN
layers to achieve higher order node aggregation. Instead, each state
transition within the layer effectively performs a message passing,
as a normal GNN layer would. This has the benefits of lowering the
memory costs, while maintaining the same level of representational
power, given similar parameter count. Moreover, the long range
dependency issue can be effectively addressed by iterating a nearly
infinite number of state transitions.

4.4 Training
While the forward pass in an implicit network possesses some nice
properties for the network discussed earlier, it is not a trivial task to
train the backward pass. Traditionally, a neural network contains
exact operations with explicitly defined input and output, where
the gradients can be computed via chain rule. We first define the
loss term 𝑙 :

𝑙 = L(𝑦,𝑦) = L(𝐹𝜓 (𝑮), 𝑦) (13)

𝐹𝜓 is the prediction rule that takes the graph embedding 𝑮 . L(·)
computes the cross entropy loss and outputs the scalar 𝑙 . Using
chain rule, the loss can be backpropagated as:

𝜕𝑙

𝜕𝜃
=

𝜕𝑙

𝜕𝑮

𝜕𝑮

𝜕𝑋 ∗
𝜕𝑋 ∗

𝜕𝜃
(14)

The terms 𝜕𝑙
𝜕𝑮 and 𝜕𝑮

𝜕𝑋 ∗ can be both computed using any autograd
software. However, the term 𝜕𝑋 ∗

𝜕𝜃
is difficult to compute, since the

equilibrium point 𝑋 ∗ is obtained through iterative root finding. If
we unroll this computation graph, the network needs to store all
intermediate gradients for every state transition. Depending on the
number of transitions, it is not a practical approach. Instead, we
write 𝑋 ∗ in its implicitly defined form:

𝑋 ∗ (𝜃 ) = 𝜙 (𝑋 ∗𝑊 𝑨̃∗ + 𝑏Ω (𝑈 )) = 𝐹𝐼 (𝑋 ∗ (𝜃 ),𝑈 ) (15)

where 𝐹𝐼 denotes the implicit graph neural network. By taking the
derivative with respect to 𝜃 , we obtain:

𝜕𝑋 ∗ (𝜃 )
𝜕𝜃

=
𝜕𝐹𝐼 (𝑋 ∗ (𝜃 ),𝑈 )

𝜕𝜃
(16)

By applying the chain rule on the right hand side of equation 16,
we expand it into the following:

𝜕𝑋 ∗ (𝜃 )
𝜕𝜃

=
𝜕𝐹𝐼 (𝑋 ∗,𝑈 )

𝜕𝜃
+ 𝜕𝐹𝐼 (𝑋 ∗,𝑈 )

𝜕𝑋 ∗
𝜕𝑋 ∗ (𝜃 )
𝜕𝜃

(17)

At this point, both 𝜕𝐹𝐼 (𝑋 ∗,𝑈 )
𝜕𝜃

and 𝜕𝐹𝐼 (𝑋 ∗,𝑈 )
𝜕𝑋 ∗ can again be obtained

using autograd software. The last unknown term 𝜕𝑋 ∗ (𝜃 )
𝜕𝜃

is com-
puted by solving the linear system. In our approach, we use Ander-
son acceleration to iteratively solve this term.

Through implicit differentiation, we directly evaluate the gradi-
ent at the equilibrium point. We avoid the computation of any inter-
mediate state transition and can efficiently backpropagate through
the network, even with a nearly infinite number of transitions. This
also has a better memory footprint.

4.5 Well-posedness
Equation (8) needs to have a unique solution 𝑋 ∗ when iterated
infinitely. Such property is called the well-posedness. According
to Gu et al. [21],𝑊 and 𝑨̃ are well-posed for 𝜙 when there is a
unique solution. First of all, the choice of 𝜙 needs to satisfy the
component-wise non-expansive (CONE) property, where most ac-
tivation functions such as ReLU, Sigmoid, and Tanh, possess such
property [17]. Then, we need to construct sufficient conditions on
𝑊 and 𝑨̃ with a CONE activation function for well-posedness. It
is stated that | |𝑊 | |∞ < 𝜅/𝜆𝑝𝑓 (𝑨̃) needs to be true, where | |𝑊 | |∞
is the infinity norm, 𝜆𝑝𝑓 (𝑨̃) is the Perron-Frobenius (PF) eigen-
value [7], 𝜅 ∈ [0, 1) is the scaling constant. Equation (8) then has a

 

1220



Dynamic Neural Control Flow Execution: an Agent-Based Deep Equilibrium Approach for Binary Vulnerability Detection CIKM ’24, October 21–25, 2024, Boise, ID, USA

unique solution. This is ensured by projecting𝑊 in each update to
satisfy this condition:

𝑊 ′ = argmin
| |𝑀 | |∞≤𝜅/𝜆𝑝𝑓 (𝑨̃)

| |𝑀 −𝑊 | |2𝐹 (18)

where | | · | |𝐹 is the Frobenius norm. Note that even with a gated
convolution which results in an updated 𝑨̃ for every iteration, we
still maintain a well-posed 𝑨̃ as it contains a strictly smaller or
equal PF eigenvalue than the original 𝐴, given the agent 𝑎 is non-
expansive, resulting in 𝜅/𝜆𝑝𝑓 (𝑨̃) ≥ 𝜅/𝜆𝑝𝑓 (𝐴).

5 Experiment
In this section, we demonstrate the ability of DeepEXE on predicting
binary code vulnerability in a variety of scenarios. To properly eval-
uate DeepEXE, we conduct experiments using two semi-synthetic
datasets and two real world datasets. The NDSS183 and Juliet Test
Suites4 are both semi-synthetic datasets commonly used as for vul-
nerability detection tasks. Though the practical implications for a
method should not solely depend on the synthetic results, as they
are less complex. For real world datasets that are larger and can con-
tain less trivial vulnerabilities, we employ the FFmpeg5 and Esh [12]
datasets. For the baseline methods, we inherit the results reported
in previous works, due to the large amount of experiments and
different setups. The evaluation metrics reported include accuracy,
precision, recall, F1 score, and area under the ROC curve (AUC).
We randomly split each dataset into 75% for training and 25% for
evaluation. Some metrics are not shown in the baselines because
of their absence in the original works. The hardware used for the
experiments includes a RTX6000 GPU, Intel Xeon Gold 5218 CPU,
and 64GB of memory. The main software used includes Python
3.9.10 and PyTorch 1.10.2 on Ubuntu 20.04.3 LTS.

5.1 Datasets
Semi-Synthetic Datasets include the NDSS18 dataset and Juliet
Test Suite. The NDSS18 dataset is a derivation from the National
Institute of Standards and Technology (NIST): NVD6 and the Soft-
ware Assurance Reference Dataset (SARD) project. NDSS18 was
first published by [37] as a source code vulnerability dataset and
later compiled to binary code by [32] for binary level detection. It
includes a total of 32,281 binary functions that are compiled using
Windows and Linux. There are two types of Common Weakness
Enumerations (CWEs)7 in NDSS18: CWE119 and CWE399. Juliet
Test Suite is a collection of 81,000 test cases in C/C++ and Java that
contain 112 different CWEs. Both datasets have nearly balanced
distributions for the labels.

Real CVE Datasets include the FFmpeg vulnerabilities and Esh
datasets, which are both extracted from real world applications or
open-source libraries. The codebase is significantly larger than the
ones in semi-synthetic datasets. Vulnerabilities are often harder to
detect in these programs, due to the much increased complexity.
FFmpeg is an open-source suite of libraries written in C for handling
media files, such as video and audio. It was first used in source code
3https://samate.nist.gov/SRD/index.php, Software Assurance Reference Dataset
4https://samate.nist.gov/SARD/test-suites, NIST Test Suites
5https://ffmpeg.org/, FFmpeg
6https://nvd.nist.gov/, National Institute of Standards and Technology
7https://cwe.mitre.org/, Common Weakness Enumeration (CWE)

vulnerability detection [55], where the authors manually collected
and labelled the data for various vulnerability commits on Github.
We compile the FFmpeg source code provided by the authors into
binary code and obtain 16,494 binary functions, where 7,257 are
vulnerable and 9,237 are non-vulnerable. The Esh dataset contains
CVE cases collected by David et al. [12], which include 8 different
CVEs: cve-2014-0160, cve-2014-6271, cve-2015-3456, cve-2014-9295,
cve-2014-7169, cve-2011-0444, cve-2014-4877, and cve-2015-6826.
In total, there are 3,379 cases and only 60 are vulnerable. The dis-
tribution of vulnerability in the Esh dataset is highly imbalanced,
which represents a more realistic scenario.

5.2 Baselines and hyperparameters
NDSS18 baselinesMaximal Divergence sequential Autoencoder
(MDSAE) was proposed by [32] and uses a deep representation
learning approach. The input to MDSAE is a sequence of binary
code instructions. We report the three best variants in this paper.
MMDSAE [1] is a modified version of MDSAE and uses a sim-
ilar approach that adds a regularization technique. The authors
propose two variants, namely MDSAE-NR and TDNN-NR, that
have similar performance. The last baseline we include for this
dataset is VulDeePecker [37], which is a source code vulnerability
detection. Instead of using binary code instructions, VulDeePecker
takes source code gadgets as input. Although this is a source code
evaluation, the underlying dataset used is the same.

Juliet baselines Bin2Vec [3] is a graph-based binary vulnera-
bility detection approach that utilizes graph convolution network
by taking the CFG as input. Instruction2Vec [34] is a representa-
tion learning approach to embed the assembly instructions into
vectors and apply the downstream vulnerability detection task. The
instruction embedding is similar to Word2Vec, it utilizes different
parts of an instruction and combines them as a single vector. The
downstream vulnerability detection is achieved by training a CNN
or Text-CNN using the vectors. The same authors later proposed an
updated version of Instruction2Vec [33] and includes a few variants,
including Word2Vec and Binary2Img. All Instruction2Vec related
methods use the assembly instructions as input and do not consider
the structural information.

FFmpeg baselines For the FFmpeg dataset, we compared Deep-
EXE to Devign [55], which provides the source code for FFmpeg.
Devign uses a gated graph recurrent network (GGRN) [40] as a
graph learning technique. Unlike binary code, where only CFG
can be extracted, Devign detects vulnearbilities at the source code
level. It takes several intermediate graph representations of source
code, such as AST, CFG, DFG, and NCS. We include several variants
of Devign, such as Bi-LSTM, GGRN with CFG or all graphs, and
Devign with CFG or all graphs. Note that we directly compare our
results on the binary code with the original results of Devign, which
are based on source code.

Esh baselines To the best of our knowledge, Esh is not used in
any other papers for vulnerability detection evaluation. The original
paper that provided this dataset evaluates it at the basic block level
and focuses on code matching. Therefore, we compare DeepEXE to
the Bi-LSTM and GCN baselines we implemented ourselves.

For the baseline methods, we directly inherit the results reported
in previous works, due to the large amount of experiments and
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Table 1: NDSS18 Dataset Evaluation

Models Input Type Accuracy Recall Precision F1 AUC
Bi-LSTM Assembly Ins. 85.38 83.47 87.09 85.24 94.89
GCN CFG 86.48 84.59 88.12 86.32 95.81

BERT [15] Assembly Ins. 50.64 100.00 50.64 67.23 50.00
DistilBERT [42] Assembly Ins. 85.64 83.01 87.65 85.27 95.42
MD-CWS [32] Assembly Ins. 85.30 98.10 78.40 87.10 85.20
MD-CKL [32] Assembly Ins. 82.30 98.00 74.80 84.00 82.10
MD-RWS [32] Assembly Ins. 83.7 94.3 78.0 85.4 83.5
MDSAE-NR [1] Assembly Ins. 87.50 99.30 81.20 89.80 87.10
TDNN-NR [1] Assembly Ins. 86.60 98.70 80.30 88.30 86.30

VulDeePecker [37] Source Code Gadgets 83.50 91.00 79.50 84.80 83.40
DeepEXE CFG 90.58 89.36 92.13 90.72 98.01

Table 2: Juliet Dataset Evaluation

Models Input Type Accuracy Recall Precision F1 AUC
Bi-LSTM Assembly Ins. 96.81 98.44 95.48 96.94 99.03
gcn [3] CFG 97 NA NA NA NA

i2v/CNN [34] Assembly Ins. 87.6 N/A N/A N/A N/A
i2v/TCNN [34] Assembly Ins. 96.1 N/A N/A N/A N/A
w2v/CNN [34] Assembly Ins. 87.9 N/A N/A N/A N/A
w2v/TCNN [34] Assembly Ins. 94.2 N/A N/A N/A N/A

i2v [33] Assembly Ins. 96.81 97.07 96.65 96.85 N/A
bin2img [33] Assembly Ins. 97.53 97.05 97.91 97.47 N/A
w2v [33] Assembly Ins. 96.01 96.07 95.92 95.99 N/A
DeepEXE CFG 99.80 99.60 100.00 99.80 100.00

Table 3: FFmpeg Dataset Evaluation

Models Code Level Input Type Accuracy F1
Bi-LSTM [55] Source Code Code Snippets 53.27 69.51

Bi-LSTM + Attention [55] Source Code Code Snippets 61.71 66.01
CNN [55] Source Code Code Snippets 53.42 66.58

GGRN-CFG [55] Source Code CFG 65.00 71.79
GGRN-composite [55] Source Code AST, CFG, DFP, NCS 64.46 70.33

Devign-CFG [55] Source Code CFG 66.89 70.22
Devign-composite [55] Source Code AST, CFG, DFP, NCS 69.58 73.55

DeepEXE Binary Code CFG 68.29 67.17

Table 4: Esh Dataset Evaluation

Models Input Type Accuracy Recall Precision F1 AUC
Bi-LSTM Assembly Ins. 99.49 79.48 88.57 83.78 96.87
GCN CFG 99.31 63.89 95.83 76.67 83.54

DeepEXE CFG 99.78 95.65 91.67 93.62 99.78

different setups. The evaluation metrics reported include accuracy,
precision, recall, F1 score, and area under the ROC curve (AUC).
Cross-validation is used for tuning hyperparameters in order to
obtain optimal accuracy and reasonable memory usage. We use a
universal hidden dimension of 64, learning rate of 0.01 with the
Adam optimizer [28], dropout rate of 0.5, batch size of 192, and

a maximum iteration of 50 for the Anderson acceleration solver.
We randomly split each dataset into 75% for training and 25% for
evaluation. Some metrics are not shown in the baselines because
of their absence in the original works. The hardware used for the
experiments includes a RTX6000 GPU, Intel Xeon Gold 5218 CPU,
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and 64GB of memory. The main software used includes Python
3.9.10 and PyTorch 1.10.2 on Ubuntu 20.04.3 LTS.

5.3 Evaluation
For each dataset, we compare DeepEXE with the benchmarks that
are also evaluated on the same dataset due to limited space. Ad-
ditionally, we build baseline models that work inherently well in
this task including bi-directional LSTM (Bi-LSTM) [25] and graph
convolution network (GCN) [29].

Semi-Synthetic Results We first analyze the results for the
NDSS18 dataset shown in Table. 1. As the popularity of Large
Language Models (LLMs) grows drastically in the recent years,
we briefly showcase two pre-trained LLMs, DistilBERT [42] and
BERT [15], to perform the downstream vulnerability detection tasks
for the NDSS dataset. Several baselines methods including Bi-LSTM,
GCN, and DistilBERT compare relatively well with the benchmark.
However, the original BERTmodel struggles due to the tokenization
method. As a result, LLMs do not provide significant improvements
compared to RNNs in our case. All the other benchmarks have
imbalanced precision and recall, where the models tend to overes-
timate the vulnerable code. DeepEXE has the best overall perfor-
mance, leading the accuracy and AUC by 3%. Moreover, DeepEXE
is a CFG-based method and we empirically show that by adding
the execution-guided agent and expanding the receptive field of
graph convolution, it is able to capture more topological informa-
tion. DeepEXE also outperforms VulDeePecker, which is a source
code level method that only leverages the sequential information of
the code gadget, potentially omitting the much useful topological
knowledge of the source code.

The Juliet dataset evaluation is shown in Table 2. As a synthetic
dataset, the test cases contain much shorter code. However, there
are over 100 different CWEs among all test cases. In reality, a de-
tection tool should be robust enough to detect unseen or zero-day
vulnerabilities. It is useful for evaluating the robustness and gener-
alizability of an approach. DeepEXE shows nearly perfect detection
accuracy and AUC for this dataset. This shows that even with the
single-layer design, DeepEXE is able to generalize well enough. As
the graphs are usually small in these test cases, the execution paths
generated by static analysis are likely more accurate. Therefore,
we believe the implicit GNN contributes more to the performance
increase than the agent in this case.

Real CVEResultsWe evaluate the FFmpeg dataset shown in Ta-
ble 3, which specifies the code levels and input types. Since Devign
detects vulnerabilities at the source code level, it is significantly
easier with the rich semantics, syntax, and structures. DeepEXE is
able to outperform most of the approaches, even at the binary code
level. In particular, when only using the CFG as input, DeepEXE
achieves better accuracy than both the Devign and GGRN models.
Devign-composite utilizes multiple input graphs, such as AST, DFP
and NCS. These additional graphs are usually only available for
source code. DeepEXE shows its capability at detecting vulnera-
bilities for real-world and complex programs. Moreover, source
code CFGs are less complicated to generate, whereas binary CFGs
often can be an over-estimation of the true control flow. With our
execution-guided approach, we limit the errors caused by such ap-
proximation, while maintaining a high level of global information.

The receptive field of GNN in DeepEXE is practically unlimited,
allowing us to accommodate for much larger graphs.

Lastly, we show the evaluation results for the Esh dataset in
Table 4. Due to the extreme imbalance of labels distribution, which
is the case in many real-life scenarios, the Bi-LSTM and GCN base-
lines have lower recalls. The recall metric is important when there
are fewer vulnerable cases. DeepEXE, on the other hand, is able
to distinguish vulnerable code from non-vulnerable code, given
the small number of positive labels. Note that the class weight is
not manually adjusted during training, as it is cumbersome and
inefficient to tune it for every dataset in practice. With over 90%
percision, DeepEXE is able to identify 95% of the vulnerable CVE
cases. Similar to FFmpeg, although many cases in the Esh dataset
contain a large number of nodes, DeepEXE is inherently designed
to handle such large graphs and outperform other baselines.

6 Conclusions
We have proposed DeepEXE, a control flow execution-guided deep
learning framework for binary code vulnerability detection. Given
the importance of binary code learning, we address two major gaps
in the existing research works, which are the lack of modelling
program state transition and scalability for large graphs. Instead of
assuming the CFG is accurate, which is often not the case, due to the
over-estimation from static analysis, we use a reinforcement agent
to guide the execution of a program flow that mimics the behaviour
of dynamic analysis. DeepEXE is able to capture certain program
state transitions that lead to specific vulnerability results, creating
a higher dependency between the output and internal node state
and topological information. We also show the benefits of train-
ing an implicitly defined network, which are directly obtaining
the gradients for the equilibrium point and mitigating the heavy
memory footprint in large networks. In the experiments, we demon-
strate that DeepEXE outperforms all state-of-the-art vulnerability
detection methods for the NDSS18 and Juliet datasets. DeepEXE
is also very competitive in detecting real world CVEs, even when
compared to source code level methods, which are less difficult,
given the amount of available information. Overall, DeepEXE is a
robust and accurate tool for binary vulnerability detection.

In the future, there are several potential directions to grow for
DeepEXE. First of all, the training time is slower than for the tra-
ditional neural network, due to the many iterations for obtaining
equilibrium. This can be improved by using more sophisticated
solvers to reduce the number of steps for equilibrium computation.
Next, DeepEXE does not have to be restricted to vulnerability detec-
tion in the cybersecurity domain. For other security tasks, such as
binary code similarity comparison or malware detection, matching
the graph structures of malicious programs is often done using
GNN. By modifying the training objective, DeepEXE can be used
for a lot more of supervised and unsupervised tasks. Moreover, as
long as the input data has some form of graphical structures, we
can apply the same design to many other domains, such as social
network and chemistry studies.

7 Acknowledgement
This research is supported by BlackBerry Limited. (ALLRP 561035)
and NSERC Alliance Grants (ALLRP 561035-20).

 

1223



CIKM ’24, October 21–25, 2024, Boise, ID, USA Litao Li, Steven H. H. Ding, Andrew Walenstein, Philippe Charland, & Benjamin C. M. Fung

References
[1] Marwan Ali Albahar. 2020. A Modified Maximal Divergence Sequential Auto-

Encoder and Time Delay Neural Network Models for Vulnerable Binary Codes
Detection. IEEE Access 8 (2020), 14999–15006.

[2] Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen Schulz, and Max
Mühlhäuser. 2020. The tip of the iceberg: On the merits of finding security
bugs. ACM Transactions on Privacy and Security (TOPS) 24, 1 (2020), 1–33.

[3] Shushan Arakelyan, Christophe Hauser, Erik Kline, and Aram Galstyan. 2020.
Towards Learning Representations of Binary Executable Files for Security Tasks.
arXiv preprint arXiv:2002.03388 (2020).

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[5] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019. Deep equilibrium models.
Advances in Neural Information Processing Systems 32 (2019).

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 1–39.

[7] Abraham Berman and Robert J Plemmons. 1994. Nonnegative matrices in the
mathematical sciences. SIAM.

[8] Sicong Cao, Xiaobing Sun, Lili Bo, YingWei, and Bin Li. 2021. Bgnn4vd: construct-
ing bidirectional graph neural-network for vulnerability detection. Information
and Software Technology 136 (2021), 106576.

[9] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan
Cho, and Hee Beng Kuan Tan. 2016. BinGo: cross-architecture cross-OS binary
search. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering.

[10] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[11] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song. 2018. Learning
steady-states of iterative algorithms over graphs. In International conference on
machine learning. PMLR, 1106–1114.

[12] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical similarity of
binaries. Acm Sigplan Notices 51, 6 (2016), 266–280.

[13] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables.
Acm Sigplan Notices 49, 6 (2014), 349–360.

[14] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and
J Zico Kolter. 2018. End-to-end differentiable physics for learning and control.
Advances in neural information processing systems 31 (2018).

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[16] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. Deepbindiff:
Learning program-wide code representations for binary diffing. In Network and
Distributed System Security Symposium.

[17] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai.
2021. Implicit deep learning. SIAM Journal on Mathematics of Data Science 3, 3
(2021), 930–958.

[18] Katheryn A Farris, Ankit Shah, George Cybenko, Rajesh Ganesan, and Sushil
Jajodia. 2018. Vulcon: A system for vulnerability prioritization, mitigation, and
management. ACM Transactions on Privacy and Security (TOPS) 21, 4 (2018),
1–28.

[19] Claudio Gallicchio and Alessio Micheli. 2010. Graph echo state networks. In The
2010 international joint conference on neural networks (IJCNN). IEEE, 1–8.

[20] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Proceedings. 2005 IEEE international joint conference
on neural networks, Vol. 2. 729–734.

[21] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui.
2020. Implicit graph neural networks. Advances in Neural Information Processing
Systems 33 (2020), 11984–11995.

[22] Aakanshi Gupta, Bharti Suri, Vijay Kumar, and Pragyashree Jain. 2021. Extracting
rules for vulnerabilities detection with static metrics using machine learning.
International Journal of System Assurance Engineering and Management 12, 1
(2021), 65–76.

[23] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. arXiv preprint arXiv:1706.02216 (2017).

[24] Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur Ozdemir, Leonard R Kosta,
Akshay Rangamani, Lei H Hamilton, Gabriel I Centeno, Jonathan R Key, Paul M
Ellingwood, et al. 2018. Automated software vulnerability detection with machine
learning. arXiv preprint arXiv:1803.04497 (2018).

[25] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[26] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[27] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[28] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014). https://api.semanticscholar.org/CorpusID:
6628106

[29] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[30] Taku Kudo. 2018. Subword regularization: Improving neural network translation
models with multiple subword candidates. arXiv preprint arXiv:1804.10959 (2018).

[31] Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing. arXiv
preprint arXiv:1808.06226 (2018).

[32] Tue Le, Tuan Nguyen, Trung Le, Dinh Phung, Paul Montague, Olivier De Vel, and
Lizhen Qu. 2018. Maximal divergence sequential autoencoder for binary software
vulnerability detection. In International Conference on Learning Representations.

[33] Yongjun Lee, Hyun Kwon, Sang-Hoon Choi, Seung-Ho Lim, Sung Hoon Baek,
and Ki-Woong Park. 2019. Instruction2vec: Efficient Preprocessor of Assembly
Code to Detect Software Weakness with CNN. Applied Sciences 9, 19 (2019), 4086.

[34] Young Jun Lee, Sang-Hoon Choi, Chulwoo Kim, Seung-Ho Lim, and Ki-Woong
Park. 2017. Learning binary code with deep learning to detect software weakness.
In KSII The 9th International Conference on Internet (ICONI) 2017 Symposium.

[35] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[36] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin.
2021. Vuldeelocator: a deep learning-based fine-grained vulnerability detector.
IEEE Transactions on Dependable and Secure Computing (2021).

[37] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

[38] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and
Wei Zou. 2018. 𝛼diff: cross-version binary code similarity detection with dnn. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 667–678.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[40] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. 2020. Gated graph recurrent
neural networks. IEEE Transactions on Signal Processing 68 (2020), 6303–6318.

[41] Sefa Eren Şahin, Ecem Mine Özyedierler, and Ayse Tosun. 2022. Predicting
vulnerability inducing function versions using node embeddings and graph
neural networks. Information and Software Technology 145 (2022), 106822.

[42] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[43] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[44] Kazi Zakia Sultana, Vaibhav Anu, and Tai-Yin Chong. 2021. Using software
metrics for predicting vulnerable classes and methods in Java projects: A machine
learning approach. Journal of Software: Evolution and Process 33, 3 (2021), e2303.

[45] Donghai Tian, Xiaoqi Jia, Rui Ma, Shuke Liu, Wenjing Liu, and Changzhen Hu.
2021. BinDeep: A deep learning approach to binary code similarity detection.
Expert Systems with Applications 168 (2021), 114348.

[46] Junfeng Tian, Wenjing Xing, and Zhen Li. 2020. BVDetector: A program slice-
based binary code vulnerability intelligent detection system. Information and
Software Technology 123 (2020), 106289.

[47] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[48] Homer F Walker and Peng Ni. 2011. Anderson acceleration for fixed-point
iterations. SIAM J. Numer. Anal. 49, 4 (2011), 1715–1735.

[49] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3 (1992), 229–256.

[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[51] Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram Schulte. 2009.
Fitness-guided path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks. IEEE, 359–368.

[52] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 363–376.

[53] Han Yan, Senlin Luo, Limin Pan, and Yifei Zhang. 2021. HAN-BSVD: a hierarchical
attention network for binary software vulnerability detection. Computers &
Security 108 (2021), 102286.

[54] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
matters: semantic-aware neural networks for binary code similarity detection. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 1145–1152.

 

1224

https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106


Dynamic Neural Control Flow Execution: an Agent-Based Deep Equilibrium Approach for Binary Vulnerability Detection CIKM ’24, October 21–25, 2024, Boise, ID, USA

[55] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. InAdvances in Neural Information Processing
Systems. 10197–10207.

[56] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. 2019.
𝜇VulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability

Detection. IEEE Transactions on Dependable and Secure Computing 18, 5 (2019),
2224–2236.

[57] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
2018. Neural machine translation inspired binary code similarity comparison
beyond function pairs. arXiv preprint arXiv:1808.04706 (2018).

 

1225


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Neural Control Flow Execution
	4.1 Token Semantics
	4.2 Program State Guided Execution and Functional Representation
	4.3 Executor Stepping Via Implicit GNN
	4.4 Training
	4.5 Well-posedness

	5 Experiment
	5.1 Datasets
	5.2 Baselines and hyperparameters
	5.3 Evaluation

	6 Conclusions
	7 Acknowledgement
	References



