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Business enterprises adopt cloud integration services to improve collaboration with their trading
partners and to deliver quality data mining services. Data-as-a-Service (DaaS) mashup allows multiple
enterprises to integrate their data upon the demand of consumers. Business enterprises face challenges
not only to protect private data over the cloud but also to legally adhere to privacy compliance rules
when trading person-specific data. They need an effective privacy-preserving business model to deal with
the challenges in emerging markets. We propose a model that allows the collaboration of multiple enter-

{fflj\'/ V:grdS: prises for integrating their data and derives the contribution of each data provider by valuating the incor-
Data u{ility porated cost factors. This model serves as a guide for business decision-making, such as estimating the

potential risk and finding the optimal value for publishing mashup data. Experiments on real-life data
demonstrate that our approach can identify the optimal value in data mashup for different privacy mod-
els, including K-anonymity, LKC-privacy, and e-differential privacy, with various anonymization algorithms
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1. Introduction

Business enterprises have widely adopted web-based mashup
technologies for collaboration with their trading partners. A web-
based mashup involves the integration of information and services
from multiple sources into a single web application. For example,
real estate companies mashup their data and other third-party
data with Google Maps for comprehensive market analysis.
Enterprise Mashup Markup Language (EMML) is a standard proposed
by the Open Mashup Alliance to improve collaboration among
business enterprises and to reduce the risk and cost of mashup
implementation (Roebuck 2012). Several companies including
IBM, Strikelron, Kapow Technologies, and others have been
actively involved in leveraging various web-based mashup tech-
nologies such as Quick and Easily Done Wiki (QEDWiki), IBM
Mashup Center, and Data-as-a-Service (DaaS). Business enterprises
need to focus on a data-oriented perspective along with the initia-
tives of Service-Oriented Architecture (SOA).
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DaaS is a cloud computing paradigm that provides data on
demand to consumers over the Internet (Arafati et al. 2014). It is
becoming popular in commercial setups because it provides flexi-
ble and cost-effective collaboration among business enterprises. In
the e-market industry, enterprises conduct online market research
to collect feedback about their products and services and to iden-
tify the demographic characteristics of customers by various
means such as surveys, social networks, online purchases, posts,
blogs, Internet browsing preferences, phone calls, or apps. The pri-
mary purpose in collecting personal information is to provide bet-
ter services, which in turn generate higher revenue.

Fig. 1 presents an overview of a privacy-preserving data
mashup e-market for trading person-specific information. The pro-
cess consists of five steps. First, data providers register their avail-
able data on the registry hosted by the mashup coordinator, who
can be a cloud service provider or one of the data providers. Sec-
ond, data consumers (or data recipients) submit their data requests
to the mashup coordinator. A “data request” can be a simple count
query or a complicated data mining request. To provide a concrete
scenario in the rest of the paper, we assume the data request is a
data mining request for classification analysis. Third, a mashup
coordinator dynamically determines the group of data providers,
since a single data provider may not be able to fulfill the data
requests from a data consumer, whose data can collectively fulfill
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Fig. 1. Privacy-preserving data mashup architecture for trading person-specific
information.

the demand of a data consumer by connecting with them. Fourth,
the data providers quantify their costs and benefits using joint pri-
vacy requirements and integrate their data over the cloud. Finally,
the anonymous mashup data is released to the data consumers.
The data consumers have the option to perform the data mining
operations on the cloud or take the data and perform the data min-
ing operations locally on their own machines.

In the proposed architecture, business enterprises face four
major challenges for trading person-specific information: First,
extensive research has shown that simply removing explicit iden-
tifying information such as name, social security number, birth
date, telephone number, and account number is insufficient for pri-
vacy protection. Many organizations believe that enforcing
regulatory compliance, such as the Gramm-Leach-Bliley Act
(GLBA), which protects the privacy and security of individually
identifiable financial information, or simply employing common
de-identification methods, such as Health Insurance Portability
and Accountability Act (HIPAA) Safe Harbor method, which
involves removing 18 types of identifiers from health data, is suffi-
cient for privacy protection. Indeed, an individual can be re-
identified by matching the quasi-identifiers QID with an external
data source (Samarati and Sweeney 2001). Second, the data provi-
ders collaborate in order to fulfill the demands of a data consumer
and to generate more profit by offering better classification utility.
In addition, they would avoid sharing information other than the
final integrated data because the collaborating data providers
could be competitors. Third, a cloud service provider may not be
a trusted party. The cloud service provider can be a third-party
who offers data integration services over the cloud or one of the
data providers. Fourth, the data providers want to ensure that
the mashup data can facilitate the queries of data consumers. So,
there is a trade-off between data utility and privacy protection in
terms of monetary reward. In this paper we propose a model that
examines the intangible benefits and potential risks of sharing
person-specific data for classification analysis. Our model allows
the data providers to quantify the costs and benefits and to gener-
ate the monetary value from trading person-specific information.

Our contributions are summarized as follows: the first three
challenges, discussed in the previous paragraph, have already been
widely studied in the current literature (Arafati et al. 2014,
Samarati and Sweeney 2001, Fung et al. 2010, Fung et al. 2012,
Aljafer et al. 2014, Mohammed et al. 2014). Here we focus on the
fourth challenge that addresses both scientific and business needs
for trading person-specific information in the e-market. We
develop a business model that identifies the consumers’ (e.g., data
recipients) requirements and performs the valuation on important
parameters associated with revenue and costs for a business. Our
business model is suitable for multiple data providers in making
decisions where they have the following goals: (a) to find the opti-
mal value on the trade-off between data privacy and data utility
and (b) to derive the contribution of each data provider in terms
of monetary value. Finally, we show that our proposed approach
can effectively achieve both goals by performing extensive experi-
mental evaluations on real-life, person-specific data. The proposed
model captures only the relevant factors that are crucial for cost-
benefit analysis in our research problem. However, the model pro-
vides flexibility for users to include additional factors based on the
specific requirements of other scenarios.

The rest of the paper is organized as follows: in Section 2, we
review the related work. In Section 3, we explain the challenges
faced by business enterprises, followed by the problem definition.
In Section 4, we present preliminaries to quantify the data privacy
and information utility. In Section 5, we present our model as a
privacy-preserving data mashup solution for e-markets. In
Section 6, we discuss the limitations of our proposed model. In
Section 7, we evaluate our proposed model based on the incorpo-
rated factors for multiple data providers by conducting extensive
experiments on real-life data. Finally, we provide the conclusion
in Section 8.

2. Related work

We summarize the literature of the following related areas:
monetizing data privacy for business value generation, trade-off
between privacy and utility in data integration, statistical disclo-
sure control methods, and policies and regulations with the per-
spective of data protection.

2.1. Monetizing data privacy for business value generation

Many organizations are embracing innovations in digital econ-
omy to maximize their business value through data. Wixom et al.
(2015) conducted seven case studies on companies that monetize
data by selling information-based products and/or services. They
hypothesize that a company whose business model draws upon
six sources, such as data, data architecture, data science, domain
leadership, commitment to client action, and process mastery,
can bring a competitive advantage for information business value.
Wixom and Markus (2015) further identified an approach that they
termed “Data Value Assessment” to analyze the costs, benefits, and
risks of selling information-based products and services by busi-
ness enterprises. Li et al. (2014) propose a theoretical framework
for private data pricing in an interactive setting. There are three
main actors in their proposed architecture: Data owners contribute
their personal data; a buyer submits an aggregate query and pays
its price to a market maker; and a market maker, a trusted party
to both, answers buyer queries on behalf of data owners by adding
an appropriate noise (Dwork et al. 2006) in response to the query.
The market maker compensates the data owners whenever they
suffer from a privacy loss in response to a buyer’s query. Riederer
et al. (2011) propose a mechanism called “transactional privacy”
to control the disclosure of personal information in a
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privacy-preserving system. This mechanism allows end users to
release personally identifiable information (PII) by giving them
the choice to valuate their personal information. Their system
leverages prior work on auctions and particularly the exponential
mechanism (McSherry and Talwar 2007) to guarantee truthfulness
in the bidding process. In this paper, we follow a distributed
approach in a non-interactive setting for data mashup of multiple
data providers, which is different from our previous work (Khokhar
et al. 2014) in which the challenges were to quantify the costs and
benefits between privacy and utility from the perspective of a sin-
gle data custodian. In addition, the business model presented in
this paper can derive the contribution of each data provider in
terms of monetary value by computing the information gain on
the data mashup.

2.2. Trade-off between privacy and utility in data integration

Arafati et al. (2014) propose a cloud-based framework for a
privacy-preserving Data-as-a-Service (DaaS) mashup that enables
data providers to integrate their person-specific data on demand
depending on a consumer’s request for data analysis. In their
framework, a data consumer can submit a request with a set of
attributes, bid price, and classification accuracy. They introduce a
greedy algorithm that can dynamically determine the group of
DaaS providers offering the lowest price per attribute. They employ
a Privacy-Preserving High-Dimensional Data Mashup algorithm
(Fung et al. 2012) for secure data integration and to preserve the
privacy of mashup data using the LKC-privacy model
(Mohammed et al. 2009). Mohammed et al. (2014) propose a dif-
ferentially private data release algorithm to securely integrate
person-specific data from two parties so that integrated data main-
tains the necessary information to support data utility. They pre-
sent a scenario for a distributed setup to integrate the vertically
partitioned data, where different attributes for the same set of
individuals are held by two parties. No additional information is
leaked to any party as a result of integrating data. In this paper,
the data mashup model employs the approach that was presented
in Fung et al. (2012) and Mohammed et al. (2014) for vertically
partitioned data to satisfy LKC-privacy and e-differential privacy
requirements, respectively. There are some other papers
(Mohammed et al. 2010, Jurczyk and Xiong 2009) that address
the problem of integrating horizontally partitioning data in a dis-
tributed manner. This would yield different costs and benefits
when quantifying the privacy and utility from the integrated data
using horizontal partitioning.

2.3. Statistical disclosure control methods

Many non-perturbative and perturbative anonymization meth-
ods, such as global and local recoding (Waal and Willenborg 1998,
Takemura 1999), suppression and local suppression (Waal and
Willenborg 1998, Little 1993), sampling (Skinner et al. 1994),
micro-aggregation (Domingo-Ferrer and Mateo-Sanz 2002), noise
addition (Kim 1986), data swapping (Dalenius and Reiss 1982),
and post randomization (Kooiman et al. 1997) have been adopted
in the past with the goal of providing confidentiality and privacy in
publishing person-specific data. According to Gehrke (2010), the
statistical methods that are being used for limiting information
disclosure do not formally address how much sensitive informa-
tion an adversary would glean from the published data. Waal
and Willenborg (1998) discuss global recoding and local suppres-
sion methods to protect person-specific data. In the case of a global
recoding method, specific attribute values are mapped to the same
generalized value in all records; in the case of local suppression,
the specific value of an attribute in a record changes to a ‘missing’
value, but the attribute values in other records remain unchanged

(Waal and Willenborg 1999). Global recoding is the preferable
method when there are many unsafe combinations to eliminate
in the person-specific data and when one wants to obtain a uni-
form categorization of attributes (Waal and Willenborg 1998).
Truta et al. (2003) use a microaggregation statistical disclosure
control technique to measure the trade-off in disclosure risk and
information loss on synthetic data based on the criteria specified
by the data owner.

2.4. Policies and regulations for data protection

Currie and Seddon (2014) discuss the cross-country approaches
to data privacy, regulation, and rules. They did a survey in six coun-
tries to collect the views of people on the benefits and risks for
adopting cloud computing in a healthcare setup. Generally, health-
care professionals are in favor of adopting cloud computing, but
stakeholders involved in the setup have to provide a guarantee
for the protection of personal data subject to the regulations
enforced in their jurisdictions. They address an important issue
of how international governments harmonize an effective legal
and regulatory framework for trans-border data flows over the
cloud environment. Recent studies (Currie and Seddon 2014,
Kuner 2011) show that more than 60 countries in the world have
adopted privacy and data protection laws that regulate trans-
border data flows. Hu et al. (2012) provide Law-as-a-Service (LaaS)
as an emergent technology for cloud service providers to ensure
that legal policies are compliant with the laws for users. They pro-
vide a conceptual layout of the law-aware semantic policy infras-
tructure in which a semantic cloud of Trusted Legal Domains
(TLDs) are established over the Trusted Virtual Domains (TVDs).
Each TLD has a super-peer that provides data integration services
for its peers. The super-peer specifies how compliant legal policies
are unified and enforced in a domain. Legal policies are composed
of OWL-DL ontologies and stratified Datalog rules with negation
for a policy’s exceptions handling through defeasible reasoning.
Description Logic (DL)-based ontologies provide data integration,
while Logic Program (LP)-based rules provide data query and pro-
tection services.

3. Challenges and problem definition

In this section, we explain the privacy challenges that are real-
ized when integrating data from heterogeneous sources, followed
by the problem definition.

3.1. The challenges

The research problem is identified in Data Management
Platforms Buyer’s Guide (2013), where the challenges are to inte-
grate marketing data from heterogeneous sources and to ensure
the privacy of the customers. We generalize the problem as fol-
lows: suppose two data providers, DP; and DP,, own raw data
tables D; and D,, respectively. Each data provider owns a different
set of attributes about the same set of records identified by the
common Record IDs, such that DP; owns D, (Rec.ID,Age,Job) and
DP, owns D, (Rec.ID,Sex, Education). The data providers want to
integrate their data to improve the data utility for classification
analysis in order to maximize their profit. The attributes in data
tables D, and D, are classified into four categories for classification
analysis: explicit identifier, quasi-identifier (QID), sensitive attri-
bute, and class attribute. An explicit identifier attribute explicitly
identifies a person, such as name, social security number (SSN),
and account number. A quasi-identifier attribute, such as date of
birth, sex, and education, is a set of predictor attributes whose val-
ues are used to predict class attribute. A sensitive attribute, such as
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disease, salary, and marital status, contains an individual’s sensi-
tive information. A class attribute contains the class values for clas-
sification analysis. In the following example we discuss the privacy
threats that can arise as a result of simply joining the raw data
tables of data providers DP; and DP;.

Example 1. Consider the raw data tables of two data providers in
Table 1. Rec.ID,Sensitive, and Class are shared between data
providers DP; and DP,. DP; and DP, own data tables D;(Age, Job)
and D, (Sex, Education), respectively. Each record corresponds to
the personal information for an individual person. The two data
providers want to develop a data mashup service to integrate their
data in order to perform classification analysis on the shared Class
attribute Loan approval, which has two values, Y and N, indicating
whether or not the loan is approved.

In a record linkage attack (Fung et al. 2010), an adversary
attempts to identify the record of a target victim in the released
data table. Assume an adversary knows that the target victim is a
female cleaner, denoted by qid = (F, Cleaner). The group of records
matching qid is denoted by D|qid]. If the group size |D[qid]| is small,
the adversary may identify the victim’s record and his/her sensitive
value. The probability of a successful record linkage is 1/|D[qid]|. In
this example, D[qgid] = {Rec#3,11,17}.

In an attribute linkage attack (Fung et al. 2010), an adversary
may not be able to accurately identify the record of a target victim
but can infer a sensitive value with high confidence if it occurs
frequently in the released table. With the prior knowledge qid
about a target victim, an adversary can identify a group of records
D[qid] and can infer that the victim has sensitive value s with

confidence P(s|gid) = 5l where D[gid As] denotes the set of
records matching both qid and s. P(s|qid) is the percentage of the
records in Diqid] containing s. For example, given
qid = (M, Cleaner), in Table 1, D|qid A Divorced] = {Rec#10,18},
D[qid] = {Rec#4, 10,18}, and P(Divorced|qid) = 2/3 = 66.67%. O

K-Anonymity (Samarati and Sweeney 2001) and /¢-diversity
(Machanavajjhala et al. 2007) have been proposed to protect
against the aforementioned record and attribute linkage attacks
in the relational raw data tables. K-anonymity prevents record link-
age attacks by generalizing the records into equivalence groups of
K size with respect to some QID attributes; however, it could suffer
from an attribute linkage attack if the sensitive values are not
diversified in an equivalence group. The principle of /-diversity
overcomes this problem by requiring every QID group to contain

at least ¢ well-diversified values for the sensitive attribute. This
model presents a stronger notion of privacy to protect from homo-
geneity attacks and background knowledge attacks. Mohammed et al.
(2009) propose a LKC-privacy model in which they assume that the
adversary’s background knowledge is bounded by at most ‘L’ QID
attributes. This model provides better data utility in comparison
to K-anonymity on high-dimensional data. Dwork et al. (2006) pro-
pose a differential privacy model that ensures the addition or
removal of a single database record does not significantly affect
the outcome of any computation over a database. It provides
strong privacy guarantees to an individual independent of an
adversary’s background knowledge and computational power.

The aforementioned privacy models are discussed from the per-
spective of a single data custodian. Another challenge is related to
the data mashup of multiple data custodians when consumer data
requests cannot be fulfilled by a single data provider. The data
mashup is a process over the cloud infrastructure that enables
multiple data providers to integrate their data in order to fulfill
the demands of data consumers. The cloud service provider may
be one of the data providers or a third party, but the mashup sce-
nario for the integration of data from multiple data custodians
should not reveal person-specific information of the customers to
unauthorized parties. The trust of a customer in an exchange of
services with one data provider by sharing person-specific infor-
mation does not necessarily extend trust to the other data provi-
ders. So, there is a need to avoid disclosure of sensitive
information during the data mashup process and in the final
release of mashup data. There are some known approaches that
do not ensure privacy of an individual, such as (1) mashup-
then-generalize and (2) generalize-then-mashup. The first approach
integrates the raw data tables from two data providers and then
generalizes using single table anonymization methods (Fung et
al. 2007, LeFevre et al. 2006). This approach fails to preserve pri-
vacy because once the mashup coordinator or any other third party
holds the integrated raw data it will instantly discover all the pri-
vate information of both data providers. The second approach gen-
eralizes the data providers’ tables individually using single-table
anonymization methods, then integrates the generalized tables.
This approach seems to preserve privacy locally at an individual
data provider’s end, but it does not guarantee the privacy for a
quasi-identifier that spans multiple data providers’ tables.

To address the above-mentioned privacy issues that arise in the
data mashup when data is owned by multiple providers, Fung et al.
(2012) propose an extended version of the LKC-privacy model to

Table 1
Raw data table of data providers.
Rec.ID Data provider DP; Data provider DP, Sensitive Class
Age Job Sex Education Marital-status Loan approval
1 39 Painter F 12th Divorced N
2 43 Doctor M Doctorate Never-married Y
3 37 Cleaner F 12th Divorced Y
4 56 Cleaner M 10th Never-married N
5 64 Welder M 8th Married-civ-spouse Y
6 49 Doctor F Doctorate Married-civ-spouse Y
7 33 Lawyer F Masters Never-married Y
8 41 Lawyer F Doctorate Married-civ-spouse N
9 32 Painter F 12th Divorced N
10 52 Cleaner M Bachelors Divorced Y
11 39 Cleaner F 11th Divorced Y
12 61 Lawyer M Doctorate Married-civ-spouse Y
13 24 Technician M 11th Married-civ-spouse N
14 44 Technician F Bachelors Divorced N
15 34 Lawyer M Masters Never-married Y
16 27 Painter M 11th Divorced N
17 35 Cleaner F 10th Divorced Y
18 41 Cleaner M 11th Divorced Y
19 63 Welder M 8th Married-civ-spouse N
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apply to a multiple data providers scenario. The LKC-privacy model
is suitable to apply on high-dimensional data, as would normally
be the case when integrating data from multiple data providers.
This overcomes the problem of high-dimensionality when using
K-anonymity. K-Anonymity (Samarati and Sweeney 2001) is
known to be a special case of LKC-privacy with adversary knowl-
edge L = |QID| and confidence C = 100%, where |QID| is the number
of quasi-identifying attributes in the data table (Mohammed et al.
2009). Mohammed et al. (2014) have propose a differentially pri-
vate data release algorithm for multiple data providers in a dis-
tributed setup. Our model employs the approaches presented in
Fung et al. (2012) and Mohammed et al. (2014) for data mashup
of multiple data providers and sets the joint privacy requirements
of contributing data providers in order to ensure that no extra
information is leaked to any provider as a result of data integration.

3.2. Problem definition

Suppose data providers DPy, ..., DP, own data tables Dy, ..., Dy,
respectively. They want to generate an integrated anonymous
dataset D’ that fulfills the demands of data consumers and gener-
ates more profit in terms of monetary value for the data providers.
Our proposed model enables the collaboration between data provi-
ders to set their joint privacy requirement for data mashup. It can
also benefit data providers to quantify their costs and benefits in
trading person-specific information and in determining the contri-
bution of each data provider. Formally, the research problem is
defined as follows.

Definition 3.1 (Problem Definition). Given multiple person-
specific raw data tables D;,...,D, from data providers
DPq,...,DP, and a set of requested attributes Attrq for classifica-
tion analysis from a data consumer, the research problem is to
develop a business model that performs the valuation on cost
factors to find the optimal value from the anonymized integrated
data table Dr under the joint privacy requirements of the data
providers and to derive the contribution of each data provider
DPq,...,DP, in terms of monetary value. O

4. Preliminaries

In this section, we first present some measures to quantify the
data privacy and information utility, followed by an overview of
our employed privacy-preserving data mashup algorithms.

4.1. Quantifying privacy

Consider a raw data table D(Rec.ID, Ay, .. .,An, Sens, Class) of two
data providers DP; and DP, as shown in Table 1. Both data provi-
ders want to release an integrated anonymized dataset D' to the
data consumer for joint classification analysis. Rec.ID is shared
between the data providers’ tables and is used to uniquely identify
a record; it is used to join the data tables. Each A; is either a cate-
gorical or a numerical attribute. Sens, Class are also shared between
data providers DP, and DP, representing a sensitive attribute and a
class attribute, respectively. Each data provider owns a different
set of attributes on the same set of Record IDs, such that DP; owns
D; and DP, owns D,. A record in D has the form
(v1, V2, ..., Um,S,cls), where v; is a value in A;, s is a sensitive value
in Sens, and cls is a class value in Class. In Section 3.1 we discussed
privacy threats that arise by simply joining the raw data tables of
DP; and DP,.

Privacy models. In this subsection, we present the formal defini-
tions of four widely adopted models from the perspective of a

single data custodian, namely K-anonymity, ¢-diversity, LKC-
privacy, and e-differential privacy.

Definition 4.1 ((K-anonymity) Samarati and Sweeney 2001 ). Let
D(Aq,...,An) be a data table and QID be its quasi-identifier. D
satisfies K-anonymity if, and only if, each group of QID appears in at
least K records in D. O

Definition 4.2 ((Entropy ¢-diversity) Machanavajjhala et al. 2007).
A table is entropy ¢-diverse if every QID group satisfies
— > sesensP(qid, s)log(P(qid,s)) = log(¢), where Sens is a sensitive
attribute P(QID,s) is the percentage of records in a QID group con-
taining the sensitive values. O

Definition 4.3 ((LKC-privacy) Mohammed et al. 2009). Let L be the
maximum number of QID attributes acquired by an adversary as
prior knowledge about a target victim and S C Sens be a set of sen-
sitive values. A data table D satisfies LKC-privacy if, and only if, for
any qid with 0 < |qid| < L,

1. |D[qid]| = K, where K > 0 is an integer representing the anon-
ymity threshold, and

2. forany s € S, P(s|qid) < C, where 0 < C <
resenting the confidence threshold. O

1 is a real number rep-

Definition 4.4 ((e-differential privacy) Dwork et al. 2006). A saniti-
zation mechanism M,y provides e-differential privacy, if for any
two datasets D; and D, that differ on at most one record (i.e.,
symmetric difference |D;AD;| < 1), and for any possible sanitized

datasets D,

Pr[Mmg(D1) = D] < € x Pr{Mpq(D;) = D],

where the probabilities are taken over the randomness of My,,q. O

4.2. Quantifying utility

The information utility is measured depending on the require-
ments for data analysis. In this paper we present classification
analysis as a utility measure on the consumer’s specified service
request and analysis task.

Score for classification analysis. We use information gain, denoted
by InfoGain(v), to measure the goodness of a specialization. Our
selection criterion, Score(v), is to keep the specialization
v — child(v) that has the maximum InfoGain(v):

Score(v) = InfoGain(v) 1)

Let D, denote the set of records in the data table D generalized
to the value x. Let freq(Dy, cls) denote the number of records in D,
having the class cls. Note that |D,| =3 .|D¢|, where c € child(v).
The information gain InfoGain(v) and entropy H(D,) are defined
as follows:

InfoGain(v) Z Jgn 2)

freq(Dy, cls freq(Dy, cls
H(Do:—Z—quX' )xlogz—"fDx| ) 3)

cls

where H(Dy) measures the entropy of classes for the records in Dy
(Quinlan 1993), and InfoGain(v) measures the reduction of the
entropy by specializing v into c € child(v). A smaller entropy
H(Dy) implies a higher purity of the partition with respect to the
class values.
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We build a classifier on 2/3 of the records of the anonymized
dataset as the training set and measure the Classification Error
(CE) on 1/3 of the records of the anonymized records as the testing
set to determine the impact of anonymization on data utility for
classification analysis. Classification Accuracy (CA) is calculated by
1—(CE). In this paper, we use the well-known C4.5 classifier
(Quinlan 1993) for classification analysis.

4.3. Data mashup algorithms

In this section, we discuss state-of-the-art anonymization algo-
rithms for data mashup in a multiple data-providers scenario: Top-
Down Specialization(TDS) (Fung et al. 2012 and Differentially pri-
vate anonymization based on Generalization (DiffGen)
(Mohammed et al. 2014).

4.3.1. Top-down specialization algorithm for multiple data providers

Algorithm 1 presents an overview of the Top-Down Specializa-
tion (TDS) algorithm to integrate data in a scenario of multiple data
providers (Fung et al. 2012).

Consider multiple data providers DPq, ..., DP,, who own private
data tables D,,...,D, having a common record identifier Rec.ID.
Initially, every data provider generalizes all of its own attribute
values to the topmost value according to the taxonomy trees, as
illustrated in Fig. 2, and maintains a mark Mark; that contains the
topmost value for each attribute A; in QID. A taxonomy tree is spec-
ified for each categorical attribute in QID. A leaf node represents a
precise value and a parent node represents a more general value.
For continuous attributes in QID, taxonomy trees can be grown at
runtime, where each node represents an interval, and each non-
leaf node has two child nodes representing some optimal binary
split of the parent interval (Quinlan 1993). The uMark; on all attri-
butes represents a generalized table D, denoted by D,. UMark; also
contains the set of candidates for specialization. A specialization
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—
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v — child(v) is valid, written as IsValid(v), if the generalized table
D, still satisfies the privacy requirements stated in Definitions
4.1 and 4.3 after the specialization on ». At each iteration, the
TDS multiple data providers mashup (TDSmdpm) algorithm identi-
fies the winner candidate by communicating the Score with all the
participating data providers (Lines 4-5). The valid candidate that
has the highest Score, among all the candidates, performs the win-
ner specialization (Lines 7-11) and updates the Score and the IsVa-
lid status of the new and existing candidates in the mark (Line 14).
TDSmdpm terminates when there are no valid candidates in the
mark.

Suppose that winner candidate w is local to data provider DP;
that performs w — child(w) on its copy of UMark; and D,. This
means specializing each record r € D, containing w into r},...,1;
the child values are in child(w). Similarly, all the other data provi-
ders DP,,...,DP, update their UMark; and D, and partition D,|r]
into Dy[r}],...,Da[r}] ...Dp[r] into Dy[r}],...,Dy[r}]. Since all the
other participating data providers do not have w,DP; needs to
instruct DP,,...,DP, on how to partition their records in terms of
Rec.IDs.

Algorithm 1. TDS multiple providers data mashup (Fung et al.
2012).

1: Initialize every record values in D to the topmost
generalized values Dg.

2: Initialize UMark; to include only topmost values and update
IsValid(v) for every v € UMark;;

3: while 3v € UMark; s.t. IsValid(v) do

4: Find the local winner candidate x of DP; that has the
highest Score(x);

5: Communicate Score(x) with all the other participating
data providers to determine the global winner w;
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Fig. 2. Taxonomy trees.
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if the winner w is local then
Specialize w on Dg;
Instruct all the other data providers to specialize w;
else
0: Wait for the instruction from the winner data
provider;
11: Specialize w on Dg using the instruction;
12: end if
13: Replace w with child(w) in the local copy of UMark;;
14: Update Score(x) and IsValid(x) for every candidate
X € UMark;;
15: end while
16: return Dg and UMark;;

- O 00 O]

4.3.2. DiffGen anonymization algorithm for multiple data providers

Algorithm 2 provides an extension of the two-party Differen-
tially private anonymization based on Generalization
(Mohammed et al. 2014) to differentially integrate multiple private
data tables Dy, ..., D, sharing a common identifier Rec.ID, which is
owned by data providers DP4,...,DP, for classification analysis.
However, the distributed exponential mechanism is limited to
two parties. DiffGen (Mohammed et al. 2011) is an extension of
the TDS algorithm to achieve e-differential privacy. The two major
extensions over the TDS algorithm include: (1) DiffGen selects the
Best specialization based on the exponential mechanism, and (2)
DiffGen perturbs the generalized contingency table by adding the
Laplacian noise to the gid counts. The Laplacian noise is calibrated
based on the sensitivity of a utility function, which quantifies the
maximal impact of adding or deleting a single record on a function.
This algorithm provides secure data integration of two parties
under the definition of the semi-honest adversary model.

Initially, all values in the predictor attributes A" (i.e., attributes
used to predict the class attribute) of each data provider are gener-
alized to the topmost value in their taxonomy trees (Line 1), as
illustrated in Fig. 2, and Mark; contains the topmost value for each
attribute A" (Line 2). The predictor attribute A" can be either cat-
egorical or numerical, but the class attribute is required to be cat-
egorical. The value of a categorical attribute is denoted by v,
whereas the value of a numerical attribute is denoted by v»,. Each
data provider keeps a copy of the UMark; and a generalized data
table D,. The algorithm first determines the split points for all
numerical candidates v, € UMark; by using the exponential mech-
anism (Line 4), then computes the scores for all candidates
v € UMark; (Line 5). At each iteration the algorithm uses the secure
distributed exponential mechanism (DistExp) as presented in
Mohammed et al. (2014) (readers may refer to the details of Dis-
tExp algorithm) to select a winner candidate w € UMark; for spe-
cialization (Line 7). Different utility functions (e.g., information
gain) can be used to calculate the score. If the winner candidate
w is local to DP;,DP; specializes w on D, by splitting its records
into child partitions, updates its local copy of UMark;, and instructs
all the other participating data providers to specialize and update
their local copy of UMark; (Lines 8-11). DP; further calculates the
scores of the new candidates as a result of the specialization (Line
13). If the winner w is not one of DP;’s candidates, DP; waits for
instructions from the other winner data provider to specialize w
and to update its local copy of UMark; (Lines 15 and 16). This pro-
cess is iterated until the specified number of the specializations h is
reached. Finally, the algorithm perturbs the output by adding the
noisy count at each leaf node (Line 19) using the Laplace
mechanism.

Algorithm 2. DiffGen for multiple data providers (Mohammed et
al. 2014).

1: Initialize Dy with one record containing topmost
generalized values;

2: Initialize Mark; to include the topmost value;

i€

w

R
4: Determine the split value for each v; € UMark; with
probability oc exp(z5u(D, va));

: Compute the Score for Vv € UMark;;

: for iter =1 to h do

7: Determine the winner candidate w by using the DistExp
Algorithm (Mohammed et al. 2014);

8: if wis local then

(s )]

9: Specialize w on Dg;

10: Replace w with child(w) in the local copy of UMark;;

11: Instruct all the other participating data providers to
specialize and update UMark;;

12: Determine the split value for each new v4 € UMark;
with probability « exp (35 u(D, va));

13: Compute the Score for each new v € UMark;;

14: else

15: Wait for the instruction from the winner data
provider;

16: Specialize w and update UMark; using the instruction;

17: end if

18: end for

19: return each leaf node with count (C + Lap(2/€))

5. Proposed solution

In this section, we present a privacy-preserving solution for the
business enterprises that seek to adopt an appropriate approach to
manage the challenges of the e-market for trading person-specific
information. Section 3.1 discusses the challenges of integrating
data from multiple data providers, where each data provider owns
a different set of attributes. We assume that every data provider
intends to maximize the data utility, which in turn maximizes their
profits, without violating the mutually agreed-upon privacy
requirement. In this paper, we focus on analyzing the problem of
preventing the disclosure of sensitive information during data
mashup and on the final release of mashup data. We employ
anonymization algorithms, namely Top-Down Specialization(TDS)
(Fung et al. 2012) and Differentially private anonymization based
on Generalization (DiffGen) (Mohammed et al. 2014), for relational
data mashup from multiple data providers. Our model quantifies
the costs and benefits of privacy-preserving data publishing for
the contributing data providers in terms of monetary value.

In our model, customers, data providers, and data consumers
are the main stakeholders. For these stakeholders we identify the
most relevant factors, as illustrated in Fig. 3, to reflect the cus-
tomers’ requirements on data privacy, the data consumers’
requirements on data utility, and the data providers’ requirements
on properly balancing privacy and utility with the goal of releasing
the integrated data for profit. One of the limitations of our model is
the lack of a standard method to monetize the value of personal
data, especially when several parties are involved in collecting
person-specific information from the same population. Currently,
many companies actively collect personal information by provid-
ing monetary rewards to their customers or respondents. There
is no standard price for a specific piece of personal information,
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Price settings before data mashup
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Fig. 3. Business model for privacy-preserving data mashup.

but some market estimates are available in OECD (2013) and Gates
and Matthews (2014). It is also pointed out in OECD (2013) that
there is no commonly accepted methodology for estimating the
monetary value of personal data. Person-specific data contains sen-
sitive and non-sensitive information. It is the utmost responsibility
of data providers to take preventive measures when dealing with
the sensitive information of individuals. Indeed, sensitive data is
qualitative by nature. We set the sensitivity level of a dataset on
the scale of 1-5 to indicate its significance for privacy protection.
Another limitation of our model is the inconsistency of the
expected cost of a lawsuit. The expected cost of a lawsuit depends
on the sensitivity of data and can be estimated from the historical
trends of privacy breach incidents. An individual may file a lawsuit
against a data provider when his or her sensitive information is
disclosed to a third party or made public without his or her con-
sent. Although there is no fixed cost related to privacy breach
cases, regulatory agencies such as the Federal Trade Commission
(FTC) and the Securities and Exchange Commission (SEC) have
imposed monetary fines and penalties subject to the nature of pri-
vacy breaches (Romanosky and Acquisti 2014). According to the
revised HITECH penalty scheme (Department of Health and
Human Services 2013), the penalty for a violation due to reasonable
cause and not to willful neglect is between $1000 and $50,000 for
each violation.

Section 5.1 presents the business model for privacy-
preserving data mashup. Section 5.2 discusses the key business
factors for determining the value of integrated data and the
factors that contribute to the potential damage cost. Section 5.3
discusses the implicit and explicit risk measures for privacy
attacks.

5.1. Business model for privacy-preserving data mashup

Our proposed privacy-preserving data mashup business model
allows the collaboration of multiple data providers to mashup their
data over the cloud and to quantify the costs and benefits of releas-
ing anonymized person-specific information in terms of monetary
value. Fig. 3 provides an overview of the proposed model; key fac-
tors are organized into three phases: before data mashup, during
data mashup, and after data mashup. The left pane of the model
depicts the decision factors held by each data provider, who regis-
ters its available data before the data mashup. For example, Price
per attribute, Number of attributes, and Size of dataset are the deci-
sion factors that depend on the market value and consumer
demand. Data providers can set their own decision factors. These
decision factors contribute to finding the Price of a raw dataset
for every data provider. In the presented model, nodes represent
different types of factors, and arrows indicate the influences or
dependencies between different factors. For example, an arrow
pointing from the Baseline accuracy on raw dataset to the Total value
of raw dataset in the model indicates the influence of the Baseline
accuracy on raw dataset on the Total value of raw dataset.

The objective of maximizing the profit can be achieved by bal-
ancing the two important factors: maximizing the Value of inte-
grated data, and minimizing the Potential damage cost. The Value
of integrated data depends upon the Total value of raw dataset and
Cost of anonymization in integrated data. The Cost of anonymization
in integrated data is computed on the data integration of contribut-
ing data providers with respect to the classification analysis (data
mining) task. Each data provider can compare his or her benefits
and costs before and after participation in the mashup process.
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For classification analysis, a data provider can estimate the classi-
fication analysis on the anonymized data of his or her own data,
and then estimate the classification analysis on the integrated data.
On one side, trading person-specific information has a high value
in the e-market, but on the other side data providers who collabo-
rate in sharing person-specific information need to be cautious of
the risk of privacy breaches and cost of potential damages when
integrating data. Our business model allows the participating data
providers to: (1) set up their joint privacy requirements during
data mashup by choosing the privacy model along with the
anonymization algorithm and privacy parameters, and (2) analyze
the impact of anonymization on information utility for classifica-
tion requirement in terms of monetary value after data mashup.
The aforementioned business factors can help the data providers
in defining the overall objective of maximizing Net value. Further,
in the data mashup process the contribution of each data provider
is derived from the achieved Net value by fairly computing the
information gain on the anonymized data. Accordingly, the data
provider whose data provides a larger information gain for classi-
fication can get the larger share of the monetary net value.

The companies that face similar challenges, and whose business
models are primarily based on sharing person-specific information,
can be our potential audiences. There are quite a few companies for
which our research problem can be generalized. Some of them are
Acxiom, AdAdvisor, AnalyticsIQ, BlueKai, comScore, Datacratic,
Dataline, eXelate, Lotame, etc. that aggregate information from
various sources for a variety of purposes (Data Partners 2014).

5.2. Key factors for business model

The selection of key factors and their valuations is crucial in
developing the cost-benefit business model. We learn and identify
key factors from different sources (OECD 2013, Hirshleifer et al.
2005). These factors are broadly classified into two categories: fac-
tors that contribute to estimate the Value of integrated data and
other factors associated with the Potential damage cost. We further
divide the factors by organizing a set of factors that are involved
before the start of the data mashup process, during the data
mashup process, and after the data mashup process.

5.2.1. Before data mashup

In this subsection we discuss the factors that are considered as
essential prior to performing the cost-benefit analysis. The data
providers can set up the market prices on their available
data (Gates and Matthews 2014) (e.g., set of attributes) before
the data mashup process. Let us assume there are n data providers
DP;,...,DP,, and DP; denotes the identity of the data provider.

5.2.1.1. Price per attribute. The price per attribute Priceq, of a data
provider DP; represents the cost of collecting one successful ques-
tionnaire for an attribute. Each DP; can set a price on their data
attributes based upon prior knowledge about market pricing
offered by other competing data providers (OECD 2013). There is
no definite price for the personal identifying attributes, such as
name, address, email, birthdate, phone number, etc. But the values
can be inferred from cases where personal identity is being sold at
a low pricing, as highlighted in the current literature (Gates and
Matthews 2014). In our empirical study, we assume the monetary
value for Priceqyr,.

5.2.1.2. Number of attributes. The attribute count County, of a data
provider DP; represents the number of attributes in a single record.
Each DP; owns a different set of attributes.

5.2.1.3. Price per record. The price per record Pricep., of a data pro-
vider DP; represents the unit price of a record. Naturally, it is the
product of the price per attribute Priceq, and the attribute count
Countayr, in a single record. That is,

Pricerec, = Pricequr, x Countagy, (4)

The price of a raw dataset of the data provider DP; increases as
the unit price per record increases.

5.2.14. Size of dataset. The size of a dataset Sizeys, represents the
total number of records in the DP; dataset. Sizey, increases as the
number of records in the dataset increases. Each record has an
associated price. As the number of records increases, the overall
pricing of a raw dataset also increases.

5.2.1.5. Sensitivity of dataset. The sensitivity of a dataset Seny, indi-
cates that a dataset contains sensitive or personally significant
information. It is a given qualitative factor and every data provider
should consider this factor for privacy risk assessment. The sensi-
tivity level signifies the importance of data privacy for each data
provider DP;. Intuitively, a higher sensitivity level implies a higher
price of a raw dataset and a higher impact on the lawsuit and com-
pensation cost.

5.2.1.6. Price of a raw dataset. The price of a raw dataset Price,y, rep-
resents the data provider DP;’s selling price of a raw dataset in the
e-market. It is the product of the sensitivity of the dataset Seny,,
the size of the dataset Sizes, and the price per record Pricey.,,
which is formulated as follows.

Price,q, = Sengs, x Sizegs, x Pricer (5)

5.2.1.7. Total price of raw dataset. The total price of the raw dataset
TPrice,q is the sum of the prices of all contributing data providers’
raw datasets, which is formulated as follows.

n
TPrice,s = Y _Pricey (6)

i=1

5.2.1.8. Baseline accuracy on raw dataset. Baseline accuracy on raw
dataset BA is determined by considering the classification task as
the utility function to evaluate the information utility on the raw
datasets of contributing data providers. Data providers can com-
pute the baseline accuracy (BA) using the secure multiple party
classifier (Du and Zhan 2002) without sharing their raw data.

5.2.1.9. Total value of raw dataset. The total value of the raw dataset
TValue,y represents the monetary value of a raw dataset that the
data providers derive from the information utility. It is the product
of the total price of the raw dataset TPrice,q and the baseline accu-
racy of the raw dataset BA, which is formulated as follows.

TValue,q; = TPrice,y x BA (7)

5.2.2. During data mashup
In this subsection, we discuss the factors that are involved dur-
ing the data mashup process.

5.2.2.1. Privacy models. The participating data providers DP, can
mutually choose the privacy model (refer to Section 4.1 for details),
such as K-anonymity, LKC-privacy, and e-differential privacy, prior to
integrating their data.

5.2.2.2. Anonymity measures in data integration. The participating
data providers DP, can jointly set up the data mashup
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anonymization algorithm (refer to Section 4.3 for details), such as
multi-party TDS (Algorithm 1) and DiffGen (Algorithm 2), along
with the anonymity thresholds, such as K,L,C, for K-anonymity
and LKC-privacy models and €, and h for a e-differential privacy
model.

5.2.2.3. Information gain. The information gain is employed to
determine the usefulness of classification. It computes the reduc-
tion of entropy by specializing node v into c € child(v) as discussed
in Section 4.2. Each data provider owns a different set of attributes,
but for the same set of records. Each data provider DP; computes
the information gain or Score(x) locally for each candidate and
picks the candidate x with the highest value of Score(x). Then each
data provider DP; communicates Score(x) with the n collaborating
data providers for determining the global winner w. The winner
w data provider performs specialization w € child(w) on its own
copy locally. The winner w data provider then instructs other n col-
laborating data providers how to perform specialization (further
explanation of this process can be seen in Section 4.3). This process
is iterative and it runs until no candidate is left in the mark. The
information gain Score(x) of winner candidate w data provider
accumulates under the relevant winner w data provider.

5.2.3. After data mashup

In this subsection we discuss the factors that are applied after
the data mashup process. These factors help in determining the
optimal value and the contribution of each data provider.

5.2.3.1. Cost of anonymization in integrated data. To determine the
cost of anonymization in integrated data Costingdara, We make use
of the difference between baseline accuracy (BA) and classification
accuracy (CA). BA measures the accuracy of classification analysis
on raw data while CA measures the accuracy on anonymized inte-
grated data. Therefore, CoStintgdara DECOmMES:

COStintgdara = TPrice,y x (BA — CA) (8)

5.2.3.2. Value of integrated data. The value of integrated data
Valingaara is the difference between the total value of raw dataset
TValue,; and the cost of anonymization in integrated data
CoStintgdata- 1t is the benefit that the data providers can earn from
the information utility of classification analysis by trading their
integrated data. Formally, Valigqea is defined as:

Valintgdata = Tvaluerd - COStintgdata (9)

5.2.3.3. Probability of attack. The probability of attack Probg, is
employed to determine the implicit weaknesses in privacy protec-
tion methods. The data providers can carefully consider and plan
concerning an adversary’s attempt to assess the probability of
occurrence of a sensitive attribute value in the anonymized inte-
grated dataset using precision and recall measures (refer to Sec-
tion 5.3 for details). The probability of occurrence changes with
respect to the chosen privacy model and its level of privacy protec-
tion. Prob,, is calculated using F-measure on the sensitive attribute
value Sen,q. F-measure is a weighted harmonic mean of precision
and recall. Formally, Prob, is defined as:

2 x (Precision on Sen,q x Recall on Sen,q)
Precision on Sen,q + Recall on Sen g

Probay = (10)

5.2.3.4. Expected cost of lawsuit. The expected cost of lawsuit
Ecosty, is enforced subject to the nature of a privacy breach and
the sensitivity of data. It increases as the level of data sensitivity
increases. Ecosty,s; enables business enterprises in predicting the

potential cost of privacy breach incidents. The monetary costs
can be estimated based on the historical trends of privacy breach
incidents. The Federal Trade Commission Act (FTCA), Gramm-
Leach-Bliley Act (GLBA), Fair Credit Reporting Act (FCRA), and Per-
sonal Data Privacy and Security Act regulate the collection, use, and
protection of personal information and impose monetary fines and
penalties subject to the nature of the data breach A Legal Guide to
Privacy and Data Security 2014, Personal Data Privacy and Security
Act 2011.

The lawsuit cost is not fixed and it varies with the applied anon-
ymity measures on data mashup. For instance, an adversary may
exploit the inherent weakness of the privacy protection method
to infer sensitive information about a victim by using the precision
and recall measures in the equation of the probability of attack.

5.2.3.5. Likelihood of privacy breach. The likelihood of a privacy
breach L,, measures an adversary’s prowess in inferring the vic-
tim’s sensitive value. This inference is measured using an attack
model (refer to the Section 5.3 for details) by exploiting the back-
ground knowledge about a victim. We assume that the victim’s
record is in the integrated published dataset and the adversary
knows the victim’s QID. Formally, L, is defined as:

B Total records count on Sen,q
" Total records count on class label Sengq,

Lyp (11)
where Sen,, denotes the value of the sensitive attribute and Seng,
denotes the sensitive attribute in the integrated dataset.

5.2.3.6. Potential compensation cost. The potential compensation
cost PCC is a factor that can help data providers to determine the
approximate cost of compensation prior to sharing the anon-
ymized integrated dataset. It is impacted by the enforcement of
privacy policies and privacy protection methods. The potential
compensation cost would vary in the presence of a privacy attack
and the associated risk of sensitive information disclosure. In gen-
eral, more stringent privacy parameters impede the probability of a
privacy attack. It is our rational hypothesis that privacy attacks
would have an exponential impact on the compensation cost due
to the substantial increase in the cost of litigation processes
(Review of the Personal Data (Privacy) Ordinance 2009). There is
no fixed monetary value for compensation cost in Review of the
Personal Data (Privacy) Ordinance (2009), but in the e-market a
customer who suffers monetary loss due to the disclosure of his
or her sensitive information may claim against data providers
(e.g., business enterprises) for compensation. Formally, PCC is
defined as:

PCC = exp(Probgy) x EcoStyys: (12)

5.2.3.7. Fixed operating cost. The fixed operating cost Fopcos: indi-
cates the fixed monthly cost that business enterprises would have
to pay when adopting cloud-services for data integration. Business
enterprises would gain more benefits with the adoption of cloud-
services comparative to expenditures incurred on hardware and
software purchase, setup and installation, licensing and upgrades,
maintenance and support, power and utility, and allocation of
physical space. Fopcost is @ quantitative factor, and its value is inde-
pendent of the employed anonymity measures in the process of
data mashup. It remains the same regardless of the changes in
value of integrated data Valiyedarq-

5.2.3.8. Potential damage cost. The potential damage cost PDC indi-
cates the cost that the data providers would suffer from data pri-
vacy breaches. An adversary may attempt to infer sensitive
information about a victim from the anonymized integrated
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dataset by using an explicit form of a privacy attack as discussed in
Section 5.2.3.5. In case of a privacy breach, business enterprises
(e.g., data providers) would face substantial costs because of the
mandatory notification of data breach, handling of regulatory
investigations, hiring of external auditors, facing class action litiga-
tion, and loss of business goodwill and customer relationships
(Bevitt et al. 2012). As suggested by existing studies (Backman
and Levin 2011, Acquisti et al. 2006, Gwebu et al. 2014), data
breaches negatively impact business profitability. We postulate
that the likelihood of a privacy breach would have an exponential
impact on the potential damage cost because a plaintiff (e.g., cus-
tomer) seeks redress for alleged harms such as actual monetary
loss from the identity theft, emotional distress, sexual harassment,
discrimination, or possible future losses (Romanosky et al. 2014).
PDC is determined by the likelihood of a privacy breach L, the
potential compensation cost PCC, and the fixed operating cost
Fopcost- Formally, PDC is defined as:

PDC = exp(Lyy) x PCC + Fopcost (13)

5.2.3.9. Net value. The net value NV demonstrates due diligence in
evaluating the key business factors on the trade-off between pri-
vacy and information utility. It is employed to quantify the differ-
ence between the value of integrated data and the potential
damage cost on the applied anonymity measures in the mashup
process. The net value changes with respect to the chosen privacy
model along with the anonymization algorithm and privacy
parameters. Formally, NV is calculated as follows.

NV = Valinggara — PDC (14)

5.2.3.10. Optimal value. The optimal value Opt,, is achieved at the
maximum of the net value NV. It changes with the variations of
price settings and joint privacy requirements of data providers.
NV is realized by the difference between the value of integrated
data and the potential damage cost. Formally, Opt,,, is defined as:

Opt, = max(NV) (15)

5.2.3.11. Contributions of data providers. The contribution of each
data provider DP; is derived from the net value NV by fairly com-
puting first the accumulative information gain Score(x) of each data
provider DP; on the anonymized integrated dataset. Generally, the

data provider whose data attributes result in greater information
gain can get a significantly higher share of the monetary net value.
Formally, Contpp, is defined as:

Infogainy,,
Contpp, = ———F——x NV 16
Ontop E?lenfogainDPI X (16)

5.3. Risk measurement

In this section, we present an attack model to measure the risk
associated with implicit weaknesses of privacy protection methods
and the risk caused by explicit knowledge attack.

5.3.1. Attack model

Data providers participating in data integration express concern
on two types of privacy threats: identity linkage and attribute link-
age. Based on background knowledge, adversaries in identity link-
age attacks can uniquely identify an individual, whereas
adversaries in attribute linkage attacks can infer an individual’s
sensitive information with relatively high confidence. In this paper
we employ classification analysis to quantify the potential privacy
risks. Specifically, we build a C4.5 classifier by using the sensitive
attribute as the class attribute, and we quantify the privacy risks
by measuring the accuracy of predicting the sensitive values. There
are many types of classification models, such as naive Bayesian,
support vector machines, and so forth, that an adversary can
employ to make predictions. Our proposed framework is flexible
to adopt other classification methods to quantify the potential pri-
vacy risks.

Let D be the raw data, as shown in Table 1, and Dr be the anony-
mous integrated data from the mashup process of two data provi-
ders, as shown in Table 2. Recall that Marital-status is the sensitive
attribute and Loanapprowval is the class attribute. Let us assume that
the data providers release their anonymized integrated data table
D' to the data consumer (i.e., data recipient) with the classifier. A
data recipient (or an adversary) can employ the C4.5 classification
algorithm to infer sensitive records of individuals by setting the
sensitive attribute Divorced as the class label. This approach is sim-
ilar to Kifer (2009) in a way that a data recipient (or an adversary),
instead of inferring new records on a class label, can predict the
sensitive attribute value of a target victim who is a participant in
the anonymized integrated training data.

Table 2
Anonymous integrated data (L =2, K =2, C=0.5).
Rec.ID Data provider DP, Data provider DP, Sensitive Class
Age Job Sex Education Marital-status Loan approval
1 [39-99] Blue-collar Any Secondary Divorced N
2 [39-99] White-collar Any Post-secondary Never-married Y
3 [33-39] Blue-collar Any Secondary Divorced Y
4 [39-99] Blue-collar Any Secondary Never-married N
5 [39-99] Blue-collar Any Elementary Married-civ-spouse Y
6 [39-99] White-collar Any Post-secondary Married-civ-spouse Y
7 [33-39] White-collar Any Post-secondary Never-married Y
8 [39-99] White-collar Any Post-secondary Married-civ-spouse N
9 [1-33] Blue-collar Any Secondary Divorced N
10 [39-99] Blue-collar Any Post-secondary Divorced Y
11 [39-99] Blue-collar Any Secondary Divorced Y
12 [39-99] White-collar Any Post-secondary Married-civ-spouse Y
13 [1-33] Blue-collar Any Secondary Married-civ-spouse N
14 [39-99] Blue-collar Any Post-secondary Divorced N
15 [33-39] White-collar Any Post-secondary Never-married Y
16 [1-33] Blue-collar Any Secondary Divorced N
17 [33-39] Blue-collar Any Secondary Divorced Y
18 [39-99] Blue-collar Any Secondary Divorced Y
19 [39-99] Blue-collar Any Elementary Married-civ-spouse N
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Table 3
Confusion matrix.

Predicted class

B C

Actual class Divorced (A) 4 0 0
Married-civ-spouse (B) 1 0 0

Never-married (C) 0 1 0

5.3.1.1. Implicit risk measure. Implicit risk is due to attribute linkage
attack (Fung et al., 2010Fung et al. 2010): an adversary attempts to
infer the sensitive attribute value in the released dataset using a
C4.5 classifier. In this type of attack, an adversary can negatively
use the precision and recall performance measures to identify a
victim's sensitive value. Precision indicates the measure of exact-
ness or quality, meaning the number of correctly classified positive
elements divided by the total number of elements classified as pos-
itive. Recall indicates the measure of completeness or quantity,
which means the number of correctly classified positive elements
divided by the total number of actual positive elements. We mea-
sure the adversary’s power of inferring sensitive values by calculat-
ing the F-measure according to Eq. (10), which is a weighted
harmonic mean of precision and recall measures. F-measure repre-
sents the probability of attack Prob,. An adversary may use these
performance measures to determine the success rate of a privacy
attack. We elaborate this by the following example.

Example 2. Consider the anonymous integrated data D’ in Table 2.
Suppose an adversary sets the sensitive attribute Marital-status as a
class on D'. This results in a new integrated data table T*. The
adversary performs the attack by using the classification model
C4.5 on T* to infer the sensitive attribute value of the victim.
Table 3 shows the confusion matrix for the classification of three
classes. Each instance (e.g., an individual) has an actual class and a
predicted class. The rows represent actual classes of the raw
records, and the columns represent predictions made by the
model. The entries on the diagonal indicate the correct predictions;
other entries show the errors. For the sensitive value Divorced, true
positive TP = 4, false negative FN = 0, and false positive FP = 1. So,
the values of performance measures are Precision = 80%,
Recall = 100%, and F-measure = 88.8%. U

5.3.1.2. Explicit risk measure. Explicit risk is due to record linkage
attack (Fung et al. 2010): an adversary applies his or her back-
ground knowledge on the integrated data table T* to predict the
sensitive value of a victim who is part of the anonymized inte-
grated training data. In addition, we assume that an adversary
knows that a victim has a record on the table and also has some
knowledge about the victim. For example, an adversary knows that
the victim is female, age is greater than 35, education level is sec-
ondary, and job is cleaning. By applying this external knowledge to
the anonymized integrated training data, the adversary finds a
total of 3 records on the sensitive value Divorced under the class
attribute Marital-status. The likelihood of the privacy breach Ly,
for this case becomes 3/4, which is calculated according to Eq.
(11). This implies that the adversary has a 75% confidence of infer-
ring the sensitive value of the victim. The likelihood of a privacy
breach would increase if the data providers are semihonest
(Lindell and Pinkas 2009, Yao 1982).

6. Limitations

In this section, we discuss some of the limitations of our pro-
posed business model that are inherent problems related to the

cost-benefit analysis. Our model provides the basic framework
for analyzing the cost-benefit of data mashup. The data providers
can add, remove, or adjust the cost factors according to their speci-
fic applications and scenarios. The common sources of errors are
omission errors and valuation errors. Omission error refers to exclud-
ing relevant factors in the process of factor analysis. Valuation error
refers to making an incorrect estimation of the value of the cost
factors, especially in the presence of intangible assets such as
person-specific information. These errors do not undermine the
value of cost-benefit analysis, and they are expected to decline
with the passage of time by the increase in domain knowledge
and follow-up of ex-post analysis (Boardman et al. 2006).

The privacy protection, database, and data mining communities
have identified many types of potential privacy attacks, such as
record linkage attack, attribute linkage attack, table linkage attack,
and probabilistic attack. Consequently, many privacy models and
anonymization methods (Fung et al. 2010), such as MinGen,
K-Optimize, Bottom-Up Generalization, Top-Down Specialization,
Anatomy, and e€-Differential Additive Noise, have been proposed to
thwart these attacks. The objective of this paper is not to address
all these privacy attacks. Instead, we are presenting a framework
with a flexible cost-benefit business model for multiple data provi-
ders to achieve optimal mutual benefits given an agreed privacy
requirement. Any partition-based anonymization methods that
result in equivalent classes with counts are applicable to our
framework. To illustrate the effectiveness of our proposed frame-
work and model, in our discussion we adopt two anonymization
algorithms, namely TDSmdpm and DiffGen, that can anonymize
vertically-partitioned relational data. TDSmdpm and DiffGen were
chosen because they can achieve two commonly employed privacy
models, LKC-privacy and differential privacy, respectively. We
would like to emphasize that our model is not limited to these pri-
vacy models and anonymization algorithms. They can be replaced,
depending on the consent of privacy protection among the data
providers. The negotiation process for reaching the consent is
beyond the scope of this article.

7. Empirical study

In this section, we analyze and compare the costs and benefits
for each data provider before participation in the data mashup pro-
cess on their own data and after participation in the data mashup
process on the integrated data. We evaluate our business model
with the assumption of having 3 data providers who mashup their
data using a secure Privacy-Preserving High-Dimensional Data
Mashup (PHDMashup) algorithm (Fung et al. 2012) in a cloud envi-
ronment. This model is independent of the cloud platform.

We employ a real-life dataset Adult' in our experiments, which
has been widely used for many empirical studies. It is also known
as the de facto benchmark for comparing the performance of
anonymization algorithms (Fung et al. 2007, Mohammed et al.
2011, Hore et al. 2007). After removal of records with missing values,
the Adult dataset contains 45,222 records with 8 categorical attri-
butes, 6 numerical attributes, and a binary class attribute Income
with two levels, <50K or >50K. For a classification analysis task this
dataset is split into 30,162, 15,060 records for the training and test-
ing set, respectively. We vertically partition the Adult dataset into
three partitions P;, P,, and Ps; for data providers DP;, DP,, and
DPs, respectively. Table 4 represents the attributes with their types
of each data provider. Each data provider computes Baseline Accuracy
(BA) and Classification Accuracy (CA) on its raw dataset and anon-
ymized dataset, respectively, by using a C4.5 classifier. The BA is
81.8%, 82.5%, and 75.6% on DP;, DP,, and DP; datasets, respectively.

1 Available at: http://archive.ics.uci.edu/ml/datasets/Adult.
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Table 4
Attributes hosted by each data provider.

Attribute Type

DP,

Age Numerical
Hours-per-week Numerical
Workclass Categorical
Capital-gain Numerical
Income Categorical
Marital-status Categorical
DP,

Education Categorical
Education-num Numerical
Occupation Categorical
Capital-loss Numerical
Income Categorical
Marital-status Categorical
DP;

Sex Categorical
Race Categorical
Relationship Categorical
Final-weight Numerical
Native-country Categorical
Income Categorical

Marital-status Categorical

Whereas, the baseline accuracy (BA) on the integrated data is 85.3%
using the secure multiple party classifier (Du and Zhan 2002) with-
out sharing their raw data. We consider Income as the class attribute
and Marital-status as the sensitive attribute in each data provider’s
table. The remaining attributes in each data provider’s table are
the QID attributes. We consider Married-civ-spouse and Divorced in
the attribute Marital-status as sensitive. In addition, a common
unique ID is included in each table for joining the data provider’s
tables. All experiments were performed on an Intel Core i3-2350 M
2.3 GHz PC with 4 GB memory.

7.1. Cost of anonymization without data mashup

In this section, we analyze the cost of anonymization Costyy to
individual data providers without their participation in the data
mashup process. Suppose the sensitivity of the dataset Seng, =2
on the scale of 1-5, the price per attribute Priceq, = $0.1, the size
of dataset Sizeqs, = 45,222 for the data providers DPy, DP,, and DP;
to fairly quantify and compare the cost of anonymization under
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different privacy models including K-anonymity, LKC-privacy, and
e-differential privacy.

Fig. 4 depicts the cost of anonymization to each data provider
without participating in the data mashup process. Fig. 4a depicts
the cost of anonymization when privacy models K-anonymity and
LKC-privacy are enforced with the anonymity threshold L, K, and
C. Cost,q generally increases as K or L increases, but this monotonic-
ity does not maintain for DP; and DP, with the increase of K. For
example, Cost,q decreases by $72.35 for DP;, when K increases from
40 to 50 when L = 2. This is because of the better classification
accuracy CA, which is increased from 80.3% to 80.5%. This anti-
monotonic property of the algorithm helps in finding the sub-
optimal anonymization cost. We observe that the DP; anonymiza-
tion cost is higher than DP, and DP; because DP; holds 3 continu-
ous numeric attributes (refer to Table 4) that require discretizing
into intervals (categorical values) for anonymization. The classifi-
cation analysis on new data would be less accurate than categorical
attributes due to the chance of information loss. The Cost,q of LKC-
privacy equals the Cost,; of the traditional K-anonymity when
L = 4 for each data provider. Cost,q is also insensitive to the change
of confidence threshold 10% < C < 50%.

Fig. 4b depicts the cost of anonymization when e-differential pri-
vacy is enforced with privacy parameters € = 0.5 and 1.0 and spe-
cialization levels 3 < h < 19. We observe that Cost,; generally
decreases when the specialization level h increases for DP; and
DP, with the setting of a privacy budget to either € =0.5 or 1.0.
But this trend is quite different in relation to DP; where Cost,y
increases monotonically with the increase in h; the random noise
results in lower classification accuracy.

7.2. Cost of anonymization in integrated data

In this section, we analyze the cost of anonymization in inte-
grated data Costingaara Under the joint privacy settings of the three
contributing data providers in the data mashup process. Suppose
the sensitivity of the dataset Seny;, = 2 on the scale of 1-5, the price
per attribute Pricey,, = $0.1, the number of attributes
Countqyr = 13 (sum of attributes of DP,, DP,, and DP;) and the size
of dataset Sizey, = 45,222 to quantify and compare the cost of
anonymization in integrated data under different privacy models,
including K-anonymity, LKC-privacy, and e-differential privacy.

Fig. 5a depicts the cost of anonymization in integrated data
when privacy models K-anonymity and LKC-privacy are enforced
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Fig. 4. Cost of anonymization to individual data provider without data mashup.
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Fig. 5. Cost of anonymization in integrated data.

with the anonymity threshold 10 < K < 50, background knowl-
edge L= (2,4,6), and confidence threshold C = 50%. Costingdata
generally increases as L increases, but does not exhibit obvious
monotonicity with the increase of K. For example, Costingdata
decreases by $3644.89 when K increases from 10 to 20 when
L =4 and L = 6. This is because of improvement in classification
accuracy CA, which increases by 3.1%. This helps in finding the
sub-optimal anonymization cost. The Costingiea Of LKC-privacy
equals the Costingdea Of traditional K-anonymity when L =4 and
L =6. Costingaara 1s also insensitive to the change of confidence
threshold 10% < C < 50%.

Fig. 5b depicts the cost of anonymization in integrated data
when e-differential privacy is enforced with privacy parameters
€=0.5 and 1.0 and specialization levels 3 < h < 19. We calculate
the average accuracy on 10 runs. We observe that Costinsgdara gENEI-
ally decreases as the specialization level h increases, except an
increase by $693.71 when privacy budget € = 0.5 and the special-
ization level h increases from 15 to 19. When € is small, having too
many levels makes each specialization less accurate.

7.3. Implicit risk measure

In this section, we analyze the implicit risk for each data provi-
der before participation in the data mashup process on their own
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data and after participation in the data mashup process on the
integrated data of the contributing data providers.

Fig. 6a depicts the probability of attack Prob,, on the sensitive
value Married-civ-spouse to the data providers DP,, DP,, and DP3
with privacy threshold 10 < K <50, background knowledge
L= (2,4), and confidence threshold C =50%. We observe that
the chance of inferring the sensitive attribute value is approxi-
mately 71%, 67%, and 99% on the anonymized dataset of
DP,, DP,, and DPs, respectively. DP, is comparatively better than
DP; and DP; because it has less risk of inferring the sensitive attri-
bute value.

Fig. 6b depicts the probability of attack Prob,y on the sensitive
value Married-civ-spouse in the anonymized integrated dataset of
contributing data providers DP;,DP,, and DP; under the joint pri-
vacy settings with the anonymity threshold 10 < K < 50, back-
ground knowledge L=(2,4,6), and confidence threshold
C = 50%. We can observe the trend that Prob, generally decreases
as K or L increases, which also conforms to the theoretical analysis.

7.4. Explicit risk measure

In this section, we analyze the explicit risk for each data provi-
der before participation in the data mashup process on their own
data and after participation in the data mashup process on the
integrated data of contributing data providers.
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Fig. 6. Implicit risk measure.
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Fig. 7. Explicit risk measure.

Suppose an adversary has prior knowledge about a male victim,
that his age is between 40 and 50, his education is masters, his
hours-per-week is >40, and his income is >50,000.

Fig. 7a depicts the likelihood of a privacy breach L,, on the sen-
sitive value Married-civ-spouse when the aforementioned external
knowledge about the victim is linked to the data providers
DP;, DP,, and DP; attributes, where privacy threshold
10 < K < 50, background knowledge L = (2,4), and confidence
threshold C =50%. We observe that the L, is approximately
86%, 82%, and 85% on the anonymized dataset of DP,, DP,, and
DP;3, respectively. DP, is comparatively better than DP; and DP;
because it has less risk of a privacy breach.

Fig. 7b depicts the likelihood of a privacy breach Ly, on the sen-
sitive value Married-civ-spouse when the aforementioned external
knowledge about a victim is linked to the anonymized integrated
dataset of contributing data providers DP;, DP,, and DP; under
the joint privacy settings with the anonymity threshold
10 < K < 50, background knowledge L = (2,4,6), and confidence
threshold C = 50%. Generally, L,, decreases with the increase of L
but this trend is not obvious with the increase of K. For example,
Ly is 86.44% when K = 40 and L = (4, 6), which is higher by 3.4%
when L = 2. This anti-monotonic property of the TDS algorithm
helps in identifying the sub-optimal solution. The L,, of LKC-
privacy equals the Ly, of K-anonymity when L=4 and L=6
because the classification accuracy on the sensitive attribute
Marital-status remains unchanged with the increase of L. Though
not shown in the figure, Ly, is insensitive to the change of the con-
fidence threshold 10% < C < 50%.

X =2 DP1 without mashup
#.=2 DP1 with mashup

X =4 DP1 without mashup
4L=4 DP1 with mashup

7.5. Impact of privacy requirements on net value

In this section, we analyze the impact of K-anonymity, LKC-
privacy, and e-differential privacy requirements on monetary value
for each data provider before participation in the data mashup pro-
cess and after participation on the integrated data of contributing
data providers. Suppose the sensitivity of the dataset Seng, = 2
on the scale of 1-5, the price per attribute Priceq,, = $0.1 , the
expected cost of lawsuit Ecosty, = $1000, the size of dataset
Sizegs, = 45,222, and the fixed operating cost Fopcos: = $300.

Fig. 8 depicts the impact of K-anonymity and LKC-privacy
requirements on DP;’s net value, where privacy threshold
10 < K < 50, and confidence threshold C = 50%. Fig. 8a depicts
the impact on DP;’s net value when the threshold L =2. We
observe that DP;’s net value without data mashup (refer to the
DP;’s attributes in Table 4) decreases slightly with the increase of
K, but it does not maintain monotonicity when K = 50. On the
other side, DP’s net value with data mashup drops with the
increase of K from 10 to 30, but the net value rises when
K > 30. This change in trend depends on the information gain
for classification analysis of the DP;’s attributes. Fig. 8b depicts
the impact on DP;’s net value when the threshold L =4. We
observe that DP;’s net value without data mashup decreases
slightly with the increase of K from 10 to 30, but it is insensitive
to change when K > 30. On the other side, DP1’s net value with
data mashup does not exhibit monotonicity with the increase of
K because DP;’s attributes for classification analysis contribute dif-
ferent information gains at different privacy thresholds K on
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Fig. 8. Impact of K-anonymity and LKC-privacy requirements on DP;’s net value.
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integrated data with collaborating data providers DP, and DPs.
Fig. 8c depicts the impact on DP;’s net value when the threshold
L = QID. There are a total of 4 QID attributes in DP;’s dataset.
DP;’s net value of traditional K-anonymity is equal to LKC-privacy
when L = 4. Though not shown in Fig. 8, net value is insensitive
to the change of the confidence threshold 10% < C < 50%. The
maximum net value achieved by the DP; is $27,190.94 when
K=20and L=4.

Fig. 9 depicts the impact of K-anonymity and LKC-privacy
requirements on DP,’s net value, where privacy threshold
10 < K < 50, and confidence threshold C = 50%. Fig. 9a depicts
the impact on DP,’s net value when the threshold L =2. We
observe that DP,’s net value without data mashup (refer to the
DP,’s attributes in the Table 4) decreases slightly with the increase
of K except when K = 30. On the other side, DP,’s net value with
data mashup increases with the increase of K from 10 to 30, but
the net value drops when K > 30. This change in trend depends
on the information gain for classification analysis of DP,’s attri-
butes. Fig. 9b depicts the impact on DP,’s net value when the
threshold L = 4. We observe that DP,’s net value without data
mashup decreases slightly with the increase of K from 10 to 20,
but it is insensitive to change when K > 20. On the other side,
DP,’s net value with data mashup increases with the increase of
K from 10 to 40, but it drops when K = 50. This drop in net value
is due to the loss of information gain in classification analysis.
Fig. 9c depicts the impact on DP,’s net value when the threshold
L = QID. There are a total of 4 QID attributes in DP,’s dataset.

X =2 DP2 without mashup
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DP,’s net value of traditional K-anonymity is equal to LKC-privacy
when L = 4. Though not shown in Fig. 9, net value is insensitive
to the change in the confidence threshold 10% < C < 50%. The
maximum net value achieved by DP, is $68,060.37 when K = 30
and K = 40, and L = 4.

Fig. 10 depicts the impact of K-anonymity and LKC-privacy
requirements on DPs;’s net value, where privacy threshold
10 < K < 50, and confidence threshold C = 50%. Fig. 10a depicts
the impact on DP5’s net value when the threshold L =2. We
observe that DPs’s net value without data mashup (refer to the
DP3’s attributes in Table 4) is insensitive to change with the
increase of K. On the other side, DP5’s net value with data mashup
drops with the increase of K from 10 to 20, but the net value grad-
ually rises when K > 20. This change in trend depends on the
information gain for classification analysis of DPs’s attributes.
Fig. 10b depicts the impact on DP5’s net value when the threshold
L = 4. We observe that DPs’s net value without data mashup is
insensitive with the increase of K. On the other side, DP5’s net value
with data mashup drops with the increase of K except when
K = 50. This fall in net value is due to the loss of information gain
in classification analysis. Fig. 10c depicts the impact on DPs’s net
value when the threshold L = QID. There are a total of 5 QID attri-
butes in DP5’s dataset. DP5’s net value of traditional K-anonymity is
equal to LKC-privacy when L = 4. Though not shown in Fig. 10, net
value is insensitive to the change of the confidence threshold
10% < C < 50%. The maximum net value achieved by DP; is
$34,522.01 when K =10 and L = 4.
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Fig. 10. Impact of K-anonymity and LKC-privacy requirements on DP5’s net value.
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Fig. 11. Impact of e-differential privacy requirements on DP;’s monetary value.

Fig. 11 depicts the impact on DP’s monetary value when
e-differential privacy is enforced with privacy parameters €=0.5
and 1.0 and specialization levels 3 < h < 19. Fig. 11a depicts the
impact on DP;’s monetary value when the threshold € = 0.5. We
observe that DP;’s monetary value without data mashup (refer to
the DPy’s attributes in Table 4) increases monotonically as the
increase in specialization level h. On the other side, DP;’s monetary
value with data mashup increases when specialization level h
increases from 3 to 7 and 11 to 15, but the value drops due to
the loss of data utility when h =11 and h = 19. Fig. 11b depicts
the impact on DP;’s monetary value when the threshold € = 1.0.
We observe that DPy’s monetary value without data mashup
increases slightly with the increase in the specialization level h
except when h = 11. DPy’s net value with data mashup generally
increases with the increase in h, but it does not maintain mono-
tonicity when h = 11 due to the provision of less data utility in
classification analysis with collaborating data providers DP, and
DPs. The benefits to DP; of doing data mashup is higher than going
without data mashup by gaining the maximum net value
$30,0187.37 when € = 1.0 and h = 19.

Fig. 12 depicts the impact on DP,’s monetary value when
e-differential privacy is enforced with privacy parameters €= 0.5
and 1.0 and specialization levels 3 < h < 19. Fig. 12a depicts the
impact on DP,’s monetary value when the threshold € = 0.5. We
observe that DP,’s monetary value without data mashup (refer to
the DP,’s attributes in Table 4) generally increases as the increase
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in specialization level h except when h = 15. DP,’s monetary value
with data mashup does not exhibit monotonicity with the increase
in the specialization level h due to the loss of data utility in classi-
fication analysis when h = 11 and the provision of less data utility
in comparison to the other collaborating data providers DP; and
DP; when h = 15. Fig. 12b depicts the impact on DP,’s monetary
value when the threshold € = 1.0. We observe that DP,’s monetary
value without data mashup increases monotonically with the
increase in the specialization level h. On the other side, DP,’s mon-
etary value with data mashup does not exhibit monotonicity with
the increase in the specialization level h due to the loss of data util-
ity in classification analysis when h = 7 and the provision of less
data utility in comparison to other collaborating data providers
DP; and DP; when h = 19. The benefits of doing data mashup are
higher than doing without data mashup to DP, by gaining the max-
imum net value $29,971.26 when e =0.5and h = 7.

Fig. 13 depicts the impact on DP;3’s monetary value when
e-differential privacy is enforced with privacy parameters €= 0.5
and 1.0 and specialization levels 3 < h < 19. Fig. 13a depicts the
impact on DP5’s monetary value when the threshold € = 0.5. We
observe that DPs’s monetary value without data mashup (refer to
the DP5’s attributes in Table 4) decreases slightly as the specializa-
tion level h increases. DP3’s monetary value with data mashup does
not exhibit monotonicity with the increase in the specialization
level h, but DP5’s monetary value is greater than DP,; and DP, at
specialization levels 3-19. Fig. 13b depicts the impact on DPs’s
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Fig. 12. Impact of e-differential privacy requirements on DP,’s monetary value.
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Fig. 13. Impact of e-differential privacy requirements on DPs’s monetary value.

monetary value when the threshold € = 1.0. We observe that DP5’s
monetary value without data mashup decreases slightly as the spe-
cialization level h increases. On the other side, DP;’'s monetary
value with data mashup decreases with the increase in the special-
ization level h except when h = 19. The benefits of doing data
mashup is higher than going without data mashup to DP; by gain-
ing the maximum net value $78,993.45 when € = 1.0 and h = 3.

8. Conclusion

We have proposed a business model to quantify and compare
the costs and benefits for releasing integrated anonymized data
of multiple providers over an individual data provider when trad-
ing person-specific information in the e-market. Our model
enables data providers to set up their joint privacy requirements
for classification analysis on mashup data. The data mashup pro-
cess is implemented fairly that allows data providers to integrate
their data subject to the given privacy requirements. During the
data mashup process every data provider competes with the other
participating data providers to generate more profit from their own
data. The data provider whose data provides more information
gain will get a significantly higher share in terms of monetary
value from the distribution of the achieved net value. We have
incorporated relevant factors that are associated with the revenue
and costs to determine the net value. Our model helps data provi-
ders in finding the optimal value by evaluating the benefits of data
mashup and impacts of data anonymization based on the choices
of privacy models and data mashup anonymization algorithms.
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