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Abstract—The Internet of Things (IoT) paradigm has led to
an explosion in the number of IoT devices and an exponential
rise in carbon footprint incurred by overburdened IoT networks
and pervasive cloud/edge communications. Hence, there is a
growing interest in industry and academia to enable the efficient
use of computing infrastructures by optimizing the management
of data center and IoT resources (hardware, software, network,
and data) and reducing operational costs to slash greenhouse
gas emissions and create healthy environments. Cybersecurity
has also been considered in such efforts as a contributor to
these environmental issues. Nonetheless, most green security
approaches focus on designing low-overhead encryption schemes
and do not emphasize energy-efficient security from architec-
tural and deployment viewpoints. This paper sheds light on
the emerging paradigm of adaptive cybersecurity as one of
the research directions to support sustainable computing in
green IoT. It presents three potential research directions and
their associated methods for designing and deploying adaptive
security in green computing and resource-constrained IoT
environments to save on energy consumption. Such efforts will
transform the development of data-driven IoT security solutions
to be greener and more environment-friendly.

Index Terms—Green computing, green IoT, green cybersecu-
rity, adaptive cybersecurity, energy-efficient security.

I. INTRODUCTION

The large-scale of today’s data centers and Internet
of Things (IoT) networks has led to distressing increase
in energy consumption and carbon emission, creating
serious climatic variation issues [1]. In fact, the accelerated
development of IoT in various application domains
such as smart home, industry, and transport entailed
several challenges related to real-time communications,
reliable service delivery, security and privacy, for which
numerous green-agnostic solutions were proposed. For
example, network redundancy boosts Quality of Service
(QoS) and availability but does not necessarily adhere to
green computing criteria. Therefore, the environmental
sustainability of IoT technologies remains a major challenge.

The Industrial IoT (IIoT) paradigm combines automated
machines and advanced data analytics techniques to improve
productivity and efficiency [2]. However, it produces
massive amounts of data and relays heavy traffic generated
by billions of connected devices, which also require energy
to perform sensing, processing, and computing tasks.
Moreover, cloud data centers running in the background
of IoT applications are highly energy-hungry. Apart from
the excessive manufacturing and massive shipment of IoT
devices contributing to the greenhouse gas (GHG) emission,
it has been shown that 5G-enabled communications of IoT

devices incur the highest level of energy consumption [3] -
estimated to consume 46TWh energy by 2025 [4].

Green IoT emerged as an energy-efficient and
environment-friendly paradigm to reduce power consumption
and carbon emissions by leveraging on-demand protocols,
customized optimization algorithms, and Artificial
Intelligence (AI) approaches [5]. Its lifecycle includes green
design, production (manufacturing), utilization, and disposal
[6]. Green IoT is usually accompanied by green cloud
computing concepts focusing on higher resource utilization
(e.g., multi-tenancy), cost-effective power management, and
efficient workload coordination via dynamic provisioning at
the server and data center levels [7].

Ensuring security and privacy in edge/cloud computing
environments as well as IoT systems in a sustainability-aware
fashion has also been considered as a priority research axis
in green computing. This is crucial since the communications
of billions of resource-constrained IoT devices as well as the
overburdened cloud data centers running and providing IoT
services and vast BigData analytics will require significant
amounts of resources to deploy security solutions at a
very large scale. These solutions will push power usage
constraints in the opposite direction, especially if deployed
suboptimally and in scenarios where they are not fully
needed. Therefore, the design efficiency of communication
protocols, computing paradigms, and security mechanisms
will become a key aspect. Recently, several energy-efficient
security solutions have been designed in IoT and edge
computing including autonomous network monitoring [8],
resilience against data transmission attacks [9], and low-
overhead encryption algorithms [10].

Security deployment in large-scale IoT and complex
cyber-physical systems already entails major scalability
and performance issues. Hence, optimizing the design and
deployment of security architectures will not only contribute
to green cybersecurity efforts, but will also help addressing
such issues [11]. The idea of adaptive cybersecurity has
lately received significant attention as a way to achieve
optimized security [12]–[14]. Indeed, by monitoring the
security risk state of the edge infrastructure and IoT
environment, security processes can be built to operate
optimally [15]. This is a potential research direction that can
greatly contribute to green cybersecurity research efforts in
both the green computing and green IoT paradigms.

This paper explores three lines of research that will
help achieve adaptive cybersecurity in green IoT, namely:
1) Dynamic threat prevention via Moving Target Defense
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Fig. 1: Connected IoT devices usually offload heavy compu-
tations to edge or cloud data centers.

(MTD); 2) Optimized design and deployment of Intrusion
Detection Systems (IDS); and 3) Risk-driven attack
mitigation solutions. The paper is structured as follows.
Section II describes the fundamentals of green computing
and IoT architectures. Section III emphasizes the security
challenges surrounding the realization of green IoT
environments. Section IV discusses the three research
directions that will help achieve green cybersecurity through
adaptiveness. Finally, Section V concludes the paper.

II. GREEN COMPUTING AND IOT

IoT has brought new service opportunities across various
sectors such as digitized health, autonomous transportation,
and intelligent manufacturing, and has played a crucial role in
building smart cities [16]. IoT involves smart devices that can
upload data to the Internet and control the decisions of cyber-
physical processes [2]. The IoT paradigm involves three
main layers: the perception layer consisting of sensors and
actuators performing data collection and device control; the
communications layer responsible for the transmission of data
from devices for processing and storage in the edge or cloud;
and the application layer leveraging the cloud environment to
perform computational and data analytics tasks. Fig. 1 depicts
a generic architecture of IoT and edge computing.

As in green cloud, the early stages of IoT development
focused on improving the performance and QoS of resource-
constrained devices and delay-intolerant applications, while
today’s IoT solutions have started to prioritize energy-
efficient designs to promote eco-friendliness. Hence, novel
greenness metrics in IoT are anticipated to be developed,
similar to the ones used to evaluate green clouds such as data
center infrastructure efficiency and power usage effectiveness.

Green computing models are normally deployed at the
software, hardware, and network levels. Software-related
techniques reduce the number of active servers by imple-

Fig. 2: Defense-in-depth principles should ideally be applied
to every layer of the IoT architecture.

menting auto-scaling systems, virtualization solutions, and
server consolidation approaches. Also, many of these tech-
niques leverage machine learning for predictive data analytics
and workload management. Hardware-related solutions can
decrease energy consumption by enabling flexible control of
server frequency and voltage, efficient heat dissipation to re-
duce cooling needs, and various sleeping models in physical
devices [17]. At the network level, the goal is to reduce traffic
between edge virtual machines or IoT devices as well as to
minimize the power consumption of the wireless data path.
This can be achieved by adopting the following approaches:
i) Enabling idle or sleep modes for the sensors when not
transmitting data; ii) Using context-aware processing and
storage algorithms to reduce the data overhead at the edge;
and iii) Configuring energy-efficient routing protocols [5].

The concepts and characteristics of green IoT have already
been applied in the following areas:

• Designing energy-aware communications protocols [18],
[19], congestion control algorithms [20], and green
wireless communications in IoT [21].

• Developing green resource allocation [22] and applica-
tion deployment [23] algorithms.

• Implementing green control of cyber-physical operations
in IIoT (e.g., SCADA [24]).

• Deploying green caching and data storage approaches at
the network edge [25].

• Building green AI in IoT and edge systems [26].
• Designing energy-efficient cryptographic hardware [27],

[28] and secure sensors [29] in IoT systems.
Nonetheless, green security approaches that can apply to

the global IoT architecture have not yet received their fair
attention. These approaches can be critical to ensure sus-
tainable IoT development considering the substantial amount
of resources required to implement various security features
at every layer of the IoT architecture, as depicted in Fig. 2.
Moreover, the defense-in-depth paradigm cannot be sacrificed
given the extensive threat landscape in emerging Internet-
connected cyber-physical systems [30]. Therefore, this paper
investigates the potential of adaptive cybersecurity and intro-
duces several ideas about green security design, deployment,
and configuration for threat prevention, detection, and miti-
gation, which will help the research community in advancing
the field of green cybersecurity.

III. SECURITY CHALLENGES IN GREEN IOT

IoT raises many vulnerabilities that can lead to security
threats [31]. Attacks at the perception layer include side
channel, device tampering, and fake node injection [32].
Network layer attacks include Sybil and man-in-the-middle.
Finally, attacks carried out against the application layer are
mainly driven by malware such as viruses and worms [33]
as well as data corruption and Distributed Denial of Service
(DDoS) attacks, which could affect the cloud server and
delivered services [34]. On the other hand, green IoT will
introduce new security vulnerabilities as well as additional
constraints on security deployment due to the limited resource

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

65

Authorized licensed use limited to: McGill University. Downloaded on December 14,2022 at 19:13:47 UTC from IEEE Xplore.  Restrictions apply. 



capabilities at the network edge. Hence, fully achieving green
IoT will entail several security and privacy challenges.

A. Green IoT Requirements

Green IoT networks and systems may become more vul-
nerable to security attacks compared to traditional green-
agnostic networks due to additional system requirements and
energy constraints. Also, fog and edge computing data centers
cannot provide the same level of security enabled by cloud
computing due to their intrinsic features such as decentralized
architectures, distributed computing, and resources limitation
[35]. Hence, an adversary may discover new, greenness-
driven malicious ways to target the green IoT network [36].

In green IoT, meeting the required and sufficient security
and privacy specifications is critical; otherwise, we might end
up overwhelming IoT devices with the burden of unnecessary
security mechanisms, which may lead to increased energy
consumption and reduced performance [37]. Furthermore,
green IoT leverages different approaches, techniques, and
algorithms (e.g., software, hardware, communications, archi-
tecture), whose layered deployment and heterogeneity may
create security holes within the system [38]. This exacerbates
the need to shape future cybersecurity solutions to fit the
complex green IoT landscape and respond to challenging
interoperability requirements.

B. Limitations of Conventional Security

Most of conventional security mechanisms may not be well
suited for green infrastructures because they are not designed
with energy-efficiency in mind (e.g., public-key encryption).
These security methods normally use additional resources on
IoT devices that result in heavy energy consumption [39].
Making these security solutions green might compromise
their effectiveness and increase the risk of the IoT system
to security threats, thus introducing an adverse effect.

Also, in recent years, new privacy regulations such as the
EU General Data Protection Regulation have been enforced
in many regions. As a result, many organizations are explor-
ing privacy-enhanced technologies and data anonymization
solutions on different data sharing scenarios [40], [41]. The
general objective of these privacy-preserving technologies
(PETs) is to achieve certain capabilities such as classifica-
tion analysis but without compromising individual privacy.
Recently, these techniques are being incorporated into the
IoT paradigm [42]. However, most of them involve complex
cryptographic protocols and are often computationally expen-
sive and energy-hungry. Hence, they do not fit well with the
requirements of green security and privacy protection.

C. Green AI-based Security

Intrusion detection in IoT networks and systems often
rely on data-driven security solutions that gather contextual
insights and enable automated reasoning based on knowledge
representation to achieve cybersituational awareness [43].
For instance, anomaly-based detection makes use of statis-
tical patterns as a baseline for standard behavior to detect
malicious activities (e.g., using machine and deep learning
techniques) [44]. AI techniques and BigData analytics help
understand attackers better, detect both known and unknown

attacks, and immediately react to threats by looking for
anomalies in data and logs from multiple sources and identi-
fying the relationships between threats such as malicious files
and suspicious IP addresses [43]. But unlike signature-based
detection, anomaly-based detection normally generates many
false positives when trying to identify zero-day attacks. It can
also increase operational overhead significantly.

In the roadmap of green security for sustainable IoT, de-
ploying energy-efficient anomaly detection systems based on
machine and deep learning is key [45]. From a green security
perspective, proactiveness is costly, and ensuring real-time
visibility into security threats may create performance burden
on IoT systems. Also, training deep learning models which
consume billions of data points from structured and unstruc-
tured sources yields a huge power consumption that can have
adverse effects on the environment [46]. Nonetheless, AI has
become intrinsic to modern, large-scale IDS and cannot be
abandoned. Hence, we must explore new, efficient ways to
deploy AI models for cyber defense - there exists an inherent
link between green cybersecurity and green AI [47].

D. Evaluating Green Cybersecurity

The first step towards enabling green cybersecurity is to put
in place the development standards and design frameworks
required to ensure sustainability, as well as to systematically
propose the evaluation procedures and metrics necessary for
consistent implementation practices. For instance, the impact
of cybersecurity solutions on carbon footprint should be
quantitatively measured. The following metrics can be used
to judge the greenness of future security mechanisms:

• Computing and communication overhead caused by the
deployment of security policies and measures in edge
IoT networks and cloud-enabled IoT services.

• Resource utilization by security and privacy methods
and techniques at the IoT device (e.g., authentication and
access control), server (e.g., anti-malware), and BigData
levels (e.g., MapReduce tasks).

• Energy consumption by all resource types (e.g., CPU
power, memory, bandwidth, databases) provisioned to
deploy security controls in large-scale IoT networks and
interconnected cyber-physical systems.

• GreenHouse Gas (GHG) emissions produced by all
security-related operations including data collection,
transmission, processing, and storage as well as decision
making and surveillance in edge/cloud computing.

In addition, several other criteria or metrics may be imposed
to assess the quality of green security designs with respect
to maintaining acceptable performance levels and QoS such
as response time, scalability, and fault tolerance.

IV. ADAPTIVE CYBERSECURITY: FUTURE OF GREEN IOT

To address the above challenges, this paper presents three
research directions that can guide future efforts in the field of
adaptive cybersecurity as a fundamental enabler of green IoT
paradigms. These directions focus on providing a holistically
green defense-in-depth approach through adaptive security
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Fig. 3: Potential research directions to achieve green cyberse-
curity in large-scale IoT.

Fig. 4: Overview of the lifecycle of the adaptive MTD frame-
work and its main design questions.

design and deployment from the perspectives of threat pre-
vention, detection, and mitigation as shown in Fig. 3.

A. Dynamic Threat Prevention

Several approaches exist to optimize security deployment
and enable dynamic network defense. For instance, MTD has
been recently applied to protect IoT networks by dynamically
shifting the attack surface and avoiding static configurations
[48]. MTD aims to introduce uncertainty about the system
or network’s state and render the information collected by
adversaries less valuable over time by continuously moving
one or more configuration parameters (e.g., IP addresses,
port numbers) through adaptation, randomization, or diver-
sification [49]. IoT devices usually have low computational
capabilities which make it difficult to implement advanced
security features. Hence, the idea of MTD is very appealing
to prevent attackers from infiltrating the network.

However, MTD movements on critical systems and low-
power networks must not be performed randomly. They
should be well calculated to avoid performance degradation
and service disruption, especially in scenarios involving lim-
ited computational resources and hard QoS constraints. Fig. 4
shows the main stages and implementation aspects of a cost-
effective MTD mechanism. Every stage can be exploited to
create energy-efficient security solutions enabled by smart de-
sign and optimized deployment. Thus, using MTD, intrusion
prevention systems in IoT networks can potentially be made
greener and more sustainable on the long run, since they will
be able to better respond to the functional requirements of
green IoT compared to static and computationally-intensive
cryptographic protocols, as discussed in Section III.

B. Optimized IDS Deployment

The communications between IoT devices and between
devices and the edge necessitate high energy consumption
[3]. Thus, green IoT security research efforts should focus

on designing security mechanisms capable of operating under
reduced data transmission (i.e., amount and frequency). Also,
state-of-the-art green networking best-practices including se-
lective routing, data compression, and low-power wireless
communication protocols such as ZigBee should be adopted
in future security architectures [50]. Finally, more focus
should be given to optimizing the deployment of analytics-
driven IDS in complex, large-scale cyber-physical systems.

For instance, Fig. 5 illustrates a multi-layered IDS archi-
tecture for the Internet of Vehicles (IoV). The IDS monitors
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
communications to look for suspicious behavior. However,
a green IDS architecture needs to incorporate green design
practices into every aspect of the IDS operations including
the anomaly detection algorithms, collection and processing
of security-related information, and deployment of local IDS
components onto IoV infrastructure devices and vehicles.

Therefore, the IDS architecture in Fig. 5 may incorporate
built-in optimization algorithms to avoid collecting anomaly-
related data from the entire vehicular network in real time.
Hence, selective monitoring of static and dynamic IoV com-
ponents can be enabled in a risk-aware fashion to reduce
communication overhead [51]. Furthermore, the IDS can
leverage Reinforcement Learning (RL) algorithms to dynam-
ically learn an adaptive security policy [52], as shown in Fig.
6. Here, the defense strategies can be continuously updated by
observing their impact on the IoV infrastructure and assessing
the anticipated threats. Hence, by integrating the metrics of
energy efficiency into the design of the reward function of

Fig. 5: Multi-layered IDS architecture in IoV.

Fig. 6: RL application in IDS design to produce opti-
mized, energy-efficient security actions.
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Fig. 7: Main game theory classes that can be leveraged for the design
and deployment of adaptive IoT security schemes.

Fig. 8: Game-theoretic, risk-driven adaptive security framework for
energy-efficient decision-making in large-scale IoT networks.

the autonomous IDS agent at the edge, the generated defense
policy can adhere to the vehicle’s energy constraints.

C. Risk-driven Threat Mitigation

Adaptive security architectures may potentially be built
around risk assessment [53]. They can be driven by the
dynamic evaluation of security threats in the network at
a given point in time as well as the impact of security
attacks in case they materialize. For instance, adaptiveness
can be triggered when dealing with sensitive or safety-critical
IIoT data, since securing non-sensitive data may consume
unnecessary energy. Instead of configuring a heavy-overhead
security control in a risk-agnostic fashion, only the required
security controls should be implemented following careful
vulnerability and threat assessment of the infrastructure.
Moreover, these controls may be necessary only in some parts
of the system (e.g., specific components, subset of devices,
network portions), which may be more exposed to attacks.

Game theory is another approach that can be leveraged
for security modeling and optimization under the umbrella of
green IoT. It provides an extensive set of mathematical frame-
works and tools useful for conducting risk-driven, macro-
scopic security studies. Various game-theoretic models have
been used in the literature for developing security solutions
[54]. These usually rely on formulating the attack/defense
interactions with the objective of achieving the maximum
payoff for the defense system [55]. For example, non-
cooperative games are normally used to optimize the defense
strategy against the adversary’s actions, while cooperative
games are used to effectively coordinate the collaborative
behavior of nodes in peer-to-peer networks [51].

Fig. 7 depicts the main classes of non-cooperative game
theory that can be used to perform continuous security risk
assessment of the IoT system or network by studying the
adversary’s actions then adapting security deployments over
time as illustrated in the security framework in Fig. 8.
Dynamic game-theoretic models are a better fit for studying
the attack-defense interactions in an adaptive fashion [15].
As shown in Fig. 7, these can be further categorized based

on the information available about each player such as their
strategies and payoffs (e.g., complete vs incomplete), as well
as their knowledge of the history of played actions (e.g.,
perfect vs imperfect) [54]. Also, mean-field games [56] may
be leveraged for designing optimized security solutions in
IoT networks involving a large number of devices.

V. CONCLUSION

Green IoT has emerged as an energy-efficient and eco-
logical paradigm to reduce carbon emissions by large-scale
IoT systems and cloud-enabled IoT services. However, tra-
ditional cybersecurity approaches impose several barriers to
the development of green IoT solutions. This paper presents
three major research directions to help alleviate these barriers,
namely designing energy-efficient threat prevention schemes,
deploying security optimization at the network edge, and
developing risk-driven threat mitigation solutions. These di-
rections mainly aim at replacing static, programmable, and
efficiency-agnostic security with dynamic and adaptive cy-
bersecurity, which will highly contribute to achieving IoT
greenness. In the future, we will explore in more details the
greenness metrics needed to gauge the design and quality of
green cybersecurity solutions in IoT and edge computing.
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