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 ABSTRACT 

Early breast cancer recurrence is indicative of poor response to adjuvant therapy and poses threats to 

patients’ lives. Most existing prediction models for breast cancer recurrence are regression-based 

models and difficult to interpret. We apply a Decision Tree algorithm to the clinical information of a 

cohort of non-metastatic invasive breast cancer patients, to establish a classifier that categorizes patients 

based on whether they develop early recurrence and on similarities of their clinical and pathological 

diagnoses. The classifier predicts for whether a patient developed early disease recurrence; and is 

estimated to be about 70% accurate. For an independent validation cohort of 65 patients, the classifier 

predicts correctly for 55 patients. The classifier also groups patients based on intrinsic properties of 

their diseases; and for each subgroup lists the disease characteristics in a hierarchal order, according to 

their relevance to early relapse. Overall, it identifies pathological nodal stage, percentage of intra-tumor 

stroma and components of TGFβ-Smad signaling pathway as highly relevant factors for early breast 

cancer recurrence. Since most of the disease characteristics used by this classifier are results of 

standardized tests, routinely collected during breast cancer diagnosis, the classifier can easily be 

adopted in various research and clinical settings. 

KEY WORDS 

breast cancer, recurrence, Decision Tree, classifier, stroma, TGFβ 

The official version is published is in Springer 
Information Systems Frontiers (ISF)
https://doi.org/10.1007/s10796-017-9764-0

mailto:jimin@hms.harvard.edu
mailto:ben.fung@mcgill.ca
mailto:farkhund.iqbal@zu.ac.ae
mailto:p.j.k.kuppen@lumc.nl
mailto:r.a.e.m.tollenaar@lumc.nl
mailto:w.e.mesker@lumc.nl
mailto:jj.lebrun@mcgill.ca


2 
 

1 INTRODUCTION 

Following surgery, breast cancer patients often receive adjuvant therapy for at least 5 years, as a precaution 

against relapse. However, many patients experience therapeutic failure marked by disease recurrence, in the 

form of local and regional relapses or distant metastasis [1].  These recurrent disease lesions often occur 

within the period of adjuvant therapy, and indicate that residual tumor cells do not respond to adjuvant 

therapy or have weak responses [1]. If recurrence does not happen during the administration of adjuvant 

therapy, the incidences of recurrence afterwards tend to be sporadic [1, 2]. These sporadic incidences are 

believed to be due to tumor cells exiting dormancy over time. While late disease recurrence is indicative of 

some levels of responses to the adjuvant therapy, early breast cancer recurrence poses serious threat to 

patients’ lives. As such, methods that predict whether or not breast cancer patients will develop early 

recurrence, using disease attributes collected at the time of initial diagnosis, could prove very useful to help 

determine disease prognosis and the making of clinical decisions. 

A widely-explored approach to develop prediction models is to calculate an arbitrary prognostic score 

established by multivariate regression models, using disease characteristics, immunohistochemistry, gene 

expression profiles, alone or in combination [3-7]. While these regression models are well curated, they 

also have a few limitations. They take account of every case in the same manner, even when dealing with 

highly heterogeneous populations. Moreover, the good performance of a regression model depends on 

carefully selecting relevant disease characteristics, thus requiring extensive prior knowledge. In addition, it 

is not always possible to interpret the contribution of individual characteristics from the mathematical 

formula describing the model. Finally, regression models yield either a score related to an outcome or a 

probability of an outcome, rather than the outcome itself. To overcome these limitations, we use an 

alternative approach to build a Decision Tree classifier. The classifier groups patients based on similar 

disease attributes and outcomes, list the disease attributes in a hierarchical order based on their relevance to 

the outcomes, and predict for the status of whether or not a patient will develop early breast cancer relapse.  

The principle of a Decision Tree algorithm is to continuously partition a group of heterogeneous 

examples, using the values of several descriptors (feature attributes), to obtain subgroups that are 

homogeneous of pre-defined classes (class attribute) [8, 9]. As dividing a group based on a feature attribute 

results in at least two subgroups, which are relatively more homogeneous than the parental group, a 

decrease in system disorder (or entropy) can be calculated using a probability-based formula and denoted as 

Information Gain. Partitioning the examples using a feature attribute with higher Information Gain results 

in a better-organized system with respect to the class attribute. As such, Information Gain serves as a 

criteria to evaluate the relevance between individual feature attributes and the class attribute [9, 10]. The 

algorism iteration starts by partitioning examples using the feature attributes that yield the biggest 

Information Gain; and stops when a subgroup is homogeneous or when the Information Gain of remaining 

attributes falls below a certain threshold [8, 9]. This results in a tree-like structure with the feature attributes 

showing as the “branches” and the subgroups showing as the “leaves”. By tracing the feature attributes of 

an incoming example, one can make a prediction for the status of the target attribute of that example.  

We were particularly interested in using a Decision Tree classifier to study whether stroma percentage 

and TGFβ signaling biomarkers are relevant to early breast cancer recurrence. Piling studies using 

regression models show that these factors have different or even contrasting associations with breast cancer 

recurrence in subgroups of patients. As such, their implications in breast cancer pathology are context-

dependent. However, these contexts remain to be defined in a systematic manner. By grouping patients 

based on their similar outcomes and disease characteristics, a Decision Tree classifier is capable to achieve 

this goal.    

Stroma percentage in tumor core is an emerging prognostic indicator for several types of cancer [11-

15]. In breast cancer, the prognostic value of stroma percentage is context dependent. While high stroma 

percentage is associated with shorter times of relapse-free survival and overall survival in triple negative 

breast cancer patients [14], it is associated with longer times of relapse-free survival and overall survival 

among patients with ER+ breast tumors [12]. In a mixed population of various subtypes, intra-tumor stroma 

loses its prognostic value, as determined by a multivariate analysis [16], likely because this method fails to 

highlight differences within a highly heterogeneous population. 

The canonical TGFβ/Smad pathway is also implicated in breast cancer pathology in a context-

dependent manner [17, 18]. In normal mammary gland and early stage, low-grade breast carcinomas, TGFβ 

functions to maintain homeostasis and this effect is largely due to its growth-inhibitory and pro-apoptotic 
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functions [19]. However, in advanced-stage breast tumors, TGFβ promotes aggressive behaviors such as 

cell migration, cell invasion and homing at distant metastatic sites [20, 21]. Binding of the TGFβ ligand to 

its two serine/threonine kinase receptors, results in the recruitment and subsequent activation of specific 

downstream signaling molecules, called Smads (Smad2, 3 and 4), which then translocate to the nucleus to 

regulate gene transcription [22].  

The Decision Tree classifier that we generated identifies the status of lymph node involvement, intra-

tumor stroma percentage, and percentages of tumor cells expressing components of TGFβ-Smad signalling 

to be highly relevant to the status of early breast cancer relapse. It is estimated to be about 70% accurate, 

and correctly predicted for 55 out of 65 patients in an independent validation dataset. 

 

2 MATERIALS AND METHODS 

2.1   Dataset  

The dataset contained the following types of information of 574 patients of non-metastatic invasive breast 

cancer who received surgeries in the Leiden University Medical Center: age, pathological grade, TNM 

(tumor, node, metastasis) stage, local and systemic therapy, recurrence status (local, regional and distant), 

time of recurrence following initial treatment and overall survival. Tumor cores were subjected to 

Haematoxylin and Eosin (H&E) staining for scoring percentages of intra-tumor stroma by two 

investigators. In addition, percentages of cells expressing the following factors were determined by 

standard immunohistochemistry procedure: estrogen receptor (ER), progesterone receptor (PgR), epidermal 

growth factor receptor 2 (HER2) and Ki-67. A tissue microarray (TMA) was constructed from tumor cores 

of these patients, subjected to immunohistochemistry (IHC) and scored for percentages of tumor cells 

expressing the following factors: TGFβ type I and type II receptors (TGFΒR1 and TGFΒRII, respectively), 

nuclear Smad4 and nuclear phospho-Smad2.  

Details on the patient cohort, methods of stroma percentage scoring and materials and methods of IHC 

are reported in previous studies [15, 23, 24]. These procedures are in accordance with those listed in 

REporting recommendations for tumour MARKer prognostic studies (REMARK) [25]. Names and brief 

descriptions of the attributes used are included in Table 1.  

2.2   Decision Tree  

We defined the class attribute as the status of breast cancer recurrence in the first 3 years after diagnosis 

(disease free or tumor recurred). We arbitrarily chose this endpoint as these patients had minimal benefit 

from adjuvant therapy. Therefore, their disease outcomes help to predict for patients who likely do not 

respond to adjuvant therapy.  

We used 55 breast cancer disease characteristics as feature attributes (Table 1). Most of them are well-

established disease characteristics, used by physicians worldwide to describe breast tumors and form 

treatment plans such as pathological grades, clinical stages and expression of molecular markers. In 

addition, we also included several characteristics whose roles in breast cancer recurrence are controversial, 

as determined by linear regression methods. These characteristics include stroma percentage in tumor core 

and percentage of cells expressing TGFβ signaling components. 

We used Rapidminer 6.0 to implement the Decision Tree. Rapidminer’s Decision Tree operator is 

derived from Quinlan’s C4.5 Decision Tree [9]. We chose to rank attributes based on Information Gain-

Ratio. This is a modified Information Gain method, which normalizes Information Gains of all attributes to 

minimize bias towards attributes that contain large numbers of unique values (distinctive yet non-relevant 

information) [10]. We set the minimum size of split as 4, minimum leaf size as 2, the minimum gain ratio 

to split with an attribute as 0.1. We grew the tree for up to 10 steps and do post-pruning. 

  



4 
 

Table 1.  A list of 55 attributes used as inputs of the Decision Tree. 

The Decision Tree classifier identified 19 of them to be relevant to early breast cancer recurrence (marked 

with asterisk).  

  

Attribute Descriptions Type 

Used by 

classifier 

age age numerical * 

BR 

total score of grading (sum of BR_MAI, BR_duct 

and BR_kern) integer * 

BR_duct percentage of duct integer   

BR_kern nuclear atypia grade integer   

BR_MAI amount of mitogen integer * 

CARatio carcinoma ratio integer   

cMstag clinical M stage integer   

cNStag clinical N stage integer * 

cNstag2 clinical nodal stage in 5 scales integer   

CT chemotherapy binominal   

cTStag clinical T stage integer * 

cTstag2 clinical tumor stage  integer   

ER Estrogen Receptor (ER) status binominal   

ER_percpos mean percentage of ER stained numerical * 

ER10 histological status of ER, border is 10 binominal   

ER80 histological status of ER, border is 80 binominal * 

ExtC clinical tumor type (early or local advanced) binominal * 

ExtP pathological tumor type (early or local advanced) binominal * 

GR tumor grade (I, II and III) integer   

GR_2 tumor grade (I/II and III) integer   

Gra tumor grade (I/II and III) binominal   

Her2 Her2 status(normal and overexpressed)  binominal   

Her2_M mean Her2 histological score of 3 cores numerical * 

HT Hormonal therapy binominal   

inv status of lymphangioinvasion binominal   

IT Immunotherapy binominal   

Ki67_0 histological score of Ki67, border is 0 binominal   

Ki67_10 histological score of Ki67, border is 10 binominal   

Ki67_5 histological score of Ki67, border is 5 binominal   

Ki67_Mean mean of Ki67 numerical * 

loct2 

surgery type (mastectomy or breast-conserving 

surgery) binominal   

loct 

surgery type with radiotherapy (MAST+RT, 

MAST-RT or BCS) polynominal   

MAI_Gr mitogen grade integer   

OK status of receiving surgery binominal   

PgR 

status of Progestrone Receptor (PgR), 10% and 

above = positive binominal   
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PgR_percpos mean percentage of PgR stained numerical * 

PgR10 histological status of PgR, border is 10 binominal   

PgR80 histological status of PgR, border is 80 binominal   

pMstag pathological M stage integer   

pN2 pathological nodal stage on 2 scales binominal * 

pNStag pathological N stage integer   

pNstag2 pathological nodal stage on 5 scales integer   

pSmad2_nt_perc 

percentage of cells expressing nuclear phospho-

Smad2 integer * 

pT3 

pathological T stage into 3 groups (T1, T2 and 

T3/4) integer   

pTstag pathological T stage integer * 

pTstag2 

pathological tumor stage on 3 scales (pT1, pT2 

and other) integer   

RT radiotherapy binominal   

smad4_perc percentage of cells expressing nuclear Smad4 numerical * 

stroma_perc stroma percentage in the tumor core numerical * 

Surg 

type of surgery (mastectomy or conserving 

surgery)  binominal * 

T_type tumor type (ductal, lobular and other) polynominal   

T_Type2 tumor type in 2 status(ductal and other) binominal   

T2 tumor stage in 2 status (T1/2 and T3/4) integer   

TGFRI_perc percentage of cells expressing TGFbRI numerical * 

TGFRII_perc percentage of cells expressing TGFbRII numerical * 

2.3   Estimation of Accuracy 

To estimate the accuracy of the Decision Tree classifier during the building step, we coupled the model 

building process with 2 different resampling validation methods: 10-fold bootstrapping validation with a 

0.9 sampling ratio and 10-fold cross validation with stratified sampling. As such, these two methods are 

comparable, that each round of repeating validation uses 90% of the available data to build a model and 

then uses the remaining to test the accuracy of the model. Results show an estimated accuracy with 

standard deviation obtained from the 10 slightly different models.  

2.4 Validation after Model Building 

In the model building process, we excluded a dataset of 69 patients with missing Smad4 values (Smad4 

null). This dataset served as an independent validation dataset, because it was excluded from model 

building and estimation processes. We eliminated 4 patients in this cohort, as they died within 3 years of 

diagnosis but did not develop disease recurrence. The prevalence rates of early breast cancer relapse in the 

original cohort, in the cohort that we used to build the classifier and in the Smad4 null cohort were 

comparable as 22.47%, 23.4% and 23.08%, respectively. Using the standard truth table, we calculated the 

sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) with 

predictions for patients of this dataset.  
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3 RESULTS 

3.1   Data Pre-cleaning 

The original dataset contained missing values for every TGFβ signaling components, due to tissue falling 

off from slides during the immunohistochemistry process. To maximize the utilization of real data in the 

algorism training process, we did not fill missing values. Instead, we excluded 69 cases that had missing 

values for nuclear Smad4 (Smad4 null), since this attribute contained the most missing values. We then 

combined local recurrence, regional recurrence and distant relapse into one status, and defined the time of 

recurrence as the earliest time when any of the recurrence event occurred.  

We further eliminated 22 patients who did not develop disease recurrence but died of non-breast cancer 

causes within 3 years. Data pre-cleaning resulted in a dataset of 487 examples with less than 10% missing 

values for nuclear Smad2, TGFβ type I and type II receptors. The missing values of each attribute were 

then filled with the average of known values of that attribute.  

We assigned one of the following attribute types to each of the 55 feature attributes. Numerical 

attributes contain values of real numbers. Nominal attributes contain values of a category. Integer 

attributes, such as clinical and pathological stages, are orderly nominal attributes and therefore also have a 

numerical nature. Of the target attribute (3-year relapse), we assigned a binominal value for each patient. 

Patients who were disease-free received 0, and patients who developed relapse received 1.  

3.2   Performance of the Decision Tree Classifier 

We generated a Decision Tree classifier to predict for breast cancer recurrence within 3 years of the initial 

diagnosis, using a patient dataset containing information on clinical diagnosis, pathological diagnosis, 

stroma percentage and expression of TGFβ signaling components (Table 1). The Decision Tree operator 

nested with bootstrapping validation or cross validation generated similar tree structures and similar 

estimated accuracy, even if the sampling methods differed. Table 2 shows the estimated accuracy, 

estimated sensitivity (class recall) and estimated specificity (class precision) of the classifiers. Furthermore, 

Bayesian Boosting, which generated 9 additional tree structures every round during model building to vote 

for consensus, did not remarkably improve model accuracy (data not shown). We also found that growing 

the tree to the depth of 10 was ideal for this dataset. Neither growing the tree deeper nor not pruning the 

tree changed the major structure of the tree (data not shown). Altogether, these results suggest that the 

classifiers that we obtained captured major properties of the dataset. 

 

Table 2.  Estimated accuracy of the decision tree classifier. 

The accuracy of the classifier was estimated with cross-validation (top) and with bootstrapping validation 

(bottom). For each class, the performance was also evaluated with Precision (percentage of the predictions 

that are correct) and Recall (percentage of an outcome that is correctly predicted).  

 

  true disease-free true recurred Precision 

predicted disease-free 298 77 79.47% 

predicted recurred 75 37 33.04% 

Recall 79.89% 32.46%   

Cross Validation: 68.8-/+6.3% mikro 68.79% 

 

  true disease-free true recurred Precision 

predicted disease-free 1183 297 79.93% 

predicted recurred 333 178 34.83% 

Recall 78.03% 37.47%   

Bootstrapping Validation: 68.28-/+4.63% mikro 68.36% 
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Figure 1 shows the decision tree validated by cross validation. The classifier presents patients in 66 leaves. 

Each leaf represents a subset of breast cancer patients with similar disease characteristics. Even though 2 

different leaves could have the same patient outcome, each leaf is independent and can be summarized with 

a distinct subset of attributes. As such, the classifier grouped breast cancer patients into different subsets 

based on their intrinsic properties. 

Out of 66 leaves in total, 60 leaves contained patients only with or only without recurrence (no mix), 

indicating that in most cases, the combined attributes that describe a group of patients were sufficient to 

predict for a finite outcome. Six leaves contained mixed populations of patients, indicating that for these 

subgroups, additional attributes are required to further distinguish the disease-free and disease-recurred 

status.  

 
Figure 1. Structure of the Decision Tree classifier. 

A cohort of 483 patients was continuously divided into 67 subgroups, based on intrinsic similarities of their 

diseases. The branches of the tree showed the disease characteristics used to divide the patients. And each 

subgroup was labeled with the outcomes of the patients 3 years after diagnosis: 1 as recurrence and 0 as 

disease-free. 
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Independent validation of the classifier’s performance was achieved using a set of 65 patients for whom 

the values for the Smad4 attribute were missing. In the event that a prediction process reaches a branch 

with a missing Smad4 value (or any other missing value), the classifier assigned the consensus results of all 

lower branches as the final prediction. Interestingly, the classifier predicted correctly for 55 out of the 65 

patients, an accuracy of 85%. Table 3 summarizes the predictions, sensitivity, specificity likelihood ratios 

and predictive values. For the disease-relapsed status, the classifier achieved 40% sensitivity (95% CI: 

16.43 % - 67.67 %). For the disease-free status, the classifier achieved 92% specificity (95% CI: 80.75 % - 

97.73 %). Respectively, these values are notably higher than the penetrance (23.08%) and percentage of 

disease free patients (76.92%). These results suggest that the classifier was capable of distinguishing 

disease outcomes for most patients in the independent validation set. 

 

Table 3. Predictions for the Smad4 null dataset (top) and a truth table showing the performance of this 

prediction (bottom). 

 

Predictions: 

  true disease-free true recurred 

Predicted disease-free 46 6 

Predicted recurred 4 9 

 

Results: 

Sensitivity  40.00% 95% CI: 16.43 % - 67.67 % 

Specificity 92% 95% CI: 80.75 % - 97.73 % 

Positive Likelihood Ratio  5 95% CI: 1.62-15.42 

Negative Likelihood Ratio 0.65 95% CI: 0.43-0.99 

Positive Predictive Value 60% 95% CI: 26.37 % - 87.6 % 

Negative Predictive Value 83.64% 95% CI: 71.19 % - 92.22 % 

Prevalence: 23.08% 

3.3   Pathological nodal stage, stroma percentage and TGFβ signaling are predictive attributes of 

early breast cancer recurrence 

Among the 55 attributes that we used, the Decision Tree classifier selectively presented 20 disease 

attributes on 9 levels. These attributes are marked with an asterisk (*) in Table 1. The structure captured 

several well-documented traits of breast cancer recurrence. The first attribute used to divide patients was 

the status of lymph node involvement (pN2), highlighting lymph node positivity as the most relevant 

attribute to early breast cancer recurrence. The classifier splits patients into 2 groups; defined as pN2=0 

(not spreading to lymph node) and pN2=1 (containing all patients with lymph node involvement, regardless 

of the level of involvement). This is highly consistent with clinicians’ emphasis on lymph node 

involvement when making prognosis for breast cancer recurrence.  

In addition, we also observed that stroma percentage (Figure 1, stroma_perc) was the only secondary 

attribute appearing on both branches, following the division based on pathological node status. This 

indicates that, alongside lymph node status, stroma percentage was an utmost relevant attribute for all 

cases. For both branches, the classifier divided patients into multiple groups based on stroma percentage, 

suggesting that tumor-stroma interaction levels define different subgroups of breast tumors, with respect to 

early breast cancer relapse. Notably, the classifier identified a subgroup of 11 disease-free patients who had 

no lymph node involvement (pN2 = 0) and low stroma percentage (stroma_perc = 0% or 10%). This is 

consistent with the notion that patients with low grade, well-encapsulated tumors tend not to develop early 

relapse [26].  
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Aside from lymph node status and stroma percentage, the classifier also highlighted several molecular 

characteristics, commonly used in the clinic for defining breast cancer subtypes and prognosis, as being 

determinant for status of early breast cancer relapse. These include the Estrogen Receptor α (ER_percpos), 

Progesterone Receptor (PgR_percpos), HER2, Ki67 (Ki67_Mean) and clinical tumor stage (CTstag) (Table 

1 and Figure 1). In multiple branches of the tree structure, we also found TGFβ receptors (type I and type 

II) as well as nuclear Smad4 and phospho-Smad2. In particular, TGFβ receptor II and Smad4 were the third 

level attributes of their respective branches. These results highlight the subgroup-specific prognostic values 

of TGFβ signaling components. Equally importantly, these results also indicate that TGFβ signaling 

components are better attributes than many of the commonly used clinical criteria (those not shown in the 

tree, Table 1) when predicting for early breast cancer relapse. 

  
4 DISCUSSIONS 

In this study, we took a data mining approach to generate a Decision Tree classifier that can predict for 

breast cancer relapse status within the first 3 years following diagnosis. The tree classified patients into 

disease-free or disease-relapsed categories. The tree subdivided patients, using disease characteristics that 

display a defined and relevant threshold for disease recurrence (Information Gain Ratio = 0.1), and listed 

these characteristics in hierarchy order. As such, the model building process was also a “feature selection” 

process that helped identify important disease characteristics. 

The classifier identified pathological nodal status as the most relevant feature to disease recurrence. 

While we supplied 3 different ways to categorize lymph node statues to the algorism, including pN2 

(binary attribute of lymph node involvement), pNstag2 (integer attribute denoting pN0, pN1, pN2, pN3 and 

pNx), pNstag (integer attribute further subdividing each pNstag2 stage), the Decision Tree classifier 

identified pN2 as the only attribute among the three that was relevant to early breast cancer relapse. This 

indicates that, lymph node involvement is relevant to predicting early breast cancer relapse, independently, 

of the number of nodes involved. This is also highly consistent with the longstanding notion that 

pathological lymph node status is the most significant predictor of breast cancer recurrence[27]. As such, 

this fact validates the capacity of the Decision Tree classifier to identify and hierarchically present 

important features in our dataset. 

Stroma percentage showed as the only second level attribute of all branches while TGFβ signaling 

components showed in various branches on lower levels. Current literature suggests that stroma percentage 

and TGFβ signaling components are relevant to breast cancer recurrence, but their predictive values differ, 

or even contrast, depending on the context. The Decision Tree classifier not only identified these attributes 

to be highly relevant, but also provided detailed description of the individual contexts.  

With respect to the model performance, the classifier achieved over 80% precision for predicting a 

disease-free status, but only 34.15% recall for predicting early recurrence. This suggests that additional 

attributes are needed to better describe patients with early recurrence. Potentially, including 

immunohistochemistry scores of additional oncogenic or tumor suppressive signaling pathways, such as 

those of PI3K-AKT-mTOR, EGFR, p53 or Rb, could improve the classifier.  

Nevertheless, the performance is comparable and potentially better than existing methods. For the 

Smad4 null independent validation set, the Decision Tree classifier predicted correctly for 85% of the 

patients in the Smad4 null validation set. In particular, 40% of the patients predicted to have early relapse 

within 3 years indeed had relapse. By comparison, another study using the Breast Cancer Index (BCI), a 

well-curated method to predict outcomes for ER+, lymph node negative (LN-) patients, classified patients 

in 3 groups of increasing risks of distant recurrence; using a combination of HOXB13:IL17BR gene 

expression ratio and molecular grade index [28, 29].  In 2 different patient cohorts, the estimated 

percentage of patients classified into high-risk group by BCI, and developed distant relapse within 5 years 

are 2.6%-21% and 14.6-33.3%, respectively [5]. BCI and the Decision Tree classifier have different 

advantages. BCI is capable of predicting for distant relapse and overall survival for various endpoints, but 

only for ER+, LN- patients. The Decision Tree classifier can be applied to all types of patients but predicts 

for 3-year relapse as its current design stands. However, predicting for other endpoints can be easily done, 

as it only requires creating a new target attribute for that endpoint. As such, the Decision Tree classifier 

could potentially be a powerful prognostic tool. Especially, the classifier can be easily adopted in different 

academic and clinical settings, as the attributes that we used are empirical and easy to assess. All nominal 

attributes, such as stage and grade, are assessed based on established quantitative methods in clinical 
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practice at the time of diagnosis. All numeric attributes are established from quantitative 

immunohistochemistry staining.  

In summary, we generated a Decision Tree classifier that hierarchically organizes breast cancer disease 

characteristics based on their relevance to early breast cancer relapse. One can easily trace down the tree 

structure to obtain the description of the intrinsic similarity of each subgroup of patients. The classifier also 

highlights the prognostic values of pathological nodal status, stroma percentage and TGFβ signaling 

components. To our knowledge, this is the first Decision Tree model that utilizes standardized disease 

characteristics that can be easily obtained by different clinics.  
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