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ARTICLE INFO ABSTRACT

Article history: The increasing use of location-aware devices provides many opportunities for analyzing
Received 24 August 2013 and mining human mobility. The trajectory of a person can be represented as a sequence
Received in revised form 6 December 2013 of visited locations with different timestamps. Storing, sharing, and analyzing personal
Accepted 6 December 2013 trajectories may pose new privacy threats. Previous studies have shown that employing
traditional privacy models and anonymization methods often leads to low information
quality in the resulting data. In this paper we propose a method for achieving anonymity

’];Z{;V‘l’)rr‘;j;cy in a trajectory database while preserving the information to support effective passenger
Anonymity flow analysis. Specifically, we first extract the passenger flowgraph, which is a commonly
Trajectory employed representation for modeling uncertain moving objects, from the raw trajectory
Passenger flow data. We then anonymize the data with the goal of minimizing the impact on the flow-

graph. Extensive experimental results on both synthetic and real-life data sets suggest that
the framework is effective to overcome the special challenges in trajectory data anonymi-
zation, namely, high dimensionality, sparseness, and sequentiality.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few years, transit companies have started using contactless smart cards or RFID cards, such as the EasyCard
in Taiwan, the Public Transportation Card in Shanghai, and the OPUS card in Montréal. In 2008, Société de transport de Mont-
réal (STM), the public transit agency in Montréal, deployed the Smart Card Automated Fare Collection (SCAFC) system (Pelletier
et al,, 2011) in its transportation network. Senior and junior passengers have to register their personal information when
they first purchase their cards so that an appropriate fare is charged based on their statuses. In the SCAFC system, each pas-
senger leaves a trace of reading in the form of (ID, loc, t), which identifies the passenger’s identity, location, and time when
she scans her smart card. The trajectory of a passenger is then stored as a sequence of visited locations, sorted by time, in a
central database.

Constructions occur and new trends emerge as a city develops. Thus, passenger flows in a city are not static and are sub-
ject to change depending on all these uncertainties and developments. Transit companies have to periodically share their
passengers’ trajectories among their own internal departments and external transportation companies in order to perform
a comprehensive analysis of passenger flows in an area, with the goal of supporting trajectory data mining (Giannotti et al.,
2007; Lee et al., 2008, 2007; Tang et al., 2012; Zheng et al., 2013) and traffic management (Burger et al., 2013; Li et al,,
2007a). For instance, by using a probabilistic flowgraph, as shown in Fig. 1, an analyst can identify the major trends in
passenger flows and hot paths in a traffic network. However, sharing passenger-specific trajectory data raises new privacy
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Fig. 1. Probabilistic flowgraph of Table 1.

concerns that cannot be appropriately addressed by traditional privacy protection techniques. Example 1.1 illustrates a po-
tential privacy threat in the context of trajectory data.

Example 1.1 (Identity linkage attack). Table 1 shows an example of thirteen passengers’ trajectories, in which each trajectory
consists of a sequence of spatio-temporal doublets (or simply doublets). Each doublet has the form (loc;t;), representing the
visited location loc; with timestamp t;. For example, ID#4 indicates that the passenger has visited locations c, e, and d at
timestamps 3, 7, and 8, respectively. With adequate background knowledge, an adversary can perform a type of privacy
attack, called identity linkage attack, on the trajectory database and may be able to uniquely identify a victim’s record as well
as his/her visited locations. Preventing identity linkage attacks is very important in trajectory data sharing because it is easy
to be performed by an attacker and upon success, it allows the attacker to learn all other locations and timestamps of the
victim. Hence, it is the main goal of this paper. Suppose an adversary knows that the data record of a target victim, Alice, is in

Table 1
Raw trajectory database T.
Series ID # Series trajectory
1 al - b2 —c3 —e5—f6—c9
2 e5 — f6 —e7 —c9
3 e5 —e7
4 c3 —-e7 —d8
5 b2 — 3 — d4 — f6 — d8
6 cl — b2 — f6
7 Cl1~>b2~>65~>f6—>e7
8 f6—e7—c9
9 e5 —e7—c9
10 b2 — f6 — e7 — d8
11 al — 3 —f6 —e7
12 cl — b2 — 6

13 b2 —c3 —e5—f6
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Table 1 and that Alice has visited locations b and c at timestamps 2 and 9, respectively. Then the adversary can associate
ID#1 with Alice because ID#1 is the only record containing both b2 and ¢9.

This paper presents a new method to anonymize a large volume of passenger-specific trajectory data with minimal im-
pact on the information quality for passenger flow analysis. This work falls into a research area called Privacy-Preserving Data
Publishing (PPDP), which aims at releasing anonymized data for general data analysis or specific data mining tasks (Clifton
and Tassa, 2013). To the best of our knowledge, this is the first work studying trajectory data anonymization for passenger
flow analysis.

1.1. Data privacy and quality trade-off

Several privacy models, such as K-anonymity (Samarati and Sweeney, 1998) and its extensions (Cao and Karras, 2012; Li
et al., 2007a; Machanavajjhala et al., 2007; Wang et al., 2007; Wong et al., 2007), have been proposed to thwart privacy
threats in the context of relational data. However, these models are not effective on trajectory data due to its high dimen-
sionality, sparseness, and sequentiality (Chen et al., 2013). Consider a mass transportation system with 300 metro and bus
stations operating 20 h a day. The corresponding trajectory database would have 300 x 20 = 6000 dimensions. Since K-ano-
nymity requires every trajectory to be shared by at least K records, most of the data have to be suppressed in order to achieve
K-anonymity. Moreover, trajectory data are usually sparse because most passengers visit only a few stations within a short
period of time. Enforcing K-anonymity on sparse trajectories in a high-dimensional space usually results in suppression of
most of the data; therefore, the released data are rendered useless for analysis. Furthermore, these privacy models do not
consider the sequentiality in trajectories. A passenger traveling from station a to station b is different from the one traveling
from b to a. Sequentiality captures vital information for passenger flow analysis.

To overcome the challenges of anonymizing high-dimensional and sparse data, a new privacy model called LK-privacy
(Mohammed et al., 2010) is adopted in this paper to prevent identity linkage attacks. LK-privacy was originally proposed
to anonymize high-dimensional relational health data. This privacy model was built based on the observation that an adver-
sary usually has only limited knowledge about a target victim. The same assumption also applies to trajectory data, that is,
an adversary knows at most L previously visited spatio-temporal doublets of any target passenger. Therefore, applying the
same privacy notion to trajectory data requires every subsequence with length at most L in a trajectory database T to be
shared by at least K records in T, where L and K are positive integer thresholds. LK-privacy guarantees that the probability
of a successful identity linkage attack is at most 1/K. Table 2 presents an example of an anonymous database satisfying
(2,2)-privacy from Table 1, in which every subsequence with maximum length 2 is shared by at least 2 records.

While privacy preservation is essential for the data holder, preserving the information quality is important for the data
recipient to perform the needed analysis. Anonymous data may be used for different data mining tasks; however, in this pa-
per we aim at preserving the information quality of the probabilistic flowgraph, which is the primary use of trajectory data in
passenger flow analysis. A probabilistic flowgraph is a tree where each node represents a spatio-temporal doublet (loc,t),
and an edge corresponds to a transition between two doublets. All common trajectory prefixes appear in the same branch
of the tree. Each transition has an associated probability, which is the percentage of passengers who take the transition rep-
resented by the edge. For every node we also record a termination probability, which is the percentage of passengers who
exit the transportation system at the node. As an illustration, Fig. 1 presents the probabilistic flowgraph derived from Table 1.

We present an example to illustrate the benefit of LK-privacy over the traditional K-anonymity model.

Example 1.2. Fig. 1 depicts the probabilistic flowgraph generated from the raw trajectory data (Table 1). Fig. 2 depicts
the probabilistic flowgraph generated from Table 2, which satisfies (2,2)-privacy. Fig. 3 depicts the probabilistic
flowgraph generated from the traditional 2-anonymous data. It is clear that Fig. 2 contains more information, including
doublet nodes, branches, and transitional probabilities, in the flowgraph than Fig. 3. For example, Fig. 1 shows that 23%

Table 2
(2,2)-Privacy preserved database T'.
Series ID # Series trajectory
1 al - b2 — 3 —e5—f6
2 e5 — f6 —e7 —c9
3 e5 — e7
4 3 —e7—d8
5 b2 — 3 — f6 — d8
6 c1— b2 —f6
7 al — b2 —e5— f6 — e7
—e7 —¢
8 f6 7 9
9 e5 —e7—c9
10 b2 — f6 — €7 — d8
11 al -3 —f6—e7
12 c1— b2 —f6

13 b2 —c3 —e5— f6
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Fig. 2. LK-anonymized probabilistic flowgraph of Table 1.
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Fig. 3. K-anonymized probabilistic flowgraph of Table 1.

of passengers start their route from b2. Fig. 2 preserves the same probability, but Fig. 3 incorrectly interprets the
probability as 38%, resulting in a misleading analysis. This claim is further supported by extensive experimental results
in Section 5.

If probabilistic flowgraph analysis is the goal, why does not the data holder simply build and publish the flowgraph with-
out releasing the data? First, the data holder may not know exactly how data recipients would like to perform the analysis. In
real-life scenarios, it is impractical to request the data holder to accommodate the data analysis requests from different data
recipients. Second, although the anonymous data is customized for probabilistic flowgraph analysis, the data recipients are
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free to perform other types of analysis, such as answering count queries. Third, the recipients can perform interactive data
mining on the anonymous data, which requires users’ inputs based on the observed data distribution at each step. In general,
releasing trajectory data provides data recipients with a greater flexibility of analysis.

LK-privacy can be achieved by global suppression or local suppression of doublets. Global suppression on a doublet d
means that all instances of d are removed from the data. Local suppression on a doublet d means that some instances of d
are removed while some remain intact. Global suppression punishes all records containing d by eliminating all instances
of d even if the privacy threat is caused by only one instance of d. In contrast, local suppression eliminates the exact instances
causing the privacy violations without penalizing others, and hence preserves more information for data analysis but with
the cost of higher computational complexity. In this paper, we employ a hybrid approach, with the goal of maintaining high
quality of data for passenger flow analysis with feasible computational complexity.

1.2. Contributions

Based on the practical assumption that an adversary has only limited background knowledge on a target victim, we adapt
LK-privacy model for trajectory data anonymization, which prevents identity linkage attacks on trajectory data. This paper
makes three major contributions. First, this is the first work that aims at preserving both spatio-temporal data privacy and
information quality for passenger flow analysis. Second, we design a hybrid approach that makes use of both global and local
suppressions to achieve a reasonable tradeoff between data privacy and information quality. Third, we present a method to
measure the similarity between two probabilistic flowgraphs in order to evaluate the difference of information quality be-
fore and after anonymization. Extensive experimental results on both real-life and synthetic trajectory data sets suggest that
our proposed algorithm is both effective and efficient to address the special challenges in trajectory data anonymization for
passenger flow analysis.

2. Related work

In this section, we first provide an overview of traffic and passenger flow analysis followed by a review of some common
privacy models for relational, statistical, transaction, and trajectory data.

2.1. Flow analysis

Paletta et al. (2005) present a pilot system that helps public transportation system companies optimize the passenger
flows at traffic junctions. The system utilizes video surveillance, with the help of Al vision, to monitor and analyze pedestri-
ans’ trajectories. Descriptive statistics between different sources and destinations generated from trajectories provide an
overview of passenger flows. Later, Halb and Neuschmied (2009) propose an improved system for multi-modal semantic
analysis of individuals’ movements at public transportation hubs, which is also applicable to other settings, such as consum-
ers’ movements in shopping malls.

Abraham and Lal (2012) propose a model to determine the similarity of vehicle trajectories with respect to space and
time, which has an important role in many traffic related applications. In their proposed model, they use a remote database
to regularly update the trajectories of moving vehicles based on a cellular network. The database server periodically pro-
cesses the trajectories to form the spatio-temporal similarity set. The details of the vehicles in a similar cluster are dispersed
through the cluster head. After obtaining the information from the server, the cluster head vehicle uses the vehicular ad hoc
networks (VANET) infrastructure to share the required information with its neighborhood.

2.2. Relational and statistical data anonymization

K-anonymity (Samarati and Sweeney, 1998), ¢-diversity (Machanavajjhala et al., 2007), and confidence bounding (Wang
et al., 2007) are common models that prevent privacy attacks on relational data. K-anonymity prevents linkage attacks
by requiring every equivalence class (i.e., a set of records that are indistinguishable from each other with respect to cer-
tain identifying attributes) in a relational data table T to contain at least K records. ¢-diversity requires that the distri-
bution of a sensitive attribute in each equivalence class has at least ¢ well-represented values. Wang et al. (2007) present
a method to limit the privacy threat by taking into account a set of privacy templates specified by the data owner. Such
templates formulate individuals’ privacy constraints in the form of association rules. Wong et al. (2007) propose a new
privacy model called (o, K)-anonymization by integrating both K-anonymity and confidence bounding into a single pri-
vacy model.

Li and Li (2008) propose a method to model an adversary’s background knowledge by mining negative association
rules, which is then used in the anonymization process. Kisilevich et al. (2010) propose K-anonymity of classification
trees using suppression, in which multidimensional suppression is performed by using a decision tree to achieve
K-anonymity. Matatov et al. (2010) propose anonymizing separate projections of a dataset instead of anonymizing the
entire dataset by partitioning the underlying dataset into several partitions that satisfy K-anonymity. A classifier is
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trained on each projection and then classification tasks are performed by combining the classification of all such
classifiers.

Enforcing traditional privacy models on high dimensional relational data usually results in suppressing most of the data
(Aggarwal, 2005), thus rendering the released data useless for future analysis. Mohammed et al. (2010) propose the LKC-pri-
vacy model for high dimensional relational data, which assumes that the adversary’s background knowledge is limited to at
most L attributes. In this paper, we follow a similar assumption on an adversary’s background knowledge and adapt the pri-
vacy notion for trajectory data.

Dwork (2006) proposes an insightful privacy notion, called e-differential privacy, based on the principle that the risk to a
data owner’s privacy should not substantially increase as a result of participating in a statistical database. e-differential pri-
vacy ensures that the removal or addition of a single database record does not substantially affect the outcome of any anal-
ysis. In spite of the rigorous privacy guarantee provided by differential privacy, it has been criticized for not being able to
achieve usable information quality in some data analysis tasks (Yang et al., 2012). In particular, for passenger flow analysis,
achieving differential privacy may not be able to provide meaningful data utility. Furthermore, Machanavajjhala et al. (2009)
indicate that the resulting data is untruthful due to the uncertainty (e.g., Laplace noise) introduced for achieving differential
privacy.

2.3. Transaction data anonymization

Anonymizing high dimensional transaction data has been studied widely in Chen et al. (2011), Ghinita et al. (2008), He
and Naughton (2009), Tassa et al. (2012), Terrovitis et al. (2008), and Xu et al. (2008a,b). In general, this problem setting does
not take into account the sequentiality, which is vital in our problem. Ghinita et al. (2008) propose a permutation method
that groups transactions with close proximity and then associates each group to a set of mixed sensitive values. Terrovitis
et al. (2008) propose an algorithm to K-anonymize transactions by generalization based on some given taxonomy trees. He
and Naughton (2009) extend the method in Terrovitis et al. (2008) by introducing local generalization, which gains better
quality. However, generalization does not fit trajectory data well. This is because, in real-life trajectory databases, taxonomy
trees may not be available, or a logical one for locations may not exist. Moreover, Fung et al. (2010) indicate that the taxon-
omy tree of trajectory data tends to be flat and fans out; thus, employing generalization leads to more information loss than
does employing suppression. This is due to the fact that generalization requires all siblings of a selected node to merge with
their parent node, while suppression only removes the selected child nodes.

Xu et al. (2008a,b) extend the K-anonymity model by assuming that an adversary knows at most a certain number of
transaction items of a target victim, which is similar to our assumption of limited background knowledge of an adversary.
Although their method addresses the high dimensionality concern, it considers a transaction as a set of items rather than a
sequence. Therefore, it is not applicable to our problem, which needs to take into consideration the sequentiality of trajectory
data. Furthermore, Xu et al. (2008a,b) achieve their privacy model by merely global suppression, which significantly hinders
information quality on trajectory data.

Tassa et al. (2012) improve the quality of K-anonymity by introducing new models : (K, 1) -anonymity, (1,K) -anonymity,
and (K, K) -anonymity and K-concealment. They argue that (K, 1)-anonymity, (1, K)-anonymity, and (K, K)-anonymity do not
provide the same level of security as K-anonymity. K-concealment, on the other hand, provides the comparable level of secu-
rity that guarantees that every record is computationally indistinguishable from at least K — 1 others with higher quality. In
their work, anonymity is typically achieved by means of generalizing the database entries until some syntactic condition is
met.

Chen et al. (2011) study the releasing of transaction dataset while satisfying differential privacy. In their proposed meth-
od, the transaction dataset is partitioned in a top-down fashion guided by a context-free taxonomy tree, and the algorithm
reports the noisy counts of the transactions at the leaf level. This method generates a synthetic transaction dataset, which
can then be used to mine the top-N frequent itemsets. Although they claim that their approach maintains high quality and
scalability in the context of set-valued data and is applicable to the relational data, their method is limited to preserving
information for supporting count queries and frequent itemsets, not passenger flowgraphs which is the main information
to preserve in this paper.

Transaction data anonymization methods fail to provide the claimed privacy guarantee when applied on trajectory data
because an attacker can utilize sequential information to launch a privacy attack. Consider a sequential data table with two
records [(a — b), (b — a)]. This table satisfies transactional 2-anonymity but fails to satisfy sequential 2-anonymity. Suppose
attacker X knows that a target victim has visited a and b without knowing the order. Suppose attacker Y further knows that
the victim has visited a followed by b. This transactional 2-anonymous table can prevent linkage attacks from attacker X but
cannot prevent those from Y. In contrast, consider another table [(a — b), (a — b)]. This table satisfies both transactional 2-
anonymity and sequential 2-anonymity. In fact, any table that satisfies sequential K-anonymity must satisfy transactional K-
anonymity. This table can prevent the attacks from both attackers.

2.4. Trajectory data anonymization

Some recent works (Abul et al., 2008; Chen et al., 2012a,b; Fung et al., 2009a,b; Mohammed et al., 2009; Pensa et al., 2008;
Terrovitis and Mamoulis, 2008; Yarovoy et al., 2009) study anonymization of trajectory data from different perspectives. The
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works can be broadly classified into two categories based on how they model trajectory data. The first category assumes the
data is in the form of continuous GPS data (Herrera et al., 2010). Based on the assumption that trajectories are imprecise,
(Abul et al., 2008) propose (K, 5)-anonymity, in which J represents a lower bound of the uncertainty radius when recording
the locations of trajectories. Based on space translation, in (K, §)-anonymity K different trajectories should exist in a cylinder
of the radius 6. However, the imprecision assumption may not hold in some sources of trajectory data, such as passenger data
and RFID data. Trujillo-Rasua and Domingo-Ferrer (2013) illustrate that, in general, (K, §)-anonymity does not offer trajec-
tory K-anonymity for any ¢ > 0. It only offers this property for 6 = 0 when the set of anonymized trajectories consists of clus-
ters containing K or more identical trajectories each.

The second category models trajectory data in the simplified form of sequential data, in which detailed timestamps are
ignored. Pensa et al. (2008) and Terrovitis and Mamoulis (2008) study the privacy protection on high dimensional trajectory
data. Pensa et al. (2008) propose a variant of the K-anonymity model for sequential data, with the goal of preserving frequent
sequential patterns. Similar to the space translation method in Abul et al. (2008) and Pensa et al. (2008) transform a se-
quence into another form by inserting, deleting, or substituting some items. Based on the assumption that different adver-
saries have different background knowledge of a victim, Terrovitis and Mamoulis (2008) propose that the data holder should
be aware of all such adversarial knowledge. The objective is to prevent the adversary from obtaining more information about
the published sequential data. Although in their specific scenario it is feasible to know all adversarial background knowledge
before publishing the sequential data, this assumption is, generally, not applicable to trajectory data. Simplifying trajectory
data to sequential data does help overcome the issue of high dimensionality. However, for many trajectory data mining tasks,
the time information is essential. Therefore, these approaches fail to satisfy the information requirement for passenger flow
analysis.

Yarovoy et al. (2009) provide privacy protection by utilizing an innovative notion of K-anonymity based on spatial gen-
eralization in the context of moving object databases (MOD). They propose two different anonymization algorithms, extreme
union and symmetric anonymization, based on the assumption that different moving objects may have different quasi-iden-
tifiers (QID), thus anonymization groups associated with different objects may not be disjoint. Monreale et al. (2010) propose
a method to ensure K-anonymity by transforming trajectory data based on spatial generalization. Hu et al. (2010) present a
new problem of K-anonymity with respect to a reference database. Unlike previous K-anonymity algorithms that use
conventional hierarchy or partition-based generalization, they make the published data more useful by utilizing a new gen-
eralization method called local enlargement.

Chen et al. (2012b) propose a sanitization algorithm to generate differentially private trajectory data by making use of a
noisy prefix tree based on the underlying data. As a post-processing step, they make use of the inherent consistency con-
straints of a prefix tree to conduct constrained inferences, which lead to better data quality. Later, Chen et al. (2012a) im-
prove the data quality of sanitized data by utilizing the variable-length n-gram model, which provides an effective means
for achieving differential privacy on sequential data. They argue that their approach leads to better quality in terms of count
query and frequent sequential pattern mining. However, these two approaches are limited to relatively simple data mining
tasks. They are not applicable for passenger flow analysis.

Some other recent works (Chen et al., 2013; Fung et al., 2009a,b; Mohammed et al., 2009) study preventing identity link-
age attacks over trajectory data but with different information requirements. Fung et al. (2009a,b) focus on minimal data
distortion and (Chen et al., 2013; Mohammed et al., 2009) focus on preserving maximal frequent sequences. None of these
focus on preserving information quality for generating passenger flowgraphs as discussed in this paper.

In this paper, a passenger-specific trajectory is modeled as a sequence of spatio-temporal doublets. We would like to com-
pare this model with other trajectory models in terms of spatial information and temporal information through the lens of
privacy protection. The spatial distance among different locations is not considered in the anonymization process because
the spatial relationship is neither identifying information nor sensitive information. Revealing the spatial relationship, for
example, the distance between two bus stations, does not reveal any sensitive information of passengers. Therefore, there
is no need to alter the spatial relationship in the anonymization process. An analyst can still utilize the spatial relationship
to perform his/her analysis on the anonymous passenger data or the passenger flowgraph. On the other hand, our model does
consider the timestamp information, e.g., (a3 — b7) in the anonymization process because an attacker may utilize the time-
stamp information to identify a passenger from the released data. Unlike the works that model trajectories as sequential
data, e.g., (a — b), timestamps in our model provide vital information to construct the passenger flowgraph. Furthermore,
the anonymous trajecotry data produced by our method can answer queries with timestamps, but sequential data do not
share this feature.

3. Problem description

A trajectory database, the LK-privacy model, and a passenger flowgraph are formally defined in this section.

3.1. Trajectory database

A typical Smart Card Automated Fare Collection (SCAFC) system records the smart card usage data in the form of (ID, loc, t),
representing a passenger with a unique identifier ID entered into the transportation system at location loc at time t. The
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trajectory of a passenger consists of a sequence of spatio-temporal doublets (or simply doublets) in the form of (loc;t;). The
trajectories can be efficiently constructed by first grouping all (ID, loc, t) entries by ID and then sorting them by time t. For-
mally, a trajectory database contains a collection of data records in form of

ID, ((locyty) — - - — (locpty)), Y1,..., Ym

where ID is the unique identifier of a passenger (e.g., smart card number), ((locit;) — --- — (locyt,)) is a trajectory, and y; € Y;
are relational attributes, such as job, sex, and age. Following the convention, we assume that explicit identifying information,
such as name, SSN, and telephone number, has already been removed. The timestamps in a trajectory increase monotoni-
cally. Thus, (a3 — c2) is an invalid trajectory. Yet, a passenger may revisit the same location at a different time, so
(a3 — ¢7 — a9) is a valid trajectory. Given a trajectory database, an adversary can perform identity linkage attacks by match-
ing the trajectories and/or the QID attributes. Many data anonymization techniques (Fung et al., 2007; LeFevre et al., 2006;
Machanavajjhala et al., 2007; Samarati and Sweeney, 1998; Xiao and Tao, 2006) have been previously developed for rela-
tional QID data; we focus on anonymizing the trajectories in this paper, instead.

3.2. Privacy model

Suppose an adversary who has access to the released trajectory database T attempts to identify the record of a target vic-
tim V in T. We adopt the LK-privacy model from (Mohammed et al., 2010) and customize it for thwarting identity linkage
attacks on T. LK-privacy is based on the assumption that the attacker knows at most L spatio-temporal doublets about
the victim, denoted by q = ((locyt;) — --- — (locgt,)), where 0 < |q| < L. Using this background knowledge, the adversary
can identify a group of records, denoted by T(q), that “contains” gq. A record contains q if q is a subsequence of the record.
For example, in Table 1, the records with ID#1,7,13 contain q = (b2 — e5).

Definition 3.1 (Identity linkage attack). Given background knowledge g about victim V,T(q) is the set of records that
contains g. If the group size of T(q), denoted by |T(q)|, is small, then the adversary may identify V's record from T(q).

For example, in Table 1, if ¢ = (b2 — ¢9), then T(q) contains ID#1 and |T(q)| = 1. The attack learns that ID#1 belongs to
the victim; therefore, reveals other visited locations and potentially other relational attributes of the victim. To thwart iden-
tity record linkage, LK-privacy requires every sequence with a maximum length of L in T to be shared by at least K records.

Definition 3.2 (LK-privacy). Let L be a user-specified threshold indicating the maximum length of adversary’s background
knowledge. A trajectory database T satisfies LK-privacy if and only if for any non-empty sequence g with length |g| <L in
T,|T(q)] = K, where K > 0 is a user-specified anonymity threshold.

LK-privacy guarantees that the probability of a successful identity linkage to a victim’s record is bounded by 1/K.
3.3. Passenger probabilistic flowgraph

The measure of information quality varies depending on the data mining task to be performed on the published data.
Previous works (Fung et al., 2007; Li and Li, 2009) suggest that anonymization algorithms can be tailored to better preserve
information quality if the quality requirement is known in advance. In this paper, we aim at preserving the information
quality for supporting effective passenger flow analysis. More specifically, we would like to preserve the passenger flow
information in terms of a passenger probabilistic flowgraph generated from the anonymized trajectory data. A passenger
flowgraph can reveal hot paths and hot spots in different periods of time that may not be apparent from the raw data. This
knowledge is also useful for studying the interactions between passengers and the transportation infrastructures.

Definition 3.3 (Passenger probabilistic flowgraph). Let D be the set of distinct doublets in a trajectory database T. A passenger
probabilistic flowgraph (or simply flowgraph) is a tree in which each node d € D, and each edge is a 2-element doublets {dx,d, }
representing the transition between two nodes, with probability denoted by prob(dy — dy).

The transitional probability prob(d, — d,) captures the percentage of passengers at doublet dy who moved to d,. In case
dy = d,, the probability indicates the percentage of passengers who terminated their journey at d,. Given a node
dy, > prob(dy — d,) = 1 over all out-edges d, of d,. For example, in Fig. 1, 50% of the passengers who visited (e5 — e7) then
visited c9. The remaining 50% of passengers terminated their journey at e7.

The function Info(d) measures the information quality of a distinct doublet d in a trajectory database T with respect to the
flowgraph generated from T:

Info(d) = o(d) x wy + p(d) x wg 4+ p(d) x W, + 6(d) x w; (1)
where o(d) is the number of instances of d in the flowgraph, §(d) is the total number of child nodes of d in the flowgraph, y(d)

is the number of root-to-leaf paths containing d in the flowgraph, 5(d) is the number of trajectories in a trajectory database T
containing d. w,, ws, w,, and w; are the weights on o, §,7, and 6 functions, respectively. The weights, 0 < w,, ws,w,, w; < 1
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and w, +wy +w, + w, = 1, allow users to adjust the importance of each property according to their required analysis.
Similarly, the function Info(T) measures the information quality of a trajectory database T by the summation of the informa-
tion quality Info(d) over all distinct doublets in T with respect to the flowgraph generated from T.

Example 3.1. Consider doublet b2 in Fig. 1. a(b2) = 3 because three nodes in the flowgraph contain b2. 3(b2) = 5 because
the three instances of b2 have five child nodes in total. y(b2) = 6 because six root-to-leaf paths in the flowgraph contain b2.
o(b2) =7 because seven trajectories in Table 1 contain b2. Suppose w,=04,w;=02w,=02, and ws; =0.2.
Info(b2) =3 x04+5x02+6x02+7x02=428.

3.4. Problem statement
The problem of trajectory data anonymization for passenger flow analysis is defined below.

Definition 3.4. Given a trajectory database T and a user-specified LK-privacy requirement, the problem of trajectory data
anonymization for passenger flow analysis is to transform T into another version T’ such that T’ satisfies the LK-privacy
requirement with maximal Info(T’), i.e., with minimal impact on the passenger probabilistic flowgraph.

4. The anonymization algorithm

Our proposed anonymization algorithm consists of three steps. The first step is to generate the probabilistic flowgraph
from the raw trajectory database T. The second step is to identify all sequences that violate the given LK-privacy requirement.
The third step is to eliminate the violating sequences from T by a sequence of suppressions with the goal of minimizing the
impact on the structure of the flowgraph generated in the first step. Each step is further elaborated as follows.

4.1. Generating probabilistic flowgraph

To build a probabilistic flowgraph, the first step is to build a prefix tree from the raw trajectories. Each root-to-leaf path
represents a distinct trajectory. Each node maintains a count that keeps track of the number of trajectories sharing the same
prefix. The transitional probabilities (Definition 3.3) as well as the o(d), 8(d), y(d), and é(d) (Eq. 1) of each distinct doublet d in
the trajectory database can be computed from the counts in the prefix tree. The entire step requires only one scan on the
trajectory database records.

4.2. Identifying violating sequences

An adversary may use any non-empty sequence with length not greater than L as background knowledge to perform a
linkage attack on the trajectory data. By Definition 3.2, a sequence q with 0 < |q| < L in T is a violating sequence if the num-
ber of trajectories in T containing q is less than the user-specified threshold K.

Definition 4.1 (Violating sequence). Let q be a sequence of a trajectory in T with 0 < |q| < L. q is a violating sequence with
respect to a LK-privacy requirement if |T(q)| < K.

Example 4.1 (Violating sequence). Consider Table 1. Given L =2 and K = 2, the sequence q; = (al — c9) is a violating
sequence because |q;| =2 < L and |T(q;)| = 1 < K. However, the sequence q, = (c3 — e7 — d8) is not a violating sequence
even though |T(q,)| = 1 < K because |q,| =3 > L.

Enforcing the LK-privacy requirement is equivalent to removing all violating sequences from the trajectory database. An
inefficient solution is to first generate all possible violating sequences and then remove them. Consider a violating sequence
q that by definition has |T(q)| < K. Thus, any super sequence of q in T must also be a violating sequence. Therefore, the num-
ber of violating sequences is huge, making this approach infeasible to be applied on real-life trajectory data. Instead, we ob-
serve that every violating sequence must contain at least one minimal violating sequence and eliminating all minimal
violating sequences guarantees to eliminate all violating sequences.

Definition 4.2 (Minimal violating sequence). A violating sequence q is a minimal violating sequence (MVS) if every proper
subsequence of g is not a violating sequence (Chen et al., 2013).

Example 4.2 (Minimal violating sequence). Consider Table 1. Given L = 2 and K = 2, the sequence q, = (b2 — c9) is a MVS
because |T(q;)| =1 < K, and all of its proper subsequences, namely b2 and c9, are not violating sequences. In contrast,
the sequence g, = (c3 — d4) is a violating sequence but not a MVS because d4 is a violating sequence.



72 M. Ghasemzadeh et al./Transportation Research Part C 39 (2014) 63-79

Chen et al. (2013) proved that a trajectory database T satisfies (KC),-privacy if and only if T contains no minimal violating
sequence. (KC),-privacy is a generalized privacy model of LK-privacy, so the same proof is applicable to LK-privacy by setting
the confidence threshold C = 100% in the proof.

Algorithm 1. Identifying minimal violating sequences (MVS)

Input: Raw trajectory database T
Input: Thresholds L, K
Output: Minimal violating sequences MVS
1: C; « all distinct doublets in T;
2:11;
3: while i < L and C;#0 do
4: Scan T once to compute |T(q)|, for Vq € C;;
5: for Vq € C; where |T(q)| > 0 do
6: if |T(q)| < K then
7: MVS; = MVS; U {q};
8

: else
9: NVS; = NVS; U {q};
10: end if
11: i++;
12: end for

13: C,‘ <~NVSF1 MNVSi—];
14: for Vq € C; do
15: if 3v € MVS;_; such that g O v then

16: CG=C—-{q};
17: end if
18: end for

19: end while
20: return MVS = MVS; U---UMVS;_q¢;

Algorithm 1 presents a procedure to identify all minimal violating sequences, MVS, with respect to a given LK-privacy
requirement. First, C; contains all distinct doublets, representing the set of candidate sequences with length 1. Then it scans
the trajectory database T once to count the support of each sequence q in C; (Line 4). Then for each q in C;, if |T(q)]| is less than
K, it is added to MVS; (Line 7); otherwise, it is added to NVS; (Line 9), which will be used to generate the next candidate set C;
in the next iteration. Generating the next candidate set consists of two steps. First, conduct a self-join of the non-violating
sequence set, NVS;_; (Line 13). Two sequences q, = (locjt{) — --- — (locjt}) and q, = (loc}t}) — --- — (loc]t) can be joined if
the first i — 1 doublets are identical and ¢} < /. The joined sequence is (loc}t}) — --- — (loc{t}) — (loc/t}). This definition as-
sures that all candidates from self-join would be generated only once. Second, for each q in G;, if q is a super sequence of any
sequence in MVS; 1, q will be removed from C; (Lines 14-18) because by definition g cannot be a minimal violating sequence.
Line 20 returns all minimal violating sequences.

Example 4.3. Given L =2 and K = 2, the MVS set generated from Table 1 is MVS(T) = {d4,al — ¢9,b2 — ¢9,c3 — c9}.

4.3. Removing violating sequences

After all minimal violating sequences are identified, the next step is to eliminate them with the goal of minimizing the
impact on information quality for passenger flow analysis. However, finding an optimal solution based on suppression for
LK-privacy is NP-hard (Chen et al., 2013). Thus, we propose a greedy algorithm to efficiently eliminate minimal violating se-
quences with a reasonably good sub-optimal solution.

Suppressing a doublet generally increases privacy and decreases information quality. Intuitively, a doublet d is a good
candidate for suppression if suppressing it would result in eliminating a large number of MVS and minimal impact on the
passenger flowgraph. Eq. (2) measures the goodness of suppressing a doublet d:

PrivGain(d)

Scorel(d) = “Infold) (2)
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where PrivGain(d) is the number of MVS that can be eliminated by suppressing d and Info(d) measures the information qual-
ity of a doublet d defined in Eq. 1. The greedy function considers both data privacy and information quality simultaneously
by selecting a suppression with the maximum privacy gain per unit of information loss.

We also define three other functions for comparison. Score2(d) randomly selects a doublet for suppression without con-
sidering PrivGain(d) and Info(d):

Score2(d) =1 (3)
Score3(d) aims at maximizing PrivzGain(d) without considering Info(d):

Score3(d) = PrivGain(d) (4)
Score4(d) aims at minimizing loss of Info(d) without considering PrivzGain(d):

Scored(d) = nf+@d) (3)

Algorithm 2. Check validity of a local suppression

Input: Trajectory database T
Input: Thresholds L, K
Input: A doublet d in a minimal violating sequence m
Output: A boolean indicating if locally suppressing d from m is valid
1: Dr — {d'|d € D,d" € T(m),d e (T(d) — T(m))};
2: MVS1 « {m1|m1 € MVS,|m1| = 1}
3: MVS' «— {m'|m’ € MVS,d € m,MVS(d)} U MVS1;
4: Remove all doublets, except for d, in MVS' from D’;
5: Q « all possible sequences with size < L generated from d after removing super sequences of the sequences in
MVS — T(d);
6: Scan T(d) — T(m) once to compute | q |;
7: for each sequence g € Q with | g |> 0 do
8: if |q|<K then

9: return false;
10: end if
11: end for

12: return true;

Most of the previous works on trajectory anonymization (Fung et al., 2009a,b; Mohammed et al., 2009) employ global
suppression, which guarantees that globally suppressing a doublet d does not generate new MVS. In other words, the number
of MVS monotonically decreases with respect to a sequence of suppressions (Chen et al., 2013). Yet, local suppression does
not share the same property. For example, locally suppressing b2 from ID#1 in Table 1 generates a new MVS (al — b2) be-
cause the support |T(al — b2)| = 2 decreases to [T/(al — b2)| = 1 < K, where T is the database resulted from the local sup-
pression. Identifying the newly generated MVS is an expensive computational process, and there is no guarantee that the
anonymization process can be completed within [MVS| number of iterations. To overcome this challenge, a local suppression
is performed only if it does not generate any new MVS.

Definition 4.3 (Valid local suppression). A local suppression over a trajectory database is valid if it does not generate any new
MVS (Chen et al., 2013).

Algorithm 2 checks the validity of suppressing a doublet d from a minimal violating sequence m. Let D' be the set
of distinct doublets that coexist in both T(m) and T(d) — T(m) (Line 1). Let MVS1 be the set of size-one MVS (Line 2).
Let MVS' be the union of MVS containing d and MVS1 (Line 3). Line 4 then removes all doublets, except for d, in MVS
from D' because such a doublet is already a MVS, or a subsequence of a MVS, and is not a future MVS candidate. Line
5 generates all possible candidates, which can be new MVS. Line 6 scans all records containing d to compute |q| for
each q € Q. For each q in Q whose length is less than K, the algorithm returns false, indicating an invalid local
suppression.
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Algorithm 3. Anonymize trajectory data

Input: Trajectory database T
Input: Thresholds L, K
Output: Anonymous T’ satisfying the given LK-privacy requirement
1: Generate Flowgraph from database T;
2: Generate MVS(T) by Algorithm 1;
3: Build Score table by Algorithm 2;
4: while Score table #( do
5: Select a doublet d with the highest score from its MVS m;
6: if dis alocal suppression then
7 MVS — {m'|m' e MVS,d e m' AT(m') = T(m)};
8 Suppress the instances of d from T(m);

9: else

10:  MVS — MVS(d);

11: Suppress all instances of d in T;
12: end if

13: Update the Score(d') if both d and d’ are in MVS';
14: MVS = MVS — MVS';

15: end while

16: return the suppressed T as T';

Algorithm 3 summarizes the entire anonymization algorithm. Line 1 generates the flowgraph from the trajectory data-
base, which is then needed to compute Info of doublets. Line 2 calls Algorithm 1 to generate all the minimal violating se-
quences MVS. Line 3 calls Algorithm 2 to calculate the score of all doublet instances and stores the results in the Score
table. In each iteration, a doublet d with the highest score from its MVS m is selected. If the selected suppression d is a local
suppression, then Line 7 identifies the set of MVS, denoted by MVS', that will be eliminated due to locally suppressing d, and
Line 8 removes the instances of d from the records T(m). If the selected suppression d is a global suppression, then Line 10
identifies the set of MVS, denoted by MVS', that contains d, and Line 11 suppresses all instances of d from T. Line 13 updates
the Score table for the next round and Line 14 removes the suppressed MVS of d from MVS. The algorithm repeats these oper-
ations until the Score table becomes empty.

4.4. Discussion

Transitional probabilities in a flowgraph are conditional probabilities of the next visited doublets given the passengers’
previously visited doublets. Suppressing some instances of a doublet directly affects its related transitional probabilities.
Thus, the distortion of transitional probabilities caused by a suppression is indirectly reflected by J(d) in the information
quality measure Info(d) (Eq. 1). Yet, to precisely capture the distortion of transitional probabilities, Info(d) has to be redefined

as follows. Let {cy,...,cn} and {c},...,c},} be the counts of the child nodes of a node before and after suppression, respec-
tively. The distortion of transitional probabilities due to locally suppressing y instances of ¢; is:
G G| _yolaG -G .
Zi 2iGi 2iC Zi 2iCi2iC ©
Since for i#j, ¢; = ¢}, and for j,¢; — y = ¢}, we have:
3 Cid_iCi — CiduiCi| _ D cy ' N ‘ Yy ici—¢) ‘ _y(Ei—g) )
D) (o —Y) G(oiG =y Y —y)

If an item corresponding to ¢; occurs in multiple nodes in a flowgraph, then its distortion should be the sum of all these

nodes. For global suppression, the equation can be simplified to 25 Eq. 7 can serve as an information quality measure tai-
i

lored for quantifying the distortion of transitional probabilities. Yet, the objective of this paper is to preserve the overall flow-
graph structure, not limited to preserve only transitional probabilities, after data anonymization. Thus, Eq. (1) is the
information quality measure employed in the rest of the paper.

Next, we analyze the computational complexity of our anonymization algorithm. The proposed algorithm consists of
three steps. The first step is to generate the flowgraph, which requires one scan on the trajectory database to build a prefix
tree. The second step is to identify all MVS in which a good approximation is O(|s|*), where s is the number of distinct dou-
blets. The worst case scenario is O(|s|*|T|) (Chen et al., 2013). The third step is to remove all MVS, which is also bounded by
O(|s|*|T]) Chen et al. (2013). In addition to the theoretical analysis above, the scalability of our algorithm is further experi-
mentally validated in Section 5.2.
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Table 3

Experimental data set statistics.
Data sets # Of records |T| # Of dimensions |s| Data size (Kbytes) Data type
Metro200K 200,000 696 12,359 Synthetic
STM514K 514,213 3120 12,910 Real-life

5. Experimental evaluation

The experimental evaluation serves two purposes. First, we want to evaluate the impact of anonymization on the infor-
mation quality of the flowgraph with respect to different privacy parameters and weights. Second, we want to evaluate the
efficiency of our proposed algorithm.

To evaluate the impact of anonymization, we introduce a new similarity metric ¢(G,G') to measure the similarity be-
tween the flowgraph G generated from the raw trajectory data and the flowgraph G’ generated from the anonymized trajec-
tory data. Algorithm 4 illustrates the procedure for computing ¢(G,G). First, all distinct doublets of each flowgraph are
sorted by time and location (Lines 1-3). Then for each pair of identical doublets d € G and d’ € G, the algorithm computes
a(d), B(d), y(d), 5(d),a(d"), B(d),y(d"), and 5(d"), calculates the ratios among them, and then sums up the ratios, denoted by
aSum, bSum, cSum, and dSum (Lines 5-18), respectively. In case d is a leaf node, (d) = 0. To avoid dividing by zero, Line 9
skips the division, uses the counter i to keep track of the number of doublets having g(d) = 0, and subtracts i from the total
number of distinct doublets in Line 19. Line 20 returns the similarity measure ¢, which is a weighted sum of the ratios.

Algorithm 4. Comparing two flowgraphs

Input: Flowgraph G
Input: Flowgraph G’
Input: Weights w,, ws, wy
Output: Similarity measure ¢
1: UL — {d|d € G};
2: UL — {d'|d e G};
3: Sort UL and UL’ by time and location;
4:i0;
5: for each d € UL do
6: for eachd <UL do
7
8
9

if d = d’ then
asum += %;

: if f(d)#0 then
10: bSum += G4;
11: else
12: i++;

13: end if

14: cSum += ?“g;;

15: dSum += iﬁd;

16: end if

17: end for

18: end for

19: ¢ — o5um xwa+%xwﬂ+f~%‘m xwy+”"5%(”xw,;:
20: return @;

We could not directly compare our proposed algorithm with previous works (Abul et al., 2008; Chen et al., 2013; Pensa
et al., 2008; Terrovitis and Mamoulis, 2008; Yarovoy et al., 2009) on trajectory data anonymization because their proposed
solutions do not consider preserving information in a passenger flowgraph. Thus, we compare our results with the results
generated from K-anonymous data.

Two data sets, Metro200K and STM514K, are used in the experiments. Metro200K is a data set simulating the travel routes
of 200,000 passengers in the Montréal subway transit system with 29 stations in 24 h, forming 696 dimensions. STM514K is a
real-life data set provided by Société de transport de Montréal (STM).! It contains the transit data of 514,213 passengers among
65 subway stations within 48 h, where the time granularity is set to the hour level. The properties of the two experimental data
sets are summarized in Table 3.

T http://www.stm.info.
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5.1. Information quality

We evaluate the information quality by calculating the similarity of the raw flowgraph and the anonymized flowgraph in
terms of varying K, L, and weights. We also show the benefit of a reasonable L value over the traditional K-anonymity in com-
bination with other parameters. In real-life passenger flow analysis, an analyst may want to emphasize preserving different
properties in a passenger flowgraph by adjusting the weights. Thus, we create three scenarios with different weights.

5.1.1. Scenario |
Subway stations provide a unique opportunity for out-of-home marketing. Suppose that a company is granted permission

to display their advertisements in the subway stations. The company may request the metro company to share the anony-
mized trajectory data for research purposes. In this case, it is reasonable to put more emphasis on o, which represents the
number of instances of each station in the flowgraph. Accordingly, we set w, = 0.5,w; = 0.3, w, = 0.2, and w; = 0.
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Fig. 4. Scenario I: Similarity vs. K (L = 3,w, = 0.5,w; =0.3,w, =0.2,w,; = 0).
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Fig. 5. Scenario II: Similarity vs. K (L =3,w, =0.3,w; =0.5,w; =0.2,w; =0).
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Fig. 4(a) depicts the similarity measure ¢ of the two flowgraphs before and after the anonymization for L =3 and
10 < K < 100, with different Score functions on the Metro200K data set. When K = 10, the similarity is 0.99, indicating that
almost no information has been lost in terms of the flowgraph. As K increases, the similarity decreases. This shows the trade-
off between data privacy and the information quality of the flowgraph. The results of K-anonymity are achieved by setting
L = |s|, where |s| is the number of distinct doublets in the given data set. The experimental results suggest that applying LK-
privacy does produce less information loss than applying traditional K-anonymity, with respect to passenger flow analysis.
To show that the benefit is statistically significant, we conduct a one-tail t-test on the 10 pairs of test cases from
10 < K < 100. The p-values for Scorel, Score2, Score3, and Score4 in Fig. 4(a) are 1.75E-3, 1.28E—2, 5.67E—4, and 1.58E-3,
respectively. Fig. 4(b) depicts the similarity measure ¢ of the flowgraphs before and after the anonymization for L =3
and 10 < K < 100 with different Score functions on the STM514K data set. Similar trends can be observed. The p-values
for Scorel, Score2,Score3, and Score4 in Fig. 4(b) are 2.83E-3, 1.09E-2, 3.8E—4, and 2.18E-2, respectively, showing that
the benefit is statistically significant at o« = 5%.

5.1.2. Scenario 11

In this scenario, the weights are set at w, = 0.3, w; = 0.5,w, = 0.2, and w; = 0 with L = 3 and 10 < K < 100. The results
in Fig. 5(a) and (b) in this scenario our proposed algorithm still performs best, suggesting that our method is robust against
different weights and different scenarios of flowgraph analysis. The behavior of our algorithm is similar in both scenarios. For
example, in both scenarios we have almost the same results for K = 70, even though the weight w, in Scenario I is much
higher than the weight w, in Scenario II.

The results further confirm that our score functions in general produce better information quality than K-anonymity, ex-
cept for Score2, which suppresses MVS randomly. To show that the benefit of our proposed algorithm over K-anonymity is
significant, we conducted a one-tail t-test on 10 pairs of test cases from 10 < K < 100. The p-values for Score1, Score2, Score3,
and Score4 in Fig. 5(a) are 4.75E-3, 2.8E-3, 4.67E-3, and 9.08E-3, respectively. The p-values for Scorel,Score2,Score3, and
Score4 in Fig. 5(b) are 3.98E—3, 5.0E—2, 4.5E—3, and 2.88E—3, respectively, showing that the benefit is statistically significant
at o= 5%.

5.1.3. Scenario III

In the final scenario, all weights are equally set to 0.25 with L = 3 and 10 < K < 100. The results in Fig. 6(a) and (b) sug-
gest that our proposed algorithm yields less information loss than K-anonymity. The results also suggest that distributing
equal weights preserves higher information quality of the flowgraph than the previous two scenarios. To further show that
the benefit of our proposed algorithm over K-anonymity is significant, we conducted a one-tail t-test on 10 pairs of test cases
from 10 < K < 100. The p-values for Scorel,Score2,Score3, and Score4 in Fig. 6(a) are 4.95E-3, 1.91E-3, 5.01E-3, and
4.58E-3, respectively. The p-values for Scorel, Score2,Score3, and Score4 in Fig. 6(b) are 3.45E-3, 9.08E-2, 2.88E-3, and
4.58E-3, respectively, showing that the benefit is statistically significant at o« = 5%.
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Fig. 6. Scenario III: Similarity vs. K (L = 3,w, = 0.25,w; = 0.25,w, = 0.25,w; = 0.25).
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Fig. 7. Scalability.

5.2. Scalability

Next, we demonstrate the scalability of our proposed algorithm on a relatively large trajectory data set. The setting is sim-
ilar to Metro200K but of larger size. Since the complexity is dominated by the number of dimensions |s| and the number of
records |T|, we examine the performance of our framework with respect to |s| and |T|.

5.2.1. Effect of number of records |T|

Fig. 7(a) illustrates the runtime of our algorithm on a data set with 4000 dimensions and sizes ranging from 400,000 re-
cords to 1,200,000 records. We observe that the runtime for generating the flowgraph is linear and proportional to the num-
ber of records. The algorithm takes less than 15 s to generate the flowgraph from 1.2 million records. As |T| increases, the
runtime of identifying MVS also increases linearly. The runtime of suppression, however, decreases rapidly as the number
of records increases. This is due to the fact that when the number of records increases, there is a substantial reduction in
the number of MVS; therefore, it takes less time to suppress them.

5.2.2. Effect of dimensionality |s|

Fig. 7(b) depicts the runtime of our algorithm on a data set of 1 million records, with the number of dimensions (number
of distinct doublets) ranging from 4000 to 8000. The figure shows that increasing the number of dimensions has no signif-
icant effect on the runtime of flowgraph generation. However, when the number of dimensions increases, the runtime of
identifying MVS increases because increasing the number of dimensions introduces a larger number of distinct sequences,
which in turn increases the number of MVS and the runtime for removing them.

6. Conclusion

In this paper, we study the problem of anonymizing high-dimensional trajectory data for passenger flow analysis. We
demonstrate that applying traditional K-anonymity on the trajectory data is not effective for flow analysis. Thus, we adapt
the LK-privacy model for trajectory data anonymization. We present an anonymization algorithm that thwarts identity re-
cord linkages while effectively preserving the information quality for generating a probabilistic passenger flowgraph. The
originality of our approach derives from the utilization of the probabilistic flowgraph as the measure of information quality
in the anonymization process. Extensive experimental results on both real-life and synthetic passenger trajectory data sug-
gest that data privacy can be achieved without compromising the information quality of passenger flowgraph analysis.
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