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Abstract

The success of data mining relies on the availability of high quality data. To ensure quality

data mining, effective information sharing between organizations becomes a vital require-

ment in today’s society. Since data mining often involves person-specific and sensitive in-

formation like medical records, the public has expressed a deep concern about their privacy.

Privacy-preserving data publishing is a study of eliminating privacy threats while, at the

same time, preserving useful information in the released data for data mining. It is different

from the study of privacy-preserving data mining which performs some actual data mining

task. This thesis identifies a collection of privacy threats in real life data publishing, and

presents a unified solution to address these threats.

Keywords: privacy; data mining; information security

Subject Terms: data protection; computer security
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Chapter 1

Introduction

Many government departments and companies employ advance data mining techniques to

gain insights into the behaviours and characteristics of their citizens and customers. On

the other hand, several polls and surveys [10][42] indicate that the public has an increased

sense of privacy intrusion due to the increased level of security after the September 11

terrorist attacks. Since data mining is often a key component of many homeland security

systems [60], monitoring and surveillance systems [25], and enterprise information systems,

the public has acquired a negative impression that data mining is a technique for privacy

intrusion. The lack of trust in data mining has become an obstacle to the advancement of

the technology. For example, a potentially beneficial data mining research project, called

Terrorism Information Awareness (TIA), was terminated by the U.S. Congress mainly due

to its controversial styles of collecting, tracking, and analyzing data trails left by individ-

uals [60]. To overcome this obstacle, many techniques have been proposed for protecting

individual privacy and sensitive information.

Figure 1.1 shows the data flow model in a typical data mining system. In the data

collection phase, a data publisher collects information from individual record holders (e.g.,

Alice, Bob, Cathy, and Doug). In the data publishing phase, a data publisher releases the

collected data to a data miner (or even to the public) for data mining.

There are two models of data publishers [31]. In the un-trusted model, the data pub-

lisher himself could be an attacker who attempts to identify some record holders and their

sensitive information from the collected data. Various cryptographic solutions [86], anony-

mous communications [11][34], and statistical methods [78] were proposed for collecting data

anonymously from individual record holders. In the trusted model, the data publisher is

1
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Figure 1.1: Data flow in a data mining system

trustworthy, and the record holders are willing to contribute their personal information to

him. For example, a record holder is willing to provide her medical information to a hospital

in order to receive the required medical service; however, the trust to the hospital may not

be transitive to the data miner. In this thesis, we assume the data publisher is trustworthy

and focus on the privacy issues in the data publishing phase.

Typically, the data publisher has a table of the form [9]

T (Explicit identifier, Quasi-identifier, Sensitive attributes).

Explicit identifier consists of identifying information (such as SSN and names) of the record

holders. Quasi-identifier [16][59] (such as date of birth, gender, and zip code) does not reveal

identity, but can be used to link to a record holder or an explicit identity in some external

sources [59]. Sensitive attributes consist of other person-specific but sensitive information

(such as medication and DNA entries). We assume that the data publisher specify the

attribute type for each attribute in T .

A pressing question is: How can a data publisher, e.g., the hospital, release a data set to

a third party or even to the public while preventing an attacker from “linking” an individual

to some record or sensitive information in the released data?

1.1 Motivations

Nowadays, the most commonly employed “privacy protection procedure” is to simply remove

the explicit identifier of the record holders before releasing the data. Nonetheless, this
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so-called privacy protection procedure is insufficient for privacy protection. Sweeney [66]

showed a real-life example of privacy attack on William Weld, who is a former governor of

the state of Massachusetts. Sweeney could uniquely identified Weld’s name together with his

medical information like diagnosis and medication by linking a voter list with some publicly

available medical data on some shared quasi-identifier namely zip code, date of birth, and

sex. Weld’s case is not an extraordinary incident because Sweeney [66] further pointed out

that 87% of the U.S. population had reported characteristics that likely made them unique

based on only such quasi-identifier.

This real life example illustrates that the attacker may able to “link” a record holder

to a small number of (or even a unique) data records in the released data through a quasi-

identifier if the combination of the quasi-identifier has a reasonably identification power. To

perform this type of linking attack, the attacker needs two pieces of a priori knowledge: (1)

the record holder is (likely to be) involved in the released data, and (2) the quasi-identifier

of the record holder. Often, this priori knowledge can be obtained by simple observation

and common sense. For example, knowing his boss was absent for staying in a hospital, the

attacker knew that his boss’ medical information would appear in the released medical data

from that hospital. For the quasi-identifier of his boss, the attacker may able to obtain it

from the Internet. For example, Maclean’s [30] was able to purchase months of phone logs

of Jennifer Stoddart, who is the privacy commissioner of the federal government of Canada,

from a U.S. data broker for US$200. The requested information returned within several

hours and it even included an updated monthly statement which Stoddart herself had not

received yet.

This research, privacy-preserving data publishing, is a study of preventing this kind

of linking attack. Its goal is to prevent linking some record holder to a specific (or a

small number of) data record and sensitive information in the released data while, at the

same time, preserving the useful information in the released data. This thesis identifies a

collection of privacy threats in various real life data publishing problems, and presents a

unified anonymization algorithm for removing these threats. Details of the algorithm will

be given in the thesis.

A related research area called privacy-preserving data mining (PPDM ) [14] aims at per-

forming some data mining task on a set of private databases owned by different parties

[19][20][26][36][37][68][69][87]. In contrast, privacy-preserving data publishing does not per-

form the actual data mining task, but concerns itself with how to publish the data so that
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the anonymized data are useful for data mining. PPDM is not the focus of this thesis, but

it will be briefly discussed in Chapter 2.

Releasing the data analysis or data mining result [52] such as a classifier, instead of

the data, could be an option if the data publisher knows exactly how the data miner may

analyze the data. This information, however, often is unknown at the moment of release. For

example, in visual data mining, the data recipient needs to visualize data records in order to

produce a classifier that makes sense, and in the k-nearest neighbor classification the data

itself is the classifier. In these cases, releasing data records is essential. In other cases, some

classifiers are preferred for accuracy, some for precision/recall, some for interpretability,

and yet some for certain domain-specific properties. The data publisher (such as a hospital)

does not have the expertise to make such decisions for the data recipient (such as biomedical

researchers) due to the lack of domain knowledge and sophisticated data mining techniques.

Publishing the data provides the recipient a greater flexibility of data analysis.

1.2 Objectives and Contributions

The objectives of this research are:

1. to identify the privacy threats in different data publishing models, namely a single

release, sequential releases, and secure data integration;

2. to formally measure the risk of privacy threats in these data publishing models;

3. to propose a framework of anonymization algorithms to remove the identified privacy

threats.

The developed algorithms are evaluated in terms of the level of privacy protection,

data quality before/after anonymization, applicability to real life databases, efficiency and

scalability. Below are the key contributions of this thesis.

• Anonymizing classification data. Classification is a fundamental problem in data anal-

ysis. Training a classifier requires accessing a large collection of data. Releasing

person-specific data may pose a threat to an individual’s privacy. A useful model

to combat the linking attacks discussed above, called k-anonymization [57][58][59], is

anonymizing the quasi-identifier, denoted X, so that at least k released records match
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each value combination of X. The anonymization is done by masking specific values

to general values, preferably in a way to minimize the distortion to the data.

The first contribution of this thesis is to efficiently identify a k-anonymous solution

that preserves the classification structure. The search is done by detailing the level of

information in a top-down manner, guided by the consideration of both information

and privacy. This top-down refinement (TDR) algorithmic framework is highly effi-

cient and natural for handling different types of attributes. This approach exploits the

“room” provided by the noise and redundant structures in the data for achieving both

a privacy goal and a classification goal. In this thesis, the information requirement

is specified to be classification analysis because classification accuracy/error provides

a concrete and objective measure on data quality. We emphasize that TDR is a

framework which can easily adopt other information requirements, such as clustering

analysis or minimal masking for general data publishing, with little changes. TDR also

serves as the solution framework for all subsequent anonymization problems studied

in this thesis.

• Confidence bounding. The first contribution addresses the privacy concern related to

the input of data mining methods, but the output of data mining methods could also

cause privacy threats. Although the output is an aggregate pattern, not intended

to identify a record holder, it can be used to infer sensitive properties about record

holders. This research problem has dual goals: preserve the information for a wanted

data analysis request and limit the usefulness of unwanted inferences that may be

derived from the release of data. A sensitive inference occurs if sensitive values of a

group of individuals can be confidently inferred by some linking attributes from the

released data. The prior k-anonymity focuses on limiting the associations between

the identities of record holders and some released data records. This part focuses on

limiting the associations between the identities of record holders and some sensitive

values in the released data.

The second contribution of this thesis is to formally define such a new privacy notion,

and to propose an efficient anonymization algorithm, following the framework of TDR,

that minimally suppresses some data values such that the transformed data is free of

sensitive inferences, even in the presence of data mining algorithms.
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• Anonymizing sequential releases. Most existing works on privacy-preserving data pub-

lishing, including our work in the first two contributions, focus on a single data release.

In practice, data are often released continuously to serve various information purposes.

A data publisher makes a new release as new information becomes available or makes

a tailored view for different data mining tasks (such as classifying a different target

class). The availability of related releases sharpens the identification of individual

record holders by some global identifying information consisting of attributes from

related releases. Since it is not an option to anonymize previously released data, the

current release must be anonymized to ensure that the global quasi-identifier X across

different releases are not effective for identification.

The third contribution of this thesis is to formally define and to resolve this sequential

anonymization problem. A key question is how to anonymize the current release so

that it cannot be linked to previous releases, yet remains useful for its own release

purpose. We introduce the lossy join, a negative property in relational database

design, as a way to hide the join relationship among releases, and propose a scalable

and practical solution based on TDR. Furthermore, we define a new privacy notion

which unifies the classic notion of k-anonymity and the notion of confidence bounding

discussed in the first two contributions.

• Secure data integration. In today’s globally networked society, there is a dual demand

on both information sharing and information protection. A typical scenario is that

two data publishers wish to integrate their private databases to achieve a common

goal beneficial to both, provided that their privacy requirements are satisfied. We

define a problem called secure data integration, in which multiple data publishers own

a disjoint set of attributes on the same set of records and want to jointly publish an

integrated (and k-anonymized) table on all attributes for classification analysis.

The fourth contribution of this thesis is to formally define and to resolve this secure

data integration problem. We extend the TDR framework to a secure multi-publisher

protocol such that the masking process does not leak more specific information other

than the final integrated k-anonymized data.
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1.3 Organization of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2 studies the related works in the literature of privacy-preserving data pub-

lishing, focusing on their privacy models, and then briefly discusses a related research

area, privacy-preserving data mining.

• Chapter 3 defines some general notations, masking and refinement operations.

• Chapter 4 studies the anonymity for classification problem, and presents an anonymiza-

tion framework, Top-Down Refinement (TDR), to thwart linking attack while preserv-

ing the useful structures for classification analysis. A preliminary version of Chapter 4

was published in [28][29].

• Chapter 5 studies the privacy threat caused by sensitive inferences, and follows the

TDR framework to develop an anonymization method to bound the confidence of

inferences within a given threshold. A preliminary version of Chapter 5 was published

in [75][76].

• Chapter 6 studies the sequential anonymization problem, and follows the TDR frame-

work to develop an anonymization method to disable the re-identification of record

holders across multiple releases. A preliminary version of Chapter 6 was published

in [73].

• Chapter 7 studies the problem of secure data integration from multiple data publishers,

and follows the TDR framework to develop an anonymization protocol for this multi-

publisher problem. A preliminary version of Chapter 7 was published in [74].

• Chapter 8 concludes the thesis, and suggests some directions for future research.

1.4 Statement of Nondiscrimination

This thesis contains many examples with synthetic data. They are solely for the purpose

of illustrating technical concepts. The author has no intention to discriminate any group of

people although some sensitive properties are assigned to their group.



Chapter 2

Related Works

In this chapter, we first study the major privacy models in privacy-preserving data publishing

(PPDP). Then, we briefly discuss a related research area called privacy-preserving data

mining (PPDM) and compare it with PPDP.

2.1 Privacy Models in Privacy-Preserving Data Publishing

Generally speaking, a privacy threat occurs either when an identity is linked to a record

or when an identity is linked to a value on some sensitive attribute. These threats are

called record linkage and attribute linkage. Below, we assume that the attacker knows the

quasi-identifier X of a target record holder.

2.1.1 The Record Linkage Model

In the record linkage model, some value x on quasi-identifier X identifies a small number

of records in the released table T . In this case, the record holder having the value x is

vulnerable to being linked to a small number of records in T .

k-Anonymity

The notion of k-anonymity [57][58][59] was proposed to combat record linkage. In gen-

eral, a cost metric is used to measure the data distortion of anonymization. Two types

of cost metric have been considered. The first type, based on the notion of minimal

generalization [56][65], is independent of the purpose of the data release. The second

8
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type factors in the purpose of the data release such as classification [8][28][29][77]. The

goal is to find the optimal k-anonymization that minimizes this cost metric. In general,

achieving optimal k-anonymization is NP -hard [3][50]. Greedy methods were proposed

in [28][29][32][33][64][77][81]. Scalable algorithms (with the exponential complexity the

worst-case) for finding the optimal k-anonymization were studied in [8][43][56][65].

Chapter 4 presents a greedy method for achieving k-anonymity and preserving clas-

sification structures. Our insight is that the optimal k-anonymization is not suitable to

classification where masking structures and masking noise have different effects: the former

deems to damage classification whereas the latter helps classification. It is well known in

data mining and machine learning that the unmodified data, which has the lowest possible

cost according to any cost metric, often has a worse classification than some generalized

(i.e., masked) data. In a similar spirit, less masked data could have a worse classification

than some more masked data. This observation was confirmed by our experiments. The

optimal k-anonymization seeks to minimize the error on the training data, thus over-fits the

data, subject to the privacy constraint. Neither the over-fitting nor the privacy constraint

is relevant to the classification goal that seeks to minimize the error on future data.

Most works assume a single quasi-identifier X containing all attributes that can be

potentially used for record linkage. Clearly, the more attributes are included in X, the

more protection the k-anonymity would provide. On the other hand, this also implies more

distortion is needed to achieve the k-anonymity because the records have to agree on more

attributes. Aggarwal [1] proves that, when the number of attributes in X is high, enforcing

k-anonymity necessarily results in severe information loss, even for small k. To address this

issue, we allow the specification of multiple quasi-identifiers in Chapter 4, assuming that

the data publisher knows the potential X’s for record linkage.

Extensions of k-Anonymity

Besides the standard setting, extensions of k-anonymity were also studied. LeFevre et

al. [44] proposed the notion of multidimensional k-anonymity where data generalization is

over multi-dimension-at-a-time, and LeFevre et al. [45] extended multidimensional general-

ization to anonymize data for a specific task such as classification. Xu et al. [85] proposed

some greedy methods to achieve k-anonymity with cell generalization, and showed that the

cell generalization generally causes less information loss than the multidimensional general-

ization. These masking operations allow the co-existence of a specific value and a general
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value, such as Accountant and Professional. Such masked data will suffer from “interpre-

tation difficulty” in the data analysis phase. For example, the exact number of accountants

cannot be determined when only some, say only 3 out of the 10, Accountants are generalized

to Professionals. If a classifier is built from such data, it is unclear which classification

rule, Accountant → Y or Professional → N , should be used to classify an accountant.

k-anonymity prevents record linkage by hiding the record of a target record holder in a

large group of records. However, if most records in a group have similar values on sensitive

attribute, the attacker can still link the target record holder to her sensitive value without

identifying her record. Therefore, the above notions of anonymity are not sufficient to

prevent linking an individual to a sensitive value. This leads us to the next privacy model.

2.1.2 The Attribute Linkage Model

If some sensitive values are predominate in a group, an attacker has no difficulty to infer

such sensitive values for a record holder belonging to this group. Such attacks are called

attribute linkage. Attribute linkage poses a privacy threat even if k-anonymity is satisfied.

Kloesgen [41] pointed out the problem of group discrimination where the discovered group

behavior is attached to all members in a group, which is a form of inference. Our work in

Chapter 5 provides a solution to this problem. Several approaches have been proposed to

address this problem, too.

Clifton [13] suggested to eliminate attribute linkage by limiting the data size. This

approach has the disadvantage of not leveraging the value of the full data set. Furthermore,

in many cases (such as intrusion detection), interesting samples (i.e., intruders) are rarely

found, and thus, are valuable resources. Limiting the data size would worsen the situation.

Recently, Kantarcioglu et al. [38] defined an evaluation method to measure the loss of

privacy due to releasing data mining results. However, they did not propose a solution to

prevent the attacker from getting data mining results that violate privacy. Wong et al. [81]

proposed some generalization methods to simultaneously achieve k-anonymity and bound

the confidence of inferring sensitive properties of record holders. This notion of confidence

bounding is studied in Chapter 5.

Verykios et al. [72] proposed several algorithms for hiding association rules in a transac-

tion database with minimal modification to the data. The general idea is to hide one rule at

a time by either decreasing its support or its confidence, achieved by removing items from

transactions. They need to assume that frequent itemsets of rules are disjoint in order to
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avoid high time complexity. In Chapter 5, we eliminate all sensitive inferences including

those with a low support. We can efficiently handle overlapping inference rules. Our ap-

proach handles the information lose for classification analysis as well as the general notion

of data distortion in a uniform manner.

Aggarwal et al. [2] pointed out that simply suppressing the sensitive values chosen by

individual record holders is insufficient for privacy protection because an attacker can use

association rules learnt from the data to “recover” the suppressed values. They proposed a

heuristic algorithm to suppress a minimal set of values such that the hidden values are not

recoverable by weakening the association rules.

`-Diversity

Machanavajjhala et al. [47] proposed the diversity principle, called `-diversity, to prevent

attribute linkage. The `-diversity requires every quasi-identifying group x on X to contain at

least ` “well-represented” sensitive values. There are several instantiations of this principle.

Definition 2.1.1. A table is entropy `-diverse if for every x group

−
∑

s∈S

P (x, s)log(P (x, s)) ≥ log(`) (2.1)

where S is a sensitive attribute, P (x, s) is the fraction of records in a x group having the

sensitive value s.

The left-hand side is the entropy of sensitive attribute. It has the property that more

uniformly distributed sensitive values in a x group produce a larger value. Therefore, a large

` value implies a less certain of inferring a particular sensitive value in a group.

A less restrictive instantiation of diversity, called recursive (c, `)-diversity [47], compares

most frequent sensitive values and least frequent sensitive values in a group. Let m be the

number of sensitive values in a x group. Let fi denote the frequency of the ith most frequent

sensitive value in a x group. A x group is (c, `)-diverse if the frequency of the most frequent

sensitive value is smaller than the sum of the frequencies of the m − ` + 1 least frequent

sensitive values multiplying by some publisher-specified constant c.

Definition 2.1.2. A table is recursive (c, `)-diverse if every x group satisfies f1 < c
∑m

i=` fi

for some constant c.
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The intuition is that even if the attacker eliminates one possible sensitive value for a

target person in a x group, the group is still (c, `−1)-diverse. To see this property, there are

two cases: (1) If the least frequent sensitive value is eliminated, f1 < c
∑m−1

i=`−1 fi still holds

because f`−1 ≥ fm. (2) If the most frequent sensitive value is eliminated, f2 < c
∑m

i=` fi

still holds because f1 ≥ f2.

The data publisher may find it difficult to map the entropy measure and the parameters

c and ` to a probability risk measure. Second, there is only a uniform level of protection

for all sensitive values and there is no provision for varied sensitivity of different sensitive

values. In reality, some sensitive values such as HIV could be more sensitive than others

such as Flu. In Chapter 5, we allow the data publisher to specify the privacy requirement

with different levels of protection according to varied sensitivity, thus, requiring less data

distortion than a uniform level of protection.

Personalized Privacy

All privacy models discussed so far assume the data publisher is the one who determines

the privacy protection level. Instead of imposing a universal privacy requirement on every

record holder in the released data, Xiao and Tao [83] was the first group to propose the

concept of personalized privacy preservation that allows each record holder to specify her

own notion of sensitivity. This model assumes that both the quasi-identifier and the sensitive

attribute have taxonomy trees, and allows a record owner to specify a guarding node in the

taxonomy tree of the sensitive attribute. Her privacy requirement is violated if an attacker

can confidently infer her sensitive value that is more specific than the guarding node. For

example, suppose the value HIV is a child node of Infectious Disease in a taxonomy

tree. A HIV patient Alice can set the guarding node to Infectious Disease, meaning that

she allows people to infer that she has some infectious disease, but not the specific type

of infectious disease. In the same data table, another HIV patient Bob does not mind to

disclose his medical information, so he does not set any guarding node for this sensitive

attribute.

Both the personalized privacy and our proposed notion of confidence bounding in Chap-

ter 5 bound the confidence of inferring a sensitive value from a group on X. Our notion

of confidence bounding allows the data publisher to specify the privacy requirement, and

this personalized privacy model allows individual record holders to specify their guarding

node on sensitive attribute. Xiao and Tao [83] suggested obtaining the guarding nodes while
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collecting data from record owners. However, sometimes, a reasonable guarding node de-

pends on the distribution of sensitive values in the whole table or in a group. For example,

knowing that most people have her disease, a record holder may set a more specific (a less

restrictive) guarding node for her record. In such scenarios, it may be difficult for record

holders to set the personalized guarding nodes because they usually have no access to the

distribution of sensitive values in their QID group or in the whole table before the data is

published. Without such information, a tendency is to play safe by setting a more general

(a more restrictive) guarding node, which may negatively affect the usefulness of data.

Database Security and Statistical Database

In database security, Farkas and Jajodia [24] conducted a survey on inference control. In

multilevel secure databases, the focus is detecting and removing quasi-identifiers by combin-

ing meta-data with data. Many of these methods operate at the schema-level and consider

only precise inferences that always hold. If there is a security problem, the database is

redesigned. Yip and Levitt [91] extended the work to the data-level by monitoring queries

using functional dependencies. For example, it is possible for a user to use a series of un-

suspicious queries to infer sensitive properties in the database. [91] proposed a method to

detect such queries using functional dependencies. This type of inference is very different

from the type of sensitive inferences discussed in this thesis.

In statistical databases, the focus is limiting the ability of inferring confidential informa-

tion by correlating different statistics. For example, Cox [15] proposed the k%- dominance

rule which suppresses a sensitive cell if the attribute values of two or three entities in the

cell contribute more than k% of the corresponding SUM statistic. Such “cell suppression”

suppresses the count or other statistics stored in a cell of a statistical table, which is very

different from the “value suppression” considered in this thesis.

2.1.3 Publishing Multiple Views and Releases

Consider that a data miner (say a drug company) is interested in classification modelling

the target attribute Disease with attributes Job, Sex, and Age, and another data miner

(say a social service department) is interested in clustering analysis on Job, Age, and Race.

One approach is publishing a single release on Job, Sex, Age and Race for both purposes.

A drawback is that information is unnecessarily released in that none of the two purposes
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needs all four attributes, more vulnerable to attacks. Moreover, it is difficult for a single

release to cater for different purposes.

A better approach, presented in Chapter 6, is anonymizing and publishing a tailored

release for each data mining purpose, where each release is anonymized to best preserve

the specific need of that purpose. Even though each release is individually anonymized,

a cross-examination of several releases can compromise the privacy requirement. In some

scenarios, it is possible to restrict each recipient to one view, but it is difficult to prevent

them from colluding with each other behind the scene. In particular, the attacker can

combine attributes from different views to form a sharper quasi-identifier.

Several works measured information disclosure arising from linking two or more views.

Yao et al. [90] presented a method for detecting k-anonymity violation on a set of views.

Each view is obtained from a projection and selection query. They also considered functional

dependency as prior knowledge. Kifer and Gehrke [39] proposed to increase the utility of

published data by releasing several anonymized marginals that are essentially duplicate pre-

serving projection views. However, the availability of additional marginals (views) poses new

privacy threats, so they extended the notions of k-anonymity and `-diversity for marginals

and presented a method to check whether published marginals violate the privacy require-

ment on the anonymized base table. However, these works did not consider how to prevent

such violations. In Chapter 6, we do not only detect the violations, but also remove the

violations by anonymization.

Several recent works measured information disclosure arising from linking two or more

tables. Miklau and Suciu [51] suggested a measure on information disclosure by a set of

views with respect to a secret view. Deutsch and Papakonstantinou [18] studied whether a

new view disclosed more information than the existing views with respect to a secret view.

The secure anonymization problem studied in Chapter 6 is different from the problem of

view release where both the current and previous releases are part of a view and can be

modified before the release, which means more “room” to satisfy a privacy and information

requirement. In the sequential anonymization problem, each release has its own information

need and the join that enables a global quasi-identifier should be prevented. In the view

release, however, all tables in the view serve the information need collectively, possibly

through the join of all tables.

Recently, [84] presented the problem of re-publication: the data publisher has previously

published T1, · · · , Tp−1 and now wants to publish Tp, where Ti is an updated release of Ti−1
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with record insertions and deletions. Even though each release T1, · · · , Tp is individually

anonymized, the privacy requirement could be compromised by comparing different releases

and eliminating some possible sensitive values for a target person. Suppose a target person

Bob is a record holder matching QID1 in T1 and QID2 in T2 respectively. Assume that

QID1 contains two diseases HIV and Flu, so Bob must contract to either one of them.

Suppose all records with value Flu have been removed in T2. Then, the attacker can easily

infer that Bob must contract with HIV . [84] proposed to achieve anonymization in this re-

publication model by adding counterfeit data records and generalizing the current release.

This re-publication problem is very different from the sequential anonymization problem

discussed in Chapter 6 in which all releases are projections of the same underlying data

table.

2.2 Privacy-Preserving Data Mining

The recent work on PPDM has studied novel data mining techniques that do not require

accessing sensitive information. The general idea of PPDM is to allow data mining from

a modified version of the data that contains no sensitive information. Refer to [71] for a

survey on PPDM.

2.2.1 Centralized Model

In the centralized model, all data are owned by a single data publisher. The key issues

are how to modify the data and how to recover the data mining result from the modified

data. Answers often depend on data mining operations and algorithms. One common

technique is randomization, by introducing random noise and swapping values in the data.

The randomized data preserves aggregate properties (such as means and correlations) in the

collection of records, but has little use when each record is examined individually. Another

common technique is encryption. The data publisher transforms the original data into an

encrypted form for data mining at an external party. Since the data mining results are

in the encrypted form and since the data publisher is the only one who can decrypt the

results, this approach is applicable only if the data publisher himself is the user of data

mining results. Refer to [6][7][22][23][27][40][71] for more discussions on randomization and

encryption in this centralized model of PPDM.
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2.2.2 Distributed Model

In the distributed model, multiple data publishers want to conduct a computation based on

their private inputs, but no data publisher is willing to disclose its own output to anybody

else. The privacy issue here is how to conduct such a computation while preserving the

privacy of the inputs. This problem is known as the Secure Multiparty Computation (SMC)

problem [88][89]. The aim of SMC is to enable multiple parties to carry out distributed

computing tasks in a secure manner with the assumption that some attackers, who possibly

are the participating parties themselves, want to obtain extra information other than the

final output. SMC has two major requirements, privacy and correctness. The privacy

requirement states that parties should learn their output and nothing else during and after

the SMC process. The correctness requirement states that each party should receive its

correct output without alteration by the attackers.

Extensive research has been conducted on secure protocols for specific data mining

tasks including association rule mining [36][68], classification analysis [19][20][37][87], and

clustering analysis [49][69]. Refer to [14][54][71] for surveys on this distributed model of

PPDM.

2.2.3 Comparing PPDP and PPDM

In many real life applications, the data publisher wants to publish some data, but has little

or no interest in data mining results and algorithms. For example, a hospital may publish

the patient data to a drug research institute; although willing to contribute its data to drug

research, the hospital is not interested in and has no expertise in data mining algorithms

because drug research is not its normal business. This privacy-preserving data publishing

(PPDP) scenario differs from PPDM in several major ways. PPDP focuses on the data,

not data mining results; therefore, published records should be meaningful when examined

individually. This implies that randomization and encryption are inapplicable. PPDP seeks

to anonymize the data by hiding the identity of individuals, not hiding sensitive data. The

anonymized data is expected to be analyzed by traditional data mining techniques; therefore,

no new data mining techniques are needed. We did not intend to dismiss the contribution of

the randomization and encryption approaches. They are effective anonymization methods

if the data records will not be examined individually.



Chapter 3

The Preliminaries

We define some notations and operations in this chapter. Typically, a data publisher has a

table in the format

T (RecID, Q1, · · · , Qm, S1, · · · , Sn, Class)

where RecID is a key in T , {Q1, · · · , Qm} are quasi-identifying attributes, {S1, · · · , Sn}
are sensitive attributes, and Class is the class attribute. Assume that {Q1, · · · , Qm} and

{S1, · · · , Sn} are disjoint sets of attributes in table T . Unless specified otherwise, attributes

{Q1, · · · , Qm} are either a categorical or a continuous attribute, attributes {S1, · · · , Sn} and

Class are categorical attributes. We assume that attributes {Q1, · · · , Qm} and {S1, · · · , Sn}
are important, thus, simply removing them fails to address the information requirement such

as classification analysis. Unless specified otherwise, RecID is removed before release. For

a table T , Π(T ) and σ(T ) denote the projection and selection over T , att(T ) denotes the

set of attributes in T , |T | denotes the number of records (duplicate-sensitive) in T , and ||T ||
denotes the number of distinct records in T .

3.1 Masking Operations

To transform a table T to satisfy some given privacy requirement, we assume any explicit

identifiers have already been removed. We consider three types of masking operations on

some quasi-identifying attributes {Q1, · · · , Qm}.

1. Generalize Qi if Qi is a categorical attribute with a taxonomy tree where leaf nodes

represent domain values and a parent node is a generalization of child nodes. The root

17
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is the most generalized value of the attribute, denoted ANY . Figure 4.2 shows the

taxonomy trees for Job and Sex. A generalized Qi can be viewed as a “cut” through

its taxonomy tree. A cut of a tree is a subset of values in the tree, denoted Cuti, that

contains exactly one value on each root-to-leaf path. The dashed line in Figure 4.2 is

an example of a cut on Job and Sex.

2. Suppress Qi if Qi is a categorical attribute with no taxonomy tree. The suppression of

a value on Qi means replacing all occurrences of the value with the special value ⊥i.

All suppressed values on Qi are represented by the same ⊥i, which is treated as a new

value in Qi by a classification algorithm. Supi denotes the set of values suppressed by

⊥i. This type of suppression is at the value level in that Supi is in general a subset of

the values in the attribute Qi.

3. Discretize Qi if Qi is a continuous attribute. The discretization of a value v on

Qi means replacing all occurrences of v with an interval containing the value. Our

algorithm dynamically grows a taxonomy tree for intervals at runtime, where each

node represents an interval, and each non-leaf node has two child nodes representing

some “optimal” binary split of the parent interval. A discretized Qi can be represented

by the set of intervals, denoted Inti, corresponding to the leaf nodes in the dynamically

grown taxonomy tree of Qi.

3.2 Refinement Operations

A table T can be masked by a sequence of refinements starting from the most masked state

in which each attribute is either generalized to the top most value, or suppressed to the

special value ⊥, or represented by a single interval. Our anonymization method iteratively

refines a masked value selected from the current set of cuts, suppressed values and intervals,

until violating some privacy requirement. Each refinement increases the information and

decreases the privacy because records are more distinguishable using specific values.

Below, we formally describe the notion of refinement on different types of attributes Qi.

The criterion of selecting the value for refinement is described in subsequent chapters.

1. Refinement for generalization. Consider a categorical attribute Qi with a user-specified

taxonomy tree. Let child(v) be the set of child values of v in a user-specified taxonomy

tree. A refinement, written v ⇒ child(v), replaces the parent value v with the child
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value in child(v) that generalizes the domain value in each (generalized) record that

contains v.

2. Refinement for suppression. For a categorical attribute Qi without taxonomy tree, a

refinement ⊥i ⇒ {v,⊥i} refers to disclosing one value v from the set of suppressed

values Supi. Let R⊥i denote the set of suppressed records that currently contain ⊥i.

Disclosing v means replacing ⊥i with v in all records in R⊥i that originally contain v.

3. Refinement for discretization. For a continuous attribute, refinement is similar to

that for generalization except that no prior taxonomy tree is given and the taxonomy

tree has to be grown dynamically in the process of refinement. Initially, the interval

that covers the full range of the attribute forms the root. The refinement on an

interval v, written v ⇒ child(v), refers to the optimal split of v into two child intervals

child(v) that maximizes the information gain wrt the Class attribute. The privacy

is not used for finding a split good for classification. This is similar to defining a

taxonomy tree where the main consideration is how the taxonomy best describes the

application. Due to this extra step of identifying the optimal split of the parent

interval, we treat continuous attributes separately from categorical attributes with

taxonomy trees. Section 4.2 discusses how to compute the optimal split.

Sometimes, we use the term specialization to refer to a refinement for generalization or

discretization, and use the term disclosure to refer to a refinement for suppression. When

no distinction is required, we use the term refinement to refer to either a specialization or

a disclosure.



Chapter 4

Anonymizing Classification Data

Classification is a fundamental problem in data analysis. Training a classifier requires ac-

cessing a large collection of data. Releasing person-specific data, such as customer data

or patient records, may pose a threat to individual’s privacy. Even after removing ex-

plicit identifying information such as Name and SSN, it is still possible to link released

records back to their identities by matching some combination of non-identifying attributes

such as {Sex, Zip,Birthdate}. A useful approach to combat such linking attacks, called k-

anonymization [57], is anonymizing the quasi-identifier X so that at least k released records

match each value combination of X. Previous works attempted to find an optimal k-

anonymization that minimizes some data distortion metric. We argue that minimizing the

distortion to the training data is not relevant to the classification goal that requires ex-

tracting the structure of predication on the “future” data. In this chapter, we propose a

k-anonymization solution for classification. Our goal is to find a k-anonymization, not nec-

essarily optimal in the sense of minimizing data distortion, that preserves the classification

structure.

Consider a data table about patient’s information on X = {Birthplace, Birthyear, Sex}
and sensitive information on S = {Disease}. If a description on X is so specific that not

many people match it, releasing the table may lead to linking a unique record to an external

record with explicit identity, thus identifying the medical condition and compromising the

privacy rights of the individual. This type of privacy threat is called the sensitive linking.

The works on k-anonymity [8][43][56][57][59][77] address this problem by masking X to a

less precise representation so that each partition grouped by X contains at least k records

(i.e., record holders). Hence, if some record is linked to an external source by a x value on

20
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Table 4.1: Sensitive linking
(a) Patient table

RecID Job Sex Age Disease Class # of Records
1-3 Janitor M 30 Hepatitis 0Y3N 3
4-7 Mover M 32 Hepatitis 0Y4N 4
8-12 Carpenter M 35 Cancer 2Y3N 5
13-16 Electrician F 37 Cancer 3Y1N 4
17-22 Manager F 42 Flu 4Y2N 6
23-26 Manager F 44 Flu 4Y0N 4
27-30 Engineer M 44 HIV 4Y0N 4
31-33 Engineer F 44 Flu 3Y0N 3

34 Lawyer F 44 HIV 1Y0N 1
Total: 21Y13N 34

(b) External table

Name Job Sex Country
Alice Engineer F Canada
Bob Engineer M UK

Cathy Manager F Canada
Daisy Lawyer F Canada
Emily Engineer F UK

X, so are at least k − 1 other records having the same x, making it difficult to distinguish

a particular record holder.

By applying the masking operations in Section 3.1, the information on {Birthplace,

Birthyear, Sex} is made less specific and a person tends to match more records. For

example, a male born in San Francisco in 1962 will match all records that have the values

〈CA, [1961− 1966),M〉; clearly not all matched records correspond to the person. Thus the

masking operation makes it more difficult to tell whether a record holder actually has the

diagnosis in the matched records.

Protecting privacy is one goal. Making the released data useful to data analysis is

another goal. In this chapter, we consider classification analysis [79]. The next example

shows that if masking is performed “carefully”, privacy can be protected while preserving

the usefulness for classification.

Example 4.0.1 (Sensitive linking). Consider the patient data in Table 4.1(a) and tax-

onomy trees for Job and Sex in Figure 4.1. The table has 34 records in total. RecID is the

record identifier and is included only for discussion, not for release. Each row represents
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Table 4.2: 4-anonymous patient table on X = {Job, Sex}
RecID Job Sex Age Disease Class # of Records

1-3 Non Technical M 30 Hepatitis 0Y3N 3
4-7 Non Technical M 32 Hepatitis 0Y4N 4
8-12 Carpenter M 35 Cancer 2Y3N 5
13-16 Electrician F 37 Cancer 3Y1N 4
17-22 Manager F 42 Flu 4Y2N 6
23-26 Manager F 44 Flu 4Y0N 4
27-30 Professional M 44 HIV 4Y0N 4
31-33 Professional F 44 Flu 3Y0N 3

34 Professional F 44 HIV 1Y0N 1

Blue_Collar White_Collar

Non_Technical

Carpenter

Manager

Engineer

ANY_Job

Technical

Lawyer

Professional

ElectricianMoverJanitor

ANY_Sex

Male Female

Figure 4.1: Taxonomy trees of Job and Sex

one or more records with the Class column containing the class frequency of the records

represented, Y for having medical insurance and N for not having medical insurance. For

example, the third row represents 5 records having Job = Carpenter, Sex = Male and

Age = 35. The value 2Y3N in the Class column conveys that 2 records have the class Y

and 3 records have the class N . Semantically, this (compressed) table is equivalent to the

table containing 34 rows with each row representing one record.

There is only one record for “female lawyer” (the last row), which makes the record holder

represented uniquely distinguishable from others by X = {Job, Sex}. Joining Table 4.1(a)

with an external table, Table 4.1(b), reveals that Daisy, with value 〈Lawyer, F 〉, is a HIV

patient. To make the “female lawyer” less unique, we can generalize Engineer and Lawyer

to Professional. As a result, “she” becomes less distinguishable by being one of the four

female professionals. As far as classification is concerned, no information is lost in this

generalization because Class does not depend on the distinction of Engineer and Lawyer.

Table 4.2 shows a 4-anonymous table on X = {Job, Sex} because each X group contains at

least 4 records.

In the classification problem, a classifier is built from the released training data and



CHAPTER 4. ANONYMIZING CLASSIFICATION DATA 23

is used to classify the future data that is drawn from the same underlying population as

the training data. It is important that the classifier makes use of the general structure in

the training data that will repeat in the future data, not the noise that occurs only in the

training data. In Table 4.1(a), 19 out of 22 persons having Age ≥ 37 are in the class Y , and

only 3 persons having Age ≥ 37 are in the class N . It is not likely that this difference is

entirely due to the sample randomness, and the split of [1− 37) and [37− 99) may indicate

a structure for predicting the class of a person. In contrast, M and F of Sex seem to be

arbitrarily associated with both classes, suggesting that the sex cannot be used to predict

his/her class.

In this chapter, we consider the following problem of anonymization for classification.

The data publisher wants to release a person-specific table for modelling classification of a

specified class attribute in the table. Recall the data table has the format

T (RecID,Q1, · · · , Qm, S1, · · · , Sn, Class).

Three types of information in the table are released. The first type is sensitive attributes

S1, · · · , Sn, such as Disease. The second type is the quasi-identifying attributes Q1, · · · , Qm,

which is a combination of attributes such as X = {Birthplace,Birthyear, Sex}. The third

type is the Class attribute which is the target attribute for classification modelling. RecID

is not released. The anonymization for classification is to produce a masked table that

satisfies the k-anonymity requirement and retains useful information for classification. A

formal problem statement will be given in Section 4.1.

Our insight is as follows. Typically the data contains overly specific “noise” that is

harmful to classification. To construct a classifier, noise needs to be generalized into patterns

that are shared by more records in the same class. The data also contains “redundant

structures.” For example, if any of Job and Age is sufficient for determining the class and

if one of them is distorted, the class can still be determined from the other attribute. Our

approach exploits such rooms provided by noise and redundant structures to mask the data

without compromising the quality of classification. To this end, we propose an information

metric to focus masking operations on the noise and redundant structures. We conducted

intensive experiments to evaluate the impact of anonymization on the classification of future

data. Below are several other practically useful features of our approach.

• Information and privacy guided refinement. The top-down refinement (TDR) starts

from the most masked table, iteratively reveals a masked value. Each leaf node in
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the top-down refinement tree represents a group of records having the same value for

the quasi-identifer X. Both information and privacy are considered in selecting the

refinement at each step. Experiments show that classification based on the masked

data yields an accuracy comparable to classification based on the unmodified data,

even for a very restrictive privacy requirement.

• Handling different types of attributes. This work could handle categorical attributes

with taxonomy, categorical attributes without taxonomy, and continuous attributes,

with different types of masking operations suitable for each, namely, generalization,

suppression and discretization. Our suppression is at the value level, which produces

less distortion than the record level suppression [8][33][43][56]. Our generalization

allows generalized values to be at different levels of a taxonomy (i.e., at the city level

for North America and at the country level for Europe), which is more flexible than

the full-domain generalization [43][56][65] that requires generalized values to be at the

same level of a taxonomy. Refer to Section 3.1 for the masking operations.

• Handling multiple quasi-identifiers. Most previous works consider a single quasi-

identifier X, assuming that the anonymity on multiple quasi-identifiers can be en-

forced by the anonymity on the single “united” quasi-identifier that contains all the

attributes appearing in any quasi-identifiers. Unfortunately, this treatment leads to

excessive masking because the enforced privacy protection on the “united” quasi-

identifiers is not necessary for the given privacy requirement. This work overcomes

the problem by allowing multiple quasi-identifiers, i.e., multiple X’s.

• Scalable computation. At each iteration, a key operation is updating some search

criterion of affected candidate refinements. In general, this requires accessing data

records. Our algorithm incrementally maintains some “count statistics” to eliminate

the expensive data access. Simple but effective data structures are proposed for this

purpose. For the same data and setting, [33] reported 18 hours for anonymization

whereas our algorithm took only 7 seconds to produce a comparable accuracy. Our

algorithm deal with the compressed table, which is usually smaller than the original

table, and is amendable to disk-resident data.

• Anytime solution. The top-down approach provides a natural tree-growing procedure
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that allows the user to step through each refinement to determine a desired trade-

off between privacy and accuracy. The user may stop at any time and have a table

satisfying the privacy requirement. This property is not shared by the bottom-up

generalization that starts with the most precise state.

The rest of the chapter is organized as follows. Section 4.1 defines the anonymity for clas-

sification problem. Section 4.2 discusses the selection criterion for the top-down refinement

process. Section 4.3 presents the top-down refinement framework. Section 4.4 evaluates

the effectiveness of the proposed approach. Section 4.5 discusses an extension. Section 4.6

summarizes this chapter.

4.1 Problem Definition

A data publisher wants to release a person-specific table T for modelling classification of a

specified class attribute Class in the table. We assume any explicit identifiers have already

been removed. We also assume that two types of attributes, quasi-identifying attributes

{Q1, · · · , Qm} and sensitive attributes {S1, · · · , Sn}, in the table are crucial to classification

and must be released. The data publisher could specify a set of attributes, denoted X, as

quasi-identifiers for linking a record holder where X ⊆ {Q1, · · · , Qm}. The data publisher

wants to prevent linking the released records (therefore, the sensitive information) to a

record holder through X. A sensitive linking occurs if some value of X identifies a “small”

number of reord holders. This requirement is formally defined below.

Definition 4.1.1 (Anonymity templates). Let x be a value on X. The anonymity of x

with respect to Y , denoted aY (x), is the number of distinct values on Y that co-occur with

x, i.e., ||ΠY σx(T )||. If Y is a key in T , aY (x), also written as a(x), is equal to the number of

records containing x. Let AY (X) = min{aY (x) | x ∈ X}. T satisfies an anonymity template

〈X, Y, k〉 if AY (X) ≥ k where k is some specified integer. T satisfies a set of anonymity

templates {〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉} if AYj (Xj) ≥ kj for 1 ≤ j ≤ p.

In words, the anonymity template requires that each value on X is linked to at least

k distinct values on Y . A data publisher could specify the anonymity requirement as a

set of anonymity templates. A table T satisfies the anonymity requirement if T satisfies

every template in it. In the rest of this chapter, we assume Y is the key, i.e. RecID, in T .

In other words, the anonymity template in this problem is equivalent to the k-anonymity
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requirement [57][58][59]. Given that Y = RecID, aY (x) and AY (X) are written as a(x) and

A(X) respectively in this chapter. Later, Section 6.1 generalizes the case to where Y is not

a key in T . [3] and [50] showed that finding an optimal k-anonymous solution is NP -hard,

so this problem is also NP -hard.

Aggarwal [1] pointed out the curse of dimensionality on k-anonymity, that is, if X

contains a large number of attributes, it becomes difficult to achieve the desired level of

anonymity unless most of the data are suppressed, resulting in unacceptable high degree of

information loss. To overcome the curse, our anonymity requirement (Definition 4.1.1) gen-

eralizes the classic definition of k-anonymity in [57] and allows the specification of multiple

anonymity templates (i.e., multiple quasi-identifiers) with different anonymity thresholds.

However, some anonymity templates may be “redundant” in the presence of other anonymity

templates. Theorem 4.1.1 considers one such case, which can be used to remove “redundant”

templates.

Theorem 4.1.1. Consider two anonymity templates

〈X, Y, k〉 and 〈X ′, Y ′, k′〉.

If Y = Y ′ = RecID, k ≥ k′, and X ⊆ X ′, then

1. A(X ′) ≤ A(X), and

2. If T satisfies 〈X ′, Y ′, k′〉, T satisfies 〈X, Y, k〉, and

3. 〈X,Y, k〉 can be removed in the presence of 〈X ′, Y ′, k′〉.

The following corollary follows from Theorem 4.1.1. It states that only the “maximal”

templates need to be specified among those having the same anonymity threshold k.

Corollary 4.1.1. Assume that X ⊆ X ′. For the same anonymity threshold k, if T satisfies

anonymity template 〈X ′, Y, k〉, then T also satisfies anonymity template 〈X, Y, k〉.

Following a similar argument, to prevent a linking through any X that is any subset of

attributes in X1∪· · ·∪Xp, we can specify the single anonymity template 〈X,Y, k〉 where X =

X1 ∪ · · · ∪Xp and k = max{kj}. However, a table satisfying {〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉}
does not have to satisfy 〈X,Y, k〉.
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Example 4.1.1 (Anonymity templates). Consider Table 4.1(a). To avoid sensitive

linking through {Job, Sex}, the data publisher specifies an anonymity template 〈X1 =

{Job, Sex}, Y1 = RecID, k1 = 4〉. This requirement is violated by 〈Janitor,M〉, 〈Engineer, F 〉,
〈Lawyer, F 〉. To protect linking through {Sex, Age} as well, the data publisher could specify

an additional anonymity template:

{〈X1 = {Job, Sex}, Y1 = RecID, k1 = 4〉,
〈X2 = {Sex, Age}, Y2 = RecID, k2 = 11〉}.

To prevent linking through any combination of anonymity templates, the data publisher

can specify a single template 〈X = {Job, Sex,Age}, Y = RecID, k = 11〉.

Definition 4.1.2 (Anonymity for classification). Given a table T , a set of anonymity

templates {〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉} where Yj is the key in T , and an optional taxonomy

tree for each categorical attribute contained in ∪Xj , mask T on the attributes ∪Xj to

satisfy the set of anonymity templates while preserving as much information as possible for

classifying the Class attribute.

The cost metric for our anonymization should be measured by the classification error

on the future data. It does not work to replace this cost metric by the classification error

on the masked table because a perfect classifier for the masked table (say, a classifier based

on a system-assigned record ID) can be inaccurate for the future data. For this reason,

our problem does not have a closed form cost metric, and an “optimal” solution to our

problem is not necessarily an optimal k-anonymization based on a closed form cost metric,

and vice versa. Therefore, the previous optimal k-anonymization approaches [8][43] based

on a closed-form cost metric are not suitable. A more reasonable approach is minimally,

not always optimally, masking the data, with a focus on classification. We will present such

an approach in Section 4.2.

It is impractical to enumerate all masked tables because the number of masked tables

can be very large. For a categorical attribute with a taxonomy tree β, the number of

possible cuts, denoted C(β), is equal to C(β1) × . . . × C(βu) + 1 where β1, . . . , βu are the

subtrees rooted at the children of the root of β and 1 is for the trivial cut at the root of

β. C(β) increases very quickly as we unfold the definition for each subtree βi recursively.

For a categorical attribute without a taxonomy tree and with q distinct values, there are

2q possible suppressions because each distinct value can be either suppressed or not. For a
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Figure 4.2: A cut for Table 4.2

continuous attribute, each existing value can be a potential split in the dynamically grown

taxonomy tree. The number of possible masked tables is equal to the product of such

numbers for all the attributes in ∪Xj .

A masked table T can be represented by 〈∪Cuti,∪Supi,∪Inti〉, where Cuti, Supi, Inti

are defined as above. If the masked T satisfies the anonymity requirement, 〈∪Cuti,∪Supi,∪Inti〉
is called a solution set.

4.2 Selection Criterion

A table T can be masked by a sequence of refinements starting from the most masked state

in which each attribute is either generalized to the top most value, or suppressed to the

special value ⊥, or represented by a single interval. Our method iteratively refines a masked

value selected from the current set of cuts, suppressed values and intervals, until violating

the anonymity requirement. Each refinement increases the information and decreases the

anonymity since records with specific values are more distinguishable. The key is selecting

the “best” refinement (i.e., the winner) at each step with both impacts considered.

A refinement operation discussed in Section 3.2 is valid (with respect to T ) if T satisfies

the anonymity requirement after the refinement. A refinement is beneficial (with respect

to T ) if more than one class is involved in the refined records. A refinement is performed

only if it is both valid and beneficial. Therefore, a refinement guarantees that every newly

generated x has a(x) ≥ k.

Example 4.2.1 (Cut). Continue with Example 4.1.1. Figure 4.2 shows a cut, indicated

by the dashed curve. This cut is the lowest (maximal) in the sense that any refinement

on Non Technical or Professional would violate the anonymity requirement, i.e., invalid.

Also, refinement on Non Technical or Professional is non-beneficial since none of them

refines data records in different classes.
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4.2.1 The Score Function

We propose a selection criterion for guiding our top-down refinement process to heuristically

maximize the classification goal. Consider a refinement v ⇒ child(v) where v ∈ Qj and Qj

is a categorical attribute with a user-specified taxonomy tree or Qj is a continuous attribute

with a dynamically grown taxonomy tree. The refinement has two effects: it increases

the information of the refined records with respect to classification, and it decreases the

anonymity of the refined records with respect to privacy. These effects are measured by

“information gain” and denoted InfoGain(v), and “privacy loss” and denoted PrivLoss(v).

v is a good candidate for refinement if InfoGain(v) is large and PrivLoss(v) is small.

Our selection criterion is choosing the candidate v, for the next refinement, that has the

maximum information-gain/anonymity-loss trade-off, defined as

Score(v) =
InfoGain(v)

PrivLoss(v) + 1
. (4.1)

1 is added to PrivLoss(v) to avoid division by zero. Each choice of InfoGain(v) and

PrivLoss(v) gives a trade-off between classification and anonymization. It should be noted

that Score is not a goodness metric of k-anonymization. In fact, it is difficult to have a

closed form metric to capture the classification goal (on future data). We achieve this goal

through this heuristic selection criterion.

In this chapter, we aim at preserving the classification structure, so InfoGain(v) is

measured by information gain wrt the Class attribute. In case the information requirement

is not classification, InfoGain(v) could be replaced by some other information criterion for

the desired information requirement. The selection criterion Score(v) serves as a plug-in

to the general TDR framework, so Score(v) is customizable to serve the information and

privacy needs.

For concreteness, we borrow Shannon’s information theory to measure information gain

[61]. Let Rv denote the set of records masked to the value v and let Rc denote the set of

records masked to a child value c in child(v) after refining v. Let |Z| be the number of

elements in a set Z. |Rv| =
∑

c |Rc|, where c ∈ child(v).

InfoGain(v): defined as

InfoGain(v) = I(Rv)−
∑

c

|Rc|
|Rv|I(Rc), (4.2)
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where I(Rv) is the entropy of Rv [61]:

I(Rv) = −
∑

cls

freq(Rv, cls)
|Rv| × log2

freq(Rv, cls)
|Rv| . (4.3)

freq(Rv, cls) is the number of data records in Rv having the class cls. Intuitively, I(Rv)

measures the entropy (or “impurity”) of classes in Rv. The more dominating the majority

class in Rv is, the smaller I(Rv) is (i.e., less entropy in Rv). Therefore, I(Rv) measures the

error because non-majority classes are considered as errors. InfoGain(v) then measures

the reduction of entropy after refining v. InfoGain(v) is non-negative. In other words, our

algorithm is biased to a refinement that can result in pure grouping of classes, capturing

the fundamental structures required for any classification algorithms. Even though the data

miner may employ a different classifier, such as Naive Bayesian, that is not an entropy-based

classifier, the embedded classification structures could be extracted from the generalized

data. This claim is supported by the experimental results in Section 4.4.1. For more details

on information gain and classification, see [55].

PrivLoss(v): defined as

PrivLoss(v) = avg{A(Xj)−Av(Xj)}, (4.4)

where A(Xj) and Av(Xj) represent the anonymity before and after refining v. avg{A(Xj)−
Av(Xj)} is the average loss of anonymity for all Xj that contain the attribute of v.

If Qi is a categorical attribute without taxonomy tree, the refinement ⊥i → {v,⊥i}
means refining R⊥i into Rv and R′

⊥i
, where R⊥i denotes the set of records containing ⊥i

before the refinement, Rv and R′
⊥i

denote the set of records containing v and ⊥i after the

refinement, respectively. We employ the same Score(v) function to measure the goodness

of the refinement ⊥i ⇒ {v,⊥i}, except that InfoGain(v) is now defined as:

InfoGain(v) = I(R⊥i)−
|Rv|
|R⊥i |

I(Rv)−
|R′
⊥i
|

|R⊥i |
I(R′

⊥i
). (4.5)

Example 4.2.2. The refinement on ANY Job refines the 34 records into 16 records for
Blue Collar and 18 records for White Collar. The calculation of Score(ANY Job) is:

I(RANY Job) = − 21
34 × log2

21
34 − 13

34 × log2
13
34 = 0.9597

I(RBlue Collar) = − 5
16 × log2

5
16 − 11

16 × log2
11
16 = 0.8960

I(RWhite Collar) = − 16
18 × log2

16
18 − 2

18 × log2
2
18 = 0.5033

InfoGain(ANY Job) = I(RANY Edu)− ( 16
34 × I(RBlue Collar) + 18

34 × I(RWhite Collar))

= 0.2716
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PrivLoss(ANY Job) = (34− 16)/1 = 18

Score(ANY Job) = 0.2716
18+1 = 0.0143.

If Qi is a continuous attribute, a taxonomy tree is dynamically grown for Qi by splitting

a parent interval into two child intervals such that the split maximizes the information gain

wrt the Class attribute. Example 4.2.3 illustrates this process.

Example 4.2.3 (Dynamically grown taxonomy tree). For the continuous attribute

Age in Table 4.1(a), the top most value is the full range interval containing all domain

values, [1− 99). To determine the split point of [1− 99), we evaluate the information gain

for the five possible split points for the values 30, 32, 35, 37, 42, and 44. The following is

the calculation for the split point at 37:

InfoGain(37) = I(R[1−99))− (12
34 × I(R[1−37)) + 22

34 × I(R[37−99)))

= 0.9597− (12
34 × 0.6500 + 22

34 × 0.5746) = 0.3584.

As InfoGain(37) is the maximum, we grow the taxonomy tree for Age by adding two child

intervals, [1− 37) and [37− 99), under the interval [1− 99).

4.2.2 InfoGain vs. Score

An alternative to Score is using InfoGain alone, that is, maximizing the information gain

produced by a refinement without considering the loss of anonymity. This alternative may

pick a candidate that has a large reduction in anonymity, which may lead to a quick violation

of the anonymity requirement, thereby, prohibiting refining the data to a lower granularity.

The next example illustrates this point.

Example 4.2.4 (InfoGain vs. Score). Consider Table 4.3(a), the anonymity requirement

〈X = {Education, Sex, Work Hrs}, Y = RecID, k = 4〉

the most masked table containing one row 〈ANY Edu,ANY Sex, [1 − 99)〉 with the class

frequency 20Y20N, and three candidate refinements:

ANY Edu → {8th, 9th, 10th}, ANY Sex → {M, F}, and [1− 99) → {[1− 40), [40− 99)}.

Table 4.3(b) shows the calculated InfoGain, PrivLoss, and Score of the three candidate

refinements. According to the InfoGain criterion, ANY Edu will be first refined because it

has the highest InfoGain. The result is shown in Table 4.4(a) with A(X) = 4. After that,

there is no further valid refinement because refining either ANY Sex or [1− 99) will result
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Table 4.3: Patient table for Example 4.2.4
(a) (Compressed) table

Education Sex Work Hrs Class # of Records
10th M 40 20Y0N 20
10th M 30 0Y4N 4
9th M 30 0Y2N 2
9th F 30 0Y4N 4
9th F 40 0Y6N 6
8th F 30 0Y2N 2
8th F 40 0Y2N 2

Total: 20Y20N 40

(b) Statistics for the most masked table

Candidate InfoGain PrivLoss Score
ANY Edu 0.6100 40− 4 = 36 0.6100/(36 + 1) = 0.0165
ANY Sex 0.4934 40− 14 = 26 0.4934/(26 + 1) = 0.0183

[1-99) 0.3958 40− 12 = 28 0.3958/(28 + 1) = 0.0136

in a violation of 4-anonymity. Note that the first 24 records in the table fail to separate the

4N from the other 20Y.

In contrast, according to the Score criterion, ANY Sex will be first refined. The result

is shown in Table 4.4(b), and A(X) = 14. Subsequently, further refinement on ANY Edu

is invalid because it will result in a(〈9th,M, [1 − 99)〉) = 2 < k, but the refinement on

[1− 99) is valid because it will result in A(X) = 6 ≥ k. The finally masked table is shown

in Table 4.4(c) where the information for separating the two classes is preserved. Thus

by considering the information/anonymity trade-off, the Score criterion produces a more

desirable sequence of refinements for classification.

4.3 The Framework: Top-Down Refinement

4.3.1 The Algorithm

We present our algorithm, Top-Down Refinement (TDR). In a preprocessing step, we com-

press the given table T by removing all attributes not in ∪Xj and collapsing duplicates into

a single row with the Class column storing the class frequency as in Table 4.1(a). The

compressed table is typically much smaller than the original table. Below, the term “data
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Table 4.4: Comparing InfoGain and Score for Example 4.2.4
(a) Final masked table by InfoGain

Education Sex Work Hrs Class # of Records
10th ANY Sex [1-99) 20Y4N 24
9th ANY Sex [1-99) 0Y12N 12
8th ANY Sex [1-99) 0Y4N 4

(b) Intermediate masked table by Score

Education Sex Work Hrs Class # of Records
ANY Edu M [1-99) 20Y6N 26
ANY Edu F [1-99) 0Y14N 14

(c) Final masked table by Score

Education Sex Work Hrs Class # of Records
ANY Edu M [40-99) 20Y0N 20
ANY Edu M [1-40) 0Y6N 6
ANY Edu F [40-99) 0Y8N 8
ANY Edu F [1-40) 0Y6N 6

records” refers to data records in this compressed form. There exists a masked table satisfy-

ing the anonymity requirement if and only if the most masked table does, i.e., |T | ≥ k. This

condition is checked in the preprocessing step as well. To focus on main ideas, we assume

that |T | ≥ k and the compressed table fits in the memory. In Section 4.5, we will discuss

the modification needed if the compressed table does not fit in the memory.

Algorithm overview: Algorithm 1 summarizes the conceptual algorithm for all prob-

lems discussed in this proposal. Initially, Cuti contains only the top most value for a

categorical attribute Qi with a taxonomy tree, Supi contains all domain values of a cate-

gorical attribute Qi without a taxonomy tree, and Inti contains the full range interval for

a continuous attribute Qi. The valid, beneficial refinements in 〈∪Cuti,∪Supi,∪Inti〉 form

the set of candidates. At each iteration, find the candidate of the highest Score, denoted

w (Line 4), refine w in T and update 〈∪Cuti,∪Supi,∪Inti〉 (Line 5), and update Score

and the validity of the candidates in 〈∪Cuti,∪Supi,∪Inti〉 (Line 6). The algorithm termi-

nates when there is no more candidate in 〈∪Cuti,∪Supi,∪Inti〉, in which case it returns

the masked table together with the solution set 〈∪Cuti,∪Supi,∪Inti〉.

Example 4.3.1 (Initial state). Consider the anonymity requirement:

{〈X1 = {Job, Sex}, Y1 = RecID, k1 = 4〉, 〈X2 = {Sex,Age}, Y2 = RecID, k2 = 11〉}.
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Algorithm 1 Top-Down Refinement (TDR)
Input: a table T (Q1, · · · , Qm, S1, · · · , Sn, Class) and a set of anonymity templates.
Output: a masked table satisfying the given anonymity templates.

1: Initialize every value of Qi to the top most value or suppress every value of Qi to ⊥i or
include every continuous value of Qi into the full range interval, where Qi ∈ ∪Xj ;

2: Initialize Cuti of Qi to include the top most value, Supi of Qi to include all domain
values of Qi, and Inti of Qi to include the full range interval, where Qi ∈ ∪Xj ;

3: while some v ∈ 〈∪Cuti,∪Supi,∪Inti〉 is valid and beneficial do
4: Find the winner w of highest Score(w) from 〈∪Cuti,∪Supi,∪Inti〉;
5: Refine w on T and remove w from 〈∪Cuti,∪Supi,∪Inti〉;
6: Update Score(v) and the valid and beneficial status for v ∈ 〈∪Cuti,∪Supi,∪Inti〉;
7: end while
8: return Masked T and 〈∪Cuti,∪Supi,∪Inti〉;

Assume that the taxonomy trees in Figure 4.1 are specified for Job and Sex. Initially, all data

records in Table 4.1(a) are masked and collapsed into a single row 〈ANY Job, ANY Sex, [1−
99)〉, with the class frequency 21Y13N and ∪Cuti = {ANY Job, ANY Sex} and ∪Inti =

{[1−99)}. All refinements in 〈∪Cuti,∪Inti〉 are candidates. To find the winner refinement,

we need to compute Score(ANY Job), Score(ANY Sex), Score([1− 99)).

Our algorithm obtains the masked T by iteratively refining the table from the most

masked state. An important property of TDR is that the anonymity requirement is anti-

monotone with respect to the top-down refinement: if it is violated before a refinement, it

remains violated after the refinement. This is because a refinement never equates distinct

values, therefore, never increases the count of duplicates, a(x). Hence, the hierarchically

organized search space with the most masked state at the top is separated by a border

above which lie all satisfying states and below which lie all violating states. The top-down

refinement finds a state on the border and this state is maximally refined in that any further

refinement of it would cross the border and violate the anonymity requirement. Note that

there may be more than one maximally refined state on the border. Our algorithm finds the

one based on the heuristic selection criterion of maximizing Score at each step. Samarati [56]

presents some results related to anti-monotonicity, but the results are based on a different

masking model that generalizes all values in an attribute to the same level and suppresses

data at the record level.

Theorem 4.3.1. Algorithm 1 finds a maximally refined table that satisfies the given
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Figure 4.3: The TIPS data structure

anonymity requirement.

Algorithm 1 makes no claim on efficiency. In fact, in a straightforward implementation,

Line 4, 5 and 6 require scanning all data records and recomputing Score for all candidates

in 〈∪Cuti,∪Supi,∪Inti〉. Obviously, this is not scalable. The key to the efficiency of our

algorithm is directly accessing the data records to be refined, and updating Score based

on some statistics maintained for candidates in 〈∪Cuti,∪Supi,∪Inti〉. In the rest of this

section, we explain a scalable implementation of Line 4, 5 and 6.

4.3.2 Find the Winner (Line 4)

This step makes use of computed InfoGain(v) and Av(Xj) for all candidates v in 〈∪Cuti,

∪Supi, ∪Inti〉 and computed A(Xj) for each Xj . Before the first iteration, such information

is computed in an initialization step for every top most value, every suppressed value, and

every full range interval. For each subsequent iteration, such information comes from the

update in the previous iteration (Line 6). Finding the winner refinement w involves at

most | ∪Cuti|+ | ∪ Supi|+ | ∪ Inti| computations of Score without accessing data records.

Updating InfoGain(v) and Av(Xj) will be considered in Section 4.3.4.

4.3.3 Refine the Winner (Line 5)

We consider two cases of performing the winner refinement w, corresponding to whether a

taxonomy tree is available for the attribute Qi for w.

Case 1: Qi has a taxonomy tree. Consider the refinement w ⇒ child(w), where w ∈ Qi,

and Qi is either a categorical attribute with a specified taxonomy tree or a continuous

attribute with a dynamically grown taxonomy tree. First, we replace w with child(w) in
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〈∪Cuti, ∪Inti〉. Then, we need to retrieve Rw, the set of data records masked to w, to tell

the child value in child(w) for each individual data record. We present a data structure,

Taxonomy Indexed PartitionS (TIPS), to facilitate this operation. This data structure is

also crucial for updating InfoGain(v) and Av(Xj) for candidates v. The general idea is to

group data records according to their masked records on ∪Xj .

Definition 4.3.1 (TIPS). TIPS is a tree structure with each node representing a masked

record over ∪Xj , and each child node representing a refinement of the parent node on exactly

one attribute. Stored with each leaf node is the set of (compressed) data records having the

same masked record, called a leaf partition. For each candidate refinement v, Pv denotes a

leaf partition whose masked record contains v, and Link[v] denotes the link of all such Pv.

The head of Link[v] is stored with v.

The masked table is represented by the leaf partitions of TIPS. Link[v] provides a direct

access to Rv, the set of (original) data records masked by the value v. Initially, TIPS has

only one leaf partition containing all data records, masked by the top most value or interval

on every attribute in ∪Xj . In each iteration, we perform the winner refinement w by refining

the leaf partitions on Link[w].

Refine w in TIPS. We refine each leaf partition Pw found on Link[w] as follows. For

each value c in child(w), a child partition Pc is created under Pw, and data records in Pw

are split among the child partitions: Pc contains a data record in Pw if a categorical value

c generalizes the corresponding domain value in the record, or if an interval c contains the

corresponding domain value in the record. An empty Pc is removed. Link[c] is created to

link up all Pc’s for the same c. Also, link Pc to every Link[v] to which Pw was previously

linked, except for Link[w]. Finally, mark c as “beneficial” if Rc has more than one class,

where Rc denotes the set of data records masked to c.

This is the only operation that actually accesses data records in the whole algorithm.

The overhead is maintaining Link[v]. For each attribute in ∪Xj and each leaf partition on

Link[w], there are at most |child(w)| “relinkings”. Therefore, there are at most | ∪Xj | ×
|Link[w]| × |child(w)| “relinkings” for applying w.

Example 4.3.2 (TIPS). Continue with Example 4.3.1. Initially, TIPS has only one

leaf partition containing all data records and representing the masked record 〈ANY Job,

ANY Sex, [1−99)〉. Let the best refinement be [1−99) ⇒ {[1−37), [37−99)} on Age. We

create two child partitions under the root partition as in Figure 4.3, and split data records
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between them. Both child partitions are on Link[ANY Job] and Link[ANY Sex]. ∪Inti

is updated into {[1− 37), [37− 99)} and ∪Cuti remains unchanged. Suppose that the next

best refinement is ANY Job → {Blue Collar,White Collar}, which refines the two leaf

partitions on Link[ANY Job], resulting in the TIPS in Figure 4.3.

Count statistics in TIPS. A scalable feature of our algorithm is maintaining some

statistical information for each candidate v in 〈∪Cuti, ∪Inti〉 for updating Score(v) without

accessing data records. For each value c in child(w) added to 〈∪Cuti, ∪Inti〉 in the current

iteration, we collect the following count statistics of c while scanning data records in Pw for

updating TIPS: (1) |Rc|, |Rd|, freq(Rc, cls), and freq(Rd, cls) for computing InfoGain(c),

where d ∈ child(c) and cls is a class label. Refer to Section 4.2 for these notations. (2) |Pd|,
where Pd is a child partition under Pc as if c is refined, kept together with the leaf node for

Pc. These count statistics will be used in Section 4.3.4.

TIPS has several useful properties. (1) All data records in the same leaf partition have

the same masked record although they may have different refined values. (2) Every data

record appears in exactly one leaf partition. (3) Each leaf partition Pv has exactly one

masked xj on Xj and contributes the count |Pv| towards a(xj). Later, we use the last

property to extract a(xj) from TIPS.

Case 2: Qi has no taxonomy tree. Consider a refinement ⊥i → {w,⊥i} where ⊥i ∈ Qi,

and Qi is a categorical attribute without a taxonomy tree. First, we remove w from Supi.

Then we replace ⊥i with the disclosed value w in all suppressed records that currently

contain ⊥i and originally contain w. The TIPS data structure in Definition 4.3.1 can also

support the refinement operation in this case. The only difference is to add an extra Link[⊥i]

to link up all leaf partitions P⊥i containing value ⊥i. The candidate set now includes ∪Supi,

that is, 〈∪Cuti,∪Supi,∪Inti〉.
Disclose w in TIPS. We refine each leaf partition P⊥i

found on Link[⊥i] as follows.

Two child partitions Pw and P ′
⊥i

are created under P⊥i
. Data records in P⊥i

are split among

the child partitions: Pw contains a data record r in P⊥i if w is the original domain value in

r; otherwise, P ′
⊥i

contains r. Then link Pw to every Link[v] to which P⊥i was previously

linked, except for Link[⊥i]. Also, link P ′
⊥i

to every Link[v] to which P⊥i was previously

linked, except for Link[w].

Count statistics in TIPS. Similar to Case 1, we collect the following count statis-

tics of v ∈ ∪Supi while scanning data records in P⊥i for updating TIPS. (1) |R′
⊥i
|, |Rv|,

freq(R′
⊥i

, cls), freq(Rv, cls) for computing InfoGain(v), where v ∈ ∪Supi and cls is a class
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Algorithm 2 Computing a(xj) for new xj

1: for each Pc ∈ Link[c] do
2: for each Xj containing att(w) do
3: a(xj) = a(xi) + |Pc|, where xj is the masked value on Xj for Pc

4: end for
5: end for

label. (2) |Pu|, where Pu is a child partition under Pv as if v is disclosed, kept together

with the leaf node for Pv. These count statistics will be used in Section 4.3.4.

4.3.4 Update Score and Status (Line 6)

This step updates Score(v) and validity for candidates v in 〈∪Cuti,∪Supi,∪Inti〉 to reflect

the impact of the winner refinement w. The key is computing Score(v) from the count statis-

tics maintained in Section 4.3.3 without accessing data records. We update InfoGain(v)

and Av(Xj) separately. Note that the updated A(Xj) is obtained from Aw(Xj).

Update InfoGain(v): An observation is that InfoGain(v) is not affected by w ⇒
child(w), except that we need to compute InfoGain(c) for each newly added value c in

child(w). InfoGain(c) can be computed while collecting the count statistics for c in Case

1 of Section 4.3.3. In case that the refined attribute has no taxonomy tree, InfoGain(v)

can be computed from the count statistics for v in Case 2 of Section 4.3.3.

Update PrivLoss(v): Again, we consider the two cases:

Case 1: Qi has a taxonomy tree. Unlike information gain, it is not enough to compute

Ac(Xj) only for the new values c in child(w). Recall that Av(Xj) is equal to the minimum

a(xj) after refining v. If both att(v) and att(w) are contained in Xj , the refinement on w

may affect this minimum, hence, Av(Xj). Below, we present a data structure, XTree, to

extract a(xj) efficiently from TIPS for updating Av(Xj).

Definition 4.3.2 (XTree). XTreej for Xj = {Q1, . . . , Qz} is a tree of z levels. The level

p > 0 represents the masked values for Qp. Each root-to-leaf path represents an existing xj

on Xj in the masked data, with a(xj) stored at the leaf node. A branch is trimmed if its

a(xj) = 0.

A(Xj) is equal to the minimum a(xj) in XTreej . In other words, XTreej provides an

index of a(xj) by xj . Unlike TIPS, XTree does not maintain data records. On applying

w ⇒ child(w), we update every XTreej such that Xj contains the attribute att(w).
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Figure 4.4: The XTree data structure

Update XTreej. For each occurrence of w in XTreej , create a separate branch for

each c in child(w). The procedure in Algorithm 2 computes a(xj) for the newly created

xj ’s on such branches. The general idea is to loop through each Pc on Link[c] in TIPS,

increment a(xj) by |Pc|. This step does not access data records because |Pc| was part of the

count statistics of w. Let r be the number of Xj containing att(w). The number of a(xj)

to be computed is at most r × |Link[w]| × |child(w)|.

Example 4.3.3 (XTree). In Figure 4.4, the initial XTree1 and XTree2 (i.e., left most)

have a single path. After applying [1 − 99) ⇒ {[1 − 37), [37 − 99)}, 〈ANY Sex, [1 − 99)〉
in XTree2 is replaced with two new 〈ANY Sex, [1 − 37)〉 and 〈ANY Sex, [37 − 99)〉, and

A(X2) = 12. Since X1 does not include Age, XTree1 remains unchanged and A(X1) = 34.

After applying the second refinement ANY Job ⇒ {Blue Collar,White Collar}, XTree2

remains unchanged, and A(X2) = 12. 〈ANY Job,ANY Sex〉 in XTree1 is replaced with

two new 〈Blue Collar,ANY Sex〉 and 〈White Collar,ANY Sex〉. To compute a(x) for

these new x’s, we add

|PBlue Collar| to Link[Blue Collar] and |PWhite Collar| to Link[White Collar]

as shown in Figure 4.3. As a result, a(〈Blue Collar,ANY Sex〉) = 0 + 12 + 4 = 16, and

a(〈White Collar,ANY Sex〉) = 0 + 18 = 18. So AANY Job(X1) = 16.

We now update Av(Xj) for candidates v in 〈∪Cuti,∪Inti〉 (in the impact of w ⇒
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child(w)). Doing this by refining v requires accessing data records, hence, is not scal-

able. We compute Av(Xj) using the count statistics maintained for v without accessing

data records.

Update Av(Xj). For a candidate v in 〈∪Cuti,∪Inti〉, computing Av(Xj) is necessary

in two cases. First, v is in child(v) because Av(Xj) has not been computed for newly added

candidates v. Second, Av(Xj) might be affected by the refinement on w, in which case

att(v) and att(w) must be contained in Xj . In both cases, we first compute a(xv
j ) for the

new xv
j ’s created as if v is refined. The procedure is the same as in Algorithm 2 for refining

w, except that w is replaced with v and no actual update is performed on XTreej and

TIPS. Note that the count |Pc|, where c is in child(v), used in the procedure is part of the

count statistics maintained for v.

Next, we compare a(xv
j ) with A(Xj) to determine the minimum, i.e., Av(Xj). There are

two subcases:

1. If no contributing x of A(Xj) (i.e., a(x) = A(Xj)) contains the value v, the contribut-

ing x’s of A(Xj) will remain existing if v is refined. Hence, Av(Xj) is the minimum of

A(Xj) and a(xv
j ).

2. If some contributing x of A(Xj) contains the value v, such x’s become new xv
j if v is

refined, so Av(Xj) is the minimum of a(xv
j ).

Finally, if the new Av(Xj) ≥ kj , we keep it with v and mark v as “valid” in the cut.

Case 2: Qi has no taxonomy tree. Even the refined attribute has no taxonomy tree, the

general operation of computing PrivLoss(v) is the same as Case 1. The difference is that

the refined values of ⊥i becomes {w,⊥i} where w is the disclosed value and the updated ⊥i

represents the remaining suppressed values Supi. Also, the candidate set includes ∪Supi,

that is, 〈∪Cuti,∪Supi,∪Inti〉. On disclosing w, we update all XTreej such that att(w) is

in XTreej to reflect the move of records from Link[⊥i] to Link[w].

Update XTreej. For each occurrence of ⊥i in XTreej , create a separate branch for

w and a separate branch for updated ⊥i. Follow the procedure in Algorithm 2 to compute

a(xj) for the newly created xj ’s on such branches, except that Pc’s become Pw and P ′
⊥i

.

Refer to Case 2 in Section 4.3.3 for these notations.
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4.3.5 Analysis

Each iteration involves two types of work. The first type accesses data records in Rw or R⊥i

for updating TIPS and count statistics in Section 4.3.3. If w is an interval, an extra step is

required for determining the optimal split for each child interval c in child(w). This requires

making a scan on records in Rc, which is a subset of Rw. To determine a split, Rc has to

be sorted which can be an expensive operation. Fortunately, resorting Rc is unnecessary for

each iteration because its superset Rw are already sorted. Thus, this type of work involves

one scan of the records being refined in each iteration. The second type of work computes

Score(v) for the candidates v in 〈∪Cuti,∪Supi,∪Inti〉 without accessing data records in

Section 4.3.4. For a table with m attributes and each taxonomy tree with at most p nodes,

the number of such v is at most m×p. This computation makes use of the maintained count

statistics and does not access data records. Let h be the maximum number of times that a

value in a record will be refined. For an attribute with a taxonomy tree, h is bounded by the

height of the taxonomy tree, and for an attribute without taxonomy tree, h is bounded by

1 (i.e., a suppressed value is refined at most once). In the whole computation, each record

will be refined at most m × h times, therefore accessed at most m × h times because only

refined records are accessed. Since m× h is a small constant independent of the table size,

our algorithm is linear in the table size.

In the special case that there is only a single anonymity template 〈X,Y, k〉, each root-to-

leaf path in TIPS has represented a x, and we can store a(x) directly at the leaf partitions

in TIPS without XTrees. A single anonymity template was considered in [8][33][43][64]

where X contains all potentially identifying attributes to be used for linking the table to an

external source. Our algorithm is even more efficient in this special case.

Compared to iteratively masking the data bottom-up starting from domain values, the

top-down refinement is more natural and efficient for handling continuous attributes. To

produce a small number of intervals for a continuous attribute, the top-down approach needs

only a small number of interval splitting, whereas the bottom-up approach needs many

interval merging starting from many domain values. In addition, the top-down approach

can discard data records that cannot be further refined, whereas the bottom-up approach

has to keep all data records until the end of computation.
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4.4 Experimental Evaluation

Our goal in this section is to evaluate the proposed method, TDR, in terms of preserving

the usefulness for classification and the scalability on large data sets. For the usefulness

evaluation, we compare the classifier built from the masked data with the classifier built

from the unmodified data. This comparison makes sense because the anonymization is

due to the privacy consideration and the data will be released without modification in the

absence of such consideration. In addition, the unmodified data has the lowest possible cost,

therefore, serves the best possible candidate according to previous cost metrics [8][33][43].

Though some recent works such as [8] model the classification metric on the masked table,

the optimality of such metrics does not translate into the optimality of classifiers, as pointed

out in the introduction of this chapter. To our knowledge, [33] is the only work that has

evaluated the impact of anonymity on classification with single dimensional generalization.

For these reasons, our evaluation uses the baseline of the unmodified data and the reported

results in [33]. All experiments on TDR were conducted on an Intel Pentium IV 2.6GHz

PC with 1GB RAM.

4.4.1 Data Quality

Our first objective is to evaluate if the proposed TDR preserves the quality for classification

while masking the data to satisfy various anonymity requirements. We used the C4.5 clas-

sifier [55] and Naive Bayesian classifier1 as classification models. We adopted three widely

used benchmarks: Adult, Japanese Credit Screening, and German Credit Data were obtained

from the UCI repository [53]. Unless stated otherwise, all attributes were used for building

classifiers.

In a typical real life situation, the data publisher releases all data records in a single file,

leaving the split of training and testing sets to the data miner. Following this practice, we

combined the training set and testing set into one set for masking, and built a classifier using

the masked training set and collected the error using the masked testing set. This error,

called the anonymity error, denoted AE, was compared with the baseline error, denoted

BE, for the unmodified training and testing sets. Note that AE depends on the anonymity

requirement. AE −BE measures the quality loss due to data masking.

1http://magix.fri.uni-lj.si/orange/
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Table 4.5: The Adult data set
Attribute Type Numerical Range

# of Leaves # of Levels
Age (Ag) continuous 17 - 90
Capital-gain (Cg) continuous 0 - 99999
Capital-loss (Cl) continuous 0 - 4356
Education-num (En) continuous 1 - 16
Final-weight (Fw) continuous 13492 - 1490400
Hours-per-week (Hw) continuous 1 - 99
Education (Ed) categorical 16 5
Martial-status (Ms) categorical 7 4
Native-country (Nc) categorical 40 5
Occupation (Oc) categorical 14 3
Race (Ra) categorical 5 3
Relationship (Re) categorical 6 3
Sex (Sx) categorical 2 2
Work-class (Wc) categorical 8 5

Data set: Adult

The Adult data set has 6 continuous attributes, 8 categorical attributes, and a binary Class

column representing two income levels, ≤50K and >50K, with distribution 75% and 25%

respectively. Table4.5 describes each attribute. After removing records with missing values

from the pre-split training and testing sets, we have 30,162 records and 15,060 records for

training and testing respectively. This is exactly the same data set as used in [33].

For the same anonymity threshold k, a single anonymity template 〈X, Y, k〉 is always

more restrictive than breaking it into multiple anonymity templates. For this reason, we

first consider the case of single anonymity template. To ensure that masking is working on

attributes that have impact on classification, X contains the top N attributes ranked by

the C4.5 classifier. The top rank attribute is the attribute at the top of the C4.5 decision

tree. Then we remove this attribute and repeat this process to determine the rank of other

attributes. The top 9 attributes are Cg, Ag, Ms, En, Re, Hw, Sx, Ed, Oc in that order. We

specified three anonymity requirements denoted Top5, Top7, and Top9, where X contains

the top 5, 7, and 9 attributes respectively. The upper error, denoted UE, refers to the error

on the data with all the attributes in the X removed (equivalent to generalizing them to

the top most ANY or suppressing them to ⊥ or including them into a full range interval).

UE −BE measures the impact of X on classification.
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Figure 4.5: Suppress and discretize TopN in Adult

Figure 4.5 displays AE for the C4.5 classifier with the anonymity threshold 20 ≤ k ≤
1000 by applying discretization on the 6 continuous attributes and suppression on the 8

categorical attributes without taxonomy trees. Note that k is not spaced linearly. We

summarize the analysis for Top7 as follows. First, AE − BE, where BE = 14.7%, is less

than 2.5% over the entire range of tested anonymity threshold, and AE is much lower

than UE = 21.5%. This supports that accurate classification and privacy protection can

coexist. Second, AE generally increases as the anonymity threshold k increases, but not

monotonically. For example, the error slightly drops when k increases from 180 to 200.

This is due to the variation between the training and testing sets, and the fact that a better

structure may appear in a more masked state.

We further evaluate the effectiveness of generalization on categorical attributes with

taxonomy trees. Although the author of [33] has specified taxonomy trees for categorical

attributes, we do not agree with the author’s groupings. For example, the author grouped

Native-country according to continents, except Americas. We followed the grouping accord-

ing to the World Factbook published by the CIA2. Our taxonomy trees and an executable

program of TDR can be obtained from our website3.

Figure 4.6(a) displays AE for the C4.5 classifier with the anonymity threshold 20 ≤
k ≤ 1000 by applying discretization on the 6 continuous attributes and generalization on

2http://www.cia.gov/cia/publications/factbook/
3http://www.cs.sfu.ca/ ˜ ddm/
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Figure 4.6: Generalize and discretize TopN in Adult

the 8 categorical attributes according to our specified taxonomy trees. We summarize the

analysis for Top7 as follows. AE −BE, where BE = 14.7%, is less than 2% over the range

of anonymity threshold 20 ≤ k ≤ 600, and AE is much lower than UE = 21.5%. These

results are similar to the results in Figure 4.5 although the finally masked versions of data

are very different. This suggests there exists redundant “good” classification structures in

the data.

A closer look at the masked data for Top7 with k = 500 reveals that among the seven top

ranked attributes, three are masked to a different degree of granularity, and four, namely

Cg (ranked 1st), Ag (ranked 2nd), Re (ranked 5th), and Sx (ranked 7th), are masked to

the top most value ANY . Even for this drastic masking, AE has only increased by 2% from

BE = 14.7%, while the worst case can be UE = 21.5%. With the masking, classification now

is performed by the remaining three attributes in X and the unmodified but lower ranked

attributes. Clearly, this is a different classification structure from what would be found

from the unmodified data. As a result, though masking may eliminate some structures, new

structures emerge to help.

Figure 4.6(b) displays AE for the Naive Bayesian classifier. Compared to the C4.5

classifier, though BE and UE are higher (which has to do with the classification method,

not the masking), the quality loss due to masking, AE−BE (note BE = 18.07%), is smaller,

no more than 1.5% for the range of anonymity threshold 20 ≤ k ≤ 1000. This suggests that

the information based masking is also useful to other classification methods such as the
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Figure 4.7: Generated taxonomy trees of Hours-per-week and Education-num

Naive Bayesian that do not use the information gain. Another observation is that AE is

even lower than BE for the anonymity threshold k ≤ 180 for Top5 and Top7. This confirms

again that the optimal k-anonymization is not relevant to the classification goal due to

possibility of “over-fitting.” The unmodified data certainly has the least distortion by any

cost metric. However, this experiment shows that the least distortion does not translate

into the accuracy of classifier. AE < BE also occurs in the experiment on the CRX data

set in Figure 4.9(a). Our approach is biased toward masking the noise in order to help

classification.

Figure 4.7 shows the generated taxonomy trees for continuous attributes Hours-per-week

and Education-num with Top7 and k = 60. The splits are very reasonable. For example, in

the taxonomy tree of Education-num, the split point at 13 distinguishes whether the person

has post-secondary education. If the user does not like these trees, she may modify them or

specify her own and subsequently treat continuous attributes as categorical attributes with

specified taxonomy trees.

Our method took at most 10 seconds for all previous experiments. Out of the 10 seconds,

approximately 8 seconds were spent on reading data records from disk and writing the

masked data to disk. The actual processing time for generalizing the data is relatively

short.

In an effort to study the effectiveness of multiple anonymity templates, we compared

AE between multiple anonymity templates and the corresponding single united anonymity

template. We randomly generated 30 anonymity requirements with multiple templates as

follows. For each anonymity requirement 〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉, we first determined

the number of anonymity templates using the uniform distribution U [3, 7] (i.e., randomly

drawn a number between 3 and 7) and the length of Xj ’s using U [2, 9], then set Yj = RecID.

For simplicity, all Xj ’s in the same requirement have the same length and same threshold
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Figure 4.8: SingleTmp vs. MultiTmp (k = 100)

kj = 100. For each Xj , we randomly selected some attributes according to the Xj length

from the 14 attributes. A repeating Xj was discarded. For example, a requirement of 3

Xj ’s and length 2 is {〈{Ag, En}, RecID, k〉, 〈{Ag,Ra}, RecID, k〉, 〈{Sx, Hw}, RecID, k〉},
and the corresponding single anonymity template is 〈{Ag, En,Ra, Sx, Hw}, RecID, k〉.

In Figure 4.8, each data point represents the AE of an anonymity requirement with

multiple templates, denoted MultiTmp, and the AE of the corresponding single anonymity

template, denoted SingleTmp. The C4.5 classifier was used. All data points appear at the

upper left corner of the diagonal, suggesting that MultiTmp generally yields lower AE than

its corresponding SingleTmp. This verifies the effectiveness of multiple anonymity templates

to avoid unnecessary masking and improve data quality.

Data set: Japanese Credit Screening

The Japanese Credit Screening data set, also known as CRX, is based on credit card ap-

plication. There are 6 continuous attributes, 9 categorical attributes, and a binary class

attribute representing the application status succeeded or failed. After removing records

with missing values, there are 465 and 188 records for the pre-split training and testing re-

spectively. In the UCI repository, all values and attribute names in CRX have been changed

to meaningless symbols, e.g., A1 . . . A15. No taxonomy tree is given in advance. The Top9

attributes in CRX are A9, A11, A10, A8, A15, A7, A14, A6, A5 in that order.

Figure 4.9(a) displays AE for the C4.5 classifier with the anonymity threshold 20 ≤ k ≤
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Figure 4.9: Suppress and discretize TopN in CRX and German

600 by applying discretization on the 6 continuous attributes and suppression on the 8 cat-

egorical attributes without taxonomy trees. Different anonymity requirements Top5, Top7,

and Top9 yield similar AE’s and similar patterns, indicating more restrictive requirement

may not have much impact on classification quality. This largely depends on the availability

of alternative “good” classification structures in the data set.

We summarize the analysis for Top7 as follows. First, AE − BE, where BE = 15.4%,

is less than 4% over the range of anonymity threshold 20 ≤ k ≤ 300, and AE is much

lower than UE = 42%. This supports that accurate classification and privacy protection

can coexist. AE drastically increases when k > 300 since CRX only has 653 records.

Data set: German Credit Data

The German Credit Data, or simply German, has 7 continuous attributes, 13 categorical

attributes, and a binary class attribute representing the good or bad credit risks. There are

666 and 334 records, without missing values, for the pre-split training and testing respec-

tively. Table 4.6 describes each attribute. The Top9 attributes in German are Cd, As, Du,

Ch, Sa, Is, Lp, Db, Pr in that order.

Figure 4.9(b) displays AE for the C4.5 classifier with the anonymity threshold 20 ≤ k ≤
1000 by applying discretization on the 7 continuous attributes and suppression on the 13

categorical attributes without taxonomy trees. AE −BE, where BE = 28.8%, is less than
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Table 4.6: The German data set
Attribute Type Numerical Range

# of Values
Duration (Du) continuous 4 - 72
Credit (Cd) continuous 250 - 18424
Installment-rate (Ir) continuous 1 - 4
Residence-time (Rt) continuous 1 - 4
Age (Ag) continuous 19 - 75
Existing-credits (Ec) continuous 1 - 4
Liable-people (Li) continuous 1 - 2
Account-status (As) categorical 4
Credit-history (Ch) categorical 5
Loan-purpose (Lp) categorical 11
Savings-account (Sa) categorical 5
Employment (Em) categorical 5
Personal-status (Ps) categorical 5
Debtors (Db) categorical 3
Property (Pr) categorical 4
Installments (Is) categorical 3
Housing (Hs) categorical 3
Job (Jb) categorical 4
Telephone (Tp) categorical 2
Foreign (Fn) categorical 2

4% over the range of anonymity threshold 20 ≤ k ≤ 100 for the anonymity requirement

Top7. Although AE is mildly lower than UE = 36%, the benefit of masking UE − AE

is not as significant as in other data sets. If the data provider requires higher degree of

anonymity, then she may consider simply removing the TopN attributes from the data set

rather than masking them.

4.4.2 Comparing with Other Algorithms

Iyengar [33] presented a genetic algorithm solution. This experiment was customized to

conduct a fair comparison with the results in [33]. We used the same Adult data set, same

attributes, and same anonymity requirement as specified in [33]:

GA = 〈{Ag, Wc,En, Ms,Oc, Ra, Sx,Nc}, RecID, k〉.
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Figure 4.10: Comparing with genetic algorithm

We obtained the taxonomy trees from the author for generalization, except for the con-

tinuous attribute Ag for which we used discretization. Following the procedure in [33], all

attributes not in GA were removed and were not used to produce BE, AE, and UE in this

experiment, and all errors were based on the 10-fold cross validation and the C4.5 classifier.

For each fold, we first masked the training data and then applied the masking to the testing

data.

Figure 4.10 compares AE of TDR with the errors reported for two methods in [33],

Loss Metric (LM) and Classification Metric (CM), for 10 ≤ k ≤ 500. TDR outperformed

LM, especially for k ≥ 100, but performed only slightly better than CM. TDR continued to

perform well from k = 500 to k = 1000, for which no result was reported for LM and CM in

[33]. This analysis shows that our method is at least comparable to genetic algorithm [33]

in terms of accuracy. However, our method took only 7 seconds to mask the data, including

reading data records from disk and writing the masked data to disk. [33] reported that his

method requires 18 hours to transform this data, which has about only 30K data records.

Clearly, the genetic algorithm is not scalable.

Recently, LeFevre et al. [45] compared with our previous version of TDR in [28] in terms

of data quality on some other data sets. Their experiments suggested that the classification

quality on the masked data can be further improved by using a more flexible masking

operation, multidimensional generalization; however, this type of generalization suffers from

the interpretation difficulty as discussed in the introduction of this chapter. Xu et al. [85]

reported that the multidimensional generalization algorithm took about 10 seconds to mask
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Figure 4.11: Scalability (k = 50)

the Adult data set. We compared TDR with some recently developed greedy anonymization

algorithms that also conducted experiments on the Adult data set. The efficiency of the

bottom-up cell generalization algorithm in [81] is comparable to TDR when k = 2, 10, but

they did not report the efficiency for larger k. A cell generalization algorithm in [85] took

about 60 seconds to mask the data. In general, multidimensional and cell generalization

algorithms are less efficient than our method due to the larger number of possible masked

tables.

4.4.3 Efficiency and Scalability

This experiment evaluates the scalability of TDR by blowing up the size of the Adult data

set. First, we combined the training and testing sets, giving 45,222 records. For each original

record r in the combined set, we created α− 1 “variations” of r, where α > 1 is the blowup

scale. For each variation of r, we randomly selected q attributes from ∪Xj , where q has

the uniform distribution U [1, | ∪ Xj |], i.e., randomly drawn between 1 and the number of

attributes in Xj , and replaced the values on the selected attributes with values randomly

drawn from the domain of the attributes. Together with all original records, the enlarged

data set has α × 45, 222 records. To provide a precise evaluation, the runtime reported

excludes the time for loading data records from disk and the time for writing the masked

data to disk.

Figure 4.11 depicts the runtime of TDR using generalization and discretization for 200
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thousand to 1 million data records and the anonymity threshold k = 50 based on two types

of anonymity requirements. AllAttTmp refers to the single anonymity template having all 14

attributes. This is one of the most time consuming settings because of the largest number

of candidate refinements to consider at each iteration. For TDR, the small anonymity

threshold of k = 50 requires more iterations to reach a solution, hence more runtime, than

a larger threshold. TDR takes approximately 80 seconds to transform 1 million records.

In Figure 4.11, MultiTmp refers to the average runtime over the 30 random anonymity

requirements with multiple templates in Section 4.4.1 with k = 50. Compared to AllAttTmp,

TDR becomes less efficient for handling multiple anonymity templates for two reasons. First,

an anonymity requirement with multiple templates is a less restrictive constraint than the

single anonymity template containing all attributes; therefore, TDR has to perform more

refinements before violating the anonymity requirement. Moreover, TDR needs to create

one XTreej for each Xj and maintains a(xj) in XTreej . The increase is roughly by a

factor proportional to the number of templates in an anonymity requirement. The runtime

of suppression and discretization on this expanded data set is roughly the same as shown

in Figure 4.11.

4.4.4 Summary of Experiment Results

Our experiments gave evidence for several claims about the proposed TDR method. First,

TDR masks a given table to satisfy a broad range of anonymity requirements without sac-

rificing significantly the usefulness to classification. Second, while producing a comparable

accuracy, TDR is much more efficient than previously reported approaches, particularly,

the genetic algorithm in [33]. Third, the previous optimal k-anonymization [8][43] does not

necessarily translate into the optimality of classification. The proposed TDR finds a bet-

ter anonymization solution for classification. Fourth, the proposed TDR scales well with

large data sets and complex anonymity requirements. These performances together with

the features discussed in the introduction of this chapter make TDR a practical technique

for privacy protection while sharing information.

4.5 Extension

To focus on main ideas, our current implementation assumes that the compressed table

fits in memory. Often, this assumption is valid because the compressed table can be much
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smaller than the original table. If the compressed table does not fit in the memory, we can

store leaf partitions of TIPS on disk if necessary. Favorably, the memory is used to keep

only leaf partitions that are smaller than the page size to avoid fragmentation of disk pages.

A nice property of TDR is that leaf partitions that cannot be further refined (i.e., for which

there is no candidate refinement) can be discarded, and only some statistics for them needs

to be kept. This likely applies to small partitions in memory, therefore, the memory demand

is unlikely to build up.

4.6 Summary

We considered the problem of ensuring individual record holder’s anonymity while releasing

person-specific data for classification analysis. We pointed out that the previous optimal

k-anonymization based on a closed form of cost metric does not address the classification re-

quirement. Our approach is based on two observations specific to classification: information

specific to individuals tends to be over-fitting, thus of little utility, to classification; even if

a masking operation eliminates some useful classification structures, alternative structures

in the data emerge to help. Therefore, not all data items are equally useful for classification

and less useful data items provide the room for anonymizing the data without compromis-

ing the utility. With these observations, we presented a top-down approach to iteratively

refine the data from a general state into a special state, guided by maximizing the trade-off

between information and anonymity. This top-down approach serves a natural and effi-

cient structure for handling categorical and continuous attributes and multiple anonymity

requirements. Experiments showed that our approach effectively preserves both information

utility and individual record holder’s privacy and scales well for large data sets.



Chapter 5

Confidence Bounding

Data mining aims at finding out new knowledge about an application domain using collected

data on the domain, typically data on individual entities like persons, companies, transac-

tions. Naturally, the general concerns over data security and individual privacy are relevant

for data mining. The first concern relates to the input of data mining methods due to data

access. Chapter 4 has addressed this concern while preserving the benefits of data mining.

The second concern relates to the output of data mining methods. Although the output

of data mining methods are aggregate patterns, not intended to identify individual record

holders, they can be used to infer sensitive properties about individual record holders. In

this chapter, we consider the privacy threats caused by such “data mining abilities.” Let us

first consider an example.

Example 5.0.1 (Sensitive inference). Table 5.1 contains records about bank customers.

After removing irrelevant attributes, each row represents the duplicate records and the

count. The class attribute Class contains the class frequency of credit rating. For example,

0G4B represents 0 Good and 4 Bad. Suppose that the bank (the data publisher) wants to

release the data to a data mining firm for classification analysis on Class, but does not want

the data mining firm to infer the bankruptcy state Discharged using the attributes Job and

Country. For example, out of the 5 record holders with Job = Trader and Country =

UK, 4 have the Discharged status. Therefore, the rule {Trader, UK} → Discharged has

support 5 and confidence 80%. If the data publisher tolerates no more than 75% confidence

for this inference, the data is not safe for release. In general, currently bankrupted customers

have a bad rating and simply removing the Bankruptcy column loses too much information

54
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Job Country Child Bankruptcy Class # of Records
Cook US No Current 0G4B 4
Artist France No Current 1G3B 4
Doctor US Yes Never 4G2B 6
Trader UK No Discharged 4G0B 4
Trader UK No Never 1G0B 1
Trader Canada No Never 1G0B 1
Clerk Canada No Never 3G0B 3
Clerk Canada No Discharged 1G0B 1

Total: 15G9B 24

Table 5.1: Customer table

Job Country Child Bankruptcy Class # of Records
Cook US No Current 0G4B 4
Artist France No Current 1G3B 4
Doctor US Yes Never 4G2B 6
⊥Job ⊥Country No Never 5G0B 5
⊥Job ⊥Country No Discharged 5G0B 5

Table 5.2: The suppressed customer table

for the classification analysis.

The private information illustrated in this example has the form “if x then y”, where x

identifies a group of record holders and y is a sensitive property. We consider this inference

sensitive if its confidence is high, in which case an individual record holder in the group

identified by x tends to be linked to y. The higher the confidence, the stronger the linking.

In the context of data mining, association or classification rules [5][55] are used to capture

general patterns of large populations for summarization and prediction, where a low support

means the lack of statistical significance. In the context of privacy protection, however,

inference rules are used to infer sensitive properties about the existing individuals, and it is

important to eliminate sensitive inferences of any support, large or small. In fact, a sensitive

inference in a small group could present even more threats than in a large group because

individual record holders in a small group are more identifiable [59].

The problem considered in this chapter can be described as follow. The data publisher

wants to release a version of data in the format

T (Q1, · · · , Qm, S1, · · · , Sn, Class)
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to achieve two goals. The privacy goal is to limit the ability of data mining tools to derive

inferences about sensitive attributes S1, · · · , Sn. This requirement is specified using one or

more confidentiality templates of the form, 〈X, Y, k〉, where Y contains values from some

Si, quasi-identifier X ⊆ {Q1, · · · , Qm} is a set of attributes not containing Si, and k is a

threshold on confidence. Each value over X identifies a group of individuals. The data

satisfies 〈X,Y, k〉 if every inference matching the confidentiality template has a confidence

no more than k. The privacy goal is achieved by suppressing some values on the attributes

in X. The data analysis goal is to preserve as much information as possible for a specified

data analysis task. To measure the “information” in a concrete way, we primarily consider

the task of modelling some class attribute Class in the data. Other notions of information

utility can be captured by replacing the information component of our metric, and therefore,

require little modification to our approach. We assume that attributes Q1, · · · , Qm and

S1, · · · , Sn are important, thus, simply removing them fails to address the data analysis

goal. We are interested in a suppression of values on X to achieve both goals.

Example 5.0.2 (Suppression). In Example 5.0.1, the inference

{Trader, UK} → Discharged

violates the confidentiality template

〈X = {Job, Country}, Y = Discharged, 75%〉.

To eliminate this inference, we can suppress Trader and Clerk to a special value ⊥Job,

and suppress UK and Canada to a special value ⊥Country, see Table 5.2. Now, the new

inference {⊥Job,⊥Country} → Discharged has confidence 50%, less than the specified 75%.

No information is lost since Class does not depend on the distinction of the suppressed

values Trader and Clerk, UK and Canada.

Several points are worth noting.

First, the use of confidentiality templates is a flexibility, not a restriction. The data

publisher can selectively protect certain sensitive properties y ∈ {S1, · · · , Sn} while not

protecting other properties, specify a different threshold k for a different template, specify

multiple quasi-identifiers X (even for the same y), specify templates for multiple sensitive

attributes S. These flexibilities provide not only a powerful representation of privacy re-

quirements, but also a way to focus on the problem area in the data to minimize unnecessary
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information loss. In the case that the inferences through all X’s are to be limited, the data

publisher only needs to specify the “most restrictive” X containing all the attributes that

occur in any X (more details in Section 5.1).

Second, this work differs from the prior works on anonymity template in Chapter 4 and

k-anonymity [57][58][59] in a major way. The anonymity template and k-anonymity prevents

linking personally identifying attributes to sensitive properties by requiring that at least k

records share each description of the identifying attributes. The focus is on anonymizing

the identifying attributes that define groups. However, if all or most record holders in a

group are associated with the same sensitive property, the sensitive property for the group

can be inferred with little uncertainty.

Machanavajjhala et al. [47] address this problem by requiring “diversity” of the sensi-

tive property in each group. In particular, their “entropy `-diversity,” which ensures that

sensitive properties are “well-represented” in a group, could be used to limit the confidence

of attacks. A larger entropy means a more uniform distribution of sensitive properties in

a group, therefore, less association with a particular sensitive property. For example, for a

group of 100 records associated with 2 different diseases, if 90 records are associated with

HIV and the other 10 records are associated with Flu, then this group is entropy 1.4-diverse.

A major limitation of this approach is that entropy is not a “user-intuitive” measure of risk.

In particular, the entropy 1.4-diverse does not convey that inferring HIV has 90% probabil-

ity of success. Therefore, the data publisher may find it difficult to specify her risk tolerance

in terms of the confidence of attacks. In the case that HIV occurs less frequently but is more

sensitive, their method allows the user to incorporate “background knowledge” to specify

different protection for HIV and Flu. Our approach incorporates the background knowl-

edge by allowing the data publisher to specify different maximum confidence for different

sensitive properties, based on prior knowledge such as the sensitivity and frequency of such

properties.

The contributions of this chapter can be summarized as follows. First, we formulate

a template-based privacy preservation problem. Second, we show that suppression is an

effective way to eliminate sensitive inferences. However, finding an optimal suppression is a

hard problem since it requires optimization over all possible suppressions. For a table with a

total of q distinct values on masking attributes, there are 2q possible suppressed tables. We

present an approximate solution, based on the Top-Down Refinement (TDR) framework in

Section 4.3, that iteratively improves the solution and prunes the search whenever no better
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solution is possible. In particular, we iteratively disclose domain values in a top-down

manner by first suppressing all domain values. In each iteration, we disclose the suppressed

domain value to maximize some criterion taking into account both information gained and

privacy lost. We evaluate this method on real life data sets. Several features make this

approach practically useful:

• No taxonomy required. Suppression replaces a domain value with ⊥ without requiring

a taxonomy of values. This is a useful feature because most data do not have an

associated taxonomy, though taxonomies may exist in certain specialized domains.

• Preserving the truthfulness of values. The special value ⊥ represents the “union,” a

less precise but truthful representation, of suppressed domain values. This truthfulness

is useful for reasoning and explaining the classification model.

• Subjective notion of privacy. The data publisher has the flexibility to define her own

notion of privacy using templates for sensitive inferences.

• Efficient computation. It operates on simple but effective data structures to reduce

the need for accessing raw data records.

• Anytime solution. At any time, the user (the data publisher) can terminate the com-

putation and have a table satisfying the privacy goal.

• Extendibility. Though we focus on categorical attributes and classification analysis,

this work can be easily extended to continuous attributes and other information utility

criteria. This extension will be elaborated in Section 5.5.

The rest of the chapter is organized as follows. Section 5.1 defines the confidence bound-

ing problem. Section 5.2 discusses the selection criterion for the suppression algorithm.

Section 5.3 presents our suppression approach. Section 5.4 evaluates the effectiveness of the

proposed approach. Section 5.5 discusses several extensions. Section 5.6 summarizes this

chapter.

5.1 Problem Definition

Let v be a single value, V be a set of values, and R be a set of records. att(v) denotes

the attribute of a value v. |R| denotes the number of records in R. Rv denotes the set of
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records in R that contain v. a(V ) denotes the number of records containing the values in V .

freq(R, V ) denotes the number of records in R that contain the values in V . Sometimes,

we simply list the values in V , i.e, a(v1, · · · , vk) and freq(R, v1, · · · , vk), where vj is either

a single value or a set of values.

Consider a table T (Q1, · · · , Qm, S1, · · · , Sn, Class). Qi are quasi-identifying attributes.

Si are sensitive attributes. Class is the target class attribute. All attributes have a cat-

egorical domain. For each Qi, we add the special value ⊥i to its domain. Qi and Si are

disjoint.

Suppose that the data publisher wants to release the table T for modelling the class

attribute Class, but wants to limit the ability of making inference about sensitive attributes

S1, · · · , Sn. Let Y be a set of sensitive values from S1, · · · , Sn. An inference about sensitive

value y ∈ Y has the form of “if x then y” where x is a value on X and X ⊆ {Q1, · · · , Qm}.
Such inferences are “probabilistic,” not “deterministic,” and are easily obtained from the

released data by applying today’s data mining tools. If an inference is highly confident (i.e.,

accurate), there is little difficulty to infer sensitive value y about a record holder matching

the description x, and such inference is considered to be sensitive. One way to eliminate

such threats is to limit the confidence of inference. This notion of privacy requirement is

formalized as follows:

Definition 5.1.1 (Confidentiality templates). Let x be a value on X and y be a value on

Y . The confidence of x to y, denoted cy(x), is the percentage of the records that contain both

x and y among those that contain x, i.e., a(x, y)/a(x). Let Cy(X) = max{cy(x) | x ∈ X}
and CY (X) = max{Cy(X) | y ∈ Y }. T satisfies a confidentiality template 〈X,Y, k〉 if

CY (X) ≤ k where k is some specified real 0 < k ≤ 1. T satisfies a set of confidentiality

templates {〈X1, Y1, k1〉 · · · , 〈Xp, Yp, kp〉} if CYj (Xj) ≤ kj for 1 ≤ j ≤ p.

In words, the confidentiality template limits the confidence of inferring a value on Y

from a value on X. A data publisher could specify the confidentiality requirement as a set of

confidentiality templates. With X and Y describing individual record holders and sensitive

values, any such inference with a high confidence is a privacy breach. A confidentiality

template places an upper limit on the confidence of the specified inferences, including those

involving ⊥j . For convenience, all templates that only differ in yi can be abbreviated as

〈X, Y = {y1, · · · , yp}, k〉. This is only a notational abbreviation, not a new kind of inference.

Often, not all but some values y on Y are sensitive, in which case Y can be replaced
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with a subset of yi values on Y , written Y = {y1, · · · , yp}, and a different threshold k can be

specified for each yi. More generally, Definition 5.1.1 allows multiple Yj , each representing

a subset of values on a different set of attributes, with Y being the union of all Yj . For

example, Y1 = HIV on Disease and Y2 = Lawyer on Job. Such a “value-level” specification

provides a great flexibility essential for minimizing the data distortion.

Some confidentiality template may be “redundant” once we have some other confidential-

ity template. Theorem 5.1.1 can be used to remove “redundant” confidentiality templates.

Theorem 5.1.1. Consider two confidentiality templates

〈X, Y, k〉 and 〈X ′, Y ′, k′〉.

If Y = Y ′, k ≥ k′, and X ⊆ X ′, then

1. CY ′(X ′) ≥ CY (X), and

2. If T satisfies 〈X ′, Y ′, k′〉, T satisfies 〈X, Y, k〉, and

3. 〈X,Y, k〉 can be removed in the presence of 〈X ′, Y ′, k′〉.

Proof. (1) Let D = X ′ − X. Assume that D 6= ∅. Consider an inference x → y for

〈X, y, k〉. Let {x, d1} → y, · · · , {x, dp} → y be the inferences for 〈X ′, y, k〉 involving x.

a(x) =
∑p

i=1 a(x, di) and a(x, y) =
∑p

i=1 a(x, di, y). Without loss of generality, we assume,

for 2 ≤ i ≤ p,

cy(x, d1) ≥ cy(x, di).

We prove that cy(x, d1) ≥ cy(x); it then follows that CY (X ′) ≥ CY (X) because Y ′ = Y .

The intuition of the proof is similar to that of max{avg(M), avg(F )} ≥ avg(G), where a

group G of people is divided into the male group M and the female group F , and avg(Z)

computes the average age of a group Z.

First, we rewrite cy(x, d1) ≥ cy(x, di) into

a(x, d1, y)a(x, di) ≥ a(x, di, y)a(x, d1).

Recall that a(x) =
∑p

i=1 a(x, di) and a(x, y) =
∑p

i=1 a(x, di, y). Then, we have the following

rewriting

cy(x, d1) = a(x,d1,y)
a(x,d1)

= a(x,d1,y)
∑p

i=1 a(x,di))
a(x,d1)a(x)



CHAPTER 5. CONFIDENCE BOUNDING 61

= a(x,d1,y)
a(x) +

∑p
i=2

a(x,d1,y)a(x,di)
a(x,d1)a(x)

≥ a(x,d1,y)
a(x) +

∑p
i=2

a(x,di,y)a(x,d1)
a(x,d1)a(x)

= a(x,d1,y)
a(x) +

∑p
i=2

a(x,di,y)
a(x)

= a(x,y)
a(x) = cy(x)

(2) follows from (1) and k ≥ k′.

(3) follows from (2).

The following corollary follows from Theorem 5.1.1. It states that only the “maximal”

templates need to be specified among those having the same sensitive values Y and confi-

dence threshold k.

Corollary 5.1.1. Assume that X ⊆ X ′. For the same confidence threshold k, if T satisfies

confidentiality template 〈X ′, Y, k〉, then T also satisfies confidentiality template 〈X, Y, k〉.

Example 5.1.1 (Confidentiality templates). Suppose that (j, s) on X = {Job, Sex}
occurs with the HIV disease in 9 records and occurs with the Flu disease in 1 record.

The confidence of (j, s) → HIV is 90%. With Y = Disease, the confidentiality template

〈X, Y, k〉 requires that no disease can be inferred from a value on X with a confidence higher

than a given threshold.

5.1.1 Suppression

If T violates the set of confidentiality templates, we can suppress some values on quasi-

identifying attributes Qi to make it satisfy the templates (under certain conditions). Sup-

pression of a value on Qi means replacing all occurrences of the value with the special value

⊥i. In the classification modelling, ⊥i is treated as a new domain value in Qi.

An interesting question is what makes us believe that suppression of values can reduce

the confidence of sensitive inference. Indeed, if suppression could increase the confidence,

we are not getting any closer to the privacy goal but losing information. Below, we show

that suppression never increases Cy(X) and CY (X).

Consider suppressing a value v in Qi to ⊥i. The suppression affects only the records

that contain v or ⊥i before the suppression. Let ⊥i and ⊥′i denote ⊥i before and after the

suppression. The difference is that ⊥′i covers v but ⊥i does not. After the suppression, two

inferences {x, v} → s and {x,⊥i} → y become one inference {x,⊥′i} → s .

Theorem 5.1.2. max{cy(x, v), cy(x,⊥i)} ≥ cy(x,⊥′i).
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The proof is similar to Theorem 5.1.1, except that {x, d1} → y, · · · , {x, dp} → y are

replaced with {x, v} → y and {x,⊥i} → y, and x → y is replaced with {x,⊥′i} → y. In

words, Theorem 5.1.2 says that, by suppressing a value, Cy(X) does not go up. This property

provides the basis for employing suppression to reduce Cy(X), and therefore, CY (X).

Corollary 5.1.2. Cy(X) and CY (X) are non-increasing with respect to suppression.

5.1.2 The Problem Statement

Given a table T and a set of confidentiality templates {〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉}, we are

interested in finding a suppressed table T that satisfies the set of templates and is useful for

modelling the class attribute. The first question is whether it is always possible to satisfy the

set of templates by suppressing T . The answer is no if for some 〈Xj , Yj , kj〉, the minimum

CYj (Xj) among all suppressed T is above kj . From Corollary 5.1.2, the most suppressed T ,

where all values for Qi are suppressed to ⊥i for every Qi in ∪Xj , has the minimum CYj (Xj).

If this table does not satisfy the templates, no suppressed T does.

Theorem 5.1.3. Given a set of privacy templates, there exists a suppressed table T that

satisfies the templates if and only if the most suppressed T satisfies the templates.

In Table 5.1, CDischarged({Job, Country}) for the most suppressed T is 5/24. Therefore,

for any k < 5/24, this confidentiality template is not satisfiable by suppressing T .

Definition 5.1.2 (Confidentiality for classification). Given a table T containing only

categorical attributes and a set of confidentiality templates {〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉},
suppress T on the attributes ∪Xj to satisfy the set of confidentiality templates while pre-

serving as much information as possible for classifying the Class attribute.

We can first apply Theorem 5.1.3 to determine if the set of confidentiality templates is

satisfiable by suppressing T . If not, we inform the data publisher and provide the actual

Cy(X) where X → y is violated. With this information, the data publisher could adjust the

confidentiality templates, such as reconsidering whether the threshold k is reasonable. In the

subsequent sections, we assume that the given set of confidentiality templates is satisfiable

by suppressing T .
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5.2 Selection Criterion

A table T can be masked by a sequence of disclosures starting from the most suppressed state

in which each Qi is suppressed to the special value ⊥i. Our method iteratively discloses

a suppressed value selected from the current set of suppressed values, until violating the

confidentiality requirement. Each disclosure increases the information and decreases the

privacy due to Corollary 5.1.2. The key is selecting the “best” disclosure (i.e., the winner)

at each step with both impacts considered.

A disclosure operation discussed in Section 3.2 is valid (with respect to T ) if T satisfies

the confidentiality requirement after the disclosure. A disclosure is beneficial (with respect

to T ) if more than one class is involved in the disclosed records. A disclosure is performed

only if it is both valid and beneficial. Therefore, a disclosure guarantees that every newly

generated x has cy(x) ≤ k.

The winner w is a valid and beneficial candidate from ∪Supi that has the highest Score.

Since disclosing a value v gains information and loses privacy, Score(v) is defined in Equa-

tion 4.1 where InfoGain(v) is defined in Equation 4.5 and PrivLoss(v) is defined as the

average increase of CYj (Xj) over all affected confidentiality template 〈Xj , Yj , kj〉, i.e. those

with att(v) ∈ Xj :

PrivLoss = avg{Cv
Yj

(Xj)− CYj (Xj) | att(v) ∈ Xj}, (5.1)

where CYj (Xj) and Cv
Yj

(Xj) represent the confidence before and after disclosing v. avg{Cv
Yj

(Xj)−
CYj (Xj)} is the average loss of confidence for all Xj that contain the attribute of v.

5.3 The Algorithm: Top-Down Disclosure

Given a table T (in which all values are disclosed) and a set of confidentiality templates

{〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉}, there are two approaches to suppress T . One is iteratively

suppressing domain values in Qi in ∪Xj , called bottom-up suppression. The other one is

to follow the TDR framework in Section 4.3 by first suppressing all domain values in Qi in

∪Xj and then iteratively disclosing the suppressed domain values, called top-down disclosure

(TDD). We take the second approach. At any time in the top-down disclosure, we have a set

of suppressed values, denoted Supi for Qi, and a set of suppressed records, with duplicates

being collapsed into a single record with a count. In each iteration, we disclose one value
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Algorithm 3 Top-Down Disclosure (TDD)
Input: a table T (Q1, · · · , Qm, S1, · · · , Sn, Class) and a set of confidentiality templates.
Output: a suppressed table satisfying the given confidentiality templates.

1: Suppress every value of Qi to ⊥i where Qi ∈ ∪Xj ;
2: Initialize every Supi to contain all domain values of Qi ∈ ∪Xj ;
3: while some v ∈ ∪Supi is valid and beneficial do
4: Find the winner w of highest Score(w) from ∪Supi;
5: Disclose w on T and remove w from ∪Supi;
6: Update Score(v) and the valid and beneficial status for every v in ∪Supi;
7: end while
8: return Suppressed T and ∪Supi;

v chosen from some Supi by doing exactly the opposite of suppressing v, i.e., replacing ⊥i

with v in all suppressed records that currently contain ⊥i and originally contain v in the

input table. This process repeats until no disclosure is possible without violating the set of

templates.

The top-down disclosure approach has several nice features. First, any table produced

by a sequence of disclosures can be produced by a sequence of suppressions. In fact, Supi

on the termination of the algorithm indicates exactly the suppressions on Qi needed to

produce the suppressed table. Second, CY (X) is non-decreasing with respect to disclosures

(Corollary 5.1.2). Therefore, any further disclosure beyond the termination leads to no

solution. Third, compared to the bottom-up suppression starting from domain values, the

top-down disclosure can handle restrictive confidentiality templates with a smaller number

of iterations starting from the most suppressed table. In fact, by walking from a more

suppressed table towards a less suppressed table, we always deal with a small number of

satisfying inferences and never examine the large number of violating inferences in a less

suppressed table. Finally, the data publisher can terminate the disclosure process at any

time and have a table satisfying the confidentiality templates.

Algorithm overview: Our algorithm, called Top-Down Disclosure (TDD), is presented

in Algorithm 3. At each iteration, if some Supi contains a “valid” and “beneficial” candidate

for disclosure, the algorithm chooses the winner candidate w that maximizes the score

function described in Section 5.2. A disclosure is valid if it leads to a table satisfying the

set of confidentiality templates. A disclosure from Supi is beneficial if more than one class

is involved in the records containing ⊥i. Next, the algorithm discloses w, and updates the
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Score and status of every affected candidate. Below, we focus on the three key steps in Line

4 5, and 6:

• Line 4: Find the winner w. This step finds the valid and beneficial candidate w

from ∪Supi that has the highest Score. We discuss the computation of Score in

Section 5.3.1.

• Line 5: Disclose the winner w. This step discloses w in T and removes w from Supi.

We discuss an efficient method for performing a disclosure in Section 5.3.2.

• Line 6: Update the score and status for candidates. This step updates Score(v) and

valid and beneficial status for the candidates v in ∪Supi to reflect the impact of w.

We discuss an efficient update in Section 5.3.3.

Example 5.3.1 (Initial state). Consider the confidentiality templates:

〈{Job, Country}, Discharged, 50%〉,
〈{Job, Child}, Discharged, 50%〉.

Initially, the values of Job, Country, and Child in Table 5.1 are suppressed to ⊥Job, ⊥Country

and ⊥Child, and ∪Supi contains all domain values in Job, Country, and Child. This is the

most suppressed, or the least disclosed, state. To find the winner candidate, we need to

compute Score(v) for every value v in ∪Supi.

5.3.1 Find the Winner (Line 4)

Computing InfoGain(v), Cv
Yj

(Xj), and CYj (Xj) efficiently is a challenge because it involves

count statistics on combinations of attributes. It is inefficient to actually perform the disclo-

sure of v just to compute Cv
Yj

(Xj) because performing disclosures involves record scans. The

key to the scalability of our algorithm is incrementally updating Score(v) in each iteration

using the statistics collected during performing the winner disclosure w. We will present

this update algorithm in Section 5.3.3.

5.3.2 Disclose the Winner (Line 5)

To disclose the winner w, we replace ⊥i with w in the suppressed records in R⊥i
that

originally contain w. So, we need to access the raw records that originally contain w. The
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following data structure facilitates the direct access to all the raw records affected by this

disclosure. The general idea is to partition raw records according to their suppressed records

on the set of attributes ∪Xj .

Definition 5.3.1 (VIP). Value Indexed Partitions (VIP) contains the set of suppressed

records over ∪Xj . Each suppressed record represents the set of raw records from which it

comes, called a partition. Each raw record is in exactly one partition. For each disclosed

value v (including ⊥j) on an attribute in ∪Xj , Pv denotes a partition represented by a

suppressed record containing v. Link[v] links up all partitions Pv’s, with the head stored
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with the value v.

Link[v] provides a direct access to all raw records that those suppressed records contain

the value v. Let ⊥w denote the special value ⊥ for the attribute of the winner w. To disclose

w, we follow Link[⊥w] and find all suppressed records that contain ⊥w, and through these

suppressed records, access the represented raw records. So, we do not have to scan unaffected

data records.

Disclose w in VIP: For each partition P⊥w on Link[⊥w] and its suppressed record r,

create a new suppressed record r′ as a copy of r except that ⊥w is replaced with w, create

the partition Pw for r′ to contains all raw records in P⊥w that contain w, and remove such

records from P⊥w . Link all new Pw’s by the new Link[w], and relink them to the links to

which P⊥w is currently linked, except for Link[⊥w]. Finally, remove w from Supi.

Since one “relinking” operation is required for each attribute Qi ∈ ∪Xj and each new

partition, there are at most m× |Link[⊥w]| “relinking” operations in total for disclosing w,

where m is | ∪Xj | and |Link[⊥w]| is the length of Link[⊥w]. This overhead of maintaining

Link[v] is negligible. The following example illustrates the procedure of disclosing w in VIP.

Example 5.3.2 (VIP). Consider the templates in Example 5.3.1. In Figure 5.1, the left-

most VIP has the most suppressed record 〈⊥Job, ⊥Country, ⊥Child〉 on three links:

Link[⊥Job], Link[⊥Country], Link[⊥Child].

The shaded fields “Total” and “y” contain the number of raw records suppressed (i.e., |P |)
and the number of those records containing Discharged.

Suppose the winner is Clerk. We create a new suppressed record 〈Clerk,⊥Country,⊥Child〉,
as shown in the middle VIP, to represent 4 raw records. We add this new suppressed record

to Link[⊥Country], Link[⊥Child], and to the new Link[Clerk]. Finally, we remove Clerk

from Supi. The next winner, Canada, refines the two partitions on Link[⊥Country], result-

ing in the right-most VIP. The overhead of maintaining these links is proportional to the

length of Link[⊥w] and is negligible.

Count statistics in VIP: To update Score(v) efficiently, we maintain the following

count statistics for each partition P in the VIP: for every class cls and sensitive property y,

(1) |P |, freq(P, cls) and freq(P, y), (2) for each attribute Qi ∈ ∪Xj on which P has the value

⊥i, for every suppressed value v in Supi, freq(P, v), freq(P, {v, cls}) and freq(P, {v, y}).
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These count statistics are stored together with the partition P and, on disclosing w, are

updated as we scan the partitions on Link[⊥w].

We emphasize that this step (Line 5) is the only time that raw records are accessed in

our algorithm. Subsequently, updating Score(v) makes use of the count statistics in the

VIP without accessing raw records.

5.3.3 Update Score and Status (Line 6)

This step updates Score(v) and the valid and beneficial status for candidates v in ∪Supi.

Score(v) is defined by InfoGain(v) and PrivLoss(v). InfoGain(v) is affected only if v

and w are from the same attribute, in other words, v ∈ Supw, where Supw denotes Supi for

the attribute of w. To update InfoGain(v), we compute

a(v) =
∑

freq(P, v),

a(v, cls) =
∑

freq(P, {v, cls}),
a(⊥w) =

∑ |P |,
a(⊥w, cls) =

∑
freq(P, cls),

over the partitions P on Link[⊥w]. This information can be computed in the same scan as

collecting the count statistics in the previous step. Mark v as “beneficial” if there is more

than one class in these partitions.

To update PrivLoss(v), for every 〈Xj , Yj , kj〉, we first update CYj (Xj) using Cw
Yj

(Xj)

that was computed in the previous iteration. Next, we update Cv
Yj

(Xj) for v in ∪Supi. We

need to update Cv
Yj

(Xj) only if both att(v) and att(w) are contained in Xj . We propose the

following CTree structure (similar XTree in Definition 4.3.2) to maintain CYj (Xj).

Definition 5.3.2 (CTree). For each Xj = {Q1, · · · , Qu}, CTreej is a tree of u levels,

where level i > 0 represents the values for Qj . A root-to-leaf path represents an existing x

on Xj in the suppressed T , with a(x) and a(x, y) stored at the leaf node.

Recall that cy(x) = a(x, y)/a(x) and that Cy(X) is max{cy(x)} for all x and CY (X)

is max{Cy(X)} for all y ∈ Y in the CTree. If several confidentiality templates 〈Xj , Yj , kj〉
have the same Xj , they can share a single CTree by keeping a(x, y) separately for different

y.

Update CTrees: On disclosing w, we update all the CTreej such that att(w) ∈ Xj to

reflect the move of records from Link[⊥w] to Link[w]. First, for each leaf node representing
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{x,⊥w}, we create a new root-to-leaf node representing the new {x,w}. Then, for each

partition P on Link[w], if {x,w} is the value on Xj , update the CTreej as follows:

a(x,w) = a(x,w) + |P |
a(x,⊥w) = a(x,⊥w)− |P |
a(x,w, y) = a(x,w, y) + freq(P, y)

a(x,⊥w, y) = a(x,⊥w, y)− freq(P, y).

This involves one scan of the link Link[w] because |P | and freq(P, y) are kept with the P ’s

on this link. Here is an example.

Example 5.3.3 (CTrees). Figure 5.2 shows the initial CTree1 and CTtree2 on the left,

where X1 = {Job, Country} and X2 = {Job, Child}. On disclosing Clerk, {Clerk,⊥Country}
and {Clerk,⊥Child} are created in CTree1 and CTree2. Next, on disclosing Canada,

{Clerk,⊥Country} is refined into {Clerk, Canada} in CTree1, and a new {⊥Job, Canada}
is split from {⊥Job,⊥Country}. For example, to compute a(x) and a(x, y) for the new

x = (⊥Job, Canada), we access all partitions PCanada in one scan of Link[Canada]:

a(⊥Job, Canada) = 1,

a(⊥Job, Canada, y) = 0,

a(⊥Job,⊥Country) = 20− 1 = 19,

a(⊥Job,⊥Country, y) = 4− 0 = 4.

The resulting counts are shown on the right most CTrees.

Update CYj (Xj): On disclosing w, for v ∈ ∪Supi, we update CYj (Xj) only if both

att(v) and att(w) are in Xj . Recall that Cv
Yj

(Xj) is the maximum cy(x) after disclosing v.

Therefore, we can treat v as if it were disclosed, and computing a(x, v), a(x, v, y), a(x,⊥v)

and a(x,⊥v, y) as we did for w. We now follow Link[⊥v] instead of Link[w]. Since we

just compute Cv
Yj

(Xj), not performing the disclosure of v, we do not update the VIP for

v, but just make use of the count statistics in category (2) to compute a(x, v), a(x, v, y),

a(x,⊥v) and a(x,⊥v, y). The computation is on a copy of the CTrees because we do not

actually disclose v on the CTrees. Cv
Yj

(Xj) is the new maximum cy(x) in the copy CTree.

If Cv
Yj

(Xj) ≤ k, mark v as “valid.”
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5.3.4 Analysis

The cost at each iteration can be summarized as two operations. The first operation scans

the partitions on Link[⊥w] for disclosing the winner w in VIP and maintaining some count

statistics. The second operation simply makes use of the count statistics to update the score

and status of every affected candidate without accessing data records. Thus, each iteration

accesses only the records suppressed to ⊥w. The number of iterations is bounded by the

number of distinct values in the attribute Qi ∈ ∪Xj .

5.4 Experimental Evaluation

We evaluated how well the proposed method can preserve the usefulness for classification

for some highly restrictive confidentiality templates. We also evaluated the efficiency of this

method. We adopted three widely used benchmarks, namely Japanese Credit Screening,

Adult, and German Credit Data. Refer to Section 4.4 for their descriptions. We removed all

continuous attributes since our current implementation focuses on categorical attributes. We

used the C4.5 classifier [55] for classification modelling. Other classifiers, such as SVM [70],

may produce lower classification error than the C4.5 does; however, our focus is not on

comparing different classifiers. All experiments were conducted on an Intel Pentium IV

3GHz PC with 1GB RAM.

5.4.1 Data Quality

Confidentiality templates. For each data set, we conducted two sets of experiments,

which differ in the choice of sensitive attributes S1, · · · , Sn and quasi-identifying attributes

Q1, · · · , Qm.

• TopN: We chose the “best” N attributes, denoted TopN, as sensitive attributes S1, · · · ,
Sn. The top most attribute is the attribute at the top of the C4.5 decision tree. Then

we removed this attribute and repeated this process to determine the rank of other at-

tributes. Simply removing S1, · · · , Sn will compromise the classification. The remain-

ing attributes were chosen as the quasi-identifying attributes Q1, · · · , Qm. For each

Si, we choose the 50% least frequent values as sensitive properties. The rationale is

that less frequent properties are more vulnerable to inference attacks. Let {y1, · · · , yp}
denote the union of such properties for all Si. The set of confidentiality templates is
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Threshold k 10% 30% 50% 70% 90%
CRX (Top4) 40 27 15 8 6
Adult (Top4) 1333 786 365 324 318
German (Top6) 496 337 174 162 161

Table 5.3: Number of inferences above k

{〈X, Y = yi, k〉 | 1 ≤ i ≤ p}, or written simply as 〈X, Y = {y1, · · · , yp}, k〉, where X

contains all quasi-identifying attributes. From Theorem 5.1.1, this set of templates is

more restrictive than a set of templates with each being a subset of X (for the same

threshold k).

• RanN: In this experiment, we randomly selected N attributes, denoted RanN, as sen-

sitive attributes S1, · · · , Sn, and selected all remaining attributes as quasi-identifying

attributes. Once S1, · · · , Sn are selected, the confidentiality template 〈X, Y = {y1,

· · · , yp}, k〉 is constructed as explained above. We report the average result for 30

confidentiality templates generated this way.

Errors to measure. The base error (BE) refers to the error for the original data

without suppression. The suppression error (SE) refers to the error for the data suppressed

by our method. The suppression was performed before splitting the data into the training set

and the testing set. SE −BE measures the quality loss due to suppression, the smaller the

better. We also compared with the error caused by simply removing all sensitive attributes,

which is denoted by removal error (RE). RE−SE measures the benefit of suppression over

this simple method, and the larger the better. Finally, RE −BE measures the importance

of sensitive attributes on classification. SE and RE depend on the confidentiality template,

whereas BE does not. All errors are collected on the testing set.

Data set: Japanese Credit Screening

The Japanese Credit Screening data set, also known as CRX, is based on credit card appli-

cation. We used all the 9 categorical attributes and a binary class attribute. We consider

the four confidentiality requirements: Top1, Top2, Top3 and Top4. Top4 attributes are A9,

A10, A7, A6 in that order. BE = 15.4%. Table 5.3 shows the number of inferences above

different confidence thresholds k in the original data. For example, the number of inferences

that have a confidence larger than 90% is 6 in CRX for Top4.
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Figure 5.3: CRX

Figure 5.3(a) depicts SE and RE for TopN averaged over k = 50%, 70%, 90%. The

dashed line represents BE. We summarize the results as follows:

1. Small SE−BE. SE spans narrowly between 15.4% and 16.5% across different TopN.

SE −BE is less than 1.1% for all sets of confidentiality templates considered. These

results support that inference limiting and accurate classification can coexist. For

example, from Table 5.3, 15 inferences with a confidence higher than 50% were elimi-

nated for Top4. Often, different x’s share some common values, and suppressing a few

common values simultaneously eliminates multiple inferences. Our method is biased

to suppress such common values because PrivLoss in Score function minimizes the

average increase of confidence CY (X) on all templates.

2. Large RE − SE. The minimum RE − SE is 10.1% for Top1, and the maximum

RE−SE is 31.3% for Top4. These large gaps show a significant benefit of suppression

over the removal of sensitive attributes.

3. Small variance of SE. For all templates tested, the variance of SE is less than 0.6%,

suggesting that suppression is robust. It also suggests that protecting more sensitive

attributes (i.e., a larger N in TopN) or having a lower threshold k does not necessarily

compromise the classification quality. In fact, as N increases, more suppression is

performed on the quasi-identifying attributes, but at the same time, more sensitive
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attributes can be used for classification.

4. Larger benefits for larger N . Having more sensitive attributes (i.e., a larger N in TopN)

implies that the removal of these attributes has a larger impact to classification. This

is reflected by the increasing RE in Figure 5.3(a).

Let us take a closer look at the suppressed data for Top4 with k = 70%. Some values

of attributes A4 and A5 are suppressed, and the entire A13 is suppressed. Despite such

vigorous suppression, SE = 15.4% is equal to BE. In fact, there exists multiple classification

structures in the data. When suppression eliminates some of them, other structures emerge

to take over the classification. Our method makes use of such “rooms” to eliminate sensitive

inferences while preserving the quality of classification.

Figure 5.3(b) depicts SE on 30 sets of RanN, averaged over the same k as in the previous

experiment. Again, SE spans narrowly between 15.4% and 16.5%, i.e., no more than 1.1%

above BE. RE for RanN is lower than RE for TopN because some randomly selected

sensitive attributes are not important and their removal has less impact on classification.

The algorithm took less than 2 seconds, including disk I/O operations, for all the above

experiments.

Data set: Adult

The Adult data set is a census data previously used in [8][33][77]. There are 8 categorical

attributes and a binary class attribute representing the income levels ≤50K or >50K. There

are 30,162 and 15,060 records without missing values for the pre-split training and testing

respectively. Table 4.5 describes each categorical attribute. Top4 attributes are Ms, Re,

Ed, Sx in that order. BE = 17.6%.

Figure 5.4(a) shows the errors for TopN, averaged over k = 10%, 30%, 50%, 70%, 90%.

We summarize the results as follows:

1. SE −BE is less than 0.8% in all cases. This is amazing considering that hundreds of

inferences were eliminated according to Table 5.3.

2. The largest RE − SE is approximately 6% for Top4.

3. The difference between maximum and minimum SE is less than 1%.
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Figure 5.4: Adult

4. For Top1, RE is slightly lower than SE, implying that removing the top attribute

does not affect the classification. However, as more sensitive attributes were removed

(i.e., Top2, Top3 and Top4), RE picked up.

Figure 5.4(b) depicts a similar result for the 30 sets of RanN, but with lower RE’s. The

experiments on both TopN and RanN strongly suggest that the suppression approach pre-

serves the quality of classification consistently for various privacy templates. Our algorithm

spent at most 14 seconds for all experiments on Adult, of which approximately 10 seconds

were spent on suppressing the 45,222 data records.

Data set: German Credit Data

The German Credit Data, or simply German, has 13 categorical attributes and a binary class

attribute. Table 4.6 describes each categorical attribute. The Top6 attributes in German

are Ag, Ch, Sa, Is, Lp, Db in that order. BE = 28.8%. Like the Adult data, German also

has many sensitive inferences as shown in Table 5.3.

Figure 5.5(a) shows the SE and RE averaged over k = 30%, 50%, 70%, 90%. The

benefit RE − SE is approximately 4.3% on average. Interestingly, RE almost stays flat at

36% for Top1 to Top6. To explain this, we looked into the data set and found that the Top2

attributes, i.e., A and Ch, play a dominant role in modelling the class attribute. Removing

any one (or both) of them increases the error by approximately 7% comparing with BE.
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Figure 5.5: German

Thus, after removing the top one attribute, removing the next top five attributes does not

degrade the classification quality much.

SE stays close to RE for Top1 and then drops to approximately 31% for Top2 to Top6.

This 5% drop of SE from Top1 to Top2 is due to the fact that many values of the second

top attribute Ch are suppressed in Top1, but the top two attributes Ag and Ch are not

suppressed in Top2.

Figure 5.5(b) depicts the results for 30 sets of RanN. Unlike the TopN case, RE increases

gradually with respect to the number N of sensitive attributes. This is because the impor-

tance of Ag and Ch has been averaged out in these 30 randomly constructed templates.

Our algorithm spent less than 3 seconds for all experiments conducted on German.

5.4.2 Efficiency and Scalability

The key to scalability of our method is maintaining count statistics instead of scanning raw

data records. The purpose of this experiment is to see how scalable our method is for large

data sets. We evaluated the scalability on an expanded version of Adult. We first combined

the training and testing sets, giving 45,222 records. Then for each original record r in the

combined set, we created α − 1 “variations” of r, where α > 1 is the expansion scale. For

each variation of r, we randomly and uniformly selected z attributes from ∪Xj , selected

some random values for these z attributes, and inherited the values of r on the remaining
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Figure 5.6: Scalability (k=90%)

attributes, including the class and sensitive attributes. Together with original records, the

expanded data set has α× 45, 222 records.

Figure 5.6(a) depicts the runtime of our suppression method for 200 thousand to 1

million data records based on the confidentiality templates 〈X,Y = {y1, · · · , yp}, 90%〉,
where the set of sensitive properties {y1, · · · , yp} is the set of 50% least frequent values in

the Top1 attribute Ms, and X contains the other 7 attributes. This is one of the most

time consuming settings in the case of single confidentiality template because of the largest

number of disclosure candidates to consider at each iteration, and a larger k requires more

iterations to reach a solution. Our method spent 192 seconds to suppress 1 million records, of

which 150 seconds were spent on suppression, and the rest was spent on disk I/O operations.

We also tried k = 100%. Our method took a total of 296 seconds to disclose all values due

to the increased number of partitions and number of x’s. However, this is not a typical case

because typically we want to eliminate inferences with a confidence higher than some k that

is below 100%.

We further extended the scalability experiment to privacy templates that have multiple

confidentiality templates. The number of different Xj ’s determines the number of CTrees,

and more Xj ’s means more maintenance cost of CTrees. We determined the number of Xj ’s

by uniformly and randomly drawing a number between 3 and 6, and the length of X between

2 and 5. For each Xj , we randomly selected the attributes from the 7 remaining attributes,
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and discarded the repeating ones. All Xj ’s in the same set of confidentiality templates

have the same length and same threshold k = 90%. For example, a set of confidentiality

templates having three Xj ’s of length 2 is

{〈{Ed,Nc}, {y1, · · · , yp}, 90%〉,
〈{Ed, Oc}, {y1, · · · , yp}, 90%〉,
〈{Ra,Wc}, {y1, · · · , yp}, 90%〉}.

{y1, · · · , yp} is the same as above.

Figure 5.6(b) depicts the average runtime over 30 sets of confidentiality templates gener-

ated as described above. Our method spent 318 seconds to suppress 1 million records. Out

of the 318 seconds, 276 seconds were spent on suppression. With k = 100%, our method

spent 412 seconds on suppression. Compared to the case of a single confidentiality template,

more time was required for a requirement with multiple confidentiality templates because

it has to maintain one CTree for each distinct Xj .

5.5 Extensions

To bring out the main ideas, our current implementation has assumed that the table fits

in memory. Often, this assumption is valid because the table can be first compressed by

removing irrelevant attributes and collapsing duplicates (as in Table 5.1). If the table does

not fit in memory, we can keep the VIP in the memory but store the data partitions on disk.

We can also use the memory to keep those partitions smaller than the page size to avoid

page fragmentation. In addition, partitions that cannot be further refined can be discarded

and only some statistics for them need to be kept. This likely applies to the small partitions

kept in memory, therefore, the memory demand is unlikely to build up.

So far in this chapter, we have considered only categorical attributes without taxonomy

trees. Our approach is extendable to generalize categorical attributes with taxonomy trees

for achieving a confidentiality requirement. Chapter 6 will discuss this operation in further

details. Our approach is also extendable to suppress continuous values by the means of

discretization. For example, we can replace specific age values from 51 to 55 with a less

specific interval [51-55]. This method does not require a priori discretized taxonomy for

a continuous attribute, but dynamically obtains one in the top-down disclosure process as

described in Section 3.2. To extend Theorem 5.1.2 (therefore, Corollary 5.1.2) to cover

〈X, Y, k〉 in which X contains continuous attributes as well, we can replace the disclosure
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⊥′i ⇒ {⊥i, v} with v ⇒ {v1, v2} in the proof, and the rest requires little changes.

We have considered classification as the use of the released data where the information

gain wrt the class attribute is used as the information utility InfoGain. Our approach can

be extended to other information utility by substituting InfoGain with a proper measure.

For example, if the goal is to minimize the “syntax distortion” to the data [59], we can

regard each suppression of a domain value v in a record as one unit of distortion and define

InfoGain(v) to be the number of records that contain v. The rest of the algorithm requires

little changes.

5.6 Summary

We studied the problem of eliminating the sensitive inferences that are made possible by data

mining abilities, while preserving the classification value of the data. A sensitive inference

has a high confidence in linking a group of individual record holders to sensitive properties.

We eliminated sensitive inferences by letting the user specify the confidentiality templates

and maximum confidence for such inferences. We used suppression of domain values as a

way to achieve this goal. We presented a top-down disclosure algorithm that iteratively

searches for a better suppression and prunes the search whenever no better alternative is

possible. Experiments on real life data sets showed that the proposed approach preserves the

information for classification modelling even for very restrictive confidentiality requirements.



Chapter 6

Anonymizing Sequential Releases

The work in Chapter 4 and Chapter 5, anonymity template and confidentiality template,

addresses the problem of reducing the risk of identifying individual record holders and in-

ferring sensitive property in a person-specific table. A set of quasi-identifying attributes X

is generalized to a less precise representation so that each partition grouped by X contains

at least k records (i.e., record holders) or the confidence for inferring a sensitive property

from X is bounded within k. In this notion, X is restricted to the current table, and the

database is made anonymous to itself. In most scenarios, however, related data were released

previously: an organization makes a new release as new information becomes available, re-

leases a separate view for each data sharing purpose (such as classifying a different target

variable [33][77]), or makes separate releases for personally-identifiable data (e.g., names)

and sensitive data (e.g., DNA sequences) [48]. In such scenarios, X can be a combina-

tion of attributes from several releases, and the database must be made anonymous to the

combination of all releases thus far. The example below illustrates this scenario.

Example 6.0.1 (Join attack). Consider the data in Table 6.1. Pid is the person identifier

and is included only for discussion, not for release. Suppose the data publisher has previously

released T2 and now wants to release T1 for classification analysis of the Class column.

Essentially T1 and T2 are two projection views of some patient records. The data publisher

does not want Name to be linked to Disease in the join of the two releases; in other words,

the join should be k-anonymous on {Name,Disease}. Below are several observations that

motivate our approach.

1. Join sharpens identification: after the join, the attacker can uniquely identify the

79
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Table 6.1: The join of T1 and T2

T1

Pid Name Job Class
1 Alice Banker c1
2 Alice Banker c1
3 Bob Clerk c2
4 Bob Driver c3
5 Cathy Engineer c4

T2

Pid Job Disease
1 Banker Cancer
2 Banker Cancer
3 Clerk HIV
4 Driver Cancer
5 Engineer HIV

The join on T1.Job = T2.Job
Pid Name Job Disease Class
1 Alice Banker Cancer c1
2 Alice Banker Cancer c1
3 Bob Clerk HIV c2
4 Bob Driver Cancer c3
5 Cathy Engineer HIV c4
- Alice Banker Cancer c1
- Alice Banker Cancer c1

individual patients in the {Bob, HIV } group through the combination {Name, Disease}
because this group has size 1. When T1 and T2 are examined separately, both Bob

group and HIV group have size 2.

2. Join weakens identification: after the join, the {Alice, Cancer} group has size 4

because the records for different patients are matched (i.e., the last two records in the

join table). When T1 and T2 are examined separately, both Alice group and Cancer

group have smaller size. In the database terminology, the join is lossy. Since the join

attack depends on matching the records for the same patient, a lossy join can be used

to combat the join attack.

3. Join enables inferences across tables: the join reveals the inference Alice →
Cancer with 100% confidence for the individual patients in the Alice group.

This example illustrates a scenario of sequential release: T1 was unknown when T2 was

released, and T2, once released, cannot be modified when T1 is considered for release. This

scenario is different from the view release in the literature [39][51][90] where both T2 and T1

are a part of a view and can be modified before the release, which means fewer constraints

to satisfy a privacy and information requirement. In the sequential release, each release has
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its own information need and the join that enables a global identifier should be prevented.

In the view release, however, all tables in the view serve the information need collectively,

possibly through the join of all tables.

One solution, suggested in [59], is to k-anonymize the current release T1 on quasi-

identifier X that is the set of all join attributes. Since a future release may contain any

attribute in T1, X essentially needs to contain all attributes in T1. Another solution, sug-

gested in [66], is generalizing T1 based on the previous T2 to ensure that no value more specific

than it appears in T2 would be released in T1. Both solutions suffer from monotonically

distorting the data in a later release. The third solution is releasing a “complete” cohort

where all potential releases are anonymized at one time, after which no additional mecha-

nism is required. This solution requires predicting future releases. The “under-prediction”

means no room for additional releases and the “over-prediction” means unnecessary data

distortion. Also, this solution does not accommodate the new data added at a later time.

The contributions of this chapter can be summarized as follows. We consider the se-

quential anonymization of the current release T1 in the presence of a previous release T2,

assuming that T1 and T2 are projections of the same underlying table. This assumption

holds in all the scenarios that motivate this work: release new attributes, release a separate

set of columns for each data request, or make separate releases for personally-identifiable

columns and sensitive columns. The release of T1 must satisfy a given information require-

ment and privacy requirement. The information requirement could include such criteria as

minimum classification error [8][33][77] in Section 4.2 and minimum data distortion [56][59].

The privacy requirement states that, even if the attacker joins T1 with T2, he/she will not

succeed in linking individual record holders to sensitive properties. We formalize this re-

quirement into limiting the linking between two attribute sets X and Y over the join of

T1 and T2. This unified privacy notion, called privacy template, generalizes the anonymity

template in Chapter 4 and confidentiality template in Chapter 5. A formal definition will

be given in Section 6.1.

Our basic idea is generalizing the current release T1 so that the join with the previous

release T2 becomes lossy enough to disorient the attacker. Essentially, a lossy join hides the

true join relationship to cripple a global quasi-identifier. We first show that the sequential

anonymization subsumes the anonymity requirement (or k-anonymization) in Chapter 4,

thus the optimal solution is NP -hard. We present a greedy method for finding a minimally

generalized T1. To ensure the minimal generalization, the lossy join responds dynamically to
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each generalization step. Therefore, one challenge is checking the privacy violation over such

dynamic join because a lossy join can be extremely large. Another challenge is pruning,

as early as possible, unpromising generalization steps that lead to privacy violation. To

address these challenges, we present a top-down approach to progressively specialize T1

starting from the most generalized state. It checks the privacy violation without executing

the join and prunes unpromising specialization based on a proven monotonicity of privacy.

We demonstrate the usefulness of this approach on real life data sets. Finally, we discuss

the extension to more than one previous release.

The rest of the chapter is organized as follows. Section 6.1 defines the sequential

anonymization problem. Section 6.2 discusses the selection criterion for the top-down spe-

cialization process. Section 6.3 presents the top-down specialization. Section 6.4 evaluates

the effectiveness of the proposed approach. Section 6.5 discusses several extensions. Section

6.6 summarizes this chapter.

6.1 Problem Definition

6.1.1 A Unified Privacy Template

We extend the privacy notions in Section 4.1 and Section 5.1 from the single release model to

the sequential release model. Consider the anonymity template 〈X,Y, k〉 in Definition 4.1.1.

One way to look at the anonymity template is that Y serves as the “reference point” with

respect to which the anonymity is measured. k-anonymity assumes that Y is a key. The

next example shows the usefulness of anonymity template 〈X, Y, k〉 where Y is not a key in

T and illustrates that k-anonymity fails to provide the required degree of anonymity.

Example 6.1.1 (Y is not a key). Consider the patient table

Inpatient(Pid, Job, Sex, Age,Disease).

A record in the table represents that a patient identified by Pid has Job, Sex, Age, and

Disease. In general, a patient can have several diseases, thus several records. Since a

quasi-identifier X = {Job, Sex,Age} is not a key in the table, the k-anonymity on X fails to

ensure that each value on X is linked to at least k (distinct) patients. For example, if each

patient has at least 3 diseases, it is possible that the k records matching a value on X may

involve no more than k/3 patients. With anonymity template 〈X,Y, k〉, the anonymity can
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be specified with respect to patients by letting X = {Job, Sex, Age} and Y = {Pid}, that

is, each X group must be linked to at least k distinct values on Pid. If X = {Job, Sex,Age}
and Y = {Disease}, each X group is required to be linked to at least k distinct diseases.

Being linked to k patients (record holders) or diseases does not imply that the probability

of being linked to any of them is 1/k if some patient or disease occurs more frequently than

others. Thus a large k does not necessarily limit the linking probability. The confidentiality

template 〈X, Y, k〉 in Definition 5.1.1 addresses this issue.

When no distinction is necessary, we use the term privacy template 〈X, Y, k〉 to refer to

either anonymity template in Definition 4.1.1 or confidentiality template in Definition 5.1.1,

and use the term privacy requirement to refer to either anonymity requirement or confiden-

tiality requirement. From Corollary 4.1.1 and Corollary 5.1.1, the following corollary can

be easily verified.

Corollary 6.1.1. Assume that X ⊆ X ′ and Y ′ ⊆ Y . For the same threshold k, if T satisfies

privacy template 〈X ′, Y ′, k〉, then T also satisfies privacy template 〈X,Y, k〉.

6.1.2 Generalization and Specialization

To satisfy a privacy template 〈X, Y, k〉, our approach is generalizing X while fixing the

reference point Y . We assume that, for each categorical attribute in X, there is a pre-

determined taxonomy tree of values where leaf nodes represent domain values and a parent

node is a generalization of child nodes. A generalized table can be obtained by a sequence of

specializations starting from the most generalized table. The operation of specialization on

categorical and continuous attributes is described in Section 3.2. More details on information

utility will be discussed in Section 6.2.

6.1.3 Sequential Anonymization

Consider a previously released table T2 and the current table T1, where T2 and T1 are

projections of the same underlying table and contain some common attributes. T2 may have

been generalized. The goal is to generalize T1 to satisfy a given privacy template 〈X, Y, k〉
where X and Y may contain attributes from both T1 and T2. To preserve information, T1’s

generalization is not necessarily based on T2, that is, T1 may contain values more specific

than in T2. Given T1 and T2, the attacker may apply prior knowledge to match the records
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in T1 and T2. Entity matching has been studied in database, data mining, AI and Web

communities for information integration, natural language processing and Semantic Web.

See [62] for a list of works. It is impractical to consider a priori every possible way of

matching. This research work primarily considers the matching based on the following prior

knowledge available to both the data publisher and the attacker: the schema information of

T1 and T2, the taxonomies for categorical attributes, and the following inclusion-exclusion

principle for matching the records. Assume that t1 ∈ T1 and t2 ∈ T2.

• Consistency predicate: For every common categorical attribute C, t1.C matches t2.C

if they are on the same generalization path in the taxonomy tree for C. Intuitively,

this says that t1.C and t2.C can possibly be generalized from the same domain value.

For example, Male matches Single Male. This predicate is implicit in the taxonomies

for categorical attributes.

• Inconsistency predicate: For two distinct categorical attributes T1.C and T2.D, t1.C

matches t2.D only if t1.C and t2.D are not semantically inconsistent according to

“common sense” This predicate excludes impossible matches. If not specified, “not

semantically inconsistent” is assumed. If two values are semantically inconsistent,

so are their specialized values. For example, Male and Pregnant are semantically

inconsistent, so are Married Male and 6 Month Pregnant.

We do not consider continuous attributes for the above predicates because their tax-

onomies may be generated differently for T1 and T2. Both the data publisher and the

attacker use these predicates to match records from T1 and T2. The data publisher can

“catch up with” the attacker by incorporating the attacker’s knowledge into such “common

sense.” We assume that a match function tests whether (t1, t2) is a match. (t1, t2) is a match

if both predicates hold. The join of T1 and T2 is a table on att(T1) ∪ att(T2) that contains

all matches (t1, t2). Our method is not limited to a specific type of database join operation.

The join attributes refer to all attributes that occur in either predicates. Note that every

common attribute C has two columns T1.C and T2.C in the join. Continuous attributes can

be used as join attributes if they are first discretized into intervals. Continuous attributes

not used for the join can be discretized dynamically in the anonymization process.

Observation 6.1.1. (Join preserving) If (t1, t2) is a match and if t′1 is a generalization of

t1, (t′1, t2) is a match. (Join relaxing) If (t1, t2) is not a match and if t′1 is a generalization of
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t1 on some join attribute A, (t′1, t2) is a match if and only if t′1.A and t2.A are on the same

generalization path and t′1.A is not semantically inconsistent with any value in t2.

Consider a privacy template 〈X, Y, k〉. We generalize T1 on the attributes X ∩ att(T1).

Corollary 6.1.1 implies that including more attributes in X makes the privacy requirement

stronger. Observation 6.1.1 implies that including more join attributes in X (for general-

ization) makes the join more lossy. Therefore, from the privacy point of view it is a good

practice to include all join attributes in X for generalization. Moreover, if X contains a

common attribute J from T1 and T2, under our matching predicate, one of T1.J and T2.J

could be more specific (so reveal more information) than the other. To ensure privacy, X

should contain both T1.J and T2.J in the privacy specification.

Definition 6.1.1 (Sequential anonymization). The data publisher has previously re-

leased a table T2 and wants to release the next table T1, where T2 and T1 are projections of

the same underlying table and contain some common attributes. The data publisher wants

to ensure the satisfaction of a privacy template 〈X, Y, k〉 on the join of T1 and T2. The

sequential anonymization is to generalize T1 on X ∩ att(T1) so that the join of T1 and T2

satisfies the privacy template 〈X,Y, k〉 and T1 preserves as much information as possible

(for classifying the Class attribute).

Theorem 6.1.1. The sequential anonymization is at least as hard as the k-anonymization

problem.

Proof. Recall that Aggarwal et al. [3] and Meyerson and Williams [50] already showed that

finding an optimal k-anonymization is NP -hard. The k-anonymization of T1 on the quasi-

identifier is the special case of sequential anonymization with anonymity template 〈X, Y, k〉,
where X is the quasi-identifier and Y is a common key and the only join attribute of T1

and T2. In this case, the join trivially appends the attributes of T2 to T1 according to the

common key, after which the appended attributes are ignored.

Example 6.1.2 (Sequential release). Consider the two tables in Table 6.2. Europeans

(i.e., UK and FR) have the class label Y es and US has the class label No. Suppose that the

data publisher has previously released the patient data (T2) and now wants to release the

medical test data (T1) for classification analysis on Class, but wants to prevent any inference

of the value HIV in T1 using the combination {Job, PoB,Zip} in the join of T1 and T2 where
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Table 6.2: The raw tables
The medical test data

Test Job PoB Sex Class
HIV Banker UK M Yes
HIV Banker UK M Yes
Eye Banker UK F Yes
Eye Clerk FR F Yes

Allergy Driver US M No
Allergy Engineer US M No
Allergy Engineer FR M Yes
Allergy Engineer FR M Yes

The patient data
PoB Sex Zip
UK M Z3
UK M Z3
UK F Z5
FR F Z5
FR M Z3
FR M Z3
US M Z3

PoB stands of place of birth. This requirement is specified as the confidentiality template,

where

X = {Job, PoB, Zip} and Y = {y = HIV }.

Here PoB in X refers to {T1.PoB, T2.PoB} since PoB is a common attribute. In the join,

the inference from X to HIV is Cy(X) = 100% because all 4 joined records containing

{Banker, UK, Z3} contain the value HIV . If the data publisher can tolerate at most 90%

confidence, T1 without modification is not safe for release.

6.2 Selection Criterion

To generalize T1, we will specialize T1 starting from the most generalized state. Score(v)

evaluates the “goodness” of a specialization v for preserving privacy and information.

Each specialization gains some “information,” InfoGain(v), and loses some “privacy,”

PrivLoss(v). We choose the specialization that maximizes the trade-off between the gain of

information and the loss of privacy, shown in Equation 4.1 where InfoGain(v) is measured

on T1 whereas PrivLoss(v) is measured on the join of T1 and T2.

6.2.1 The Score Function

Consider a specialization v ⇒ {v1, · · · , vz}. For a continuous attribute, c = 2, and v1 and

v2 represent the binary split of the interval v that maximizes InfoGain(v) as discussed in

Section 4.2. Before the specialization, T1[v] denotes the set of generalized records in T1 that
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contain v. After the specialization, T1[vi] denotes the set of records in T1 that contain vi,

1 ≤ i ≤ z.

The choice of InfoGain(v) and PrivLoss(v) depends on the information requirement

and privacy requirement. If T1 is released for classification on a specified Class column,

InfoGain(v) could be the reduction of the class entropy [55], defined by Equation 4.2.

The computation depends only on the class frequency and some count statistics of v and

vi in T1[v] and T1[v1] ∪ · · · ∪ T1[vz]. Another choice of InfoGain(v) could be the notion

of distortion [59]. If generalizing a child value vi to the parent value v costs one unit of

distortion, the information gained by the specialization v ⇒ {v1, · · · , vz} is

InfoGain(v) = |T1[v]|. (6.1)

The third choice can be the discernibility [63].

For privacy template 〈X, Y, k〉, PrivLoss(v) is measured by the decrease of AY (X) or

the increase of CY (X) due to the specialization of v: AY (X)−Av
Y (X) for anonymity tem-

plate, and Cv
Y (X)−CY (X) for confidentiality template, where AY (X) and Av

Y (X) represent

the anonymity before and after specializing v respectively, and CY (X) and Cv
Y (X) represent

the confidence before and after specializing v respectively. Computing PrivLoss(v) involves

the count statistics about X and Y over the join of T1 and T2, before and after the special-

ization of v, which can be expensive. The issue of efficient implementation is addressed in

Section 6.3.1 and Section 6.3.2.

6.2.2 Monotonicity of Privacy

To generalize T1, we will specialize T1 starting from the most generalized state. A main

reason for this top-down specialization approach is the following anti-monotonicity of the

privacy with respect to specialization: if a privacy template 〈X, Y, k〉 is violated, it remains

violated after a specialization. Therefore, we can stop further specialization whenever the

privacy template 〈X, Y, k〉 is violated for the first time. This is a highly desirable property

for pruning unpromising specialization. We first show this property for a single table.

Theorem 6.2.1. On a single table, the privacy of a template 〈X, Y, k〉 is anti-monotone

wrt specialization on X.

Proof. For an anonymity template 〈X, Y, k〉, it suffices to observe that a specialization on

X always reduces the set of records that contain a X value, therefore, reduces the set of
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Y values that co-occur with a X value. For a confidentiality template 〈X, Y, k〉, suppose

that a specialization v ⇒ {v1, · · · , vm} transforms a value x on X to the specialized values

x1, · · · , xm on X. Following an idea in Section 5.1, if cy(xi) < cy(x) for some xi, there must

exist some xj such that cy(xj) > cy(x) (otherwise, cy(x) < cy(xi)). Hence, the specialization

does not reduce CY (X).

On the join of T1 and T2, in general, the anonymity for an anonymity template 〈X, Y, k〉
is not anti-monotone wrt a specialization on X ∩ att(T1). To see this, let T1(C,D) =

{c1d3, c2d} and T2(D,Y ) = {d3y3, d3y2, d1y1}, where ci, di, yi are domain values and d is

a generalized value of d1 and d2. The join based on D contains 3 matches (c1d3, d3y2),

(c1d3, d3y3), (c2d, d1y1), and AY (X) = AY (c2dd1) = 1, where X = {C, T1.D, T2.D}. After

specializing the record c2d in T1 into c2d2, the join contains only two matches (c1d3, d3y2) and

(c1d3, d3y3), and AY (X) = aY (c1d3d3) = 2. Thus, AY (X) increases after the specialization.

The above situation arises because the specialized record c2d2 matches no record in T2

or becomes dangling. However, this situation does not arise for the T1 and T2 encountered

in our sequential anonymization. We say that two tables are population-related if every

record in each table has at least one matching record in the other table. Essentially, this

property says that T1 and T2 are about the same “population” and there is no dangling

record. Clearly, if T1 and T2 are projections of the same underlying table, as assumed

in our problem setting, T1 and T2 are population-related. Observation 6.1.1 implies that

generalizing T1 preserves the population-relatedness.

Observation 6.2.1. If T1 and T2 are population-related, so are they after generalizing T1.

Lemma 6.2.1. If T1 and T2 are population-related, AY (X) does not increase after a spe-

cialization of T1 on X ∩ att(T1).

Proof. As in the first part of Theorem 6.2.1, a specialization always reduces the set of Y

values that co-occur with X values. From Observation 6.2.1, X values are specialized but

not dropped in the specialized join. Therefore, the minimization for AY (X) is over a set of

values in which each value is only reduced, but not dropped.

Now, we consider confidentiality template 〈X, Y, k〉 on the join of T1 and T2. It is not

immediately clear how a specialization on X ∩ att(T1) will affect CY (X) because the spe-

cialization will reduce the matches, therefore, both a(x, y) and a(x) in cy(x) = a(x, y)/a(x).

The next lemma shows that CY (X) does not decrease after a specialization on X ∩ att(T1).
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Lemma 6.2.2. If Y contains attributes from T1 or T2, but not from both, CY (X) does not

decrease after a specialization of T1 on the attributes X ∩ att(T1).

Proof. Theorem 6.2.1 has covered the specialization on a non-join attribute. So we assume

that the specialization is on a join attribute in X1 = X ∩att(T1), in particular, it specializes

a value x1 on X1 into x11, · · · , x1c. Let Ri be the set of T1 records containing x1i after

the specialization, 1 ≤ i ≤ c. We consider only non-empty Ri’s. From Observation 6.2.1,

some records in T2 will match the records in Ri. Let x2i be a value on X2 = X ∩ att(T2)

in these matching records and let Si be the set of records in T2 containing x2i. Note that

|Ri| 6= 0 and |Si| 6= 0. Let R = R1 ∪ · · · ∪ Rc. |R| =
∑

j |Rj |. Without loss of generality,

assume that cy(x11x21) ≥ cy(x1ix2i), where 1 ≤ i ≤ c and y is a Y value. We claim

that cy(x1x2i) ≤ cy(x11x21), which implies that the specialization does not decrease Cy(X),

therefore, CY (X). The intuition is that of Theorem 6.2.1 and the insight that the join

preserves the relative frequency of y in all matching records. Let us consider two cases,

depending on whether y is in T1 or T2.

Case 1 : y is in T1. Let βi be the percentage of the records containing y in Ri. Since all

records in Ri match all records in Si,

cy(x1ix2i) = |Ri|βi|Si|
|Ri||Si| = βi.

From cy(x11x21) ≥ cy(x1ix2i), we have β1 ≥ βi, 1 < i ≤ z. From the join preserving property

in Observation 6.1.1, all records in R match all records in Si. So we have

cy(x1x2i) =
(
∑

j |Rj |βj)|Si|
|R||Si| =

∑
j |Rj |βj

|R| ≤ β1
∑

j |Rj |
|R| = β1 = cy(x11x21).

Case 2 : y is in T2. Let βi be the percentage of records containing y in Si. Exactly as in

Case 1, we can show cy(x1ix2i) = βi and β1 ≥ βi, where 1 < i ≤ c, all records in R match

all records in Si. Now,

cy(x1x2i) = |R||Si|βi

|R||Si| = βi ≤ β1 = cy(x11x21).

Corollary 6.2.1. The anonymity AY (X) for a template 〈X, Y, k〉 on the join of T1 and T2 is

anti-monotone wrt a specialization of T1 on X ∩att(T1). Assume that Y contains attributes

from either T1 or T2, but not both. The confidence CY (X) for a template 〈X, Y, k〉 on the

join of T1 and T2 is anti-monotone wrt a specialization of T1 on X ∩ att(T1).
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Corollary 6.2.2. Let T1, T2 and privacy template 〈X,Y, k〉 be as in Corollary 6.2.1. There

exists a generalized T1 that satisfies the privacy template 〈X,Y, k〉 if and only if the most

generalized T1 does.

Remarks. Lemma 6.2.1 and Lemma 6.2.2 can be extended to several previous releases

T2, · · · , Tp after the join is so extended. Thus, the anti-monotonicity of privacy template

holds for one or more previous releases. Our extension in Section 6.5 makes use of this

observation.

6.3 The Algorithm: Top-Down Specialization for Sequential

Anonymization

We present the algorithm for generalizing T1 to satisfy the given privacy template 〈X, Y, k〉
on the join of T1 and T2. We can first apply Corollary 6.2.2 to test if this is possible, and

below we assume it is. Let Xi denote X ∩ att(Ti), Yi denote Y ∩ att(Ti), and Ji denote the

join attributes in Ti, where i = 1, 2.

Algorithm overview: The algorithm, called Top-Down Specialization for Sequential

Anonymization (TDSSA), is given in Algorithm 4. The input consists of T1, T2, the privacy

template 〈X,Y, k〉, and the taxonomy tree for each categorical attribute in X1. Starting

from the most generalized T1, the algorithm iteratively specializes the attributes Ai in

X1. T1 contains the current set of generalized records and Cuti contains the current set of

generalized values for Ai. In each iteration, if some Cuti contains a “valid” candidate for

specialization, it chooses the winner w that maximizes Score. A candidate is valid if the join

specialized by the candidate does not violate the privacy requirement. The algorithm then

updates Score(v) and status for the candidates v in ∪Cuti. This process is repeated until

there is no more valid candidate. On termination, Corollary 6.2.1 implies that a further

specialization produces no solution, so T1 is a maximally specialized state satisfying the

given privacy requirement.

Below, we focus on the three key steps in Line 4, 5, and 6.

Challenges. Though Algorithm 4 has a simple high level structure, several computa-

tional challenges must be resolved for an efficient implementation. First, each specialization

of the winner w affects the matching of join, hence, the checking of the privacy requirement
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Algorithm 4 Top-Down Specialization for Sequential Anonymization (TDSSA)
Input: T1, T2, a privacy template 〈X,Y, k〉, a taxonomy tree for each categorical attribute
in X1.
Output: a generalized T1 satisfying the given privacy template.

1: Generalize every value of Ai to the top most value ANYi where Ai ∈ X1;
2: Initialize Cuti of Ai to include the top most value ANYi where Ai ∈ X1;
3: while some v ∈ ∪Cuti is valid do
4: Find the winner w of highest Score(w) from ∪Cuti;
5: Specialize w on T1 and remove w from ∪Cuti;
6: Update Score(v) and the valid status forv in ∪Cuti;
7: end while
8: return Generalized T1 and ∪Cuti;

(i.e., the status on Line 6). It is extremely expensive to rejoin the two tables for each spe-

cialization performed. Second, it is inefficient to “perform” every candidate specialization

v just to update Score(v) on Line 6 (note that Av
Y (X) and Cv

Y (X) are defined for the join

assuming the specialization of v is performed). Moreover, materializing the join is imprac-

tical because a lossy join can be very large. A key contribution of this work is an efficient

solution that incrementally maintains some count statistics without executing the join. We

consider the two types of privacy separately.

6.3.1 Confidentiality Template

Two expensive operations on performing the winner specialization w are accessing the

records in T1 containing w and matching the records in T1 with the records in T2. To

support these operations efficiently, we organize the records in T1 and T2 into two tree

structures. Recall that X1 = X ∩ att(T1) and X2 = X ∩ att(T2), and J1 and J2 denote the

join attributes in T1 and T2.

Tree1 and Tree2. In Tree1, we partition the T1 records by the attributes X1 and J1−X1

in that order, one level per attribute. Each root-to-leaf path represents a generalized record

on X1 ∪ J1, with the partition of the original records generalized being stored at the leaf

node. For each generalized value v in Cuti, Link[v] links up all nodes for v at the attribute

level of v. Therefore, Link[v] provides a direct access to all T1 partitions generalized to v.

Tree1 is updated upon performing the winner specialization w in each iteration. In Tree2,

we partition the T2 records by the attributes J2 and X2−J2 in that order. No specialization
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is performed on T2, so Tree2 is static. Some “count statistics,” described below, are stored

for each partition in Tree1 and Tree2.

Specialize w (Line 5). This step performs the winner specialization w ⇒ {w1, · · · , wz},
similar to the TDR framework for a single release in Section 4.3. It follows Link[w], and

for each partition P1 on the link,

• Step 1: refine P1 into the specialized partitions for wi, link them into Link[wi]. The

specialized partitions remain on the other links of P1. This step will scan the raw

records in P1. In the same scan, we also collect the following count statistics for each

(new) partition P on Link[wi], which will be used later to update Score(v). Let P [u]

denote the subset of P containing the value u and |P | denote the size of P :

– |P |, |P [cls]|, |P [wij ]| and |P [wij , cls]| (for updating InfoGain(v) in Equation 4.2).

– |P | (for updating InfoGain(v) in Equation 6.1).

– |P [y]| and |P [wij , y]| if Y is in T1, or |P | and |P [wij ]| if Y is in T2 (for updating

Cv
Y (X)).

cls is a class label in the Class column, y is a value on Y , and wij is a child value of

wi. These count statistics are stored together with the partition P .

• Step 2: probe the matching partitions in Tree2. Match the last |J1| attributes in P1

with the first |J2| attributes in Tree2. For each matching node at the level |J2| in

Tree2, scan all partitions P2 below the node. If x is the value on X represented by

the pair (P1, P2), increment a(x) by |P1| × |P2|, increment a(x, y) by |P1[y]| × |P2| if

Y is in T1, or by |P1| × |P2[y]| if Y is in T2, where y is a value on Y . We employ

an CTree in Definition 5.3.2 to keep a(x) and a(x, y) for the values x on X. In the

CTree, the x values are partitioned by the attributes X, one level per attribute, and

are represented by leaf nodes. a(x) and a(x, y) are kept at the leaf node for x. Note

that cy(x) = a(x, y)/a(x) and Cy(X) = max{cy(x)} over all the leaf nodes x in the

CTree.

Remarks. This step (Line 5) is the only time that raw records are accessed in our

algorithm.

Update Score(v) (Line 6). This step updates Score(v) for the candidates v in ∪Cuti

using the count statistics collected at the partitions in Tree1 and a(x) and a(x, y) in the
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CTree. The idea is the same as Section 5.3.3, so we omit the details. An important point is

that this operation does not scan raw records, therefore, is efficient. This step also updates

the “valid” status: If Cv
Y (X) ≤ k, mark v as “valid.”

Example 6.3.1 (Tree1, Tree2, and CTree). Continue with Example 6.1.2. Recall that

X = {Job, PoB, Zip}, Y = {y = HIV }, and J = {PoB, Sex}. X1 = {Job, PoB} and

X2 = {PoB, Zip}. Initially, all values for X1 are generalized to ANYJob and ANYPoB, and

∪Cuti contains these values. Figure 6.1 shows (static) Tree2 for T2, grouped by X2 ∪ J ,

and Figure 6.2 shows on the left the initial Tree1 for the most generalized T1, grouped by

X1 ∪ J . For example, in Tree1 the partition generalized to {ANYJob, ANYPoB,M} on X1
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has 6 records, and 2 of them have the value HIV . Figure 6.3 shows the initial CTree on

the left. a(x) and a(x, y) in the CTree are computed from Tree1 and Tree2. For example,

a(ANYJob, ANYPoB, UK, Z3) = 6× 2 = 12,

a(ANYJob, ANYPoB, UK, Z3,HIV ) = 2× 2 = 4,

where the ×2 comes from matching the left-most path in Tree1 with the left-most path in

Tree2 on the join attribute J . In this initial CTree, Cy(X) = 4/12 = 33%.

On specializing ANYPoB → {Europe, US}, Tree1 and CTree are updated as depicted

in Figure 6.2 and Figure 6.3 on the right. To compute a(x) and a(x, y) for these updated

x’s, we access all partitions in one scan of Link[Europe] and Link[US] in Tree1 and match

with the partitions in Tree2. In the updated CTree, Cy(X) = 4/8 = 50%.

Efficiency Analysis

1. The records in T1 and T2 are stored only once in Tree1 and Tree2. For the static

Tree2, once it is created, data records can be discarded.

2. On specializing the winner w, Link[w] provides a direct access to the records involved

in T1 and Tree2 provides a direct access to the matching partitions in T2. Since the

matching is performed at the partition level, not the record level, it scales up with the

size of tables.

3. The cost of each iteration has two parts. The first part involves scanning the affected

partitions on Link[w] for specializing w in Tree1 and maintaining the count statistics.

This is the only operation that accesses records. The second part involves using the

count statistics to update the score and status of candidates.

4. In the whole computation, each record in T1 is accessed at most |X∩att(T1)|×h times

because a record is accessed only if it is specialized on some attribute from X∩att(T1),

where h is the maximum height of the taxonomies for the attributes in X ∩ att(T1).

6.3.2 Anonymity Template

Like for confidentiality template, we use Tree1 and Tree2 to find the matching partitions

(P1, P2), and performing the winner specialization and updating Score(v) is similar to Sec-

tion 6.3.1. But now, we use the XTree in Definition 4.3.2 to update aY (x) for the values
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x on X, and there is one important difference in the update of aY (x). Recall that aY (x)

is the number of distinct values y on Y associated with the value x. Since the same (x, y)

value may be found in more than one matching (P1, P2) pair, we cannot simply sum up

the count extracted from all pairs. Instead, we need to keep track of distinct Y values for

each x value to update aY (x). In general, this is a time-consuming operation, e.g., requiring

sorting/hashing/scanning. Below, we identify several special but important cases in which

aY (x) can be updated efficiently.

Case 1: X contains all join attributes. This condition can be satisfied by expanding

the given X to contain all join attributes. From Corollary 6.1.1, the resulting requirement

is stronger, therefore, ensures the specified privacy. In this case, J1 ⊆ X1 and J2 ⊆ X2,

and the partitioning in Tree1 and Tree2 is based on X1 and X2. Hence, each x value

is contributed by exactly one matching (P1, P2) pair and is inserted into the XTree only

once. Therefore, there is no duplicate Y value for each x value. The computation is as

follows: for each matching (P1, P2) pair, compute aY (x1x2) by aY1(x1)×aY2(x2), where xi’s

(i = 1, 2) are represented by Pi’s, and aYi(xi)’s are stored with the partitions Pi for xi in

Treei. aYi(xi) = 1 if Yi = ∅.
aY1(x1) and aY2(x2) are computed as follows. At the root of Tree1, we sort all records in

the partition according to Y1 (skip this step if Y1 = ∅). For the value x1 represented by the

root, aY1(x1) is equal to the number of distinct Y1 values in the sorted list. On performing

the winner specialization w, as we follow Link[w] in Tree1 to specialize each partition P1 on

the link, we create the sorted list of records for the specialized partitions of P1, which allows

to compute aY1(x11), · · · , aY1(x1c) for the specialized values x11, · · · , x1c. Note that these

lists are automatically sorted because their “parent” list is sorted. For the static Tree2, we

can collect aY2(x2) at each leaf node representing a value x2 on X2 in an initialization and

subsequently never need to modify it.

Case 2: Y2 is a key in T2. Example 6.1.2 shows an example of this case: for the

previously released the patient data (T2) and the medical test data (T1), the data publisher

specifies the anonymity of X wrt patients by letting Y be the patient-identifier in T2, where

X is a set of attributes from the join of the two releases. Thus, each value of X is associated

with at least k patients. In this case, the matching pairs (P1, P2) for the same value x do not

share any common Y values; therefore, there is no duplicate Y value for x. To see this, let

Pairx be the set of all matching pairs (P1, P2) representing x. Since all P1’s in Pairx have

the same X value (i.e., x), they must have different join values on J1 (otherwise they should
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Table 6.3: Attributes for the Adult data set
Dept. Attribute Type Numerical Range

# of Leaves # of Levels

Taxation Age (Ag) Continuous 17 - 90
Capital-gain (Cg) Continuous 0 - 99999
Capital-loss (Cl) Continuous 0 - 4356
Education-num (En) Continuous 1 - 16
Final-weight (Fw) Continuous 13492 - 1490400
Hours-per-week (Hw) Continuous 1 - 99
Education (Ed) Categorical 16 5
Occupation (Oc) Categorical 14 3
Work-class (Wc) Categorical 8 5

Common Marital-status (Ms) Categorical 7 4
Relationship (Re) Categorical 6 3
Sex (Sx) Categorical 2 2

Immigration Native-country (Nc) Categorical 40 5
Race (Ra) Categorical 5 3

not be different partitions). This means that each P2 occurs in at most one pair (P1, P2)

in Pairx. Since P2’s are disjoint and Y2 is a key of T2, the pairs (P1, P2) in Pairx involve

disjoint sets of Y2 values, therefore, disjoint sets of Y values. This property ensures that,

for each matching (P1, P2), aY (x) can be computed by aY1(x1)×aY2(x2), where aY1(x1) and

aY2(x2) are stored with P1 in Tree1 and P2 in Tree2, as in Case 1. Note that aY2(x2) is

equal to |P2| because Y2 is a key of T2.

Case 3: Y1 is a key of T1 and Y2 = ∅. This is another interesting case. Suppose

that in Example 6.1.2 the data publisher first releases the medical test data (i.e., T2) and

then the patient data (i.e., T1). The data publisher can specify the anonymity of X wrt

patients by letting Y be the patient-identifier in T1. In this case, each P1 in Tree1 involves

|P1| distinct Y1 values and shares no common Y values with other partitions. To update the

XTree, for each P1 and all pairs (P1, P2) representing the same value x on X, we set aY (x)

to |P1| only once. Note that Y2 = ∅ is required; otherwise we have to check for duplicates

of Y values.

Case 4: Y is a key of the join of T1 and T2. For example, if Y = {K1,K2}, where

Ki is a key in Ti. In this case, aY (x) is equal to the number of records containing x in the

join. Since each pair (P1, P2) involves a disjoint set of records in the join, we increment

aY (x) by |P1| × |P2| for the value x represented by (P1, P2).
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6.4 Experimental Evaluation

All experiments were conducted on an Intel Pentium IV 2.4GHz PC with 1GB RAM. The

data set is the publicly available Adult data set from [53]. There were 30,162 and 15,060

records without missing values for the pre-split training set and testing set respectively. We

combined them into one set for generalization. Table 6.3 describes the attributes and the

binary Class corresponding to income levels ≤50K or >50K. We adopted the taxonomy

trees from Section 4.4. The data is released to two recipients. Taxation Department (T1) is

interested in the first 12 attributes and the Class attribute. Immigration Department (T2)

is interested in the last 5 attributes. Both are interested in the 3 common attributes in the

middle, Ms, Re, Sx. We created two versions of the data set (T1, T2), Set A and Set B.

Set A (categorical attributes only): This data set contains only categorical at-

tributes. T1 contains the Class attribute, the 3 categorical attributes for Taxation Depart-

ment and the 3 common attributes. T2 contains the 2 categorical attributes for Immigration

Department and the 3 common attributes. The top 6 ranked attributes in T1 are Ms, Re,

Sx, Ed, Oc, Wc in that order, ranked by discriminative power on the Class attribute.

The join attributes are the common attributes Ms, Re, Sx. The rationale is that if join

attributes are not important, they should be removed first.

Set B (categorical and continuous attributes): In addition to the categorical

attributes as in Set A, T1 contains the additional 6 continuous attributes from Taxation

Department. T2 is the same as in Set A. The top 7 attributes in T1 are Cg, Ag, Ms, En,

Re, Hw, Sx in that order.

We consider two cost metrics. The “classification metric” is the classification error on

the generalized testing set of T1 where the classifier for Class is built from the generalized

training set of T1. The “distortion metric” was proposed in [59]. Each time a categorical

value is generalized to the parent value in a record in T1, there is one unit of distortion. For

a continuous attribute, if a value v is generalized to an interval [a, b), there is (b−a)/(f2−f1)

unit of distortion for a record containing v, where [f1, f2) is the full range of the continuous

attribute. The distortion is separately computed for categorical attributes and continuous

attributes. The total distortion is normalized by the number of records.
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Figure 6.4: Distortion for anonymity template, Set A

6.4.1 Results for Anonymity Template

We choose X so that (1) X contains the N top ranked attributes in T1 for a specified N

(to ensure that the generalization is performed on important attributes), (2) X contains all

join attributes (thus Case 1 in Section 6.3.2), and (3) X contains all attributes in T2. TopN

refers to the anonymity template 〈X, Y, k〉 so chosen. Below, Ki is a key in Ti, i = 1, 2. We

compare the following error or distortion:

• XY E: the error produced by our method with Y = K1.

• XY E(row): the error produced by our method with Y ={K1,K2}.

• BLE: the error produced by the unmodified data.

• KAE: the error produced by k-anonymity on T1 with X = att(T1).

• RJE: the error produced by removing all join attributes from T1.

• XY D: the distortion produced by our method with Y = K1.

• KAD: the distortion produced by k-anonymity on T1 with X = att(T1).

The “benefit” and “loss” refer to the error/distortion reduction and increase by our method

in comparison with another method.
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Figure 6.5: Classification error for anonymity template, Set A

Results for Set A. Figure 6.4 depicts KAD and XY D averaged over the thresh-

olds k = 40, 80, 120, 160, 200, with KAD − XY D being the benefit compared to k-

anonymization. For Top3 to Top6, this benefit ranges from 1 to 7.16, which is significant

considering KAD = 9.23. Figure 6.5 depicts the classification error averaged over the

thresholds k = 40, 80, 120, 160, 200. BLE = 17.5%, RJE = 22.3%,KAE = 18.4%. The

main results are summarized as follows.

XY E − BLE: this is the loss of our method compared to the unmodified data. In all

the cases tested, XY E−BLE is at most 0.9%, with the error on the unmodified data being

BLE = 17.5%. This small error increase, for a wide range of privacy requirements, suggests

that the information utility is preserved while anonymizing the database in the presence of

previous releases.

XY E − XY E(row): this is the loss due to providing anonymization wrt Y = {K1}
compared to anonymization wrt Y = {K1,K2}. For the same threshold k, since aK1(x) ≤
aK1,K2(x), the former requires more generalization than the latter. However, this experiment

shows that the loss is no more than 0.2%. On the other hand, the anonymization with

Y = {K1,K2} failed to provide the anonymity wrt K1. For example, for Top6 and k = 200,

5.5% of the X values linked to more than 200 values on {K1,K2} were actually linked to

less than 200 distinct values on K1. This problem cannot be easily addressed by a larger

threshold k on the number of values for {K1, K2} because the number of K1 values involved

can be arbitrarily low.
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Figure 6.6: Distortion for anonymity template, Set B

RJE−XY E: this is the benefit over the removal of join attributes. It ranges from 3.9%

to 4.9%, which is significant considering the base line error BLE = 17.5%. The benefit could

be more significant if there are more join attributes. Since the attacker typically uses as

many attributes as possible for join, simply removing join attributes is not a good solution.

KAE−XY E: this is the benefit over the k-anonymization on T1. For Set A, this benefit

is not very significant. The reason is that T1 contains only 6 attributes, many of which are

included in X to ensure that the generalization is not on trivial attributes. As a result,

the privacy requirement becomes somehow similar to the standard k-anonymization on all

attributes in T1. However, Set B where T1 contains more attributes, a more significant

benefit was demonstrated.

Results for Set B. Figure 6.6 shows the distortion reduction compared to the k-

anonymization of T1, KAD(cat)−XY D(cat) for categorical attributes, and KAD(cont)−
XY D(cont) for continuous attributes. For both types of attributes, the reduction is very

significant. This strongly supports that the lossy join achieves privacy with less data dis-

tortion. Figure 6.7 depicts the classification error. BLE = 14.7%, RJE = 17.3%, and

averaged KAE = 18.2%. The main results are summarized as follows.

XY E −BLE: this loss is averaged at 0.75%, a slight increase of error compared to the

unmodified data.

XY E −XY E(row): We observed no loss for achieving the more restrictive anonymiza-

tion wrt Y = {K1} compared to wrt Y = {K1,K2}. We noted that both methods are biased

toward continuous attributes and all join (categorical) attributes are fully generalized to the
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Figure 6.7: Classification error for anonymity template, Set B

top value ANY . In this case, every record in T1 matches every record in T2, which makes

aK1(x) and aK1,K2(x) equal.

RJE −XY E: this benefit is smaller than in Set A. For Set B, join attributes are less

critical due to the inclusion of continuous attributes, and the removal of join attributes

results in a more gentle loss.

KAE − XY E: this benefit is more significant than in Set A. The k-anonymization of

T1 suffers from a more drastic generalization on X that now contains both continuous and

categorical attributes in T1. As a result, our benefit of not generalizing all attributes in T1

is more evident in this data set.

Scalability. For all the above experiments, our algorithm took less than 30 seconds,

including disk I/O operations. To further evaluate its scalability, we enlarged Set A as

follows. Originally, both T1 and T2 contain 45,222 records. For each original record r in a

table Ti, we created α − 1 “variations” of r, where α > 1 is the expansion scale. For each

variation of r in Ti, we assigned a unique identifier for Ki, randomly and uniformly selected

q attributes from Xi, i = 1, 2, randomly selected some values for these q attributes, and

inherited the other values from the original r. The rationale of variations is to increase the

number of partitions in Tree1 and Tree2. The enlarged data set has α × 45, 222 records in

each table. We employed the Top6 anonymity template with Y = K1 and k = 40 in Set A.

Other choices require less runtime.

Figure 6.8 depicts the runtime distribution in different phases of our method for 200

thousand to 1 million data records in each table. Our method spent 885 seconds in total
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Figure 6.8: Scalability for anonymity template (k = 40)

to transform 1 million records in T1. Approximately 80% of the time was spent on the

preprocessing phase, i.e., sorting records in T1 by K1 and building Tree2. Generalizing T1

to satisfy the anonymity template took less than 4% of the total time.

6.4.2 Results for Confidentiality Template

In this experiment, we focused on the classification error because the distortion due to sat-

isfying a confidentiality template is not comparable with the distortion due to k-anonymity.

For Set A, we specified four confidentiality requirements, denoted Top1, Top2, Top3 and

Top4, such that Y contains the top 1, 2, 3 and 4 categorical attributes in T1. The rationale

is simple: if Y does not contain important attributes, removing all attributes in Y from T1

would provide an immediate solution. We specified the 50% least frequent (therefore, most

vulnerable) values of each attribute in Y as the sensitive properties y. X contains all the

attributes in T1 not in Y , except T2.Ra and T2.Nc because otherwise no privacy requirement

can be satisfied. For Set B, T1 and X contain the 6 continuous attributes, in addition to

the categorical attributes in Set A. Besides XY E, BLE and RJE in Section 6.4.1, RSE

denotes the error produced by removing all attributes in Y from T1.

Results for Set A. Figure 6.9 shows the averaged error over thresholds k = 10%, 30%,

50%, 70%, 90%. BLE = 17.5% and RJE = 22.3%. XY E −BLE is no more than 0.7%, a

small loss for a wide range of confidentiality requirement compared to the unmodified data.

RSE − XY E is the benefit of our method over the removal of Y from T1. It varies from
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Figure 6.9: Classification error for confidentiality template, Set A

-0.2% to 5.6% and increases as more attributes are included in Y . RJE−XY E spans from

4.1% to 4.5%, showing that our method better preserves information than the removal of

join attributes.

Results for Set B. Figure 6.10 depicts the averaged XY E and RSE. BLE = 14.7%

and RJE = 17.3%. XY E is 15.8%, 1.1% above BLE. RSE −XY E spans from 0.1% to

1.9%, and RJE−XY E spans from 0.7% to 2.6%. These benefits are smaller than in Set A

because continuous attributes in Set B took away classification from categorical attributes.

In other words, the removal of join attributes or attributes in Y , all being categorical

attributes, causes less error. However, XY E consistently stayed below RSE and RJE.

Scalability. Our algorithm took less than 20 seconds in Set A and less than 450 seconds

in Set B, including disk I/O operations. The longest time was spent on Set B for satisfying

a confidentiality template because the interval for a continuous attribute is typically split

many times before the maximum linkability is violated. For scalability evaluation, we used

the Top1 requirement described above for Set A and k = 90%. We enlarged Set A as

described in Section 6.4.1, but the values for Y are inherited from the original r instead of

being assigned unique identifiers. Figure 6.11 depicts the runtime distribution of our method

with 200 thousand to 1 million data records in each table. Our method spent 83 seconds to

transform 1 million records in T1. The preprocessing phase, i.e., building Tree2, took less

than 1 second. Generalizing T1 to satisfy the confidentiality template took 25 seconds.
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Figure 6.10: Classification error for confidentiality template, Set B

6.4.3 Summary of Experiment Results

The proposed method pays a small data penalty to achieve a wide range of privacy templates

in the scenario of sequential releases. The method is superior to several obvious candidates,

k-anonymization, removal of join attributes, and removal of sensitive attributes, which do

not respond dynamically to the privacy specification 〈X,Y, k〉 and the generalization of

join. The experiments showed that the dynamical response to the generalization of join

helps achieve the specified privacy with less data distortion. The proposed index structure

is highly scalable for anonymizing large data sets.

6.5 Extensions

We now extend this approach to the general case that more than one previously released

tables T2, · · · , Tp. One solution is first joining all previous releases T2, · · · , Tp into one

“history table” and then applying the proposed method for two releases. This history table

is likely extremely large because all T2, · · · , Tp are some generalized versions and there may

be no join attributes between them. A preferred solution should deal with all releases at

their original size. Our insight is that, as remarked at the end of Section 6.2.2, Lemma 6.2.1

and Lemma 6.2.2 can be extended to this general case. Below, we extend some definitions

and modification required for the top-down specialization algorithm in Section 6.3.

Let ti be a record in Ti. The Consistency Predicate states that, for all releases Ti that
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Figure 6.11: Scalability for confidentiality template (k = 90%)

have a common attribute A, ti.A’s are on the same generalization path in the taxonomy tree

for A. The Inconsistency Predicate states that for distinct attributes Ti.A and Tj .B, ti.A

and tj .A are not semantically inconsistent according the “common sense.” (t1, t2, · · · , tp) is

a match if it satisfies both predicates. The join of T1, T2, · · · , Tp is a table that contains

all matches (t1, t2, · · · , tp). For a (X,Y )-privacy on the join, X and Y are disjoint subsets

of att(T1) ∪ att(T2) ∪ · · · ∪ att(Tp) and if X contains a common attribute A, X contains all

Ti.A such that Ti contains A.

Definition 6.5.1 (Sequential anonymization). Suppose that tables T2, · · · , Tp were

previously released. The data publisher wants to release a table T1, but wants to ensure a

satisfaction of a privacy template on the join of T1, T2, · · · , Tp. The sequential anonymization

is to generalize T1 on the attributes in X ∩ att(T1) such that the join satisfies the privacy

template and T1 remains as useful as possible.

We consider only confidentiality template for the top-down specialization; the extension

for anonymity template can be similarly considered. For simplicity, we assume that previous

releases T2, · · · , Tp have a star join with T1: every Ti (i > 1) joins with T1. On performing

the winner specialization w, we use Treei, i = 1, · · · , p, to probe matching partitions in

Ti. Let Ji(j) denote the set of join attributes in Ti with Tj . Let Xi = X ∩ att(Ti) and

Yi = Y ∩ att(Ti). Tree1 is partitioned by X1 ∪ J1(2) ∪ · · · ∪ J1(p). For i = 2, · · · , p, Treei is

partitioned by Ji(1) and Xi−Ji(1). As in Section 6.3, we identify the partitions on Link[w]

in Tree1. For each partition P1 on the link, we probe the matching partitions Pi in Treei by



CHAPTER 6. ANONYMIZING SEQUENTIAL RELEASES 106

matching Ji(1) and J1(i), 1 < i ≤ p. Let (P1, · · · , Pp) be such that P1 matches Pi, 2 ≤ i ≤ p.

If (P1, · · · , Pp) satisfies both predicates, we update the CTree for the value x represented

by (P1, · · · , Pp): increment a(x, y) by s1 × · · · × sp and increment a(x) by |P1| × · · · × |Pp|,
where si = |Pi| if Yi = ∅, and si = |Pi[yi]| if Yi 6= ∅.

6.6 Summary

Chapter 4 and Chapter 5 focused on a single release of data. In reality, data is not released in

one-shot, but released continuously to serve various information purposes. The availability

of related releases enables sharper identification attacks through a global quasi-identifier

made up of the attributes across releases. In this chapter, we studied the anonymization

problem of the current release under this assumption, called sequential anonymization. We

extended the privacy notion to this case. We introduced the notion of lossy join as a way to

hide the join relationship among releases. We addressed several computational challenges

raised by the dynamic response to the generalization of join, and we presented a scalable

solution to the sequential anonymization problem.



Chapter 7

Secure Data Integration

Nowadays, one-stop service has been a trend followed by many competitive business sectors,

where a single location provides multiple related services. For example, financial institutions

often provide all of daily banking, mortgage, investment, insurance in one location. Behind

the scene, this usually involves information sharing among multiple companies. However, a

company cannot indiscriminately open up the database to other companies because privacy

policies [67] place a limit on information sharing. Consequently, there is a dual demand on

information sharing and information protection, driven by trends such as one-stop service,

end-to-end integration, outsourcing, simultaneous competition and cooperation, privacy and

security.

Consider a concrete scenario. Suppose two data publishers, a bank A and a credit card

company B, observe different sets of attributes about the same set of record holders iden-

tified by the common key SSN, e.g., TA(SSN,Age, Balance) and TB(SSN, Job, Salary).

These companies want to integrate their data to support better decision making such as

loan or card limit approval. However, simply joining TA and TB would reveal the sensitive

information to the other data publisher. Even if TA and TB individually do not contain

sensitive information, the integrated data can increase the possibility of inferring such in-

formation about record holders. The next example illustrates this point.

Example 7.0.1 (Join attack). Consider the data in Table 7.1 and taxonomy trees in

Figure 7.1. Data Publisher A and Data Publisher B own

TA(SSN, Sex, · · · , Class) and TB(SSN, Job, Salary, · · · , Class)

respectively. Each row represents one or more original records and Class contains the

107
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Table 7.1: Compressed tables
Shared Data Publisher A Data Publisher B

SSN Class Sex ... Job Salary ...
1-3 0Y3N M Janitor 30K
4-7 0Y4N M Mover 32K
8-12 2Y3N M Carpenter 35K
13-16 3Y1N F Technician 37K
17-22 4Y2N F Manager 42K
23-25 3Y0N F Manager 44K
26-28 3Y0N M Accountant 44K
29-31 3Y0N F Accountant 44K
32-33 2Y0N M Lawyer 44K

34 1Y0N F Lawyer 44K

Blue_Collar White_Collar

Non_Technical

Carpenter

Manager

Engineer

ANY_Job

Technical

Lawyer

Professional

ElectricianMoverJanitor

ANY_Sex

Male Female

Figure 7.1: Taxonomy trees

distribution of class labels Y and N . After integrating the two tables (by matching the SSN

field), the “female lawyer” on (Sex, Job) becomes unique, therefore, vulnerable to be linked

to sensitive information such as Salary. To protect against such linking, we can generalize

Accountant and Lawyer to Professional so that this record holder becomes one of many

female professionals. No information is lost as far as classification is concerned because

Class does not depend on the distinction of Accountant and Lawyer.

In this chapter, we consider the following secure data integration problem. Given two

private tables for the same set of records on different sets of attributes, we want to produce

an integrated table on all attributes for release to both data publishers. The integrated

table must satisfy the following two requirements:

• Privacy Preservation. The integrated table has to satisfy a given anonymity template

〈X,Y, k〉 where Y = RecID and X is a quasi-identifier which each value of X identifies

at least k records. This requirement can be satisfied by generalizing domain values
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into higher level concepts as described in Section 3.1. In addition, at any time in

this generalization, no data publisher should learn more detailed information about

the other data publisher other than those in the final integrated table. For example,

Lawyer is more detailed than Professional.

• Information Preservation. The generalized data is as useful as possible to classification

analysis. Generally speaking, the privacy goal requires masking sensitive information

that is specific enough to identify individual record holders, whereas the classification

goal requires extracting trends and patterns that are general enough to predict new

cases. As discussed in Chapter 4, if generalization is “carefully” performed, it is possi-

ble to mask identifying information while preserving patterns useful for classification.

There are two obvious approaches. The first one is “integrate-then-generalize”: first

integrate the two tables and then generalize the integrated table using some single table

methods. Unfortunately, this approach does not preserve privacy because any data publisher

holding the integrated table will immediately know all private information of both data

publisher. The second approach is “generalize-then-integrate”: first generalize each table

locally and then integrate the generalized tables. This approach does not work for a quasi-

identifier X that spans the two tables. In the above example, the anonymity template with

X = {Sex, Job} cannot be achieved by the anonymizing each of Sex and Job separately.

Information integration has been an active area of database research [12][17][21][80]. This

literature typically assumes that all information in each database can be freely shared [4].

Secure multiparty computation (SMC) [88][89], on the other hand, allows sharing of the

computed result (i.e., the classifier in our case), but completely prohibits sharing of data.

An example is the secure 2-party computation of classifiers [14][19][20]. Liang et al. [46]

and Agrawal et al. [4] proposed the notion of minimal information sharing for computing

queries spanning private databases. They considered computing intersection, intersection

size, equijoin and equijoin size. Their model still prohibits the sharing of databases them-

selves.

This chapter makes two contributions. First, we define the secure data integration prob-

lem. The goal is to allow data sharing in the presence of privacy concerns. In comparison,

classic data integration assumes that all information in private databases can be freely

shared, whereas secure multiparty computation allows “result sharing” (e.g., the classifier

in our case) but completely prohibits data sharing. In many applications, being able to
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access the actual data not only leads to superior results, but also is a necessity. For ex-

ample, the medical doctor will not trust a given classifier without knowing certain details

of patient records. Second, we present a solution to secure data integration where the two

data publishers cooperate to generalize data by exchanging information not more specific

than what they agree to share.We implement this method in a distributed environment and

evaluate its effectiveness.

The rest of the chapter is organized as follows. Section 7.1 defines the secure data

integration problem. Section 7.2 discusses the selection criterion for the anonymization

process. Section 7.3 presents the secure anonymization protocol. Section 7.4 evaluates the

effectiveness of the proposed approach. Section 7.5 summarizes this chapter.

7.1 Problem Definition

The anonymity requirement is a set of anonymity templates defined in Definition 4.1.1. We

first define generalization on a single table, then the problem of secure data integration.

7.1.1 Generalization and Specialization

To generalize T to satisfy an anonymity requirement 〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉, a taxon-

omy tree is specified for each categorical attribute in ∪Xj . For a continuous attribute in

∪Xj , a taxonomy tree can be grown at runtime, where each node represents an interval,

and each non-leaf node has two child nodes representing some “optimal” binary split of the

parent interval as described in Section 4.1. Figure 7.1 shows a dynamically grown taxonomy

tree for Salary.

Following the framework of top-down refinement in Section 4.3, we generalize a table T

by a sequence of specializations starting from the top most value for each attribute. The

specialization operation is defined in Section 3.2. A specialization is valid if the special-

ization results in a table satisfying the anonymity requirement after the specialization. A

specialization is beneficial if more than one class are involved in the records containing the

specialized value v. A specialization needs to be performed only if it is both valid and

beneficial.
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7.1.2 Secure Data Integration

We now consider two data publishers. Data Publisher A owns the table

TA(RecID,Q1, · · · , Qt, Class)

and Data Publisher B owns the table

TB(RecID,Qt+1, · · · , Qm, Class),

over the same set of records. These data publishers agree to release “minimal information”

to form an integrated table T (by matching the RecID) for conducting a joint classification

analysis on the target attribute Class. The notion of minimal information is specified by

the joint anonymity requirement 〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉 on the integrated table. Xj is

local if it contains only attributes from one data publisher, and global otherwise.

Definition 7.1.1 (Secure data integration). Given two private tables TA and TB, a joint

anonymity requirement 〈X1, Y1, k1〉, · · · , 〈Xp, Yp, kp〉, and a taxonomy tree for each categor-

ical attribute in ∪Xj , the secure data integration is to produce a generalized integrated

table T such that (1) T satisfies the joint anonymity requirement, (2) T contains as much

information as possible for classification, (3) each data publisher learns nothing about the

other data publisher more specific than what is in the final generalized T .

For example, if a record in the final generalized T has values F and Professional on

Sex and Job, and if Data Publisher A learns that Professional in this record comes from

Lawyer, condition (3) is violated. Our privacy model ensures the anonymity in the final

integrated table as well as in any intermediate table.

7.2 Selection Criterion

We employ the same selection criterion for a single publisher in Section 4.2. Specializing a

value v gains information and loses privacy. The criterion function Score(v) is defined in

Equation 4.1. At each iteration, we heuristically maximize InfoGain(v) defined in Equa-

tion 4.2 and minimize PrivLoss(v) defined in Equation 4.4.
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7.3 The Algorithm: Top-Down Specialization for 2 Data Pub-

lishers

One unsecured approach is first joining TA and TB into a single table T and then generalizing

T with the anonymization algorithm TDR in Section 4.3. Though this approach does not

satisfy the requirement (3) in Definition 7.1.1 (because the data publisher that generalizes

the joint table knows all the details of both TA and TB), the integrated table produced

satisfies requirements (1) and (2) in Definition 7.1.1. Below, we present a secured approach

that produces the same integrated table and satisfies the requirement (3).

Now we consider that the table T is given by two tables TA and TB with a common key

RecID, where Data Publisher A holds TA and Data Publisher B holds TB. At first glance,

it seems that the change from one data publisher to two data publishers is trivial because

the change of Score due to specializing a single attribute depends only on that attribute

and Class, and each data publisher knows about Class and the attributes they have. This

observation is wrong because the change of Score involves the change of A(Xj) that depends

on the combination of the attributes in Xj which could be global.

Suppose that, in the TDR approach, each data publisher keeps a copy of the current

∪Cuti and generalized T , denoted Tg, in addition to the private TA or TB. The nature of the

top-down approach implies that Tg is more general than the final answer, therefore, does not

violate the requirement (3) in Definition 7.1.1. At each iteration, the two data publishers

cooperate to perform the same specialization as identified in TDR by communicating certain

information in a way that satisfies the requirement (3) in Definition 7.1.1. Algorithm 5

describes the procedure at Data Publisher A (same for Data Publisher B).

First, Data Publisher A finds the local best candidate and communicates with Data

Publisher B to identify the overall winner candidate, say w ⇒ child(w). To protect the

input score, Secure 2-party max [88] can be used. The winner candidate will be the same

as identified in TDR because the same selection criterion is used. Suppose that w is local

to Data Publisher A (otherwise, the discussion below applies to Data Publisher B). Data

Publisher A performs w on its copy of ∪Cuti and Tg. This means specializing each record

t ∈ Tg containing w into those t1′, · · · , tk′ containing child values in child(w), by exam-

ining the set of raw records generalized by t, denoted TA[t], and partitioning TA[t] among

TA[t1′], · · · , TA[tk′]. Similarly, Data Publisher B updates its ∪Cuti and Tg, and partitions

TB[t] into TB[t1′], · · · , TB[tk′]. Since Data Publisher B does not have the attribute for w,
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Algorithm 5 TDS2P for Data Publisher A

1: Initialize Tg to include one record containing top most values;
2: Initialize Cuti of Qi to include the top most value ANYi where Qi ∈ ∪Xj ;
3: while some v ∈ ∪Cuti is valid and beneficial do
4: Find the local candidate v of highest Score(v);
5: Communicate Score(v) with Data Publisher B to find the winner;
6: if the winner w is local then
7: Specialize w on Tg;
8: Instruct Data Publisher B to specialize w;
9: else

10: Wait for the instruction from Data Publisher B;
11: Specialize w on Tg using the instruction;
12: end if
13: Replace w with child(w) in the local copy of ∪Cuti;
14: Update Score(v) and the valid and beneficial status for v in ∪Cuti;
15: end while
16: return Tg and ∪Cuti;

Data Publisher A needs to instruct Data Publisher B how to partition these records in

terms of RecID.

Example 7.3.1 (Initial Cutj). Consider Table 7.1 and the joint anonymity requirement:

〈X1 = {Sex, Job}, Y1 = RecID, k1 = 4〉
〈X2 = {Sex, Salary}, Y2 = RecID, k2 = 11〉

Initially,

Tg = {〈ANY Sex,ANY Job, [1− 99)〉}

and

∪Cuti = {ANY Sex, ANY Job, [1− 99)},

and all specializations in ∪Cuti are candidates. To find the candidate to specialize, Data

Publisher A computes Score(ANY Sex), and Data Publisher B computes Score(ANY Job)

and Score([1− 99)).

Below, we describe the key steps: find the winner candidate (Line 4-5), perform the

winning specialization (Line 7-11), and update the score and status of candidates (Line

14). For Data Publisher A, a local attribute refers to an attribute from TA, and a local

specialization refers to that of a local attribute.
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Figure 7.2: The TIPS after the first specialization
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Figure 7.3: The TIPS after the second specialization

7.3.1 Find the Winner (Line 4-5)

Data Publisher A first finds the local candidate v of highest Score(v), by making use of

computed InfoGain(v), Av(Xj) and A(Xj), and then communicates with Data Publisher

B (using secure 2-party max as in [88]) to find the winner candidate. InfoGain(v), Av(Xj)

and A(Xj) come from the update done in the previous iteration or the initialization prior

to the first iteration. This step does not access data records.

7.3.2 Specialize the Winner (Line 7-11)

Suppose that the winner candidate w is local at Data Publisher A (otherwise, replace Data

Publisher A with Data Publisher B). For each record t in Tg containing w, Data Publisher

A accesses the raw records in TA[t] to tell how to specialize t. To facilitate this operation,

we represent Tg by the TIPS data structure in Definition 4.3.1. The idea is to group the

raw records in TA according to their generalized records t in Tg.

With the TIPS, we can find all raw records generalized to v by following Link[v] for a

candidate v in ∪Cuti. To ensure that each data publisher has only access to its own raw

records, a leaf partition at Data Publisher A contains only raw records from TA and a leaf
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partition at Data Publisher B contains only raw records from TB. Initially, the TIPS has

only the root node representing the most generalized record and all raw records. In each

iteration, the two data publishers cooperate to perform the specialization w by refining the

leaf partitions Pw on Link[w] in their own TIPS.

Example 7.3.2 (TIPS). Continue with Example 7.3.1. Initially, TIPS has the root rep-

resenting the most generalized record 〈ANY Sex, ANY Job, [1 − 99)〉, TA[root] = TA and

TB[root] = TB. The root is on Link[ANY Sex], Link[ANY Job], and Link[1 − 99]. See

the root in Figure 7.2. The shaded field contains the number of raw records generalized by

a node. Suppose that the winning candidate w is [1−99) ⇒ {[1−37), [37−99)} on Salary.

Data Publisher B first creates two child nodes under the root and partitions TB[root]

between them. The root is deleted from all Link[v], the child nodes are added to Link[1−37]

and Link[37−99], respectively, and both are added to Link[ANY Job] and Link[ANY Sex].

Data Publisher B then sends the following instruction to Data Publisher A:

RecIDs 1-12 go to the node for [1− 37).

RecIDs 13-34 go to the node for [37− 99).

On receiving this instruction, Data Publisher A creates the two child nodes under the root in

its copy of TIPS and partitions TA[root] similarly. Suppose that the next winning candidate

is ANY Job ⇒ {Blue Collar,White Collar}.
The two data publishers cooperate to specialize each leaf node on Link[ANY Job] in a

similar way, resulting in the TIPS in Figure 7.3.

We summarize the operations at the two data publishers, assuming that the winner w

is local at Data Publisher A.

Data Publisher A. Refine each leaf partition Pw on Link[w] into child partitions Pc.

Link[c] is created to link up the new Pc’s for the same c. Mark c as beneficial if the records

on Link[c] has more than one class. Also, add Pc to every Link[x] other than Link[w] to

which Pw was previously linked. While scanning the records in Pw, Data Publisher A also

collects the following information.

• Instruction for Data Publisher B. If a record in Pw is specialized to a child value

c, collect the pair (id,c), where id is the RecID of the record. This information

will be sent to Data Publisher B to refine the corresponding leaf partitions there.

This instruction does not contain information that is more specific than the final
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generalized table T ; therefore, sending this instruction does not violate condition (3)

in Definition 7.1.1.

• Count statistics. To update Score without accessing raw records, some “count statis-

tics” is maintained for each partition in the TIPS. This is done in the same scan as

performing w described above. See the details in Section 4.3.3.

Data Publisher B. On receiving the instruction from Data Publisher A, Data Pub-

lisher B creates child partitions Pc in its own TIPS. At Data Publisher B, Pc’s contain raw

records from TB. Pc’s are obtained by splitting Pw among Pc’s according to the (id, c) pairs

received.

We emphasize that updating TIPS is the only operation that accesses raw records.

Subsequently, updating Score(v) (in Section 7.3.3) makes use of the count statistics without

accessing raw records anymore.

7.3.3 Update Score and Status (Line 14)

Score(v) depends on InfoGain(v), Av(Xj) and A(Xj). The updated A(Xj) is obtained

from Aw(Xj), where w is the specialization just performed. Below, we consider updating

InfoGain(v) and Av(Xj) separately.

Update InfoGain(v): InfoGain(v) is affected in that we need to compute InfoGain(c)

for newly added c in child(w). The owner data publisher of w can compute InfoGain(c)

while collecting the count statistics for c in Section 7.3.2.

Update PrivLoss(v): Recall that Av(Xj) is the minimum a(xj) after specializing v.

Therefore, if att(v) and att(w) both occur in some Xj , the specialization on w might affect

Av(Xj), and we need to find the new minimum a(xj). The XTreej data structure, in

Definition 4.3.2, indexes a(xj) by xj .

XTreej is kept at a data publisher if the data publisher owns some attributes in Xj . On

specializing the winner w, a data publisher updates its XTreej ’s that contain the attribute

att(w): creates the nodes for the new xj ’s and computes a(xj). We can obtain a(xj) from

the local TIPS: a(xj) =
∑ |Pc|, where Pc is on Link[c] and xj is the generalized value on

Xj for Pc. |Pc| is part of the count statistics for w collected in Section 7.3.2. Refer to

Section 4.3.4 for the procedure of updating XTreej .

Updating Av(Xj). This is the same as in Section 4.3.4. Essentially, it makes use of the

count statistics in Section 7.3.2 to do the update. We omit the details here.
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7.3.4 Analysis

Theorem 7.3.1. TDS2P produces exactly the same integrated table as the unsecured TDR

(mentioned in Section 7.3) on the joint table, and ensures that no data publisher learns more

detailed information about the other data publisher other than what they agree to share.

Proof. This claim follows from the fact that TDS2P performs exactly the same sequence

of specializations as in TDR in a distributed manner where TA and TB are kept locally at

the sources. The choice of specialization at each iterations is determined by the criterion

function Score(v), where Score(v) is composed of InfoGain(v) and PrivLoss(v). Comput-

ing InfoGain(v) in TDS2P requires only local information including the attribute of v and

the Class attribute, so the computed result of InfoGain(v) is same as TDR. Computing

PrivLoss(v) in TDS2P requires Av(Xj) and A(Xj) that could be updated from the instruc-

tion of specialization from another data publisher, so the computed result of PrivLoss(v)

is same as TDR. Since Score(v) is the same in every iteration, TDS2P and TDR produce

the same sequence of specializations.

The only information revealed to each other is those in ∪Cutj and Tg at each iteration.

However, such information is more general than the final integrated table that the two data

publishers agree to share, thanks to the nature of the top-down approach.

The cost of TDS2P can be summarized as follows. Each iteration involves the following

work:

1. Scan the records in TA[w] and TB[w] for updating TIPS and maintaining count statis-

tics (Section 7.3.2).

2. Update XTreej , InfoGain(v) and Av(Xj) for affected candidates v (Section 7.3.3).

3. Send “instruction” to the remote data publisher. The instruction contains only RecID’s

of the records in TA[w] or TB[w] and child values c in child(w), therefore, is compact.

Only the work in (1) involves accessing data records; the work in (2) makes use of

the count statistics without accessing data records and is restricted to only affected

candidates. This feature makes our approach scalable. We will evaluate the scalability

in the next section.

Several properties of this approach are worth noting. First, the final integrated table

does not depend on the partition of attributes among the data publishers because it is the
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same as if the generalization is performed on the joint table. Second, the total amount

of work does not depend on the partition of attributes, in that the specialization at each

iteration must be performed by all data publishers, no matter how attributes are partitioned.

Third, the dominating work mentioned in (1) above is the same across all data publishers,

determined by the number of raw records being specialized at an iteration. Therefore, the

workload at all data publishers is balanced.

In the special case that the anonymity requirement contains only local X’s, we can

shrink down the TIPS to include only local attributes. Data publishers do not have to pass

around the specialization array because each data publisher specializes only local attributes.

A data publisher only has to keep track of XTreej only if Xj is a local X. The memory

requirement and network traffic can be further reduced and the efficiency can be further

improved.

7.4 Experimental Evaluation

We implemented the proposed TDS2P in a distributed 2-data publisher environment (rather

than simulation on a single machine). Each data publisher is running on an Intel Pentium

IV 2.6GHz PC with 1GB RAM connected to a LAN. The objective is to evaluate the benefit

of data integration for data analysis. TDS2P produces exactly the same integrated table

as the simple method that first joins TA and TB and then generalizes the joint table using

the TDR approach in Chapter 4. However, the TDR approach does not address the secure

integration requirement because the two tables must be first joined before being generalized.

The data set is the publicly available Adult data set. Refer to Section 4.4 and Table 4.5

for details. We produced the two tables TA and TB as follows: TA contains 9 attributes,

namely {Ag, En, Fw, Re,Ra, Sx, Ms, Nc,Ed}, interesting to the Immigration Department,

and TB contains the remaining 5 attributes, namely {Hw, Cg, Cl, Wc,Oc} interesting to

the Taxation Department. A common key RecID for joining the two tables was added to

both tables.

7.4.1 Data Quality

We omit the experiment result for data quality. Basically, this method produced exactly the

same generalized data as in the centralized case where one data publisher holds all attributes
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Figure 7.4: Scalability (k = 50)

of the data (Theorem 7.3.1). The latter case has been studied in Section 4.4. Below, we

focus on evaluating the scalability of the secure protocol.

7.4.2 Efficiency and Scalability

Our claim is the scalability of handling large data sets by maintaining count statistics instead

of scanning raw records. We evaluated this claim on an enlarged version of the Adult data

set. We combined the training and testing sets, giving 45,222 records, and for each original

record r in the combined set, we created α− 1 “variations” of r, where α > 1 is the blowup

scale. Each variation has random values on some randomly selected attributes from ∪Xj

and inherits the values of r on the remaining attributes. Together with original records, the

enlarged data set has α × 45, 222 records. For a precise comparison, the runtime reported

in this section excludes the data loading time and result writing time with respect to disk,

but includes the network communication time.

Figure 7.4 depicts the runtime of TDS2P for 50 thousand to 200 thousand data records

based on two types of anonymity requirements, AllAttTmp and MultiTmp, described in

Section 4.4.3. For AllAttTmp with k = 50, TDS2P took approximately 340 seconds to

transform 200 thousand records. Compared to AllAttTmp, TDS2P becomes less efficient

for MultiTmp. There are two reasons. First, an anonymity requirement with multiple

templates is less restrictive than the anonymity requirement with single template containing

all attributes in the X’s; therefore, TDS2P has to perform more specializations before
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violating the anonymity requirement. Moreover, a data publisher needs to create one XTree

for each related X and maintains a(x) in XTrees. The time increase is roughly by a factor

proportional to the number of templates in an anonymity requirement.

TDS2P is scalable for large data sets and different anonymity requirements. It pro-

vides a practical solution to “distributed data integration” where there is the dual need for

information sharing and privacy protection.

7.5 Summary

We studied secure data integration of multiple databases for the purpose of a joint classifi-

cation analysis. We formalized this problem as achieving the anonymity requirement on the

integrated data without revealing more detailed information in this process. We presented

a solution and evaluated the benefits of data integration and the impacts of generalization.

Compared to classic secure multiparty computation, a unique feature is to allow data shar-

ing instead of only result sharing. This feature is especially important for data analysis

where the process is hardly performing an input/output black-box mapping and user in-

teraction and knowledge about the data often lead to superior results. Being able to share

data records would permit such exploratory data analysis and explanation of results.

However, sharing private databases raises the new issue on what to share because the

participants do not want to reveal sensitive information. This issue does not occur in the

“all or nothing” paradigm where either data can be freely shared as in the data integration

literature or no data is shared at all as in the secure multiparty computation literature.

We formalized this requirement as achieving the anonymity requirement on the integrated

data without revealing more detailed information in this process. We presented and imple-

mented a distributed protocol to solve this problem. Experiments showed that our approach

preserves both information utility and site privacy.
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Conclusions

Due to the wide use of the Internet and the trends of enterprise integration, one-stop ser-

vice, simultaneous cooperation and competition, and outsourcing in both public and private

sectors, data publishing has become a daily and routine activity of individuals, companies,

organizations, government agencies. Privacy-preserving data publishing is a promising ap-

proach for data publishing without compromising individual privacy or disclosing sensitive

information.

In this thesis, we studied different types of linking attacks in the data publishing scenarios

of single release (Chapter 4 and Chapter 5), sequential release (Chapter 6), and secure data

integration (Chapter 7). Our contributions can be summarized as follows:

• Preserving Privacy and Information. We considered the problem of protecting in-

dividual privacy while releasing person-specific data for classification modelling. We

chose classification analysis as the information requirement because the data quality

and usefulness can be objectively measured. Our proposed framework can easily adopt

other information requirement with a different selection criterion.

• A Unified Privacy Notion. We defined a new privacy notion, called privacy template

in the form of 〈X, Y, k〉, that unifies anonymity template and confidentiality template.

This unified notion is applicable to all data publishing scenarios studied in this thesis.

• A Framework of Anonymization Algorithm. Despite the data publishing scenarios are

very different, we presented a framework of anonymization algorithm, Top-Down Re-

finement (TDR), to iteratively specialize the data from a general state into a special
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state, guided by maximizing the information utility and minimizing the privacy speci-

ficity. This top-down approach serves a natural and efficient structure for handling

categorical and continuous attributes and multiple privacy templates. Experiments

suggested that our TDR framework effectively preserves both information utility and

individual privacy and scales well for large data sets in different data publishing sce-

narios.

• Extended Data Publishing Scenarios. Most existing works considered the simplest data

publishing scenario, that is, a single release from a single publisher. Such mechanisms

are insufficient because they only protect the data up to the first release or the first re-

cipient. Therefore, we also extended the privacy notion and anonymization framework

to other real life data publishing scenarios, including sequential release publishing and

secure data integration.
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