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Abstract: Human hands are the first point of interaction with physical objects, being the base for 

many daily activities. That is why speedy post-traumatic recovery becomes essential when dealing 

with hand injuries. This article focuses on a research initiative addressing the rehabilitation process 

of hands by integrating Mixed Reality (MR) and Artificial Intelligence (AI) with a Data Glove 

(DG). Employing an MR headset and an AI system that tracks the hand’s position and provides 

visual and audio guidance to perform the exercises, detecting mistakes and making corrective 

recommendations. The future works include conducting experiments with human subjects and 

integrating therapy techniques such as Functional Electrical Stimulation (FES) and Surface 

Electromyography (sEMG). 

 

Introduction: Since human hands often serve as the first point of contact with physical objects, 

they are one of the most injured body parts. In the case of hand injuries, however, many daily 

activities cannot be performed and quality of life may significantly degrade [1], so speedy post-

traumatic recovery is of utmost importance. Physiotherapy is an essential component of the 

recovery process that usually requires frequent visits to the hospital and meetings with 

physiologists for rehabilitation therapy and exercise instructions. The current research aims to 

facilitate the rehabilitation process by integrating Mixed Reality (MR) and Artificial Intelligence 

(AI) with a Data Glove (DG), to guide the patient in performing exercises with minimal or no 

supervision if permitted [2, 3, 4]. Furthermore, when medical personnel is involved, Functional 

Electrical Stimulation (FES) [5, 6] and Surface Electromyography (sEMG) [7, 8] techniques will 

help automate the exercise control process and reduce the physiotherapist’s workload. 

 
Fig.1. The main components of the core system. 
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Methods: The core system (Fig.1) is based on DG motion tracking [2, 3] enhanced with AI and 

MR [4] to guide a patient with a hand injury while performing different sequences of physiological 

exercises. By employing an MR headset such as HoloLens, the AI system will track the hand’s 

position and provide visual and audio guidance to perform the exercises via the MR lenses. The 

fine finger motions will be tracked by the DG and if the patient fails to perform the tasks correctly, 

the AI system will detect the mistakes and make corrective recommendations. The medical 

extension of the core system (Fig.2) incorporates an FES output module [5, 6] for supervised 

rehabilitation treatment and direct physical guidance by electrical stimulation of the relevant 

muscle groups of the patient. Direct tracking of the neural activity associated with the specific 

physical exercise motions and postures will be carried out through an optional sEMG input module 

[7, 8]. 

With respect to the core system, the 

main research contributions are (1) to 

develop an AI system to track global 

hand movements, (2) to integrate the 

finger motion data received from the 

DG, (3) to visualize the guidance in 

the MR scene, (4) to detect mistakes 

by assessing the discrepancies 

between the expected and the 

observed actions, and (5) to make 

recommendations to correct the 

related movements. With respect to 

the medical extensions of the core 

system, the main research 

contributions are (1) to connect and 

integrate the FES output module into 

the core system, (2) to develop 

machine learning models for 

recommendation-based FES module 

control, (3) to connect and integrate the sEMG input module into the core system, and (4) to 

develop machine learning models for sEMG based motion and posture analysis. 

Results and Discussion: We aim to conduct experiments with human subjects and collect sensory 

data to train different machine learning algorithms to identify the most efficient models with the 

highest possible accuracy to properly match patient needs. 

Conclusion: This research integrates DG with MR and AI technologies for physiological therapy. 

It could be extended with FES, sEMG, and more advanced machine learning models for upper 

limb physiotherapy, status evaluations, and health management by a medical professional. 
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Fig.2. Components, data flow, and processing steps in   

the medical extension of the core system. 
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