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Abstract—Software vulnerability detection is one of the most
challenging tasks faced by reverse engineers. Recently, vulnera-
bility detection has received a lot of attention due to a drastic
increase in the volume and complexity of software. Reverse
engineering is a time-consuming and labor-intensive process for
detecting malware and software vulnerabilities. However, with
the advent of deep learning and machine learning, it has become
possible for researchers to automate the process of identifying
potential security breaches in software by developing more intel-
ligent technologies. In this research, we propose VDGraph2Vec,
an automated deep learning method to generate representations
of assembly code for the task of vulnerability detection. Previous
approaches failed to attend to topological characteristics of
assembly code while discovering the weakness in the software.
VDGraph2Vec embeds the control flow and semantic information
of assembly code effectively using the expressive capabilities of
message passing neural networks and the RoBERTa model. Our
model is able to learn the important features that help distinguish
between vulnerable and non-vulnerable software. We carry out
our experimental analysis for performance benchmark on three
of the most common weaknesses and demonstrate that our model
can identify vulnerabilities with high accuracy and outperforms
the current state-of-the-art binary vulnerability detection models.

I. INTRODUCTION

In today’s digital era, massive volumes of open source
software code are readily available on the Internet. They
are susceptible to malicious use by hackers; hence it has
become easy to exploit the vulnerabilities present in the code,
posing serious security threats to systems and users. Software
vulnerabilities are defects or weaknesses in system design,
implementation, or operation management that, if exploited,
can lead to various attacks or can even cause the systems
to crash [18]. The ramifications of these attacks and crashes
can be outrageous and catastrophic. Each year, large num-
bers of software vulnerabilities are being detected in produc-
tion software, either released publicly through the Common
Vulnerabilities and Exposures (CVE) database! or internally
discovered in proprietary code [15]. Thus, the detection of
software vulnerabilities garners significant interest from the
software security community. Traditionally, software vulner-
abilities were detected by reverse engineering, a complex
and time-consuming process that requires expert knowledge
and extensive experience [11]. Reverse engineering is the
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process of analyzing the design of software from its binary
executables [34]. Security experts often apply this technique
to understanding the software, especially when the source code
is not available. However, this process is manually intensive,
making it unfeasible, especially for mitigation of zero-day
vulnerabilities. Therefore, we require automated tools to ex-
pedite the process for reverse engineers. Recent achievements
in machine learning in computer vision, speech recognition,
and natural language processing have encouraged researchers
in cybersecurity to gauge its effectiveness for vulnerability
detection.

There have been several advances in the recent literature on
vulnerability detection using machine learning. The majority
of the recent work in this direction focuses on the use of
classical machine learning, requiring extraction of handcrafted
features from the code [5]. Identifying the important features is
time-consuming and requires immense human efforts as well.
Deep learning has shown its prowess in automatically learning
these features from the plain code. Thus, there have been
several attempts to detect vulnerabilities using deep learning
[27], [26], [4], [37]. Furthermore, researchers tend to detect
vulnerabilities mostly at the source code level [15], [5], [32].
Despite the increasing amount of insightful work, vulnerability
detection remains a challenging and arduous task, and we need
more efficient automated approaches to tackle it, particularly
when the source code is unavailable. There have been a few
research studies on vulnerability detection at the assembly
code level [22], [8]. Though these studies offer promising
results, they are tailored to apprehend to the semantics of the
binaries only. Thus, we propose to identify the vulnerabilities
in software at the assembly code level through deep learning
by capturing its meanings as well as structure.

In this work, we perform all our experimental analysis
at the binary level. Using a disassembler, we can easily
disassemble binary executable files to their corresponding
assembly code required for our task. We explore a novel
representation learning approach that leverages graph neural
networks [33]. We focus explicitly on Message Passing Neural
Networks (MPNN) [14], which have achieved state-of-the-art
performance in various tasks. Our research highlights that
by employing them, we are able to improve the represen-
tation quality of our code as for each node, they aggregate



the messages from all its neighbors. We also ensure that
semantically similar instructions have embeddings close to
each other by using the capability of a pre-trained transformer
model, RoBERTa [29]. This is the first work that utilizes
the RoBERTa model for assembly instruction representation.
To encapsulate, the workflow of our model is organized as
follows: i) Disassembling the software and creating the control
flow graphs of the assembly code, ii) Generating the initial
basic block embeddings using RoOBERTa, iii) Using MPNN to
generate representations of the entire assembly code, and iv)
Detecting the vulnerabilities using those embeddings. We also
compare the performance of our model with the state-of-the-art
for vulnerability detection. This research also seeks to address
some of the additional questions raised in those previous
studies and achieves a new state-of-the-art. The primary focus
of the study is the generation of effective representations of
assembly code. Additionally, in this research we work on the
task of binary vulnerability detection; it is possible to further
extend this study by proving the efficiency of these vector
representations for other downstream tasks such as binary
clone detection [31].
Specifically, our contributions are:

« We propose a novel approach for assembly code rep-
resentation. It is the first work that employs a hybrid
structural and semantic representation learning model at
the assembly code level for vulnerability detection.

e Our model, VDGraph2Vec, is able to generate a latent
representation for the entire assembly code, rather than
for just an assembly function. It is easier to utilize
for both function-level and code-level analysis. Previous
approaches mostly cater to representation at the function
level [10]. Also, this approach is especially useful when
source code is unavailable.

« Extensive experiments on publicly available datasets il-
lustrate the efficacy of the semantic and structural com-
ponents of our proposed model. We capture the semantics
by using a language model to learn the instruction embed-
dings. Further, we demonstrate that using a control flow
graph with a message passing neural network helps in
attaining enhanced learned representations. By combining
these two aspects, our model significantly outperforms
current state-of-the-art vulnerability detection methods at
the assembly code level.

II. RELATED WORK

With the advances in machine learning, it has become piv-
otal to assess its capability in the field of cybersecurity. Harer
et al. [15] elucidated on two approaches to detect vulnerabil-
ities in C/C++ code. The first uses features obtained from the
intermediate representation, while the second operates directly
on source code. The authors used Clang and LLVM tools
to extract the control flow graphs to obtain features of the
operations and variables. They also implemented a custom
C/C++ lexer to get the representations of the tokens, and then
converted the lexed tokens into their vector representations
using Bag-of-Words and Word2Vec [30] representations. They

further used a TextCNN [16] for learning more enhanced
features along with an extremely randomized trees classifier
[13]. Russell et al. [32] proposed a vulnerability detection tool
based on deep feature representation learning. They created
a custom C/C++ lexer to capture the relevant meanings of
the 156 critical tokens as useful features. For generating the
embeddings of these tokens, the authors used Word2Vec [30]
and then employed convolution and recurrent feature extrac-
tors. Using the neural features as inputs, they finally applied
the random forest classifier to classify vulnerabilities. Chernis
and Verma [5] demonstrated the effectiveness of extracting
text features from functions in C source code and analyzing
them with a machine learning classifier. Their experimentation
shows that simple features (character count, entropy, and
arrow count) achieve a better accuracy than complex features
(character n-grams, word n-grams, and suffix trees). Several
researchers also presented comprehensive surveys outlining
automated ways to detect software vulnerability [28], [39],
[25] .

Li et al. [27] developed VulDeePecker that relies on the
generation of code gadgets, which are a group of semantically
related program statements. These code gadgets are trans-
formed into symbolic representations that are used for detect-
ing vulnerabilities using Bidirectional Long short-term mem-
ory (LSTM). It was found that deep learning provides higher
accuracy compared to pattern-based and code-similarity-based
vulnerability detection systems. They also introduced the Sy-
SeVR [26] framework, which focuses on obtaining program
representations that can accommodate syntax and semantic in-
formation pertinent to vulnerabilities by leveraging the abstract
syntax trees and program dependency graphs. They conducted
empirical studies to show the potency of a Bidirectional
Gated Recurrent Unit (BGRU) for vulnerability detection. A
major contribution from the authors is a vulnerability detection
dataset 2, collected from two data sources, the National
Vulnerability Database (NVD)? and the Software Assurance
Reference Dataset (SARD)*.

Since an assembly code shares some commonalities with
natural text, researchers often employ natural language pro-
cessing models on programs [1], [23]. Lee et al. [22] intro-
duced Instruction2Vec, a framework for modelling assembly
code. It is an improved version of the Word2Vec [30] model
that considers the syntax of the assembly code as well. It
uses Word2Vec to generate a lookup table, through which
each instruction is represented as a fixed dimension vector
containing an opcode and two operands. Furthermore, their
model deliberates on the potential of TextCNN [16] for
detecting software vulnerabilities. Ding et al. [10] proposed
an assembly code representation method based on the PV-
DM model [19] incorporating the rich semantic information
between the tokens. However, all these approaches are only
catering to the semantics of the code and not to the actual
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flow of code execution.

Recent research demonstrates the success of message pass-
ing neural networks for source code representation. Zhou et
al. [41] explored the efficacy of using Graph Neural networks
(GNN)for detecting software vulnerabilities by developing a
model called Devign. Their model encodes the raw source
code of a function into a joint graph structure consolidating
the syntax via abstract syntax trees (AST) and semantics via
dependency and control flow graphs. The authors implemented
a gated graph neural network (GGNN)[24] model for getting
the representations of each node. This is further utilized by
the Conv module for graph-level classification. Allamanis et
al. [2] introduced strategies to learn program structures using
graph-based deep learning. They demonstrated the scalability
of GGNNs on two tasks, VARNAMING, and VARMISUSE. In
this work, programs are represented as graphs by capturing
the syntax and semantic relationships between the tokens
using different edge types from AST. Our proposed work
is significantly different from these approaches because we
work at the assembly code level. We aim to improve the
performance of GNN models by experimenting with different
pretrained models such as RoBERTa [29] for the initial node
representations of the basic blocks.

. _ III. PROBLEM DEFINITION
In this section, we provide a formal definition to our

problem along with the used notations. The input to our model
is a binary file. Using a disassembler, we retrieve the Control
Flow Graph (CFG) of a function. To construct the CFG of
the entire program, we create edges between the basic blocks
of a function that call the other function’s blocks. We feed
the CFG G = (X, E) to the MPNN, where X is the set
of the initial representations of the basic blocks in the CFG,
and E is the set of edges between the basic blocks. Each
basic block v is represented by a feature vector z,. The
sequence of instructions in a basic block, I, are mapped
to their corresponding feature vector z, by an embedding
function fg, hence fg(I,) = z,. After obtaining the initial
block embeddings (x,) and edge connections between the
blocks, we apply a graph neural network f, that transforms the
block embeddings (x;}). Further, we apply a pooling layer to
generate the embedding for the entire graph, 6,, which is used
for our downstream task of binary vulnerability detection to
yield a label, g € {0,1}. Thus, f,(G) = . The workflow of
our VDGraph2Vec model is illustrated in Figure 1. Finally, we
define our vulnerability detection research problem as follows,
Definition 1 (Vulnerability Detection). Consider a collection
of binary files B along with their labels Y signifying whether
the binary files contain a certain type of vulnerability or not.
Let b be an unknown binary such that b ¢ B. The vulnerability
detection problem is to build a classification model M based
on B and Y such that M can be used to determine whether the
binary, b, is vulnerable (y = 1) or non-vulnerable (§ = 0). ®

IV. GRAPH-BASED ASSEMBLY CODE REPRESENTATION

LEARNING FOR VULNERABILITY DETECTION
Before diving into the experimental section, we first expli-

cate more on graph representation learning and how it can
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Fig. 1: Workflow of our VDGraph2Vec model.

be leveraged for efficient assembly code representation and
detection of software vulnerabilities. In this section we discuss
the preliminaries requisite for understanding the model. Then,
we describe our VDGraph2Vec model in detail.

A. Preliminaries

Given a dataset in binary format, first the files are disas-
sembled into their equivalent assembly code. A disassembler
translates the binary machine code into assembly code. There
are a variety of disassemblers including /DA Pro> and Ghidra®
that can be used for obtaining the CFG. We use angr’ in our
research because it is open source and provides an easy to use
Python interface, and hence it is easier to replicate results.
Therefore, we start by extracting the Control Flow Graph
(CFG) of the program. A CFG [7] is a graphical representation
of the different execution paths of a program. Each basic block
(a group of sequential statements) of the control flow graph
is represented by a node. The edges of the graph connect
basic blocks that can flow into each other during execution. At
the high level, this representation is especially beneficial for
vulnerability detection because it has the ability to uncover
risky and unsafe program execution topologies. Further, we
use an MPNN [14] to obtain efficient representations of the
assembly code. Conceptually, it works better because for each
node, it accumulates the messages from all of its neighbors
and aggregates them to get the final node embeddings. In
order to pass the CFG as an input to the MPNN, we need to
represent the sequence of instructions in the basic block, I,
as an embedding. Pre-trained language models have achieved
impressive results for various tasks in both natural language
processing and in source code representation [12]. To capture
the meaning of the assembly instructions, we utilize pre-
trained language models (fg) to extract the initial block
embeddings, z,,.

1) Message Passing Neural Networks: The complexity of
data structures led to several advancements in machine learn-
ing with the introduction of graph neural networks. Owing
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to the immense expressive power of graphs, these graph
representations are extremely useful for non-euclidean data,
and hence graph neural networks have attained state-of-the-
art results for many tasks [40]. MPNN [14] is a popular
framework that generalizes most graph neural models based
on the idea of getting enhanced node representations by
aggregating information from the neighbors. The architecture
of an MPNN consists of two primary phases: a message phase
and a readout phase. A graph G has node features x,, and edge
features e,,,. At every time step ¢, a node has an associated
hidden state, h{. During the message passing phase, the hidden
states are updated based on the messages m!"1 obtained from
the neighbors.

mit =" My(hl, Bl eqw)
weN (v)

B = Us(hl, i)

The readout phase computes the feature vector for the entire
graph using a readout function R.

j=R({hlveG})

The message update function M;, the node update function
U;, and the readout function R are all learnable and differ-

entiable functions. This framework is quite robust because it
provides the feasibility to use different messages and update
functions. In this work, we perform our experiments specifi-
cally with two graph neural networks, Graph Convolutional
Networks (GCNs) [17] and Gated Graph Neural Networks
(GGNNs) [24]. GCN generalizes the idea of convolutional
neural networks (CNNs) [21] to non-structured graph net-
works. In a GCN layer, the weights are shared for all nodes,
and the feature vector for a node is computed by performing
mathematical operations on its neighborhood nodes. If A is the
adjacency matrix for the graph, and z, represents the initial
representation for node v, GCN computes the feature vector
Rt for t + 1 layer as,

W =o( Y BOW®O) = o (Ahgw(ﬂ)
weN (v)

where W (") is the weight matrix used for the layer ¢, and
hY = z,. The adjacency matrix A is normalized to avoid the
scaling problem by,

A= D12 Ap-1/2)

where D is the diagonal matrix with the degrees of all nodes
in A. Gated graph neural networks are used to build sequential

models in which each node v is updated using the previous
node state (h!) and the current message state (m!*!) with a
gated recurrent unit (GRU) [6].

hy™ = GRU (g, myth)

2) Word Embeddings: Word2Vec [30] is an extremely pop-
ular algorithm in natural language processing to capture dense
learned representations of text in such a way that words with
the same meaning tend to have similar representations. It is
a shallow, two-layer neural network, and there are two types
of methods described in this paper to learn a low dimensional
feature vector for each word: skip-gram and continuous bag-
of-words models. The idea of the skip-gram model is to use the
current word to predict words around it. The continuous bag-
of-words model works on the reverse principle, it predicts the
current word on the basis of the neighboring words. However,
the word2Vec model fails to capture differences like polysemy.
To overcome this shortcoming, context informed word em-
beddings were introduced with Transformer [36] models. One
such model that revolutionized pre-trained language models
in NLP is BERT [9]. The model takes into consideration both
left and right context of the words, resulting in more accurate
feature representations. The authors of this paper investigate
a novel technique called masked language modeling (MLM),
in which some of the tokens from the input are masked,
and the objective is to predict the original vocabulary ID
of the masked token. Based on BERT’s masking strategy,
RoBERTa is an optimized pre-training language model that
has made breakthroughs in NLP. RoBERTa allows training
with much larger mini-batches and learning rates by tuning the
BERT model. This allows RoBERTa to improve on the masked
language modeling objective, compared with BERT. The BASE
model contains 12 bidirectional Transformer encoders with
large feed-forward units (768 hidden states) and 12 attention
heads. As input, ROBERTa takes a sequence of words that keep
flowing up the stack. Each layer applies self-attention, passes
its results through a feed-forward network, and then hands it
off to the next encoder.

B. Model

In order to get embeddings of assembly code, VD-
Graph2Vec learns both the structural and semantic aspects of
the assembly code. We begin by disassembling the binary file
and use angr® to create the CFG of the entire assembly file
by connecting the basic blocks between different functions
that call one another. We represent each of its basic blocks
with a dense vector representation by using a language model
and both these components are integrated by using a graph
neural network. To train our language model, we consider an
assembly instruction as a word and the entire basic block
with its instructions as a sentence. We employ Word2Vec
in our setting for learning the block embeddings by taking
the average of all the instruction embeddings in the block.
Following Baldoni et al. [3], we also experiment by applying
attention to acquire the basic block representations. However,
averaging over the block instructions works better in our case,
and hence we report our results in the experimental section
using an average. A possible reason for this is that every
block contains a different number of instructions. Unlike other

8https://github.com/angr/angr
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Fig. 2: Architecture of the VDGraph2Vec model.

approaches, we do not set a maximum limit for the number
of instructions in a basic block.

For training the RoBERTa model on assembly code, a
corpus containing one million x86 assembly instructions was
built using examples from various datasets. We train the model
on the MLM objective, and we retrieve the block (sentence)
representations from it by averaging over the tokens and con-
catenating the last four hidden states of the model. We train our
language models on the x86 assembly instructions. A possible
limitation of our model is that it is mono-architecture based.
Other architectures and optimization levels were not taken into
consideration, but it is feasible to extend it. Additionally, data
dependency edges can be employed along with the control flow
execution paths to incorporate more structural information of
the assembly code.

The connectivity between the blocks (edges) and the em-
beddings for each block (nodes) serve as inputs to our message
passing neural network. The MPNN framework accumulates
the information from the neighbouring blocks and uses it to
generate enriched block representations. For obtaining a graph
embedding, we apply a global pooling (readout) layer. We
experiment with {add, average, attention} readout layers, and
average worked better in the case of GCN, and attention
worked better for gated graph neural network. We then train
our embeddings for the downstream task of vulnerability
detection using the objective function of minimizing the cross
entropy loss between the predicted and actual labels.

R
L(y,9) = =5 ) _(y-log(§) + (1 —y) - log(1 = 7))

The weights of the neural network are optimized using Adam
optimizer. The neural architecture of the VDGraph2Vec model
is shown in Figure 2.
V. EXPERIMENTS

In this research, we conduct extensive experiments by ex-
amining different node embedding methods and graph neural
networks. In this section we demonstrate why it is important
to incorporate the structure as well as the semantics of

the assembly code in our vector representations. Thus, the
objectives of the experiments are to evaluate the performance
of VDGraph2Vec for vulnerability detection and to compare
our methodology with the state-of-the-art vulnerability detec-
tion works. We consider vulnerability detection as a binary
classification task for each Common Weakness Enumeration
(CWE). CWE’ is a categorization of software weaknesses
and vulnerabilities. Each of the weaknesses has its separate
characteristics, and hence it is better if we train models
separately to learn these distinguishing features. Thus, we
test the effectiveness of VDGraph2Vec on the three most
commonly encountered weaknesses. We use PyTorch and
PyTorch Geometric to implement our models. We train the
models on a server with two Xeon E5-2697 CPUs, 384GB
RAM, and four Nvidia Titan XP graphics cards.

A. Data Preparation

Data collection is a preliminary task of any research. Thus,
we first collect a dataset that contains examples of vulnerable
versions of the software. The Juliet Test Suite is a collection
of vulnerability datasets created by the National Institute of
Standards and Technology (NIST) and organized into 118
different CWEs. The code is categorized into good and bad
cases to make it suitable for supervised learning. Since the
Juliet Test Suite contains more synthetic examples, we also
evaluate our model in a more challenging and realistic sce-
nario. We use the NDSS18 dataset, which is also maintained by
NIST and extracted from the National Vulnerability Database
(NVD)'? and Software Quality Assurance Dataset (SARD)'!.
This dataset was originally available in source code format
[27]. Le et al. [20] compiled the source code into binaries for
Windows OS and Linux OS platforms. The NDSS18 dataset
contains a total of 32,281 binary files for CWE-119 and CWE-
322 over both platforms. We conduct our analysis on three of
the CWEs obtained from two different datasets. Particularly,
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we use CWE-121 and CWE-190 from the Juliet Test Suite, and
CWE-119 from the NDSS18 dataset to benchmark our model’s
performance. CWE-121 is a weakness caused by stack-based
buffer overflow. An integer overflow or wraparound results in
the vulnerability CWE-190. CWE-119 is related to improper
restriction of operations within the bounds of a memory
buffer. Buffer overflow and integer overflow vulnerabilities are
commonly encountered in software and exploited, leading to
various adversarial attacks. Additionally, these vulnerabilities
usually span more than one function. Consequently, a graph
structure is more suitable for discovering these vulnerabilities.
Moreover, we also note that these datasets have a varying
number of edges and nodes. CWE-121 and CWE-190, from
the Juliet Test Suite, have a higher average number of nodes
and edges as compared to CWE-119, from the NDSS18
dataset. The statistics of these datasets are listed in Table 1.

As assembly code shares similarities with normal text, it is
important that we perform pre-processing on assembly code,
similarly to the case of textual data. Thus, we first convert all
instructions to lower case. In order to avoid learning different
representations for all different hexadecimal addresses, we
replace the hexadecimal addresses with the token (ADDR),
and the numerical constants with (CONST). This improves
the semantic quality of our embeddings.

Non Average Average
CWE Vulnerable vulnerable # of # of
samples
samples nodes edges
121 3100 3100 55.81 71.42
190 3960 3960 52.36 67.21
119 6521 5861 14.71 17.72

TABLE I: Statistics of our datasets.
B. Evaluation Metrics

We evaluate the performance of our models by splitting the
datasets as follows: 80% training, 10% validation, and 10%
testing. We initialize different random seeds, and results are
averaged for 5 runs. The vulnerability detection task that we
consider here is a binary classification task, where we treat
vulnerable samples as positive and non-vulnerable as negative.
The following evaluation metrics were used to examine the
performance of our models: Accuracy, Precision, Recall, F1-
score, and AUC-ROC score.

We also study the impact of hyperparameter tuning by
evaluating the models on the validation set. We try different
settings of learning rate [0.01, 0.001, 0.0001], batch size [100,
128, 256], epochs [50, 75, 100, 150], channels for a GCN
convolution layer [16, 32, 64, 128], number of layers for gated
graph neural networks [2, 3], and dropout [0, 0.3, 0.4, 0.5].
We select the setting that results in the best accuracy on the
validation set. The highest achieved accuracies obtained on
different parameter settings are reported for each model.

C. Models for Comparison

We implement the state-of-the-art binary vulnerability de-
tection models to compare with our VDGraph2Vec model.
In order to demonstrate the competence of our semantic and

structural components, we compare the potential of our model
at the node embedding and classification level. Similar to Xu
et al. [38], we investigate an approach based on employing
handcrafted features for generating our basic block embed-
dings. We use the following features for our basic blocks: 1)
number of transfer instructions, 2) number of function calls,
3) total number of instructions in the block, 4) number of
arithmetic instructions, 5) number of logical operations in the
block, 6) number of constants, and 7) number of strings.
However, using this representation we lose all the pivotal
information expressed in the assembly instructions. We also
compare our model against our baseline model presented in
[22], which uses Instruction2Vec'? for embedding the assem-
bly instructions and TextCNN for classifying the samples into
benign and vulnerable. We try with all possible settings and
report the best results these methods can achieve to compare
with our model. Following Baldoni et al. [3], we use another
state-of-the-art model for binary code representation based
on word2vec for node representation and Structure2Vec [35]
for CFG representation. Although the authors evaluate their
model for binary clone detection and compiler provenance
on different datasets, we will analyze the effectiveness of
these embeddings for vulnerability detection. Thus, we in-
corporate Structure2Vec in our experiments to compare it
with GCN and Gated Graph Neural Network (GGNN), and
Word2Vec to contrast it with RoOBERTa node embeddings.
We seek to try different variations of node embeddings and
classification models to gauge the subtle differences in perfor-
mances caused by each of these components. Specifically, we
compare the two variants of our model, VDGraph2Vec-GCN
(VGVec-GCN) and VDGraph2Vec-GGNN (VGVec-GGNN),
with the following variants: Handcrafted features with GCN
(HF-GCN), Handcrafted features with GGNN (HF-GGNN),
Instruction2Vec with TextCNN (i2V-TCNN), Word2Vec with
Structure2Vec (w2v-s2v), Word2Vec with GCN (w2v-GCN),
Word2Vec with GGNN (w2v-GGNN), and RoBERTa with
Structure2Vec (RoS2v). The VDGraph2Vec-GCN model uti-
lizes a GCN for the message passing component, while
VDGraph2Vec-GGNN employs a gated graph neural network.

D. Results and Analysis

The results of vulnerability detection on Juliet Test Suite
(CWE-121 and CWE-190), and NDSS18 (CWE-119) datasets
for various combinations of node embeddings and classifi-
cation methods are shown in Tables II and III, respectively.
The last two rows of the tables denote the performance of
our VDGraph2Vec model. In these tables, A represents the
accuracy, P the precision, R the recall, F' the Fl-score and
AU C the AUC-ROC score. Furthermore, when the models are
deployed for real world application, they are often trained on
a different dataset and evaluated on the actual data. Therefore,
we perform a cross-dataset evaluation to assess the generaliza-
tion capability of the models. For this experimental setting we
collect a test dataset containing 1,000 samples obtained from
[8]. We train our models on the entire CWE-121 dataset from

Zhttps://github.com/firmcode/instruction2vec



M ‘ CWE-121 ‘ CWE-190
odel

\ A P R F AUC \ A P R F AUC
HF-GCN 70.96 79.28 60.85 68.85 71.55 | 67.67 69.02 72.89 7090 67.21
HF-GGNN 71.77 66.81 9235 77.53 7058 | 69.19 71.19 72.19 71.69 68.92
i2v-TCNN 94.83 97.12 9296 95.0 9494 | 90.78 90.06 93.22 91.61 90.56
w2v-s2v 9532 94.08 97.24 95.63 9521 | 9343 93.11 9485 9398 93.31
w2v-GCN 95.81 94.13 98.16 96.11 95.66 | 95.07 9471 9626 9497 9548
w2v-GGNN 97.58 98.14 9724 97.69 97.59 | 9541 9558 96.02 9581 9540
RoS2v 9790 100.0 96.02 97.97 98.01 | 94.57 9425 9579 95.01 94.46
VGVec-GCN* 100.0 100.0 100.0 100.0 100.0 | 99.74 99.53 100.0 99.76 99.72
VGVec-GGNN* | 100.0 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 100.0

TABLE II: Vulnerability detection results on Juliet Test Suite (CWE-121 and CWE-190). % denotes the performance of our

proposed model, VDGraph2Vec.

the Juliet Test Suite and evaluate it on different samples from
the test dataset'3. The results of the experiment are reported
in Table IV.

Model A P R F AUC
HF-GCN 64.83 69.84 64.13 66.86 64.92
HF-GGNN 66.77 64.66 88.04 7456 64.23
i2v-TCNN 81.41 83.72 8250 83.11 81.32
w2v-s2v 85.0 8591 87.17 86.54 84.74
w2v-GCN 89.03 9032 89.79 90.05 88.94
w2v-GGNN 90.48 9277 89.79 91.25 90.56
RoS2v 86.86 86.0 9042 88.15 86.55
VGVec-GCN* 929 93.08 94.16 93.61 9258
VGVec-GGNN* 9548 95.65 96.21 9592 95.27

TABLE III: Vulnerability detection results on CWE-119 from
NDSS18 dataset. * denotes the performance of our proposed
model, VDGraph2Vec.

Model A P R F AUC
HF-GCN 61.0 6273 542 58.15 60.99
HF-GGNN 62.2 7132 40.8 5198 622
i2v-TCNN 757 1000 514 67.89 75.7
w2v-s2v 722 1000 444 614 722
w2v-GCN 83.8 100.0 67.6 80.66 83.8
w2v-GGNN 89.3 100.0 78.6 88.01 893
RoS2v 78.7 100.0 574 7293 78.69
VGVec-GCN*  91.1 100.0 822 90.23 91.1
VGVec-GGNN* 949 100.0 89.8 946 949

TABLE IV: Cross dataset results on CWE-121 with the model
trained on samples from the Juliet Test Suite and tested on
samples from another dataset. * denotes the performance of
our proposed model, VDGraph2Vec.

We also investigate if the difference in accuracies between
our model and other state-of-the-art methods is statistically
significant. VDGraph2Vec achieves statistically significantly
better accuracy than the other models in all experiments, as the
p-values in t-test are much smaller than 0.01. Thus, our model
outperforms all other models on all three CWEs. Moreover, it

Bhttps://github.com/williamadahl/RNN-for-Vulnerability-Detection

is evident from our results that manually extracted features do
not offer good representational quality for the assembly code;
hence it is important to incorporate the meaningful contextual
representations of the assembly instructions. We also observe
that RoBERTa block representations boost the performance
more than Word2Vec. Additionally, in comparison to TextCNN
and Structure2Vec, an MPNN is able to better embed the
nuanced relationships between different parts of an assembly
code with its flow of code execution. Even in our different ex-
perimental setting of cross-dataset evaluation, VDGraph2Vec
outperforms the other methodologies. Most of the models are
able to achieve a perfect precision, implying that they are
able to detect the vulnerable samples. In that setting we also
observe that the GGNN surpasses the generalizability power
of the GCN by a wide margin. Further, we notice that our
model is able to achieve 100% accuracy on the CWE-121 and
CWE-190 datasets from the Juliet Test Suite. Intuitively, we
believe the reason for this is that the samples in the dataset are
synthetic and man-made, thus the distinguishing characteristics
between the vulnerable and benign samples are easily learned
by the model. Nonetheless, our model is able to perform better
than the baseline models, which is further validated by its
effective performance on the more natural dataset of CWE-
119 obtained from the NDSS18 dataset.
VI. CONCLUSION

We perform thorough experiments to investigate the per-
formance of our model on vulnerability detection. We em-
pirically show that VDGraph2Vec is able to successfully
spot vulnerabilities because both semantics and the innate
hierarchical structure of assembly code are being taken into
consideration. The control flow graph helps in finding the
vulnerable execution paths. MPNN gives better comprehensive
representations by aggregating messages from all neighbors.
We also demonstrate the effectiveness and generalization abil-
ity of VDGraph2Vec by conducting a cross-dataset evaluation.
Our model is able to achieve high performance in different
experimental settings, surpassing the recent works in this
direction. Despite these impressive results, we believe there are
certain open challenges that hinder research for vulnerability
detection at the binary level. The datasets in this area mostly
encompass the source code level. Furthermore, most of these



datasets that are available in source code format cannot be
compiled to their equivalent binaries. In a real-world scenario,
we generally do not have access to the source code. Therefore,
there is a need to curate datasets for binary vulnerability
detection so that we have more data to train our deep learning
models. The datasets in this area mostly encompass the source
code level. Additionally, we can incorporate more structural
information of the graph with the data flow dependencies. This
can lead to further improvement in the performance of the
model. Our work caters to x86 assembly instructions. In the
future, we can extend it for all target machine architectures.
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