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Abstract Data-as-a-service (DaaS) is a cloud computing service that emerged as
a viable option to businesses and individuals for outsourcing and sharing their col-
lected data with other parties. Although the cloud computing paradigm provides great
flexibility to consumers with respect to computation and storage capabilities, it im-
poses serious concerns about the confidentiality of the outsourced data as well as
the privacy of the individuals referenced in the data. In this paper we formulate and
address the problem of querying encrypted data in a cloud environment such that
query processing is confidential and the result is differentially private. We propose a
framework where the data provider uploads an encrypted index of her anonymized
data to a DaaS service provider that is responsible for answering range count queries
from authorized data miners for the purpose of data mining. To satisfy the confi-
dentiality requirement, we leverage attribute based encryption to construct a secure
kd-tree index over the differentially private data for fast access. We also utilize the
exponential variant of the ElGamal cryptosystem to efficiently perform homomor-
phic operations on encrypted data. Experiments on real-life data demonstrate that our
proposed framework preserves data utility, can efficiently answer range queries, and
is scalable with increasing data size.

1 Introduction

Cloud computing is a new computing paradigm that enables organizations to have ac-
cess to a large-scale computation and storage at an affordable price. Data-as-a-service
(DaaS) is one of the cloud computing services that allow hosting and managing large-
scale databases in the cloud on behalf of the data owner. DaaS is a compelling service
for organizations, as they no longer need to invest in hardware, software and oper-
ational overheads. However, despite all these benefits, organizations are reluctant to
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adopt DaaS model, as it requires outsourcing the data to an untrusted cloud service
provider that may cause data breaches.

In recent years, there has been a considerable effort to ensure data confidentiality
and integrity of outsourced databases. Several research proposals suggest encrypting
the data before moving it to the cloud [1,2]. While encryption can provide data confi-
dentiality, it is less effective in deterring inference attacks. This reality demands new
privacy-enhancing technologies that can simultaneously provide data confidentiality
and prevent inference attacks due to aggregate query answering.

Privacy-preserving data publishing (PPDP) is the process of anonymizing person-
specific information for the purpose of protecting individuals’ privacy while main-
taining an effective level of data utility for data mining. Different PPDP privacy
models provide different types of privacy protection [3]. Differential privacy [4] is
a recently proposed privacy model that provides a provable privacy guarantee. Dif-
ferential privacy is a rigorous privacy model that makes no assumption about an ad-
versary’s background knowledge. A differentially-private mechanism ensures that the
probability of any output (released data) is equally likely from all nearly identical in-
put data sets and thus guarantees that all outputs are insensitive to any individual’s
data.

In this paper, we propose a cloud-based query processing framework that simul-
taneously preserves the confidentiality of the data and the query requests, while pro-
viding differential privacy guarantee on the query results to protect against inference
attacks. Let us consider the following real-life scenario. Population Data BC (Pop-
Data) 1 is a non-profit organization (data bank) responsible (among other things)
for storing and managing patient-specific health data received from several hospi-
tals, health organizations and government agencies in the Province of British Colom-
bia, Canada. PopData utilizes explicit identifiers to integrate the data, and then de-
identifies the integrated data by separating the explicit identifiers from the rest of the
data contents. Data miners who are interested in querying the data initially sign a
non-identifiability agreement to prevent them from releasing research data that can
be used to re-identify individuals. When PopData receives a data access request, it
first authenticates the data miner, verifies that she is working on an approved research
project, and then executes the query on the de-identified data and returns the result
back to the data miner. Similar organizations can be found in other countries, e.g., the
National Statistical Service 2 in Australia.

A major concern in this scenario is data privacy. Although the data is de-identified,
data miners can still perform (or accidentally release a research results that can leads
to) record/attribute linkage attacks and re-identification of individuals, as was shown
in the cases of AOL [5] and Netflix [6]. On the other hand, to minimize the workload
on PopData, cloud services can be used to store, manage, and answer queries on the
integrated data. However, this rises two other concerns. One concern is data confi-
dentiality, where the outsourced patient-specific data must be stored in a protected
way to prevent the cloud from answering queries from unauthorized data miners, and

1 PopData: https://www.popdata.bc.ca/
2 Statistical Data Integration Involving Commonwealth Data: http://statistical-data-

integration.govspace.gov.au/
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Fig. 1 PRIST: A Privacy-preserving framework for software testing using differential privacy.

to protect against potential multi-tenancy problems due to the sharing of services,
resources, and physical infrastructure between multiple independent tenants on the
cloud [7]. Another concern is query confidentiality, where the cloud should be able to
execute query requests from authorized data miners without the ability to know what
attributes and attribute values are specified in each query.

As shown by [8], count queries can be quite useful for data mining and statistical
analysis applications where miners focus on extracting new trends and patterns from
the overall data and are less interested in particular records.

Figure 1 illustrates the overall process of our proposed framework. Each data
owner (e.g. hospital, health center) submits its raw data to the data bank (data provider).
The data bank first integrates all data together, and then applies a PPDP privacy model
on the integrated data such that explicit identifiers of record owners are removed,
while other attributes (including sensitive attributes) are anonymized and retained for
data analysis. Next, the data bank encrypts the anonymized data and upload it to the
service provider (public cloud). Data miners authenticate themselves to the data bank
and then submit their encrypted count queries to the cloud. The cloud securely pro-
cesses each query, homomorphically computes the exact noisy count, and then sends
the encrypted result back to the data miner. The proposed framework, named SecDM,
achieves data privacy by supporting any privacy algorithm whose output is a contin-
gency table data. Attribute-base Encryption (ABE) and ElGamal schemes are used to
achieve data and query confidentiality. We analyze in Section 4.3 the benefit of out-
sourcing the data to a service provider as compared to having the data bank handle
the user queries directly and show that the processing overhead on the data bank is
almost 10 times less than the overhead on the service provider. While our framework
protects the confidentiality of individual query (data access), we provide a detailed
security analysis in Section A.

The intuition of our solution is to generate a kd-tree index for efficient traversal
and secure access on the anonymized data, where the index tree is encrypted using
attribute based encryption and stored on the public cloud. When a data miner de-
sires to query the outsourced data, she sends her proof of identity to the data provider
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Table 1 Comparative evaluation of main features in related query processing approaches (properties in
columns are positioned as beneficial with fulfilment denoted by  and partial fulfilment by #)

Approach

Supported Queries Security Client

Exact
Query

Range
Query

Similarity
Query

Data Confi-
dentiality

Query Confi-
dentiality

Privacy-
preserving
Result

Query
Reuse

Low Stor-
age Over-
head

Low Com-
munication
Overhead

Low Post-
processing
Overhead

Private Spatial Decomposition (PSD) [16]      
SQL over Encrypted Data (SED) [14]       
OPESS [17]      
Salted IDA [11]    
ASM-PH [15]    
NEST [18]     
PPNNS [19]       
R̂-tree [20]    #   
kd-PHR [9]      #
Our proposed solution SecDM [Section ??-4.2]          
Our proposed solution C-SecDM [Section 4.3]†         

† In C-SecDM, all communications of the data miners go through one party (data provider), and no decryption of query

result is needed.

with her query and receives an encrypted version of her query, namely, system query,
which she sends to the cloud for processing. The cloud uses the system query to tra-
verse the encrypted kd-tree index and securely compute the total count representing
the privacy-preserving answer to the query. The cloud then sends the answer back
to the data miner, who in turn decrypts the encrypted results using a decryption key
provided originally by the data provider. Our framework protects the confidentiality
of each individual query by keeping its predicates hidden from the cloud. However,
it does not hide the search pattern of the queries. We provide formal definition of
framework properties as well as detailed security analysis in Section A.

The contributions of this paper can be summarized as follows:
Contribution 1. We propose SecDM, a comprehensive privacy-preserving frame-

work for query processing in a cloud computing environment. SecDM maintains the
privacy and utility properties of the outsourced data while simultaneously ensuring
data confidentiality, query confidentiality, and privacy-preserving results. Previous
work [9][10][11][12][13] satisfies only a subset of the aforementioned security fea-
tures. We refer the reader to Section 2 for a detailed comparison.

Contribution 2. To enable efficient data access on the cloud while maintaining
data and query confidentiality, we propose an algorithm for constructing an encrypted
kd-tree index while utilizing attribute based encryption in order to support range
predicates on numerical attributes. We demonstrate the efficiency of our solution by
showing that SecDM has linear time complexity w.r.t. the number of attributes, and
it is sub-linear w.r.t. the data size on query processing. Extensive experiments on
real-life data further confirm these properties.

Contribution 3. Most existing work on the problem of data outsourcing in cloud
computing environments either requires the query issuer to have prior knowledge
about the data and subsequently requires storage and communication overhead [11],
or yields results that require postprocessing on the query issuer’s side [14], or both [15].
In contrast, data miners in our proposed framework are considered “lightweight clients”
as they are not required to have or store any information about the data, nor are they
required to perform post-processing on the results (except for decrypting the results).
The communication complexity with the cloud is constant with respect to the size of
the dataset and the query type.
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2 Related Work

In this section, we review the literature that examines several areas related to our
work. Table 1 summarizes the features of the representative approaches, including
our proposed solutions.

2.1 Privacy-Preserving Data Publishing

One related area is privacy-preserving data publishing (PPDP) [3], where data is
published in such a way that useful information can be obtained from the published
data while data privacy is preserved. A common PPDP approach is anonymization.
Several privacy models were proposed in the literature for providing different types
of privacy protection. For example, the (α, k)-anonymity model [21] applies general-
ization and suppression techniques to protect against record and attribute linkages.
The ε-differential privacy model [4] aims at protecting against table linkage and
probabilistic attacks by ensuring that the probability distribution on the published
data is the same regardless of whether or not an individual record exists in the data.
Mohammed et al. [22] propose a generalization-based anonymization algorithm in
a non-interactive setting for releasing differentially private records for data mining.
Chen et al. [23] propose a method for anonymizing high-dimensional data and releas-
ing synthetic dataset satisfying differential privacy using sampling-based framework
to identify attributes’ dependencies. Cormode et al. [16] propose a framework for
using spatial data structures to provide a differentially private description of the data
distribution. Xiao et al. [24] propose another framework that uses kd-tree based parti-
tioning for differentially private histogram release. These frameworks support range
queries while providing privacy guarantee; however, these techniques are not suit-
able for the outsourcing scenario as they provide no data confidentiality against the
cloud service provider. Our work assumes that the outsourced data is a data table
that is anonymized to satisfy a privacy requirement. To maximize the data utility for
classification analysis, we utilize the anonymization approach in [22].

2.2 Confidentiality in Data Outsourcing

Another area related to our work is confidentiality in data outsourcing, where data is
stored and managed by one or more untrusted parties that are different from the data
owner. Queries are executed on the data while keeping the data confidential and with-
out revealing information about the queries. A commonly used mechanism for ensur-
ing data confidentiality is encryption. Some approaches propose to process queries
over encrypted data directly. However, such approaches do not provide a good bal-
ance between data confidentiality and query execution. For example, methods in [14]
[25] attach range labels to the encrypted data, thus revealing the underlying distri-
butions of the data. Other methods depend on order-preserving encryption [26][27];
however, these methods reveal the data order and are subject to inference and sta-
tistical attacks. Homomorphic encryption, on the other hand, is a promising public
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cryptosystem that allows query execution on encrypted data [1][28]; however, its
high computation cost makes it prohibitive in practice. The authors in [29] propose
to store encrypted links to the data queries in Blockchain, and use smart contracts to
retrieve the data. In this paper, we employ the exponential variation of ElGamal [30]
encryption scheme in one area of our solution by taking advantage of its additive ho-
momorphism property. We show that this scheme is efficiently employed because the
encrypted message is small enough for the scheme to remain practical.

Instead of processing queries directly over encrypted data, some approaches pro-
pose using indexing structures for fast data access and efficient query execution [31][17][32].
Some indexing schemes have constraints on the type of queries they support. For
example, hash-based indexing [33] and privacy homomorphism [34] only support
equality queries, whereas bucket-based indexing [14] and character-oriented index-
ing [35][36] support equality queries as well as partially supporting range queries. To
support both equality queries and range queries, a category of approaches propose us-
ing disk-based indexes such as B-tree [37] and B+-tree [38] and spatial access indexes
such as kd-tree [39] and R-tree [40]. Our work fits in this category because we utilize
an encrypted kd-tree index for efficient and secure traversal. Wang et al. [11] pro-
pose a framework based on B+-tree index for query processing on relational data in
the cloud. However, in order to protect data confidentiality against the cloud, the pro-
posed solution generates a superset of the result and requires the client (querying user)
to perform predicates evaluation in order to compute the final result. Hu et al. [15]
propose a framework based on R-tree index for secure data access and processing of
k-nearest-neighbor (kNN) similarity queries. However, the proposed approach parti-
tions the R-tree index constructed over the outsourced data into two indexes, one is
hosted by the cloud and the other is hosted by the client. In addition, a high com-
munication bandwidth is required to achieve access confidentiality. Recently, Wang
and Ravishankar [20] proposed a framework for performing half-space range queries
using an R̂-tree index that is encrypted using Asymmetric Scalar-product Preserving
Encryption (ASPE) scheme [41]. Their method ensures data confidentiality and re-
quires low communication and storage overhead on the client side. However, it does
not provide a privacy guarantee, nor does it provide full confidential query process-
ing because it leaks information on the ordering of the minimum bounding box of the
leaf nodes and requires result postprocessing because it introduces false positives.
Barouti et al. [9] proposed a protocol for secure storage of patient health records on
the cloud, while allowing health organizations to securely query the data. The pro-
posed protocol, however, does not provide privacy guarantees on the query results,
while requiring high communication overhead on the client side.

2.3 Searching on Encrypted Data

Searchable encryption (SE) [42] [43] [44] [45] is a closely related line of work that
supports secure searching on encrypted data. SE schemes (except for [42]) enable the
data provider to generate a searchable encrypted index over a set of keywords. Most
of these indexes, however, leak information about the relation between the keywords
and the underlying data, the search pattern, and the access pattern [46]. In contrast,
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our proposed framework reveals only the search pattern of the queries to the cloud.
Functional encryption (FE) [47] is another related line of work that support searching
on encrypted data. It includes identity-based encryption [48], attribute-based encryp-
tion [49], and predicate encryption [50]. We choose cipher-policy attribute-based en-
cryption (CP-ABE) to construct our searchable encrypted index since CP-ABE sup-
ports fine-grained access control that can be utilized to handle not only keywords but
also numerical ranges. In [51], the authors propose a PIR solution based on Paillier
encryption scheme for privately retrieving a cell from an encrypted data warehouse.
That is, it allows users to perform OLAP operations without revealing to the server
which operation is performed and which cell is being retrieved.

Unlike the aforementioned approaches, our proposed solution ensures data and
query confidentiality and privacy-preserving results while assuming that the client
has no prior knowledge about the data being queried and its structure. No further
interaction is required between the cloud and the client once the latter has submitted
her query to the cloud, and no local refinement is required by the client on the final
result. Table 1 summarizes the features of the representative approaches, including
our proposed solutions.

3 Problem Formulation

In this section we formally define the research problem. First, we present an overview
of the problem of confidential query processing, with privacy guarantee on outsourced
data in the cloud in Section 3.1. Next, we define the input components in Section 3.2.
We then describe the trust and adversarial model in Section 3.3. Finally, we present
the problem statement in Section 3.4.

3.1 Problem Overview

In this paper we examine a cloud computing model consisting of three parties: data
provider, data miner, and service provider. The data provider, for example, repre-
sents a data bank that owns an integrated patient-specific database. The data miner
represents a user who is interested in querying the data for the purpose of performing
analytical data mining activities such as classification analysis. The service provider
is a public (untrusted) party that facilitates access to IT resources, i.e., storage and
computational services.

The data provider desires to make its data available to authorized data miners.
Due to its limited resources, the data provider outsources the database to a service
provider capable of handling the responsibility of answering count queries from data
miners. To prevent the disclosure of patients’ sensitive information, the data provider
anonymizes its data and generates a set of records that satisfy ε-differential privacy.
Even though the outsourced data is anonymized, the data provider wants to protect
the data against the service provider so it cannot answer queries on the data from
untrusted (unauthorized) data miners. The service provider, however, should be able
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to process count queries from authorized data miners confidentially and return results
that provide a certain privacy guarantee.

3.2 System Inputs

In this section we give a formal definition of the input components, namely, differen-
tially private data and user count queries. Without loss of generality, we assume that
the input data is anonymized using an ε-differential privacy model [4], although our
approach supports other privacy models that produce contingency-like tables based
on generalization and suppression. We choose ε-differential privacy because it pro-
vides a strong privacy guarantee while being insensitive to any specific record. We
first describe how to generate ε-differentially private records from a relational data,
then we explain how to transform the data using taxonomy trees, and finally we define
the types of count queries the user can submit.

3.2.1 Differentially Private Data

In this section we review how a data provider can generate ε-differentially private
records. We utilize the differentially private anonymization algorithm (DiffGen) [22]
to maximize the data utility for classification analysis. Suppose a data provider owns
an integrated patient-specific data table D = {AI , Apr, Acls}, where AI is an ex-
plicit identifier attribute such as SSN or Name for explicitly identifying individuals
that will not be used for generating the ε-differentially private data; Acls is a class
attribute that contains the class value; andApr is a set of k predictor attributes whose
values are used to predict the class attribute Acls. We require the class attribute Acls

to be categorical, whereas the predictor attributes in Apr are required to be either
categorical or numerical. Furthermore, we assume that for each predictor attribute
Ai ∈ Apr a taxonomy tree TAi is used in order to specify the hierarchy among the
domain values of Ai. Figure 2 shows a raw data table D with four attributes, namely,
Country, Job, Age, and Salary and the taxonomy tree for each attribute.

The data provider’s objective is to generate an anonymized version D̂ = {Âpr, NCount}
of the data table D, where Âpr is the set of k generalized predictor attributes, and
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Table 2 Differentially-private data table D̂

ˆCountry ˆJob Âge ˆSalary NCount
Any Country Professional [18-45) [18-99) 4
Any Country Professional [45-65) [18-99) 2
Any Country Artist [18-45) [18-99) 1
Any Country Artist [45-65) [18-99) 5

Any_Job (id=1)
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Lawyer (id=5)Engineer (id=4) Writer (id=8)Dancer (id=6) Singer (id=7)

Civil (id=10)Software (id=9) Electrical (id=11)

Solution Cut

Job

Artist (id=3)

Fig. 3 Taxonomy tree TJob for attribute Job.

NCount is the noisy count of each record in D̂. The objective of the data miner is
to build a classifier to accurately predict the class attribute Acls by submitting count
queries on the generalized predictor attributes Âpr.

Although we focused in this paper on contingency-like data tables, our frame-
work can be extended to handle general type of differentially private data. In this
case, a pre-processing step must take place before the secure index tree is generated.
The pre-processing step would involve applying a top-down specialization approach
(similar to DiffGen) and use utility measure functions (e.g. information gain, Max,
Gini) to guide the specialization. No privacy budget would be consumed in this step,
as the data is already differentially private. According to [52], any processing on a
differentially private data does not violate its privacy.

3.2.2 Input Data Transformation

We simplify the representation of the ε-differentially private records D̂ = {Âpr, NCount}
by mapping the values of each attribute to their integer identifiers from the corre-
sponding attribute’s taxonomy tree.

Numerical Attributes. The domain of each numerical attribute Âi ∈ Âpr, consists
of a set of ranges that are pair-wise disjoint and can be represented as a continuous
and ordered sequence of ranges. We define an order-preserving identification function
IDop that assigns an integer identifier to each range r = [rmin, rmax] such that for
any two ranges rj and rl, if rmaxj < rminl , then IDop(rj) < IDop(rl). For example,
if the domain of the generalized attribute Âge is Ω(Âge) = 〈[18, 45), [45, 65)〉, then
IDop([18, 45)) = 1 and IDop([45, 65)) = 2.

Categorical Attributes. The domain of each categorical attribute Âi ∈ Âpr con-
sists of the set of values Cut(TAi). We define a taxonomy tree identification func-
tion IDt such that for any two nodes vi, vj : vj 6= vi, if vi is a parent of vj , then
IDt(vi) < IDt(vj). If vi is the root node, then IDt(vi) = 1. Figure 3 illustrates the
taxonomy tree TJob for attribute Job, where each node is assigned an identification
value.
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Table 3 Transformed Data Table D̂

ˆCountry ˆJob Âge ˆSalary NCount
1 2 1 1 4
1 2 2 1 2
1 3 1 1 1
1 3 2 1 5

Having defined the mapping functions IDop and IDt, we now transform the ε-
differentially private records D̂ by mapping the values in the domain of each attribute
to their identifiers. That is, for each numerical attribute Âi ∈ Âpr, we map each range
r ∈ Ω(Âi) to its corresponding identification value IDop(r). Similarly, for each
categorical attribute Âi ∈ Âpr, we map each value in v ∈ Ω(Âi) to its identification
value from the taxonomy tree IDt(v). Table 3 shows the differentially private data
D̂ after the transformation.

3.2.3 User Count Queries

The goal of the data miners is to build a classifier based on the noisy count of a
query over the generalized attributes Âpr. Therefore, they submit count queries to be
processed on the ε-differentially private data D̂ and expect to receive a noisy count
as a result to each submitted query. We denote by user count query any data mining’s
count query, and it is formally defined as follows:

Definition 1 (User Count Query.) A user count query u over D̂ is a conjunction of
predicates P1 ∧ ... ∧ Pm where each predicate Pj = (Âi ` si) : 1 ≤ j ≤ m

expresses a single criterion such that Âi ∈ Âpr, ` is a comparison operator, and
si is an operand. If Âi is a categorical attribute, then ` corresponds to the equality
operator “ = ” and si is a value from the taxonomy tree TAi . If Âi is a numerical
attribute, then si is a numerical range [smini , smaxi ] such that if smini = smaxi then `
is in {>,≥, <,≤,=} ; otherwise, ` is the equal operator (=).

In general, a user count query u can be either exact, specific, or generic depending
on whether it corresponds to an exact record (equivalence class), or whether it par-
tially intersects with one or more records in the ε-differentially private data D̂. Note
that both specific and generic queries correspond to range queries in the literature.
The following is a formal definition of each type of a user count query.

Definition 2 (Exact User Count Query.) A user count query u is exact if for each
predicate P = (Âi ` si) ∈ u, si ∈ Ω(Âi).

Definition 3 (Specific User Count Query.) A user count query u is specific if for
each predicate P = (Âi ` si) ∈ u:
1. If Âi is categorical, then si ∈ Ω(Âi).
2. If Âi is numerical, then si ∈ Ω(Âi) or there exists exactly one range r ∈ Ω(Âi)
where si ∩ r 6= φ and si 6= r.

Definition 4 (Generic User Count Query.) A user count query u is generic if for
each predicate P = (Âi ` si) ∈ u:
1. If Âi is categorical, then si ∈ TAi .
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2. If Âi is numerical, then ∃ rj , rl ∈ Ω(Âi) such that si ∩ rj 6= φ, si ∩ rl 6= φ, and
rj 6= rl.

Example 1 The following are examples of user count queries over the ε-differentially
private data D̂ presented in Table 2:
Exact: u1 = ( ˆJob = “Artist”) ∧ (Âge = [45− 65))

Specific: u2 = ( ˆJob = “Artist”) ∧ (Âge = [50− 57))

Generic: u3 = ( ˆJob = “Lawyer”) ∧ (Âge = [30− 70))

Observe that the queries conform neither to the structure nor to the data in D̂.
That is, attributes ˆCountry and ˆSalary are missing, the value “Lawyer” is not in the
domainΩ( ˆJob), and the range [30, 70] spans beyond the values covered by all ranges
in Ω(Âge). All these issues will be addressed in section 4.2.1 when the data miner
submits her user count query for preprocessing.

3.3 Adversarial Model

SecDM consists of three parties: data provider (data bank), data miner, and ser-
vice provider (cloud). In our security analysis, the adversary can statically corrupt,
in honest-but-curious (HBC) [53] fashion, the service provider or the data miner, but
not both. The service provider adversary tries to gain access to the contents of the
anonymized data, and during query execution tries to infer information about the
count queries and their results. On the other hand, the data miner adversary tries to
link sensitive information to patients by attempting to gain information about the
anonymized records identified by each of her queries, their count values, and the per-
centage of each query count. We assume the computational power of each adversary
is bounded by a polynomial size circuit. We also assume that a protocol is in place to
provide secure pair-wise communications between parties in the SecDM framework.

3.4 Problem Statement

Given ε-differentially private data D̂, the objective is to design a framework for out-
sourcing D̂ to an untrusted service provider P that can answer exact, specific, and
range count queries from authorized data miners on D̂. The framework must provide
three levels of security: (1) data confidentiality, where D̂ is stored in an encrypted
form such that no useful information can be disclosed from D̂ by unauthorized par-
ties; (2) confidential query processing, where P is capable of processing the queries
on D̂ for classification analysis without inferring information about the queries or the
underlying anonymized data; and (3) privacy preservation, where the result of each
query provides a certain privacy guarantee.
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Fig. 4 SecDM: A Privacy-preserving framework for confidential count query processing on the cloud.

4 SecDM Framework Solution

4.1 Secure Index Construction

Given the ε-differentially private data D̂ with kc categorical attributes and kn numer-
ical attributes, the data provider constructs an encrypted index on all attributes in D̂
in order to support efficient and secure processing of multi-dimensional range count
queries over the k-dimensional data, where k = kc + kn. That is, it constructs a
balanced kd-tree [39] index, where every internal (non-leaf) node is a k-dimensional
node that splits the space into two half-spaces, and each leaf node stores a noisy count
corresponding to a record in D̂.

The kd-tree index is constructed with the procedure Secure Index Construction
(buildIndex) presented in Algorithm 1. BuildIndex is a recursive procedure that has
four input parameters: D̂, depth i, PK, and y. The first input parameter D̂ is the set
of records for which the kd-tree will be constructed, where each record represents a
point in the k-dimensional space. The columns in D̂ are shuffled a priori to randomize
the order of the attributes. The second input parameter i represents the depth of the
recursion that determines the split dimension. It ranges between 1 and k, where 1 is
the initial value. The third input parameter PK is the public key of the anonymous
ciphertext-policy attribute based encryption scheme A, which will be used to secure
each internal node in the index tree. To generate this key a security parameter λ is
passed to the setup algorithm: A.Setup(1λ) ⇒ (PK,MSK). The last parameter
y is the public key of the Exponential ElGamal scheme used to encrypt the noisy
counts in the leaf nodes. The function median (Line 5) determines the median value
of the domain Ω(Âi), where Âi is an attribute from D̂. The function split (Line
6) then uses a hyperplane that passes through the median value in order to split D̂
into two subsets of records, D̂1 and D̂2. Note that the median value is chosen for
splitting to ensure a balanced tree where each leaf node is about the same distance
from the root of the tree. BuildIndex calls itself (Lines 7-8) using D̂1 and D̂2 as
inputs in order to determine the left and right children nodes respectively. When the
procedure terminates (Line 13), it returns the kd-tree index T . Next, we will discuss
how internal nodes (Lines 9-12) and leaf nodes (Line 2) are constructed.
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Algorithm 1 buildIndex: Secure Index Construction
Input: Differentially private data D̂, split dimension i, ACP-ABE public key PK, ElGamal public key y
Output: kd-tree index T
1: if |D̂| = 1 then
2: constLeafNode(D̂, y);
3: return ;
4: end if
5: cut← median(Âi, D̂);
6: split(D̂, Âi, cut, D̂1, D̂2);
7: vleft ← buildIndex(D̂1, (i+ 1)modk, PK, y);
8: vright ← buildIndex(D̂2, (i+ 1)modk, PK, y);
9: create empty node v;

10: v.split dim← Âi ; v.split value← cut;
11: v.lc← vleft ; v.rc← vright;
12: v.genCT (PK);
13: return kd-tree index T ;

4.1.1 Internal Nodes Construction

Each internal (non-leaf) node v in the kd-tree index corresponds to one dimension
(attribute) Âi ∈ D̂ : 1 ≤ i ≤ k of the k-dimensional space, where the splitting hy-
perplane is perpendicular to the axis of dimension Âi, and the splitting value cut is
determined by the median function (Line 4). Node v has two child nodes, namely, lc
and rc, where all records containing values smaller or equal to the cut value with re-
gard to Âi will appear in the left subtree, whose root is v.lc, and all records containing
values greater than the cut value with regard to Âi will appear in the right subtree,
whose root is v.rc. Furthermore, node v consists of two ciphertexts, v.CTleft and
v.CTright, where the encrypted message in v.CTleft is a pointer (Ptr) to the child
node v.lc, and the encrypted message in v.CTright is a pointer to the child node v.rc.
The intuition is as follows: The service provider must use the key SKu provided by
the user to be allowed to securely traverse the kd-tree index and compute the an-
swer to the user query u. The structure of SKu and how it is built is discussed in
Section 4.2.1. At any node v in the kd-tree, if SKu satisfies the access structure of
the ciphertext v.CTleft, the ciphertext is decrypted and a pointer to the child node
v.CTleft is obtained. Similarly, if SKu satisfies the access structure of v.CTright,
the ciphertext is decrypted and a pointer to v.CTright is obtained. If SKu satisfies
both access structures, then two pointers are obtained, indicating that both left and
right subtrees must be traversed.

Access Structure. The ciphertexts in each node are generated using the anonymous
ciphertext-policy attribute based encryption scheme A, where each ciphertext has
an access structure W . Each numerical attribute Âi ∈ D̂ is represented in the ac-
cess structure of a ciphertext by two attributes, Âmini and Âmaxi , where Ω(Âmini ) =

Ω(Âmaxi ) = Ω(Âi). On the other hand, each categorical attribute is mapped to one
attribute in the access structure of a ciphertext. Below is the formal definition of an
access structure of a ACP-ABE ciphertext.

Definition 5 (Ciphertext Access Structure W .) Given ε- differentially private data
D̂ and a node v from the kd-tree index over D̂, the access structure of a ciphertext of
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v is the conjunctionW = [WÂ1
∧...∧WÂi

∧...∧WÂk
]. If Âi is a categorical attribute,

then WÂi
corresponds either to the wildcard character “ ∗ ” or to a disjunction of

values from Ω(Âi), where “WÂi
= ∗” means that attribute Âi should be ignored.

If Âi is a numerical attribute, then WÂi
= WÂmin

i
∧ WÂmax

i
, where WÂmin

i
and

WÂmax
i

each corresponds to either the wildcard character “ ∗ ” or a disjunction of

values from Ω(Âi).

Note that for a given node v, the access structure of the left and right ciphertexts
is mainly concerned with the splitting dimension v.split dim, and the split value
v.split value over D̂1 or D̂2, where D̂1, D̂2 ⊆ D̂. If v.split dim is a categorical
attribute Âi, then WÂi

in the access structure of v.CTleft should correspond to the
disjunction of all values val ∈ {Ω(Âi)∪{1}} such that val ≤ v.split value and for
val = 1, where 1 represents “Any” value. Similarly, WÂi

in the access structure of
v.CTright should correspond to the disjunction of all values val ∈ {Ω(Âi) ∪ {1}}
such that val > v.split value or for val = 1. On the other hand, if v.split dim
is a numerical attribute Âi, then WÂmin

i
in the access structure of v.CTleft should

correspond to the disjunction of all values val ∈ Ω(Âi) for all val ≤ v.split value,
and WÂmax

i
in the access structure of v.CTright should correspond to the disjunction

of all values val ∈ Ω(Âi) such that val > v.split value. Regardless of whether Âi
is categorical or numerical, all values in {W \WÂi

} should correspond to “ ∗ ”.

Example 2 Given D̂ from Table 3, and given node v from kd-tree index:
a) If v.split dim = Job (categorical) and v.split value = 2, then the access

structure of the left and right ciphertexts can be represented as follows:
WL = (Country = ∗) ∧ (Job = 1 ∨ Job = 2) ∧ (Agemin = ∗) ∧ (Agemax =
∗) ∧ (Salarymin = ∗) ∧ (Salarymax = ∗).
WR = (Country = ∗) ∧ (Job = 1 ∨ Job = 3) ∧ (Agemin = ∗) ∧ (Agemax =
∗) ∧ (Salarymin = ∗) ∧ (Salarymax = ∗).

b) If v.split dim = Age (numerical) and v.split value = 1, then the access struc-
ture of the left and right ciphertexts are:
WL = (Country = ∗) ∧ (Job = ∗) ∧ (Agemin = 1) ∧ (Agemax = ∗) ∧
(Salarymin = ∗) ∧ (Salarymax = ∗).
WR = (Country = ∗) ∧ (Job = ∗) ∧ (Agemin = ∗) ∧ (Agemax = 2) ∧
(Salarymin = ∗) ∧ (Salarymax = ∗).

In procedure buildIndex presented in Algorithm 1, each internal node v is created
after determining its children nodes Vleft and vright (Lines 9-12), where function
genCT is responsible for creating the left ciphertext CTleft and the right ciphertext
CTright of the node by calling twice the ACP-ABE algorithm A.Enc() and passing
as parameters the public key PK of A, a pointer to the child node to be encrypted,
and the values in the access structure (without the attribute names):
v.CTleft ← A.Enc(PK,Ptr(v.lc),WL);
v.CTright ← A.Enc(PK,Ptr(v.rc),WR);

For each attribute Âi in W that is assigned a wildcard, e.g. (Country = ∗),
A.Enc() generates a random (mal-formed) group elements [Ci,j,1, Ci,j,2] for each
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Algorithm 2 constLeafNode: Leaf Node Construction
Input: ε-differentially private record R, Exponential ElGamal’s public key y
Output: leaf node l
1: create empty node l;
2: l.NCount← G.Enc(R.NCount, y, r);
3: for each numerical attribute Âi ∈ D̂ do
4: l← genTAG(R.Âi);
5: end for
6: return l;

Algorithm 3 indexUpload: kd-Tree Index Upload
1: The Data Provider submits the kd-tree index T to the Service Provider;
2: The Service Provider receives T ;

value in Ω(Âi). On the other hand, for each attribute in W assigned specific values,
e.g. (Job = 1∨ Job = 2),A.Enc() generates a well-formed group elements for each
value specified, i.e. for value 1 and for value 2, and random group elements for each
remaining value in Ω(Job). As a result, all ciphertexts CT generated by A.Enc() in
the kd-tree index contain the same number of group elements regardless of the access
structure.

4.1.2 Leaf Nodes Construction

In procedure buildIndex, as the multi-dimensional space is being recursively parti-
tioned a leaf node is created whenever the number of the records being partitioned
reaches 1 (Lines 1-2 ). Procedure Leaf Node Construction (constLeafNode), presented
in Algorithm 2, is responsible for generating the leaf nodes. It takes as input a ε-
differentially private record R and Exponential ElGamal’s public key y and outputs
a leaf node l. After creating an empty node l (Line 1), the noisy count of record R
is encrypted using Exponential ElGamal encryption scheme G and stored in node l
(Line 2). We choose the Exponential ElGamal cryptosystem due to its additive ho-
momorphism property, which allows for homomorphically adding encrypted noisy
counts together in an efficient way.

For each numerical range valueR.Âi inR, a hiding commitment function genTAG()
is utilized to commit R.Âi and randomly generate a unique tag (Line 3-4). Applying
genTAG() to the same value using the same randomness always generates the same
tag; however, the correspondence between each tag and its value is kept secret. As
we will see in Section 4.2, using a deterministic function to generate tags for the nu-
merical range values enables the service provider during query execution to compute
the exact percentage of the noisy count of each reported leaf node with respect to the
query being processed.

Once the kd-tree index T has been created, it is submitted to the service provider
according to Algorithm 3. While Algorithm 3 is trivial, it is required in Section A to
prove by simulation the security of the framework.
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4.2 Confidential Query Processing

In this section, we illustrate how user count queries are executed in order to determine
their exact ε-differentially private answers while preserving the confidentiality of the
data as well as the queries. First, we explain how the user query is preprocessed and
transformed into a system query. Next, we discuss how the service provider securely
traverses the kd-tree index, computes the total count, and then sends the result back
to the user.

4.2.1 Query Preprocessing

Upon the receipt of a user’s count query u, the data provider first transforms u into
a conjunction of subqueries that specify a single-value equality condition over each
attribute Âi ∈ D̂. Next, it generates a system count query SKu using algorithm
A.KeyGen() from ACP-ABE scheme. If an attribute Âi in D̂ is not specified by the
user in u, then it will be considered in SKu as if the user is asking for (Âi = ∗). The
following is the formal definition of a system count query:

Definition 6 (System Count Query.) Given ε-differentially private data D̂ with k at-
tributes and a user query u = P1 ∧ ... ∧ Pm | P = (Âi ` si), a system count query
over D̂ is a ACP-ABE user’s secret key SKu representing k subqueries {qÂ1

, ..., qÂk
}

such that:

– If Âi is a categorical attribute, then Âi is represented in SKu as a tuple of group
elements [Di,0, Di,1, Di,2]

– If Âi is a numerical attribute, however, it is represented in SKu as two tuples
of group elements [Dmin

i,0 , Dmin
i,1 , Dmin

i,2 ] and [Dmax
i,0 , Dmax

i,1 , Dmax
i,2 ], where each

tuple corresponds to the minimum and maximum bound of the range subquery
qÂi

, respectively.

The total number of group element tuples in a system query SKu is: |SKu| =
kc + 2× kn, where kc and kn are the number of categorical and numerical attributes
in D̂. |SKu| is independent of the user query u. We refer the reader to Section ?? for
more details on how an ACP-ABE secret key is generated.

Procedure Query Preprocessing (qPreprocess) presented in Algorithm 4 illus-
trates how a system count query SKu is constructed based on a user’s count query
u. Once the user has been authenticated successfully using user identification token
UIT (Line 2), the next step is to determine the attribute-value pairs in SKu. For each
categorical attribute Âi ∈ D̂, if predicate (Âi,`, si) exists in the user count query
u and si is in the domain of Âi, then the subquery (Âi, si.ID) is added to q, where
si.ID is the identifier of the categorical value si in Âi’s taxonomy tree TÂi (Lines
5-6); otherwise, if si is not in the domain of Âi, then function findSCS(si) (Line
8) is utilized to determine the position of si in Âi’s taxonomy tree with regard to the
solution cut. If si is below the solution cut, then there exists exactly one node n on
the path from si to the root, such that n ∈ Ω(Âi). We call such a node the Solution
Cut Subsumer (SCS) of si, and the subquery (Âi, n.ID) is then added to q (Line 9).
If si is above the solution cut or u does not have any predicate that corresponds to a
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Algorithm 4 qPreprocess: Query Preprocessing
Input: ε-differentially private data D̂
Output: system count query SKu, set of attribute distribution tokensN
1: The Data Provider receives user identification token UIT and user count query u from Data Miner
2: if user authentication is successful using UIT then
3: q ← {}; ADT ← {};
4: for each categorical attribute Âi ∈ D̂ do
5: if (Âi,`, si) ∈ u and si ∈ Ω(Âi) then
6: q ← q ∪ (Âi, si.ID);
7: else if (Âi,`, si) ∈ u and si /∈ Ω(Âi) then
8: n← findSCS(si);
9: q ← q ∪ (Âi, n.ID);

10: else if (Âi,`, si) /∈ u then
11: q ← q ∪ (Âi, 1);
12: end if
13: end for
14: for each numerical attribute Âi ∈ D̂ do
15: if (Âi,`, si) ∈ u then
16: (vi,1, vi,2)← compMinMax(Ω(Âi), si,`i);
17: q ← q ∪ (Âmini , vi,1) ∪ (Âmaxi , vi,2);
18: N ← N ∪ genADT (Ω(Âi), vi1, vi2);
19: else
20: q ← q ∪ (Âmini , 1) ∪ (Âmaxi , rangemax);
21: end if
22: end for
23: SKu ← A.KeyGen(MSK, q);
24: return SKu,N ;
25: end if

Algorithm 5 queryRequest: System Count Query Request
1: The Data Provider sends the following to the Data Miner:

– System count query SKu corresponding to user count query u
– Set of attribute distribution tokensN
– Exponential ElGamal decryption key x

2: The Data Miner receives SKu,N , and x from Data Provider;
3: The Data Miner sends SKu andN to Service Provider;
4: The Service Provider receives SKu andN from Data Miner;

categorical attribute Âi ∈ D̂, then the subquery (Âi, 1) is added to q (Lines 10-11),
where 1 means “ANY” value of Âi corresponding to the root node of Âi’s taxonomy
tree TÂi .

On the other hand, if Âi is a numerical attribute and predicate (Âi,`, si) exists
in u, then the values vi,1 associated with Âmini and vi,2 associated with Âmaxi are de-
termined by the function compMinMax (Line 15). When ` is the equal operator (=),
if si is a single value, then vi,1 = vi,2 = Range(si), where Range(si) is a function
that returns the identifier of the range in Ω(Âi) containing si; otherwise, if si is a
range, then vi,1 = Range(Lowerbound(si)) and vi,2 = Range(Upperbound(si)).
If ` is equal to “ ≥ ”, then vi,1 = Range(si) and vi,2 is the identifier of the high-
est range in Ω(Âi). Conversely, if ` is equal to “ ≤ ”, then vi,1 = 1 and vi,2 =
Range(si). If predicate (Âi,`, si) does not exist in u for numerical attribute Âi
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Fig. 5 ADT query overlap.

(Lines 19-20), then vi,1 = 1 and vi,2 is the identifier of the highest range rangemax ∈
Ω(Âi).

Example 3 Given Table 2 and Table 3, the following are three different users’ queries
and their corresponding subqueries in the access structure of the system count query:
a) u = (Age = 50)⇒ q = (Agemin, 2), (Agemax, 2).
b) u = (Age = [40− 70])⇒ q = (Agemin, 1), (Agemax, 2).
c) u = (Age ≤ 35)⇒ q = (Agemin, 1), (Agemax, 1).

Function genADT (Line 18) is used to generate attribute distribution tokens (ADT)
for each numerical attribute Âi from D̂. Two ADT tokens, ADTmin and ADTmax,
are created for each numerical attribute for the purpose of computing the percent-
ages of the noisy counts of the reported leaf nodes upon query execution in order
to determine the final answer (total count) of the query. Each ADT token consists of
two parts: tag and value. Assuming that r is the range for which the ADT token is
constructed, then ADT.tag = genTAG(r) and ADT.value is the percentage of the
partial overlap between query u and range r.

Example 4 Assume that in ε-differentially private data D̂,Ω(Âge) = {[18−30), [30−
45), [45− 55), [55− 65)}, Ω( ˆSalary) = {[30− 45), [45− 60), [60− 70)}, and user
count query u = (Country = “US”) ∧ (Job = “Engineer”) ∧ (Age = [25− 49])
∧ (Salary = [47 − 70]). Figure 5 illustrates the equivalence classes of all records
(numbered from 1,1 to 4,3), the query u (dark gray rectangle), and the set of leaf
nodes identified by u (six light gray rectangles). The range Age = [25 − 49] spans
over three ranges: [18 − 30), [30 − 45), and [45 − 55). Since [25 − 49] fully spans
over [30−45), no ADT token is required for [30−45). However, since [25−49] par-
tially overlaps with ranges [18 − 30) and [45 − 55), ADTmin and ADTmax should
be created. For range value [18 − 30), ADTmin.tag = genTAG([18 − 30)) and
ADTmin.value =

30−25
30−18 = 42%. Similarly, for range value [45−55],ADTmax.tag =

genTAG([45−55)) andADTmax.value = 50−45
55−45 = 50%. On the other hand, Salary =

[47 − 70] partially overlaps with ranges [45 − 60) and [60 − 75) and ADTmin and
ADTmax must be created. For range value [45−60),ADTmin.tag = genTAG([45−
60)) andADTmin.value = 60−47

60−45 = 87%. Similarly, for range value [60−75],ADTmax.tag =

genTAG([60− 75)) and ADTmax. value= 70−60
75−60 = 67%.
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Algorithm 6 traverseIndex: kd-tree Index Traversal
Input: kd-tree index root node v, system count query SKu
Output: set of leaf nodesR
1: if v is a leaf node then
2: return v;
3: else
4: ifA.Dec(v.CTleft, SKu) then
5: R← R∪ traverseIndex(v.lc, SKu);
6: end if
7: ifA.Dec(v.CTright, SKu) then
8: R← R∪ traverseIndex(v.rc, SKu);
9: end if

10: end if
11: return R;

Once the set of attribute-value pairs q have been determined, the system count
query SKu is then generated by encrypting q with ACP-ABE master secret key MSK
using algorithm A.KeyGen (Line 23). Next, the data provider sends the following
back to the user: secret key SKu, the set of ADT tokens N , and ElGamal decryption
key G.x that will be used eventually to decrypt the final result of the query.

4.2.2 kd-tree Index Traversal

To execute a query u on D̂, the data miner sends to the service provider a system
count query SKu and a set of ADT tokens N . The service provider uses the secret
key SKu to securely traverse the kd-tree index and identify the set of leaf nodes
satisfying u, while it uses N to adjust the noisy count of each identified leaf node in
order to compute an accurate final answer to the query.

Procedure kd-tree Index Traversal (traverseIndex) presented in Algorithm 6 il-
lustrates how the tree is traversed recursively to answer queries. It takes two input
parameters: the root node v of the kd-tree index and a system count query SKu. If v
is an internal node, then the algorithm attempts to decrypt the left ciphertext v.CTleft
and the right ciphertext v.CTright by separately applying the decryption function Dec
from A, with the decryption key SKu, in order to determine whether it needs to tra-
verse the left subtree, right subtree, or both. If the values of the attributes associated
with SKu satisfy the access structure of v.CTleft, then the decryption of v.CTleft is
successful and the procedure traverseIndex calls itself while passing the left child
node v.lc as input parameter (Line 4-5). Similarly, if the values of the attributes as-
sociated with SKu satisfy the access structure of v.CTright, then the decryption is
successful and the procedure traverseIndex calls itself while passing the right child
node v.rc as input parameter (Line 7-8). When the algorithm reaches a leaf node v,
then v is returned (Lines 1-2). Procedure traverseIndex eventually returns the set R
containing all leaf nodes satisfying SKu (Line 11).

Example 5 Given Example 4, assume that v is the root node where v.split dim =
Age (Â3) and v.split value = 2 (range[30 − 45)). Figure 6.(a) illustrates the ac-
cess structure of v.CTleft and v.CTright. Figure 6.(b) shows the system count query
(secret key) SKu that was generated from the user query u such thatAge = [50−60]
equates to Âmin3 = 3 and Âmax3 = 4.
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Algorithm 7 compTCount: Total Noisy Count Computation
Input: set of leaf nodesR, set of attribute distribution tokensN
Output: ciphertext of total count 〈r, s〉
1: 〈r, s〉 ← 〈1, 1〉 // initialization
2: for each leaf node lj ∈ R do
3: 〈rj , sj〉 ← lj .NCount;
4: for each token ADTi ∈ N do
5: if ADTi.tag ∈ lj then
6: 〈rj , sj〉 ← 〈rADTi.value

j , s
ADTi.value
j 〉; // scalar multiplication

7: end if
8: end for
9: 〈r, s〉 ← 〈r.rj , s.sj〉; // homomorphic addition

10: end for
11: return 〈r, s〉;

Since Âmin3 = 3 from SKu is not in the access structure of v.CTleft, then
the decryption is unsuccessful, and the left subtree will not be traversed. However,
Âmax3 = 4 from SKu is in the access structure of v.CTright, then the decryption is
successful and the procedure traverseIndex traverses the right subtree, whose root
node is v.rc.

4.2.3 Computing Total Noisy Count

Having identified the set of leaf nodes R satisfying user count query u, the next step
is to compute the final answer to the count query.

Procedure Total Count Computation (compTCount) presented in Algorithm 7 il-
lustrates how the total noisy count is computed. It takes as input a set of leaf nodes
R and a set of attribute distribution tokens N . For each leaf node lj , if there is an
ADT token ADTi whose tag matches any of the tags in lj , then a percentage of the
encrypted noisy count 〈rj , sj〉 is computed by raising rj and sj to the value asso-
ciated with ADTi (Lines 5-6). To homomorphically add two noisy counts together,
their first ciphertexts are multiplied together, and the same is done for their second ci-
phertexts (Line 9). The output of procedure compTCount is the encrypted total count
〈r, s〉 (Line 11).



SecDM: Privacy-preserving Data Outsourcing Framework with Differential Privacy 21

Algorithm 8 queryResult: User Count Query Result
Input: Exponential ElGamal decryption key x
Output: Query result ciphertext of total count 〈r, s〉
1: The Data Miner receives ElGamal encrypted result 〈r, s〉 from Service Provider;
2: resu = G.Dec(〈r, s〉, x); // Total noisy count decryption
3: return resu;

4.2.4 Computing Query Result

Once ciphertext 〈r, s〉 has been computed, the service provider returns the ciphertext
to the user as the final result. As per Algorithm 8, when the data miner receives the
encrypted result 〈r, s〉, she uses Exponential ElGamal’s private key G.x to decrypt
the ciphertext and determine the exact noisy count resu such that resu satisfies dif-
ferential privacy.

4.3 Discussion

4.3.1 Benefits of Outsourcing

To analyze the benefit to the data provider for outsourcing the data to a service
provider, we measured the processing overhead of specific count queries on the data
provider and the service provider when the number of queries ranges from 200 to
1000. We choose specific count queries to perform the experiment because they rep-
resent the worst-case scenario, where the number of nodes traversed in the kd-tree
index is minimized and the number of ADT tokens is maximized. Figure 7 illus-
trates the results of our experiment, where we observe that the processing overhead
on the proxy server is almost 10 times less than the overhead on the service provider
side, regardless of the number of the queries. That is, by oursourcing the data, the
data provider offloads over 90% of the query processing (computation) to the service
provider.
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4.3.2 Centralized SecDM

Our proposed solution SecDM in Section 4 allows data miners to reuse previously
generated system queries and eliminates the need to interact with the data provider
to generate the same ones again. However, this comes at the expense of requiring the
user to interact with two parties (the data provider and the service provider), and to
perform public key decryption operations on the results encrypted using Exponential
ElGamal. In some scenarios where query reusability is not required, our framework
can be easily modified to have all communications go through the data provider, as in
the Centralized SecDM (C-SecDM) framework illustrated in Figure 8. Observe that in
C-SecDM, the data miner does not have access to Exponential ElGamal’s decryption
key G.x, as the decryption is performed by the data provider, and the total count
result is then sent in clear text to the data miner via a secure channel.

(1) ID + Count 

Query Request

Service 

Provider

(2) User

Authentication

(3) Query 

Preprocessing

(5) Secure Index 

Traversal

(6) Compute Total 

Noisy Count

Data Provider Data Miner

(8) 

Decrypt 

Result

Fig. 8 Centralized SecDM (C-SecDM) framework.

4.3.3 Security Tradeoff

To present a practical framework we choose Exponential ElGamal to encrypt the
noisy counts because this encryption scheme supports efficient homomorphic addi-
tion and integer multiplication operations. These operations are utilized by the cloud
to adjust the noisy count of each identified leaf node in the kd-tree index tree us-
ing ADT tokens and then to compute the total count. However, in each ADT token,
ADT.value must be stored in clear text, which reveals the percentage each noisy
count should be multiplied by, without reveling the actual value of the noisy count or
its adjusted value. Rather than using Exponential ElGamal, we could have used other
encryption schemes that support multiple homomorphic additions and multiplica-
tions. However, such schemes are inefficient and will render our solution impractical.
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4.3.4 Multiple Data Release

Shabtai et al. [54] and Shmueli et al. [55] indicate that the anonymization approach
should be chosen carefully in a multiple-release outsourcing scenario since it nor-
mally differs from the one used in a single-release outsourcing scenario. However,
this is out of the scope of this paper.

5 Solution Analysis

5.1 Complexity Analysis

Proposition 1 The runtime complexity for constructing a kd-tree index from a dif-
ferentially private data with d equivalent classes and k attributes using Algorithm 1
and Algorithm 2 is bounded by O(k × d× log d) operations.

Proof Constructing a kd-tree with d points (equivalent classes) requiresO(d×log d) [56].
Each node consists of two ciphertexts, each of which requiresO(kc+2×kn) = O(k),
where kc and kn are number of categorical attributes and numerical attributes respec-
tively. Therefore, the required number of operations is O(k × d× log d).

Proposition 2 The runtime complexity for executing a system query SKu over a
kd-tree index with d leaf nodes using Algorithm 6 and Algorithm 7 is bounded by
O(
√
d+ r × k) operations, where r = |R| andR is the set of reported nodes.

Proof Since SKu is an axis-parallel rectangular range query, the time required to
traverse a kd-tree and report the points (equivalent classes) stored in its leaves is
O(
√
d + r) [56]. For each reported leaf node, O(2 × kc) = O(k) time is required

to compute the total noisy count. As a result, the number of operations required to
traverse the tree and answer SKu is O(

√
d+ r × k).

Proposition 3 The communication complexity for answering a count query is bounded
by O(k × C).

Proof For each query, only 4 messages are generated. The data miner sends two mes-
sages: one to the data provider and another to the service provider, and receives two
messages: one from the data provider and another from the service provider. Two of
the messages are one Elgamal ciphertext each, while each of the other two consists
of 2× k Elgamal ciphertexts (ADT tokens). Hence, the overall communication com-
plexity is O(k × C), where C = dlg pe is the bit length of Elgamal group element,
and p is at least 2048 bits.

Proposition 4 The noisy count answers satisfy ε-differential privacy.

Proof Generating a differentially private table involves three steps: selecting a candi-
date for specialization, determining the split value, and publishing the noisy counts.
In the following, we will We show that each of these steps preserves differential pri-
vacy. We will also use the composition properties of differential privacy to show that
the output is differentially private.
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To select a candidate for specialization, we first need to compute the utility score
(information gain) of each candidate v ∈ ∪Cut(T):

IG(D, v) = Hv(D)−Hv|c(D),

where Hv(D) is the entropy of candidate v with respect to the class attribute Acls,
and Hv|c(D) is the conditional entropy given the candidate is specialized. Having
computed the score of each candidate, then exponential mechanism is used to select
a candidate vi in a differentially-private manner with the following probability:

Select(vi) =
exp( ε

2∆IGIG(D, vi))∑
v exp(

ε
2∆IGIG(D, v))

,

where ∆IG = lg |Ω(Acls)| is the sensitivity of the information gain function.
Determining the split value is also satisfies differential privacy. That is because

for categorical attributes, taxonomy trees are used. Since the taxonomy tree is fixed,
the sensitivity of the split value is 0. Therefore, splitting the records according to the
taxonomy tree does not violate differential privacy. As for numerical attributes, the
domain is split into s intervals: I = {I1, . . . , Is} and then exponential mechanism is
used to choose an interval Ij ∈ I with probability:

Select(Ij) =
exp( ε

2∆IGIG(D, vj))× |Ω(Ij)|∑s
i=1(exp(

ε
2∆IGIG(D, vi))× |Ω(Ii)|

,

where the length of the interval Ij is denoted by |Ω(Ij)|. Choosing a split value
from the interval Ij also satisfies ε-differential privacy because the probability of
choosing any split value is proportional to exp( ε

2∆IGIG(D, vj)). As for publish-
ing the noisy counts, a Lap(2/ε) is added to satisfy ε-differential privacy, since the
sensitivity of count queries is 1.

Theorem 51 Sequential Composition [57]. Let each Agi provide ε-differential pri-
vacy. A sequence of Agi(D) over the data set D provides (Σiεi)-dierential privacy.

Theorem 52 Parallel Composition [57]. Let eachAgi provide ε-differential privacy.
A sequence of Agi(Di) over a set of disjoint data sets Di provides (Σiεi)-dierential
privacy.

Based on Theorems 51 and 52, the output data table satisfies ε-differential pri-
vacy. Moreover, according to [52], any post-processing on a differentially private
data does not violate its privacy. Hence, the computed noisy count answers based on
the table also satisfy ε-differential privacy.

6 Performance Evaluation

In this section we evaluate the performance of the SecDM framework. First, we dis-
cuss the implementation details, and then we present the experimental results that
include data utility, solution construction scalability, the scalability of query process-
ing with respect to the number of records, and the efficiency with respect to the size
of the queries.
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Fig. 9 Classification accuracy of count query results w.r.t. privacy budget ε.

6.1 Implementation and Setup

The SecDM framework is implemented in C++. Experiments were conducted on a
machine equipped with an Intel Core i7 3.8GHz CPU and 16GB RAM, running 64-
bit Windows 7. The index tree is implemented according to the kd-tree description
in [56]. Both of the cryptographic primitives, ACP-ABE and Exponential ElGamal,
were implemented using MIRACL3, an open source library for big number and ellip-
tic curve cryptography. To implement ACP-ABE, we chose Boneh-Lynn-Shacham
(BLS) pairing-friendly curve from [58]: Y 2 = X3 + b, where b =

√
w +
√
m,

m = {−1,−2}, and w = {0, 1, 2}. The chosen elliptic curve has a pairing embed-
ding degree of 24 and a AES security level of 256. The pairing e : G1 × G2 → GT
is a type 3 pairing where G1 is a point over the base field, G2 is a point over an
extension field of degree 3, and GT is a finite field point over the k-th extension,
where k = 24 is the embedding degree for the BLS curve. To implement Exponential
ElGamal we randomly choose the message space and calculation modulus p to be a
large 2048-bit prime for which q = (p− 1)/α is a 256-bit prime. Since Exponential
ElGamal depends on the multiplicative order of g and having a large collection of
ciphertexts, we choose g to be a generator of the multiplicative subgroup Gq such
that order(g) = q − 1.

We utilize a real-life adult data set [59] in our experiments to illustrate the per-
formance of SecDM framework. The adult data set consists of 45,222 census records
containing six numerical attributes, eight categorical attributes, and a class attribute
with two levels: “ ≤ 50K” and “ > 50K”. A further description of the attributes can
be found in [60]. Since the maximum number of attributes is 14, we assume that the
number of attributes in a query can range from 2 to 14, and the average number of
attributes in a query is 8.

3 MIRACL: https://certivox.org/display/EXT/MIRACL
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6.2 Experimental Results

6.2.1 Data Utility

Blum et al. [8] show that count queries are very useful for performing statistical anal-
ysis and extracting patterns and trends from the data. We analyze the data utility for
count queries by measuring the classification accuracy of the count query results for
several values of the privacy budget ε. We generate ε-differentially private records us-
ing DiffGen algorithm, where the number of specializations is set to 4, 7, 11, 13 and
16, and the utility function InfoGain(D, v) is chosen to determine the score of each
candidate v during the specialization process. We utilize C4.5 classifier [61] to mea-
sure the classification accuracy of both the raw data and the results of count queries. In
each case, we use two-third (2/3) of the records to build (train) the classifier, and one-
third (1/3) of the records for testing. Applying C4.5 on the raw data yields a classifier
with 85.1% classification accuracy. Figure 9 illustrates the classification accuracy of
the count query results for ε = 0.1, 0.25, 0.5 and 1. We observe that our proposed so-
lution maintains high level of data utility as the biggest drop in classification accuracy
when compared with the accuracy of raw data is 85.1%−75.4% = 9.7%. We also ob-
serve that the utility is directly affected by the the privacy budget ε. That is, the more
privacy budget is allocated, the higher the classification accuracy is. This trend is due
to the fact that a higher privacy budget leads to a more accurate partitioning, and less
noise is added to the count of each equivalent class at the leaf level. Our findings
are consistent with [22]. Our algorithm has a major advantage over other algorithms,
e.g. [62][60], because data miners have better flexibility to perform the required data
analysis. For example, the algorithm in [62] allows for interactive queries to build a
classifier. That means the data has to be permanently shut down after certain number
of queries, which prevents the data miner from building another classifier based on
the same data.
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Fig. 11 Scalability of query processing w.r.t. the number of raw data records and the number of special-
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6.2.2 Scalability

In this section, we measure the construction scalability of our solution, as well as the
query processing scalability.

Solution Construction Scalability There are three major phases involved in construct-
ing the SecDM framework: data anonymization using the DiffGen algorithm, data
preprocessing, and kd-tree index construction; the latter can be further divided into
two subphases: internal nodes construction and leaf nodes construction. According
to procedure buildIndex in Algorithm 1, the complexity for constructing SecDM is
dominated by the number of ε-differentially private records, which in turn is impacted
by the number of raw data records and the setting of the number of specializations for
the DiffGen algorithm. The objective is to measure the runtime of each construction
phase to ensure its capability to scale up in terms of records size.

Figure 10 depicts the runtime of each of the construction phases, where the num-
ber of data records ranges from 20,000 to 100,000 records, and the number of special-
izations is set to 8. We observe that the runtime of each phase grows linearly as the
number of records increases. We also observe that the overall construction runtime
scales up linearly as well, as it takes 47 sec to construct the framework for a data set
with 20,000 records, 72 sec for 40,000 records, 96 sec for 60,000 records, 106 sec for
80,000 records, and 121 sec for 100,000 records. Since each phase of the algorithm,
as well as the overall construction time, grow linearly with respect to the total number
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Fig. 13 Efficiency w.r.t. the number of attributes per a query for exact, specific, and generic queries.

of records, this suggests the construction of SecDM is scalable with regard to the data
size.

Query Processing Scalability One major contribution of our work is the development
of a scalable framework for query processing on anonymized data in the cloud. Since
the number of specializations during the anonymization process impacts the total
number of anonymized records, we study the runtime for answering different types
of user count queries under a different number of specializations, while the number
of raw data records ranges from 20,000 to 100,000. Given the three user count query
types, Exact, Specific, and Generic, we randomly create 500 queries of each type, and
report the average runtime, where the average number of attributes in each query is
8.

Figures 11(a), 11(b), and 11(c) depict the processing runtime of each type of user
count queries when the number of specializations is set to 8, 10, and 12, respectively.
In Figure 11(a), we observe that the processing runtime of each query type grows
linearly as the number of raw data records continues to increase at the same rate.
That is, the processing runtime grows from 4.8 sec for 20,000 records to 6 sec for
100,000 records when the query type is exact; from 6.5 sec for 20,000 records to 8.5
sec for 100,000 records when the query type is specific; and from 12.4 sec for 20,000
records to 31.2 sec for 100,000 records when the query type is generic. Similarly, in
Figures 11(b) and 11(c) we observe that the processing runtime of each query type is
linear with regard to the number of raw data records for all three types. The increase
in the number of specializations leads to a higher number of anonymized records,
thus explaining the increase in the average query processing runtime for each query
type in Figures 11(a), 11(b), and 11(c).

Figure 12 depicts the performance of categorical and numerical attributes with
respect to number of records, when the number of specializations is 8, the query type
is generic, and the total number of attributes is 12 (6 categorical and 6 numerical).
We observe that the processing runtime of both categorical and numerical attributes
grows linearly as the number of raw data records continues to increase at the same
rate. Although the number of categorical and numerical attributes in the experiment
is the same, processing numerical attributes requires approximately 2.5 the time re-
quired for processing categorical attributes. This is mainly due to the need to split
each numerical attribute into several ranges and then use exponential mechanism to
determine the split points. In contrast, the split points in categorical attributes are
fixed and determined based on the taxonomy trees.
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6.2.3 Efficiency

To demonstrate the efficiency of our SecDM framework we measure the impact of the
number of attributes in a query on the processing time needed by the cloud to process
the query and by the user to decrypt the result. We split the query processing phase
into two subphases: tree traversal and compute NCount. We assume the number of
specializations is 8, while the number of raw data records is 100,000. We create 500
queries of each query type, and report the average runtime.

Figures 13(a), 13(b), and 13(c) depict the processing runtime of exact, specific,
and generic queries, respectively, when the average number of attributes in a query
ranges from 2 to 14. We observe that the most dominant phase with regard to the pro-
cessing runtime is the tree traversal phase, whereas the resulting decryption phase is
the least dominant. The total processing runtime of each query type decreases linearly
as the number of attributes per query increases. That is, the total runtime decreases
from 31.8 sec to 0.9 sec when the number of attributes per query increases from 2
to 14 for exact queries, decreases from 37.2 sec to 1 sec when the number of at-
tributes per query increases from 2 to 14 for specific queries, and decreases from 78.8
sec to 10.4 sec when the number of attributes per query increases from 2 to 14 for
generic queries. The total processing runtime improves as the number of attributes
increases because adding more attributes to a query makes it more restrictive and,
consequently, requires fewer nodes to be traversed in the kd-tree index. Assuming
the average noisy count value for each anonymized record is 10,000, we observe that
the decryption phase, which involves decrypting Exponential ElGamal ciphertexts,
is very small (less than 2 sec) and barely sensitive to the increase in the number of
attributes per query.

7 Conclusions and Future Work

In this paper, we propose a privacy-preserving framework for confidential count
query processing in a cloud computing environment. Our framework maintains the
privacy of the outsourced data while providing data confidentiality, confidential query
processing, and privacy-preserving results. Users (data miners) of the system are not
required to have prior knowledge about the data, and incur lightweight computation
overhead. The framework also allows for query reusability, which reduces the com-
munication and processing time. We perform several experimental evaluations on
real-life data, and we show that the framework can efficiently answer different types
of queries and is scalable with regard to the number of data records.

As for future work, we plan on investigating how to enable authorized users to
self-secure their queries before submitting them to the cloud in order to eliminate
the dependency on the data provider. We also plan to investigate a scenario in which
data is obtained from multiple data providers and stored in a distributed outsourcing
environment. Given that our framework currently supports only user count queries
consisting of conjunction of predicates, we will investigate how to support complex
queries with various types of Boolean operators, including OR, NOT and XOR.
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44. C. Bösch, Q. Tang, P. Hartel, and W. Jonker, “Selective document retrieval from encrypted database,”
in Proceedings of ISC, 2012, pp. 224–241.

45. S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced symmetric private infor-
mation retrieval,” in Proceedings of the ACM SIGSAC conference on Computer & Communications
Security (CCS), 2013, pp. 875–888.



32 Gaby G. Dagher et al.
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A Security Analysis

The proposed framework is sound since all adversaries are non-colluding and semi-honest, according to
our adversarial model. In the rest of this section, we focus on proving that the protocol is confidentiality-
preserving. We also illustrate the accessibility of the keys in the framework, and show that all keys are
properly distributed between the parties.

Privacy by Simulation. Goldreich [63] defines the security of a protocol in the semi-honest adversarial
model as follows.
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Definition 7 (Privacy w.r.t. Semi-honest Behavior) [63]. Let f : ({0, 1}∗)m 7→ ({0, 1}∗)m be an m-
ary deterministic polynomial-time functionality, where fi(x1, . . . , xm) is the ith element of f(x1, . . . , xm).
Let Π be an m-party protocol for computing f . The view of the i-th party during an execution of Π over
x = (x1, . . . , xn) is viewΠi (x) = (xi, ri,mi,1, . . . ,mi,t), where ri equals the contents of the ith
party’s internal random tape, andmi,j represents the jth message that it received. For I = {i1, . . . , il} ⊆
{1, . . . ,m}, viewΠI (x) = (I, viewΠi1 (x), . . . , viewΠil (x)). We say that Π securely computes f in the
presence of static semi-honest adversaries if there exist probabilistic polynomial-time algorithm (simula-
tor) S such that for every I ⊆ {1, . . . ,m}:

{S(I, (xi1 , . . . , xil ), fI(x))}x∈({0,1}∗)m
c
≡ {viewΠI (x)}x∈({0,1}∗)m

where
c
≡ denotes computational indistinguishability.

According to Definition 7, it is sufficient to show that we can effectively simulate the view of each
party during the execution of the SecDM protocol given the input, output and acceptable leaked informa-
tion of that party, in order to prove that our protocol is secure. We achieve that by simulating each message
received by a party in each algorithm. If we can simulate the input messages of each party in the protocol
based only on its input and output, and the party is not able to recognize that it is dealing with a simulator,
that means the protocol does not leak anything to that party since it would have been able to compute its
output from its input without the need to be involved in the protocol in the first place.

First, we define the concepts query distribution and query processing threshold.

Definition 8 (Query Distribution.) The distribution of the data mining queries, denoted by U , is the set
of all possible queries, where each query consists of kc + 2× kn integers, each of which maps to a value
in the domain of a categorical or numerical attribute.

Definition 9 (Query Processing Threshold.) Query processing threshold, denoted by α, is the maximum
number of queries allowed to be processed on a kd-tree before the latter is replaced by a new shuffled and
re-encrypted kd-tree submitted by the data provider to the service provider.

Definition 10 (Privacy-preserving Data Outsourcing Framework). Let F be a framework that enables a
service provider (cloud) to answer queries from data miners on hosted (outsourced) data. F is a privacy-
preserving framework if the following properties hold:

1. Correctness. For any user query u ∈ U , the cloud returns resu to the data miner such resu is the
correct answer to u.

2. Data Confidentiality. A semi-honest adversary E , statically corrupting the service provider, cannot
learn anything more about the hosted data from an accepted transcript ofF than she could given only
the total number of numerical and categorical attributes, and the size of each attribute’s domain.

3. Query Confidentiality. A semi-honest adversary E , statically corrupting the service provider, cannot
learn anything about the query.

4. Differentially Private Output. For all u ∈ U , resu satisfies differential privacy.

Definition 11 (α-Privacy-preserving Data Outsourcing Framework). An outsourcing framework F is
α-privacy-preserving if it satisfies all properties in Definition 10 except that the cloud learns the search
pattern of at most α number of queries.

Theorem A1 SecDM, as specified in Protocols 1–7, is an α-privacy-preserving data outsourcing frame-
work.

Proof We proved in Section B Property 1 (correctness) and Property 4 (differentially private output).
To prove Property 2 (data Confidentiality) and Property 3 (query Confidentiality), we build a simulator

S that generates a view that is statistically indistinguishable from the view of E in real execution. Per
Definition 7, the view of the service provider consists mainly of the messages it receives from the other
parties. Although we have 8 algorithms, the service provider receives messages from the protocol only in
Algorithm 3 - Line 2 (encrypted index from data provider) and Algorithm 5 - Line 4 (encrypted query
from data miner). All other steps in all algorithms do not need to be simulated because they either do not
involve the service provider at all (e.g. the steps in Algorithm 1, 2 and 4), or involve ciphertext operations
(e.g. the steps in Algorithm 6 and 7) which are inherently secure from the security of the cryptosystems
used (ABE and Elgamal).
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In Algorithm 3 - Line 2, the service provider receives kd-tree index T from the data provider.

Simulation :

1. Supplied with k, the total number of attributes in D̂, and the size of each attribute’s domain
|Ω(Âi)| : 1 ≤ i ≤ k, the simulatorS generates attribute domainsΩ(Â′1), Ω(Â′2), . . . , Ω(Â′k)

such that each domain Ω(Â′i) consists of |Ω(Âi)| distinct values, e.g., 1, 2, . . . , |Ω(Âi)|.
2. S constructs a contingency table D̂′ with k columns each of which represents one attribute Â′i,

and n records each of which represents one possible combination of attribute values such that
n =

∏k
i=1 |Ω(Â′i)|.

3. Supplied with the total number of numerical attributes kn and categorical attributes kc in D̂
such that kn + kc = k, the size of each attribute’s domain, and the security parameter of
ACP-ABE, S runs A.Setup(1λ) to generate public key PK′ and master secret key MSK′.
Similarly, given the security parameter of ElGamal, S runsG.KeyGen() to generate public key
y′ and secret key x′.

4. Given D̂′, split dimension i = 1,PK′ and y′,S runs Algorithm 1 and Algorithm 2 to construct
a balanced kd-tree T ′ over D̂′:
(a) In Line 12 of Algorithm 1, n random group elements are generated for each ciphertext

CTleft or CTright of each internal node v.
(b) In Line 2 of Algorithm 2, a random ElGamal ciphertext, e.g., encryption of ‘0’, is assigned

to the encrypted NCount of each leaf node l.

Indistinguishability Argument : T ′ is computationally indistinguishable from T .

First, we construct a hybrid tree called T ′′, and then show the relation between T ′′ and real the
kd-tree T , and between T ′′ and the simulated kd-tree T ′.

1. Let T ′′ be a kd-tree index over D̂′′ = D̂ constructed using Algorithm 1 and Algorithm 2,
where:
(a) The ACP-ABE ciphertexts CTleft and CTright of each internal node are random group

elements, as per Step 4a above.
(b) The noisy countNCount in each leaf node is a random ElGamal ciphertext, as per Step 4b

above.
2. T ′′ is computationally indistinguishable from T , denoted by T ′′

c
≡ T , because:

(a) The ACP-ABE ciphertexts in the internal nodes of the kd-tree are IND-CPA-secure under
the decisional bilinear diffie-hellman (DBDH) assumption [64] and the decision linear
(D-Linear) assumption [65].

(b) Since ElGamal is IND-CPA-secure, the distribution of the ciphertext (output) space is
independent of the key/message. Therefore, encrypting any message with a random factor
is sufficient to generate a computationally indistinguishable NCount.

3. T ′′ is statistically indistinguishable from T ′, denoted by T ′′
s
≡ T ′, because:

(a) D̂′′
s
≡ D̂′, where there is one-to-one correspondence between the equivalent classes in

D̂′′ and the records in D̂′.
(b) The random coins used in ACP-ABE encryption in Algorithm 1 are drawn from the same

distribution.
(c) The random coins used in ElGamal encryption in Algorithm 2 are drawn from the same

distribution.
4. From Steps (2) and (3), we conclude that T ′

c
≡ T .

In Algorithm 5 - Line 4, the service provider receives system count query SKu and a set of
attribute distribution tokensN .

Simulation :

1. S obtains α sample queries Ū = {u′1, u′2, . . . , u′α} from U .
2. For each query u′i ∈ Ū , S constructs a query pair (SKu′

i
,N ′i ) as follows:

– S runsA.KeyGen(MSK′, u′i) to construct system count query SKu′
i
.
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– S constructs a setN ′i containing 2×kn ADT tokens, whereADT.value for each token
is a randomly generated ElGamal ciphertext, e.g., encryption of ‘0’.

3. Up to α times, each time a data miner in the real world submits a query, S submits to the service
in the simulation world a different query pair from the set of pairs generated in Step 2.

Indistinguishability Argument :

1. Given any real system query SKu, SKu′
i

c
≡ SKu because:

(a) u′i
s
≡ u.

(b) SKu′
c
≡ SKu since |SKu′ | = |SKu| = kc + 2 × kn group element tuples, and the

ACP-ABE scheme is IND-CPA-secure.
2. Given any real ADT setN ,N ′i

c
≡ N because:

– |N ′i | = |N | = 2× kn.
– TheADT.value of each token inN ′i is computationally indistinguishable from theADT.value

of any real token due to the IND-CPA-secure property of ElGamal.

Discussion. The threshold parameter α can range between 1 and∞. To better understand the impact
of revealing α queries to S, we analyze the security when α = 1 and α > 1.

Case 1 : α = 1. This represents the highest security level of our protocol, where one system query
is executed per one kd-tree. Since the kd-tree index is constructed by Algorithm 1 as a balanced tree and
since each path contains all attributes, then no correlation can be established between any two attributes and
the attributes are protected when evaluated for splitting the k-dimensional space. As for the data mining
query, the service provider cannot determine what attributes are included in the query, nor know what
values or ranges the data miner is interested in. Since Algorithm 6 yields how many leaf nodes (equivalent
classes) identified, this reveals how general the query is. In general, the more leaf nodes identified by a
query, the more general the query is. The revealing of the number of identified leaf nodes, however, won’t
help the service provider better guess the final result of the query since it cannot access the encrypted noisy
counts.

Although setting α to 1 provides the highest security w.r.t. query search pattern, it is impractical
due to the cost of reconstructing the kd-tree. We refer the reader to solution construction scalability in
Section 6.2.2 for more details about the cost of reconstructing the kd-tree.

CASE 2 : α > 1. While our proposed framework supports confidential access to the data, executing
multiple queries on the same kd-tree index reveals the search pattern of the queries, where the service
provider is able to determine the number of leaf nodes that overlap between the queries. Let u and u′ be
two user queries that satisfy the same set of leaf nodes l = {l1, . . . , lr}, and let collision set denote the
set of all unique queries that could satisfy l. The size of the collision set can be determined as follows:

|collision set(l)| =
r∏
i=1

k∏
j=1

|li.Range(Âj)| : Âj is numerical,

where |li.Range(Âj)| denotes the size of the range of attribute Âj in the equivalent class represented
by leaf node li. Note that since the noisy counts are encrypted using ElGamal, the position of the attributes
in the tree is hidden and is shuffled every time the kd-tree is constructed, disclosing the search pattern on
the differentially private data reveals nothing about the final (noisy) result of each query, nor about the
attributes/values in each query. The smaller the value of α is, the less overlap between queries is revealed.
Several techniques have been proposed in the literature to address the problem of private search pattern,
such as [66]; however, it is out of the scope of this paper.

Note that each time the data provider generates a shuffled and re-encrypted kd-tree, a different ACP-
ABE master secret key MSK should be used to prevent the service provider from processing new queries
on the old tree.

In our model, we assume the data miner can have access to the entire differentially-private dataset.
The data privacy is guaranteed by differential privacy. Therefore, there is no need to simulate the view of
the data miner.

Moreover, since our framework returns differentially private results for each count query in a deter-
ministic way, any repetition of queries will leak no extra information about the dat. Also, since count query
results are differentially private, our framework is also protected against background knowledge attacks.

The proposed protocol in this paper involves the composition of secure subprotocols in which all
intermediate outputs from one subprotocol are inputs to the next subprotocol. These intermediate outputs
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Table 4 Key accessibility w.r.t. all parties in SecDM framework

Scheme Key Data Bank Service
Provider

Data
Miner

G private key x generator, full
control

no
access

read
access

G public key y generator, full
control

read
access

read
access

A master secret key MSK generator, full
control

no
access

no
access

A public key PK generator, full
control

read
access

read
access

A user secret key SKu generator, full
control

read
access

read
access

are either simulated given the final output and the local input for each party or computed as random shares.
Using the composition theorem (Goldreich [63]), it can be shown that if each subprotocol is secure, then
the resulting composition is also secure.

Key Accessibility. Protecting the data distributed between different parties from unauthorized access is an
essential part of securing the SecDM framework. We must ensure that all keys are properly distributed
such that no party can decrypt any data it is not supposed to have access to in plaintext. Table 4 illustrates
the accessibility of each key by each party in SecDM.

Observe that the data provider is the generator of all encryption keys in the system and maintains
full control over them. The service provider, on the other hand, has no access to Exponential ElGamal’s
private key, G.x, that would have allowed her to fully decrypt the contents of each leaf node in the kd-
tree index. Moreover, not having access to the ACP-ABE master secret keyA.MSK prevents the service
provider from being able to determine the access structures of the ciphertexts in each internal node of the
kd-tree index. As for the user (data miner), not having access to A.MSK prevents her from bypassing
authentication and creating her own system count queries.

B Correctness Analysis

The correctness proof is twofold. First, we prove that Algorithm 6 identifies all the leaf nodes satisfying
the user count query u. Second, we prove that Algorithm 7 produces the exact total count answer to u, and
the answer is differentially private.

Proposition 5 Given a user count query u = P1 ∧ ... ∧ Pm, Algorithm 6 produces a set R containing
all leaf nodes satisfying u.

Proof To prove the correctness of Algorithm 6 we prove partial correctness and termination.
1. Partial Correctness. We provide a proof by induction.

Basis. When u includes no predicate for any of the attributes in D̂, then each categorical attribute in SKu
is assigned the value 1 (the identifier of the root node of the corresponding taxonomy tree), whereas for
each numerical attribute Âi ∈ D̂, Âmini = 1 (the lowest range identifier) and Âmaxi is assigned the high-
est range identifier in Ω(Âi). When SKu is used to traverse the kd-tree index, all internal nodes will be
traversed until the leaf nodes are reached. That is, if the current node v is internal,A.Dec(v.CTleft, SKu)
and A.Dec(v.CTright, SKu) will always be true because the attributes in SKu will always satisfy the
access structure in v.CTleft and v.CTright, and pointers to the left child node and right child node will
always be obtained.
Induction Step. Assume that traversing the kd-tree index using SKu produces the correct set of leaf nodes
R satisfying u. We show that if a new predicate P = (Âi ` si) is added to u such that ú = u + P ,
then traversing the kd-tree index using SKú produces the correct set of leaf nodes Ŕ satisfying ú. We
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observe that Ŕ ⊆ R. To complete the proof in this step, we assume that P corresponds to a categorical
attribute; however, the same analogy can be applied to a numerical attribute’s predicate. When v is an
internal node and v.split dim = Âi, if si.ID ≤ v.split value then A.Dec(v.CTright, SKu) will
evaluate to false, and no recursive call of procedure traverseIndex over node v.rc will be executed. This
behaviour is correct because in this case the subtree whose root is v.rc includes the leaf nodes that do not
satisfy P , and hence there is no need to search the subtree rooted at v.rc. The same logic can be used to
reason about the case when si.ID > v.split value.

2. Termination. Each recursive call on a child node partitions the space of the parent node in half. This
shows that the algorithm strictly moves from one level to a lower level in the kd-tree index while reducing
the search space by half until all leaf nodes satisfying u are reached.

Proposition 6 Given a set of leaf nodesR generated by a system count query SKu and a set of attribute
distribution tokensN , the output of Algorithm 7 is the exact noisy count answer corresponding to SKu.

Proof To prove the correctness of Algorithm 7, we prove partial correctness and termination.
1. Partial Correctness. We provide a proof by induction.

Basis. When N = φ, the inner loop will never be executed. In this case, procedure compTCount will go
through all the leaf nodes inR and add together all corresponding noisy counts by utilizing the homomor-
phic addition property of Exponential ElGamal. This is correct because if no ADT token was originally
generated, then the user query is an exact query, and 100% of the noisy count of each leaf node inR must
be used.
Induction Step. Assume that for N = {ADT1, ..., ADTl}, procedure compTCount computes the ex-
act noisy count answer to the user count query u. We show that if a new token ADTl+1 for numerical
attribute Âi is added such that Ń = N ∪ ADTl+1 = {ADT1, ..., ADTl+1}, where Ń corresponds
to the system count query SKú, then procedure compTCount computes the exact noisy count answer to
the user count query ú. Without loss of generality, we assume that the set of leaf nodes R remains the
same. SinceADTl+1 is for numerical attribute Âi, thenADTl+1.value represents the percentage of the
partial intersection between query ú and attribute Âi by definition. If ú is a generic query, then not all
leaf nodes in R will contain a tag that corresponds to ADTl+1.tag. However, the noisy count of each
leaf node l containing a tag that matches ADTl+1.tag must be adjusted by multiplying l.NCount with
ADTl+1.value.

2. Termination. We denote by n the initial number of leaf nodes in R. If n > 0 then we enter the
outer loop. We also denote by m the initial number of ADT tokens in N . If m > 0 then we enter the
inner loop such that after each iteration, the variable m is decreased by one, and it keeps strictly decreasing
until m = 0 where the inner loop terminates. Similarly, the outer loop will terminate as n keeps strictly
decreasing until it reaches 0; at that stage the algorithm terminates.
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