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Learning Stylometric Representations for
Authorship Analysis

Abstract—Authorship analysis (AA) is the study of unveiling
the hidden properties of authors from textual data. It extracts
an author’s identity and sociolinguistic characteristics based
on the reflected writing styles in the text. The process is
essential for various areas, such as cybercrime investigation,
psycholinguistics, political socialization, etc. However, most of
the previous techniques critically depend on the manual feature
engineering process. Consequently, the choice of feature set has
been shown to be scenario- or dataset-dependent. In this paper,
to mimic the human sentence composition process using a neural
network approach, we propose to incorporate different categories
of linguistic features into distributed representation of words in
order to learn simultaneously the writing style representations
based on unlabeled texts for authorship analysis. In particular,
the proposed models allow topical, lexical, syntactical, and
character-level feature vectors of each document to be extracted
as stylometrics. We evaluate the performance of our approach on
the problems of authorship characterization, authorship identifi-
cation and authorship verification with the Twitter, blog, review,
novel, and essay datasets. The experiments suggest that our
proposed text representation outperforms the static stylometrics,
dynamic n-grams, Latent Dirichlet Allocation, Latent Semantic
Analysis, PV-DM, PV-DBOW, word2vec representations, and
other baselines.

Index Terms—Authorship analysis, computational linguistics,
representation learning, text mining

I. INTRODUCTION

THE prevalence of the computer information system, per-
sonal computational devices, and the globalizing Internet

have fundamentally transformed our daily lives and reshaped
the way we generate and digest information. Countless pieces
of textual snippets and documents are generated every mil-
lisecond: This is the era of infobesity. Authorship analysis
(AA) is one of the critical approaches to turn the burden
of a vast amount of data into practical, useful knowledge.
By looking into the reflected linguistic trails, AA is a study
to unveil an underlying author’s identity and sociolinguistic
characteristics.

Studies of authorship analysis backed up by statistical
or computational methods has a long history starting from

S. H. H. Ding and B. C. M. Fung are with School of Information
Studies, McGill University, 3661 Rue Peel, Montral, QC H3A 1X1, Canada.
Benjmain C. M. Fung completed part of the work during his visit at the
Department of Computer Science, Hong Kong Baptist University. E-mails:
steven.h.ding@mail.mcgill.ca, ben.fung@mcgill.ca

Farkhund Iqbal is with College of Technological Innovation, Zayed Uni-
versity, Abu Dhabi, United Arab Emirates. E-mail: Farkhund.Iqbal@zu.ac.ae

William K. Cheung is with Department of Computer Science, Hong Kong
Baptist University, Hong Kong. E-mail: william@staff.hkbu.edu.hk

The research is supported in part by the NSERC Discovery Grants (356065-
2013), Canada Research Chairs Program (950-230623), and the Research
Incentive Fund (RIF13059) from Zayed University, Abu Dhabi, UAE.

19th century [1], [2]. It has been a successful line of re-
search [3]. Many customized approaches focusing on different
sub-problems and scenarios have been proposed [2]. Research
problems in authorship analysis can be broadly categorized
into three types: authorship identification (i.e., identify the
most plausible author of an anonymous text snippet given a
set of candidates [4]–[6]), authorship verification (i.e., verify
whether or not a given candidate is the actual author of the
given text [7]), and authorship characterization (i.e., infer
the sociolinguistic characteristics of the author of the given
text [8]). Both the problems of authorship identification and
authorship characterization can be formulated as a text clas-
sification problem. For the authorship identification problem,
the classification label is the identity of the anonymous text
snippet. For the authorship characterization problem, the label
can be the hidden properties of the anonymous author, such
as age and gender.

Regardless of the studied authorship problems, the existing
solutions in previous AA studies typically consist of three
major processes, as shown in the upper flowchart of Figure 1:
feature engineering, solution design, and experimental eval-
uation. In the first process, a set of features are manually
chosen by the researchers to represent each unit of textual
data as a numeric vector. In the second process, a classification
model is carefully adopted or designed. At the end, the entire
solution is evaluated based on specific datasets. Representative
solutions are [9], [10], and [11]. Exceptions are few recent
applications of the topic models [12]–[14] and text embedding
models [15]–[17] that actually combine the first two processes
into one. Still, the three-processes-based studies on author-
ship analysis problems dominate [7], [8], [18]. In the latest
PAN2016 authorship characterization competition [8], 17 out
of 22 approaches follow the three-processes-based solution.
The other 5 approaches involve topical models.

To assist the feature selection process for authorship anal-
ysis, various feature selection algorithms have been proposed
in the literature of AA [5], [19]–[21]. Some algorithms select
features for representing a document by considering each
feature individually with respective to their discriminant power
[19], [21], while some algorithms include the classification
or verification performance in the loop for feature selection
[20] at the expense of longer computation. In addition, the
representation learning approach has been proposed for text
modeling [22] and classification [23], where the features are
learned directly from the data in an unsupervised fashion.
Inspired by the recent success of the representation learning
approach in a variety of recognition tasks [24], we raise a new
research question for authorship analysis. Given the unlabeled
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Fig. 1. Overview of the traditional solution and the proposed solution for
authorship analysis.

textual data, can we automatically come up with a vectorized
numeric representation of the writing style?

In this paper, we present a stylometric representation learn-
ing approach for authorship analysis (AA). Refer to the lower
flowchart in Figure 1. The goal is to learn an effective vector
representation of writing style of different linguistic modalities
in AA study. Following the previous work [5], [25], [26], we
use the concept linguistic modalities to denote the categories
of linguistic features [25]. We broadly categorize them into
four modalities: the topical modality, the lexical modality,
the character-level modality, and the syntactic modality. It is
noted that the term “modality” used here is different from
the term “multi-modality” in machine learning. The former
one denotes a category of linguistic features, and the latter
denotes a combination of different ways in which information
is presented, such as text, image, rating, etc. Also, we use the
term representation and embedding to describe the vectorized
representation of feature. In the first stage, we learn the
stylometric representation for different linguistic modalities
based on the unlabeled textual data. In the second stage, an
authorship analyst can select the modality according to his
or her needs. If the scenario requires the least interference
from the topic-related information, the analyst can discard
the topical modality, or more strictly, both the topical and
lexical modalities. One of the advantages for traditional feature
engineering process is that an analyst can pick only relevant
features to be included in the authorship studies. Our design
inherits the flexibility of the original hand-crafted stylometric
features while it enables the representation to be learned from
the available data.

To the best of our knowledge, this is the very first work
attempting to automate the feature engineering and discover
the stylometric representations for authorship analysis. Specif-
ically, our major contributions are summarized as follows:
• We propose a joint learning model that can learn simul-

taneously the distributed word representation as well as
the topical bias and lexical bias representations of each
document based on unlabeled texts. The learned topical
vector representation of a document captures the global
topical context, while the learned lexical representation of

a document captures the personal bias in choosing words
under the given global topic.

• We propose to learn the character-level and syntactic-
level representations of each document. The former cap-
tures the morphological and phonemes bias of an author
when he/she is composing a lexical token while the latter
captures the syntactic/grammatical bias of an author when
he/she is putting words together to construct a sentence.

• We evaluate the effectiveness of the learned representa-
tions as stylometrics via extensive experiments and show
its superiority over the state-of-the-art representations
and algorithms for authorship verification, authorship
identification and authorship characterization tasks using
a number of benchmark datasets.

In practice, our work suggests a different solution flow for
authorship analysis. Based on the learned representations of
the writing style corresponding to different linguistic modali-
ties, the user/researcher can pick the modalities based on their
needs and interests in the context of the authorship analysis
problem. For example, political socialization researchers are
interested in content, so they may choose topical modality. In
contrast, cybercrime investigators would prefer avoiding topic-
related features since given a harassment letter, the candidate
authors may not have previously written anything on this topic.
Our models are open-source1.

The rest of this paper is organized as follows: Section II
describes the related work. Section III elaborates our learning
models. Section IV elaborates our evaluation on the authorship
verification problem with the PAN2014 dataset. Section V
studies the effect of the hyper-parameters choice and shows
our experiment on the problem of authorship identification.
Section VI presents our evaluation on the problem of au-
thorship characterization. More relevant works are situated
throughout the discussions in this paper. Finally Section VII
concludes this paper.

II. RELATED WORK

Stylometric features are the linguistic marks that quantify
the linguistic characteristics [2] and [3]. Various features have
been proposed for the problems in authorship analysis. They
can be categorized into dynamic features and static features
based on how they are constructed [27]. Static features do
not change over different datasets. They include context-free
manually-crafted styles such as sentence length [28], usage of
functions words [1], [29], word-length distribution [30], [31],
vocabulary richness [32], [33], and statistics over special char-
acters and words [34], etc. In contrast, dynamic features are
constructed based on the information of the dataset. They can
be word n-grams, character n-grams, Part-of-Speech (POS) n-
grams, and misspelled words, etc. Later, [14], [35] propose to
use topic models for the authorship attribution. These features
can be also categorized according to their linguistic categories.
[2] categorizes them into lexical type, topical type, character
type, syntactic type, semantic type, and application-specific
type. [25], [26] use the word ‘modality’ instead of the word

1Available at: https://github.com/McGill-DMaS/StyloMatrix
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‘type’ to describe a category. A modality denotes a single
aspect of a given text snippet.

During the feature engineering process, given the available
dataset and the application scenario, authorship analysts man-
ually select a broad set of features based on the hypotheses
or educated guesses, and then refine the selection according
to experimental feedback. As demonstrated by previous re-
search [5], [19]–[21], the choice of the feature set (i.e., the
feature selection method) is a crucial indicator of the predic-
tion result, and it requires explicit knowledge in computational
linguistics and tacit experiences in analyzing the textual data.
Most of the existing studies in authorship analysis employ
the filter based approach [36] to select dynamic features. [27]
uses information gain. [37] uses chi-square statistics. [19],
[21] present a comprehensive evaluation on filtering-based
approaches. The study adopts different metrics such as doc-
ument frequency, information gain, and chi-square statistics,
etc. It turns out that document frequency and information gain
achieve the best result for authorship attribution. [20] proposes
a wrapper-based approach for the problem of authorship
verification. They select a distinct set of features for each
author according to the performance on the training set. [38]
proposes to use an ensemble of classifiers that are built on
different set of character n-grams for authorship verification.
Besides of feature selection, [12]–[14] propose to use latent
variables in LDA as document representation. [39] and [40]
are among the first studies that uses document representation
learning for authorship analysis.

However, existing features suffer from several problems.
First, all the features failed to separate the effect of topical
preference and personal lexical preference. It is difficult to
distinguish whether a specific lexical n-gram occurring in a
sentence is mainly due to the holistic topics or the personal
lexical preference. The LDA-based and LSA-based approaches
also failed on this aspect. Second, the prevalent n-gram-based
approaches failed to capture ordering information over long
context and consider the semantic relationship between n-
grams [22], [23]. Third, the effectiveness of the filtering met-
rics and the specific threshold are dataset and task dependent.
Last, existing POS-based syntactic features failed to consider
the tag dependency introduced by the POS tagger.

To address the above issues, we leverage the concept of
representation learning to model writing style. Instead of
manually specifying the features, we propose three models to
learn stylometric representation directly from the unlabeled
text. Learning writing style representation is different to
learning general text representation that only captures general
topic or sentiment. The learned style representation needs to
capture the differences in word choice under similar topic, the
preferences in using function words, the morphology bias in
word spelling, and the differences in grammatical structure.
[23] proposes two similar neural network models to learn the
vector representation of document: the PV-DM model and the
PV-DBOW model. The PV-DM model predicts the word in the
middle of the sliding window. The input of the PV-DM model
is a document vector and the vectors of words inside sliding
window except the word in the middle. The document vector
captures the topic that is missing from the context (i.e. sliding

window). The PV-DBOW model takes a document vector as
input. It predicts each word in the sliding window. The learned
document vectors are effective for the sentiment prediction
task [23]. However, it is not clear what is captured by the
learned vectors. We leverage and manipulate basic elements
of these two models in order to separate the effect of topical
and lexical preference on token level, model the morphology
and phonemes bias, and capture the grammatical variations.

III. MINING STYLOMETRIC REPRESENTATIONS

In this section, we present the proposed models for learning
the stylometric representations on unlabeled training data. To
be consistent in terminology, text dataset refers to the union of
available labeled and unlabeled text; writing sample are used
to refer to the minimum unit of text data to be analyzed. A
writing sample consists of a list of sentences, and a sentence
consists of a sequence of lexical tokens. Each lexical token
has its respective POS tag in the corresponding sentence.

This section corresponds to the first process of the lower
flowchart in Figure 1, where only unlabeled text data are
available. In this process we learn the representation of each
chosen unit of text into four vectorized numeric representa-
tions, respectively, for four linguistic modalities. We formally
define the stylometric feature learning problem as follows:

Definition 1: (stylometric representation learning) The
given text dataset is denoted by D, and each document is
formulated as ω ∈ D. A document ω consists of a list of
ordered sentences S(ω) = s[1 : a], where sa represents one
of them. Each sentence consists of an ordered list of lexical
tokens T (sa) = t[1 : b], where tb represents the token at index
b. P(tb) denotes the Part-of-Speech tag for token tb. Given D,
the task is to learn four vector representations ~θtpω ∈ RD(tp),
~θlxω ∈ RD(lx), ~θchω ∈ RD(ch), and ~θsyω ∈ RD(sy), respectively,
for topical modality tp, lexical modality lx, character-level
modality ch, and syntactic modality sy for each document
ω ∈ D. D(·) denotes the dimensionality for a modality. �

A. Joint learning of topical modality and lexical modality

In this section we are interested in both the topical modality
and the lexical modality. The topical modality concerns the
differences of topics, and the lexical modality is concerned
with the personal preference of the word choice.

1) Joint modeling of topical and lexical modalities: A text
document ω can be considered to be generated by the author
under a mixture effect of topical bias, contextual bias, and
lexical bias. It is difficult to distinguish whether a lexical token
occurring in a sentence is mainly due to the topics of the
document or the author’s lexical preference. In order to best
separate the mixed effects of topical bias, contextual bias, and
lexical bias, we propose a joint learning model in which a
document is considered as a lexical token picking process,
and the author picks tokens from her vocabulary in sequence
to construct sentences in order to express her interests. We
consider three factors in this token picking process: the topical
bias, the local contextual bias, and the lexical bias.
• Topical bias. Based on the certain holistic topics to be con-

veyed through the text, the author is limited to a vague set
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Fig. 2. The joint model for learning the stylometric representation of the
topical and lexical modalities. The input word vectors are randomly initialized
before training. The output word vectors are zeros before training.

of possible thematic tokens. For example, if the previously
picked tokens are mostly about Microsoft, then the author
will have a higher chance of picking the word “Windows” in
the rest of the document because they are probably under a
similar topic. Given the topics of the document, the author’s
selection of the next token in a sentence is influenced by a
relevant vocabulary.

• Local contextual bias. Holistic topics and local contexts
both influence how the next word is chosen in a sentence.
For example, a document about Microsoft may consist
of several parts that cover its different software products.
Moreover, the context can be irrelevant to the topic. For
example, a web blog may have an opening about weather
that has nothing to do with the topic of the text.

• Lexical bias. Given the topics and their related vocabularies,
the author has different choices for picking the next token to
convey a similar meaning. For example, if the author wants
to talk about the good weather, she may pick the adjective
“nice” to describe the word “day”. Alternatively, the author
can pick other words such as “great”, “wonderful”, or
“fantastic”, etc. The variation in choosing different words
to convey a similar meaning is the lexical bias for an author
to construct the document.
The word picking process is a sequence of individual

decision problems influenced by the individual topical bias,
contextual bias, and lexical bias; therefore, it is natural to
jointly learn the topical representation and lexical represen-
tation in the same model. It has the advantage of modeling
their joint effects simultaneously and at best of minimizing
the interference between the learned representations.

2) The proposed joint learning model: This section intro-
duces our proposed joint learning model for the topical modal-
ity and lexical modality. The goal is to estimate ~θtpω ∈ RD(tp)

and ~θlxω ∈ RD(lx) in Definition 1.
Figure 2 depicts the model, which is a neural network with

two feed-forward paths. The first feed-forward path simulates

the word picking process under a mixture effect of topical
bias, local contextual bias, and lexical bias. The second feed-
forward path captures the overall topics of the document.
These two feed-forward paths have different inputs but share
the same output vector space. The neural network updates the
weights according to these two paths simultaneously at each
training mini batch. The input to the whole neural network is
the sliding window over a text sequence. The output of the
first feed-forward path is the word in the middle of the sliding
window. The output of the second feed-forward path is each
of the words in the sliding window.

We start by describing the first feed-forward path. Recall
that the contextual bias concerns the local information sur-
rounding the token to be picked. We represent the vectorized
local contextual bias surrounding token tb in its corresponding
sentence sa as θC(tb)sa . The output is the prediction probability
of the targeted word to be chosen by the author. The model
tries to maximize the log probability for the first path:

argmax
1

|D|

D∑
ω

S(ω)∑
sa

T (sa)∑
tb

log P(tb| ~θtpω︸︷︷︸
topical

, ~θlxω︸︷︷︸
lexical

, θC(tb)sa︸ ︷︷ ︸
contextual

) (1)

Similar to the other neural-network-based paragraph/word
embedding learning models [22], [23], [41], this model maps
each lexical token tb into two vectors: ~wtb

in ∈ Rdw (the blue
rectangles in Figure 2) and ~wtb

out ∈ Rdw (the yellow rect-
angles in Figure 2) where dw denotes the dimensionality.
~wtb
in is used to construct the input of contextual bias for the

neural network, and ~wtb
out is used for the multi-class prediction

output of the neural network. They are all model parameters
to be estimated on the textual data.

The local context of a token is represented by its surround-
ing tokens in the window. Given a token tb in a sentence sa
with a sliding window of size W(tp), the context of tb is
formulated as C(tb, sa) = {tb−W(tp), . . . , tb−1, tb, tb+1, . . . ,
tb+W(tp)}. The contextual bias input to the neural network is
defined as the average over the input mapped vectors of C(tb).
We define 〈·〉 as the vector element-wise average function:

θC(tb)sa =

〈C(tb,sa)∑
t

~wt
in

〉
(2)

The other two inputs to the model are the topical bias ~θtpω ∈
RD(tp) and the lexical bias ~θlxω ∈ RD(lx). In order to have
the model working properly, we need to set D(lx), D(tp),
and dw equal to d1, where d1 is the parameter of the whole
model that indicates the dimensionality for the lexical modality
representation, topical modality representation and contextual
representation. With these three input vectors we further take
their average as joint input vector θtbin since it is costly to have
a fully connected layer.

~θtbin =

〈
~θtpω︸︷︷︸

topical

+ ~θlxω︸︷︷︸
lexical

+ ~θC(tb)sa︸ ︷︷ ︸
contextual

〉
(3)

Example 1: Consider a simple sentence: ta = “it is a great
day !!” in Figure 2. For each token {tb|b ∈ [1, 6]} we pass
forward the neural network. We take b = 4 and tb =’great’ for
example. The process is the same for other values of b. Given
a window size of 2, which indicates two tokens on the left
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and two tokens on the right, we construct the local context as
C(t4, sa) = {t2, t3, t5, t6} = {‘is’, ‘a’, ‘day’, ‘!!’}. We map
these tokens into their representations ~wt2

in, ~wt3
in, ~wt5

in and ~wt6
in.

With ~θtpω and ~θlxω , we calculate ~θt4in using Equation 3. �
Using a full soft-max layer to model Equation 1 is costly

and inefficient because of the large vocabulary V . Following
recent development of an efficient word embedding learning
approach [22], we use the negative sampling method to
approximate the log probability:

log P(~wtb
out|~θ

tb
in) ≈ log f(~w

tb
out,

~θtbin)

+

k∑
i=1

EtvPn(tb)Jt 6= tbKlog f(−1× ~wt
out,

~θtbin)

f(~wt
out,

~θtbin) = Uh((~wt
out)

T × ~θtbin)
(4)

Uh(·) denotes the element-wise sigmoid function. It corre-
sponds to the red circle on the first feed-forward path in the
Figure 2. J·K is an identity function. If the expression inside
this function is evaluated to be true, then it outputs 1; otherwise
0. The negative sampling algorithm tries to distinguish the
correct guess tb with k randomly selected negative samples
{t|t 6= tb} using k + 1 logistic regressions. EtvPn(t) is a
sampling function that samples a token v from the vocabulary
V according to the noise distribution Pn(t) of V .

Example 2: Continue from Example 1. We map t4 into
its output vector ~wt4

out. Next we calculate P(~wt4
out|~θ

t4
in) using

negative sampling (Equation 4). After that we calculate the
gradients w.r.t. ~wt4

out and ~θt4in. We update ~wt4
out according to its

gradient with a learning rate. We also update ~wt2
in, ~wt3

in, ~wt5
in,

~wt6
in, and ~θlxω equally according to the gradient of ~θt4in. �
The second feed-forward path of this model captures the

topical bias reflected on the document ω. The topics reflected
from the text can be interpreted as the union of effects of all
the local context in the sentence. Thus, the output of this path
(see the left part of Figure 2) is a multi-class prediction of
each word in the sentence sa, which is denoted by T (sa) in
Definition 1. The goal is to maximize the log probability on
~θtpω of document ω for each of its sentences S(ω):

argmax
1

|D|

D∑
ω

S(ω)∑
sa

T (sa)∑
tb

log P(tb| ~θtpω︸︷︷︸
topical

)

Similar to the first feed-forward path of this model, we map
each lexical token at the output to a numeric vector ~wtb

out (the
yellow rectangles in Figure 2). By using negative sampling,
we maximize the following log probability:

logP(tb| ~θtpω︸︷︷︸
topical

) ≈ log f(~wtb
out,

~θtpω )

+

k∑
i=1

EtvPn(tb)

(
Jt 6= tbKlog f(−1× ~wt

out,
~θtpω )

) (5)

The total number of parameters is (k+1)× d1 for each tb.
Constant k is contributed by k negative samples, and constant
1 is contributed by the update of ~θtpω . Basically, the second
feed-forward path of this model is an approximation to the
full factorization of the document-term co-occurrence matrix.
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Fig. 3. The model for learning the representation of the character modality.

Example 3: Continue from Example 1. For the output of
the second path, we map each token into a numeric vector
~wtb
out, where tb ∈ {‘it’, ‘is’, ‘a’, ‘great’, ‘day’, ‘!!’}. For each

of the vectors we calculate P(~wtb
out|~θtpω ) in Equation 5 using

negative sampling. Then we calculate the derivatives for each
~wtb
out and ~θtpω and update them accordingly by multiplying the

gradients with a pre-specified learning rate. �
In this model, we count punctuation marks as lexical tokens.

Consequently, the information related to the punctuation marks
is also included. Punctuation marks carry information of into-
nation in linguistics and are useful for authorship analysis [42].
After training the model on a given text dataset D, we have a
topical modality vector representation ~θtpω ∈ Rd1 and a lexical
modality vector representation ~θlxω ∈ Rd1 for each document
ω ∈ D. Also, for each lexical token tb ∈ V we have a
vectorized representation ~wtb

in ∈ Rd1 .
For an unseen document ω

′
/∈ D that does not belong to the

training text data, we fix all the ~wtb
in ∈ Rd1 and ~wtb

out ∈ Rd1

in the trained model and only propagate errors to ~θlx
ω′ ∈ Rd1

and ~θtp
ω′ ∈ Rd1 . At the end, we have both ~θlx

ω′ and ~θtp
ω′ for ω

′
.

The first feed-forward path corresponds to the PV-DM
model in [23]. The second feed-forward path corresponds
to the PV-DBOW model in [23]. The difference between
this model and PV-DM/PV-DBOW is that we joint them by
pushing the input of PV-DBOW to the input of PV-DM. The
input of PV-DBOW (the topical vector in Figure 2) captures
the overall topic (i.e., word distribution) of the document. By
pushing it to the input of PV-DM at each mini batch, the lexical
vector captures what is missing from the topic and the current
context or lexical preference, where people have different
word choice under similar topic and similar context. Thus, it
is very different from the PV-DBOW and PV-DM models.

B. The character-level modality

We propose a neural-network-based model to learn the
character modality representation on the plain text data. This
model captures the morphological differences in constructing
and spelling lexical tokens across different documents. Refer
to Figure 3. The input of this model is one of the character
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bigrams generated by a sliding window over a lexical token tb
with the character-level bias. The output of this model is the
vectorized representation of the token tb. The purpose is to
learn ~θchω ∈ RD(ch) for each document ω ∈ D such that vector
~θchω captures the morphological differences in constructing
lexical tokens. Let CH(tb) = bg[1 : c] denote the list of
character bigrams of a given token tb, and bg is one of them.
The goal is to maximize the following log probability on D:

argmax
1

|D|

D∑
ω

S(ω)∑
sa

T (sa)∑
tb

CH(tb)∑
bg

log P(tb| ~θchω︸︷︷︸
char-level

, ~bgin)

We consider character bigram to increase the character-level
vocabulary size. Increasing the length of character n-grams
risks taking too much information from the lexical modality.
For example, a character 4-gram already matches a lot of
exact words. Therefore, we only consider bigram at this stage.
Similar to the previous lexical model, we map each lexical
token tb into a numeric vector ~wbt

out, which is used to output
a multi-class prediction. We also map each character bigram
into a numeric vector ~bgin, which is used for the network
input. Both are model parameters to be estimated. The input
vectors of this model are ~bg

bt

in and ~θchω . Both of them have
the same dimensionality d2. After taking an average, it is fed
into the neural network, as depicted in Figure 3, to predict its
corresponding lexical token tb. By using negative sampling,
we maximize the following log probability:

~θbgin =
〈
~θchω , ~bgin

〉
(6)

P(tb| ~θchω︸︷︷︸
char-level

, bg) ≈ log f(~wtb
out,

~θbgin)

+

k∑
i=1

EtvPn(tb)

(
Jt 6= tbKlog f(−1× ~wt

out,
~θbgin)

) (7)

The number of parameters to be updated for each bigram bg
of token tb is (k+2)×d2. The constant k is contributed by the
negative sampling function, and the constant 2 is contributed
by ~θchω and ~bgin. To learn ~θch

ω′ , for ω
′
/∈ D we fix all ~wtb

out and
~bgin and only propagate errors to ~θch

ω′ .
Example 4: Consider a simple sentence: ta = “Fantastic

day !!” in Figure 3. For each token {tb|b ∈ [1, 3]} we
extract its character bigrams. Suppose the word in the target
is t1 = ‘fantastic’, and its bigrams are CH(t4) = {bgc|c
∈ 1, 2, 3, 4, 5, 6, 7, 8} = {‘fa’,‘an’,‘nt’,‘ta’,‘as’,‘st’,‘ti’,‘ic’}.
The process is the same for each word. Let us take a bigram
bg1 =‘fa’ as an example. First, we map bg1 to its represen-
tation ~bgin and map t1 to its representation ~wt1

out. With ~θchω ,
we calculate ~θbgin according to the first formula in Equation 6.
Then we calculate the forward log probability for P(~wt1

out|~θ
bg
in)

in Equation 7. We calculate the corresponding gradients and
update the respective parameters. The training pass for bigram
bg1 = ‘fa’ is completed, and we move to the next bigram
‘an’ following the sample procedure. After traversing all the
bigrams we move to the next token t2 = ‘day’. �

The character modality in this work only captures the intra-
word information. It only concerns with the morphology and
phonemes biases in the processing of spelling lexical word.

contains

NN RBVBZ

Text snippet:
Basically/RB every/DT  action-film/JJ today/NN  contains/VBZ very/RB much/RB unrealistic/JJ 
violence/NN ./. 

contains

NN VBZ

contains

RBVBZ

a b c

Fig. 4. Three typical inference structures for the Part-Of-Speech tagger. Solid
lines indicate dependencies introduced by tagger.

The inter-word information is useful. It is captured by the
lexical modality and the topical modality.

C. The syntactic modality

Instead of using the typical POS n-grams as syntactic
feature [43]–[45], we seek alternative to maximize the degree
of variations that we can gain from the POS tags. First, we
look into the state-of-the-art tagger models. Suppose we have
a sentence sa with its tokens tb ∈ T (sa). Recall that P(tb)
denotes the POS tag for the token tb in the sentence. Refer
to Definition 1. To assign a tag P(tb) to a token tb, there are
three typical structures [46]:
• Left-to-Right structure. This structure tries to maximize
P(P(tb)|tb,P(tb−1)). The tag for token tb is determined by
both the lexical token itself and the previous tag P(tb−1).
Strong dependencies exist between P(tb−1) and P(tb) and
between P(tb) and tb. See Figure 4a.
• Right-to-Left structure. This structure tries to maximize
P(P(tb)|tb,P(tb+1)). The tag for token tb is determined
by both the lexical token itself and the next tag P(tb+1).
Strong dependencies exist between P(tb+1) and P(tb) and
between P(tb) and tb. See Figure 4b.
• Bidirectional structure This structure combines the previous

two. It maximizes P(P(tb)|tb,P(tb+1),P(tb−1)). The tag
for token tb is determined by both the lexical token itself and
the surrounding tags P(tb+1) and P(tb−1). Strong depen-
dencies exist between P(tb+1) and P(tb), between P(tb)
and P(tb−1), and between P(tb) and tb. See Figure 4c.
For all of these three structures, there exists a strong

dependency between contiguous POS tags, as well as between
the actual lexical token and its tag. Using POS tags n-grams
as a stylometric feature is less effective than using character
n-grams and lexical n-grams because the strong dependencies
between contiguous POS tags introduced by the POS taggers
are shared between different documents.

Therefore, we seek another way that has fewer dependencies
introduced by the POS tagger. In Figure 4c, strong dependen-
cies introduced by the tagger are shown as solid lines. We
select two weak dependency links from tb to P(tb+1) and from
tb to P(tb−1), as indicated by the dashed lines. The tagger only
introduces indirect dependencies on these two paths. Thus,
these two paths have more variations across different docu-
ments than the others, as indicated by solid lines. Formally,
our model tries to maximize P (P(tb−1),P(tb+1)|tb), which
is different from the typical structures for the taggers.
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Fig. 5. The model for learning the representation of the syntactic modality.

The number of unique POS tags is quite limited, so
we use the bigrams of POS tags. See Figure 5. Let
P2(tb) be a POS tag bigram [P(tb),P(tb+1)], and nb ∈
PG(tb) = {P2(tb−3),P2(tb−2),P2(tb+1),P2(tb+2)} be the
neighbor POS bigrams of token tb. The goal is to maximize:

argmax
1

|D|

D∑
ω

S(ω)∑
sa

T (sa)∑
tb

PG(tb)∑
nb

log P(nb| ~θsyω︸︷︷︸
syntactic

, ~wtb
in)

Similar to the previous models, this model maps each lexical
token tb into a numeric vector ~wtb

in, and each of its neighbor
POS bigrams maps into an numeric vector ~nbout. The input of
the model, denoted by ~θnin, is the average of ~wtb

in and ~θsyω , and
the prediction is one of the target token tb’s neighbor POS tag
bigrams, as shown in Figure 5. ~wtb

in and ~θsyω share the same
dimensionality d3. By using negative sampling, we maximize
the following log probability:

~θnin =
〈
~θsyω , ~w

tb
in

〉
P(nb| ~θsyω︸︷︷︸

syntactic

, tb) ≈ log f(~nbout, ~θnin)

+

k∑
i=1

EnvPn(nb)Jn 6= nbKlog f(−1× ~nout, ~θnin)

(8)

where Pn(n
b) denotes the negative sampling function for Vn.

Example 5: Consider a sentence and its corresponding se-
quence of POS tags in Figure 5. For each token {tb|b ∈ [1, 10]}
we extract its POS neighbor bigrams. Suppose the word in
target is t5 =‘contains’, and its POS neighbor bigrams are
PG(t5) = {‘DT JJ’, ‘JJ NN’, ‘RB RB’, ‘RB JJ’} given
a window size of 2. The process is the same for other
lexical tokens. Let us take one of its (t5’s) POS neighbor
bigrams n5 =‘DT JJ’ as an example. First we map n5 to its
vectorized representation ~n5in and map t5 to its representation
~wt5
in. With ~θsyω , we calculate ~θnin according to the first formula

in Equation 8. In combination with ~n5in, we calculate the
forward log probability for P(~n5in|~θnin) in Equation 8. Then we
calculate the corresponding gradients and update the respective
parameters. The training pass for bigram n5 =’DT JJ’ is
completed, and we move to the next bigram ‘JJ NN’ following
the same procedure. After all the bigrams are processed, we
move to the next token t6. �

TABLE I
THE PAN2014 AUTHORSHIP VERIFICATION DATASET. THE NUMBER IN

ROUND BRACKETS IS THE STANDARD DEVIATION.

Training #Problems #Docs #Tokens Tokens per doc
Dutch-Essays 96 192 123,713 644 (551)
Dutch-Reviews 100 200 25,416 127 (66)
English-Essays 200 400 694,477 1,736 (1372)
English-Novels 100 200 723,412 3,617 (3973)
Greek-Articles 100 200 616,497 3,082 (2283)
Spanish-Articles 100 200 767,916 3,839 (2639)

Testing #Problems #Docs #Tokens Tokens per doc
Dutch-Essays 96 192 128,179 667.59 (522)
Dutch-Reviews 100 200 26,169 130.85 (81)
English-Essays 200 400 671,056 1,677 (1352)
English-Novels 200 400 2,831,531 7,078 (5091)
Greek-Articles 100 200 646,361 3,231 (2395)
Spanish-Articles 100 200 755,929 3,779 (2622)

IV. EVALUATION ON AUTHORSHIP VERIFICATION

In this section, we evaluate the proposed models on the
authorship verification problem. The problem is to verify
whether or not two anonymous text documents ω1 and ω2 are
written by the same author. We first train the three models
mentioned in Section III on the unlabeled text data, and
then we estimate the stylometric representations ~θtpω ∈ Rd1 ,
~θlxω ∈ Rd1 , ~θchω ∈ Rd2 , and ~θsyω ∈ Rd3 , respectively, for
the two anonymous documents ω1, ω2. The verification score
is a simple cosine distance measure between the given two
documents’ stylometric representations. Formally, the solution
outputs cosine similarity between two documents ω1 and ω2:

Q(ω1, ω2) = cosine(~θvω1
, ~θvω2

) v ∈ {tp, lx, ch, sy} (9)

where v denotes the selected modality. It could be tp topical
modality, lx lexical modality, ch character-level modality, sy
syntactic modality, or their combinations. If more than one
modality is selected, we concatenate their ~θvω into a single
one for each ω. We use the Area Under Receiver Operating
Characteristic curve (AUROC) [47] as evaluation metric. It
is a well-known evaluation measure for binary classifiers.
The AUROC measure captures the overall performance of the
classifier when the threshold is varied.

A. PAN2014 authorship verification dataset

PAN provides a series of shared tasks on digital text foren-
sics. the PAN2014 authorship verification dataset2 consists of
sub-datasets of different languages and different types (See
Table I). Each dataset consists of a number of verification
problems. Each problem consists of a set of known documents,
an unknown document and a label. It can be either true , which
indicates that the same author wrote the known documents and
the unknown document, or false , vice versa. The solution can
produce an answer “I don’t know”.

We preprocess the data by tokenization, detecting sentence
boundaries, and parsing POS tags using the Stanford tag-
ger [46] and Opennlp tagger3. We merge all known documents
of a problem into a single one since they are written by the
same author. As our approach does not require labeled data,
we strip all the ground-truth labels for training. We tune the

2PAN2014 Authorship Verification. Available at http://pan.webis.de/clef14/
pan14-web/author-identification.html

3Available at http://opennlp.apache.org
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TABLE II
CATEGORIES OF BASELINE STATIC FEATURES.

Features Count Example
Lexical 105 Ratio of digits and vocabulary richness, etc.
Function words 150 Occurrence of after
Punctuation marks 9 Occurrences of punctuation !
Structural 15 Presence/absence of greetings
Domain-specific 13 Occurrences of word contract, and time, etc.
Gender-preferential 10 Ratio of words ending with ful

hyper-parameters for the proposed models and all the baseline
models by cross-validating on each dataset of training datasets.

B. Baselines

We choose several most relevant approaches as baselines:
• Style. It represents a document under 302 widely studied

static stylometric features in [4], [29]4 (Table II).
• Style+[k-freq-ngram]. It adds 3 × k dynamic features to

the previous baseline. We select k lexical n-grams, k
character n-grams, and k POS n-grams (n ∈ 1, 2, 3) by
occurring frequency. We rank each group separately for
k ∈ {500, 1000, 2000, 5000}.

• Style+[k-info-ngram]. This approach is the same as the
previous except that the n-grams are selected by the in-
formation gain. Information gain is calculated by using
document id as label. We pick k ∈ {500, 1000, 2000, 5000}.

• Typed-n-gram. The typed character n-gram approach pro-
posed in [6]. Each n-gram is prefixed by its category.

• LDA and LSA. The Latent Dirichlet Allocation (LDA) learns
latent semantic topics between the documents and the words
by Gibbs Sampling. It represents a document as a distribu-
tion over the latent topics. Latent semantic analysis (LSA)
learns a latent representation between document and word
by factorizing the document-to-word occurring matrix. A
document is represented as weights over k singular values.

• w2v-skipgram and w2v-cbow. Two neural networks that
learn the vector representations of words in a corpus [22].
We take the word vectors’ average as a document vector.

• PV-DBOW and PV-DM. Two neural networks that learn
document representation [23] discussed in Section II.

• Top 5 approaches reported in PAN2014 as well as the meta-
classifier called META-CLF-PAN14.
These baselines cover both the recent development in text

embedding learning and authorship verification. We use cosine
as document distance for all baselines. Following the same
procedure, we train our models on the training set and choose
the hyper-parameters by cross validation with training labels.
• Topical and lexical modality. We select d1 = 200 and a

window size of 2 for datasets other than the Dutch Review.
We set d1 = 300 and a window size of 16 for the Dutch
Review. In our interpretation, the authors talk about similar
topic in a longer context than the other corpus.

• Character modality. We pick d2 = 300.
• Syntactic modality. We pick d3 = 500 for the Spanish

Article and d3 = 300 for the others.
The effect of choosing d1, window size W(tp), d2, and d3
will be further discussed in Section V. Evaluation results are
reported based on the performance on the test dataset.

4Full list of features is available at http://dmas.lab.mcgill.ca/fung/pub/
Stylometric.pdf

TABLE III
PERFORMANCE COMPARISON FOR THE AUTHORSHIP VERIFICATION

PROBLEM ON THE PAN2014 DATASET. ENTRIES WITH * ARE THE
PERFORMANCE OF OUR PROPOSED APPROACHES. ENTRIES WITH †ARE

CITED PERFORMANCE.
Dutch Dutch English English Greek Spanish

Approach Essay Review Essay Novel Article Article Avg.
[Lexical+Topical]* 0.998 0.744 0.887 0.767 0.924 0.934 0.881

[Lexical]* 0.998 0.658 0.885 0.799 0.949 0.937 0.871
PV-DBOW+PV-DM 0.979 0.670 0.847 0.738 0.934 0.859 0.838

[Character]* 0.960 0.642 0.854 0.758 0.889 0.911 0.836
META-CLF-PAN14† 0.957 0.737 0.781 0.732 0.836 0.898 0.824

PV-DBOW 0.985 0.656 0.848 0.711 0.868 0.870 0.823
[Topical]* 0.969 0.695 0.818 0.629 0.773 0.897 0.797

PV-DM 0.959 0.600 0.828 0.711 0.876 0.829 0.801
Khonji et al. [48]† 0.913 0.736 0.599 0.750 0.889 0.898 0.798

LSA-100 0.918 0.652 0.665 0.702 0.805 0.751 0.749
Moreau et al. [49]† 0.907 0.635 0.620 0.597 0.800 0.845 0.734

[Syntactic]* 0.819 0.594 0.804 0.681 0.712 0.736 0.724
w2v-skigram+cbow 0.896 0.641 0.503 0.675 0.848 0.781 0.724
Mayor et al. [50]† 0.932 0.569 0.572 0.664 0.826 0.755 0.720

w2v-skipgram 0.896 0.640 0.442 0.651 0.875 0.812 0.719
Frery et al. [51]† 0.906 0.601 0.723 0.612 0.679 0.774 0.716

w2v-cbow 0.838 0.612 0.521 0.689 0.832 0.775 0.711
Castillo et al. [52]† 0.861 0.669 0.549 0.628 0.686 0.734 0.688

Typed-n-gram [6] 0.781 0.575 0.515 0.607 0.803 0.804 0.681
LDA-100 0.784 0.520 0.390 0.499 0.900 0.606 0.617
LSA-200 0.503 0.646 0.714 0.588 0.520 0.629 0.600
LDA-200 0.717 0.456 0.416 0.442 0.893 0.596 0.587

Style+[500-info-ngram] 0.574 0.524 0.490 0.678 0.594 0.642 0.584
Style 0.559 0.516 0.490 0.678 0.592 0.635 0.578

LSA-500 0.503 0.646 0.502 0.588 0.520 0.629 0.565
Style+[1000-info-ngram] 0.437 0.507 0.490 0.677 0.577 0.642 0.555
Style+[5000-freq-ngram] 0.498 0.465 0.471 0.650 0.573 0.661 0.553
Style+[5000-info-ngram] 0.451 0.459 0.511 0.652 0.574 0.612 0.543
Style+[1500-info-ngram] 0.368 0.471 0.490 0.678 0.566 0.647 0.537
Style+[2000-info-ngram] 0.368 0.474 0.492 0.679 0.548 0.654 0.536
Style+[2000-freq-ngram] 0.446 0.462 0.470 0.644 0.555 0.636 0.536

LDA-500 0.412 0.451 0.432 0.647 0.688 0.572 0.534
Style+[1500-freq-ngram] 0.424 0.465 0.468 0.644 0.548 0.628 0.530
Style+[1000-freq-ngram] 0.391 0.464 0.469 0.641 0.539 0.614 0.520
Style+[500-freq-ngram] 0.360 0.458 0.462 0.644 0.520 0.592 0.506

C. Performance comparison

As indicated in Table III, our proposed Modality models
achieve the highest AUROC score on this problem. Specif-
ically, on average the first-rated model is the joint learning
model for lexical modality and the topical modality. This
model also outperforms all the others on the English Essay
dataset and the Dutch Essay dataset. The runner-up is the
lexical modality representation that is learned in the joint
learning model. It achieves the best performance on the
Dutch Essay dataset, English Novel dataset, Greek Article
dataset, and Spanish Article dataset. Character-level modality
outperforms all the aforementioned baselines except that it
has a comparable performance to the PV-DBOW+DM model.
The syntactic modality does not perform as well as the
lexical, topical, and character-level modalities; however, it still
achieves better AUROC than the LSA, LDA, and other n-
gram approaches. It is noted that THE syntactic modality
outperforms the other POS-tags-based approach, such as [53]
and n-gram approaches, that involve POS tags.

Our proposed models perform better than LSA and LDA,
and the LSA approaches outperform the LDA approaches.
Our model jointly considers the effect of document-to-word
relationship and word-to-word relationship. In contrast, LSA
and LDA only consider the relationship between document and
word. PV-DBOW and PV-DM outperform LSA and LDA. The
neural-network-based models perform better than the others.

The w2v-related approaches, which learn document em-
bedding by averaging the word embedding, do not perform
as well as our proposed approaches and the PV-DM-related
approaches that directly learn the document embedding. We
also see that the overall performance on the formal writings
is better than that on the non-formal writing. The overall
performance on datasets that have more text is better than those
that has less text, which is consistent with our expectation and
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Fig. 6. Empirical distribution, kernel density and histogram on the review
length for the IMDb62 review dataset.

the observation in our previous work [5]. The exception is the
English Novel dataset. It has more text data but performs not
as good as the English Essay dataset. Regarding the selection
of n-grams, in this experiment information gain outperforms
frequency when given the same n. It contradicts the obser-
vation reported in the survey [2]. The information-gain-based
feature selection method mostly outperforms the frequency-
based measure for the authorship verification problem.

V. EVALUATION ON AUTHORSHIP IDENTIFICATION

In this section, we experiment on the authorship identifi-
cation problem. We study effect of different choices of the
hyper-parameters and compare the performance between the
proposed models and the relevant ones following the same
experimental setups. The problem is to identify the actual
author of a given anonymous text snippet from a group of
known candidate authors. Each known candidate author has
a set of written text samples. It is a classification problem
where the class label is the author name. To solve the problem,
we treat all the text as unlabeled documents, and apply the
proposed three models to learn vector representations for
each document. Then we have four vector representations for
each document ω: ~θtpω ∈ Rd1 , ~θlxω ∈ Rd1 , ~θchω ∈ Rd2 , and
~θsyω ∈ Rd3 . We train a simple logistic regression model on
the representations of a chosen modality and use it to classify
the unknown document. The logistic regression needs labeled
sampled to be trained. However, the underlying representation
learning model does not rely on the labeled information.

A. The IMDb62 review dataset

The IMDb62 dataset5 has been used by recent research [14],
[35], [54] and enable a direct comparison between our pro-
posed approaches and the state-of-the-art solutions. It contains
62,000 movie reviews by 62 prolific users from the movie
review database IMDb6. Each user wrote 1,000 reviews. It
is less formal than most datasets in the previous experiment.
It contains spelling and grammatical errors. The authorship
identification problem on this dataset is formulated as a 62-
class classification problem. Figure 6 shows the empirical dis-
tribution, kernel density and histogram on the reviews’ length.
Following the same experimental setup in [14], [35], [54], we
conduct a stratified 10-fold cross validation experiment and
report the best performance on accuracy.

TABLE IV
PERFORMANCE OF THE PROPOSED TOPICAL-LEXICAL MODEL WITH

RESPECT TO DIFFERENT WINDOWS SIZE. VECTOR SIZE d1 = 200

Windows size W(tp) = 2 = 4 = 6 = 8
Topical+Lexical 0.9032 0.9305 0.9310 0.9338
Topical 0.8327 0.8358 0.8367 0.8372
Lexical 0.7369 0.6682 0.6527 0.6470

TABLE V
PERFORMANCE OF THE PROPOSED MODELS WITH RESPECT TO DIFFERENT

SIZE OF DIMENSION. d1 = d2 = d3 = d.W(tp) IS SET TO 2.

Vector size d=200 d=300 d=400 d=500 d=600
Topical+Lexical 0.9032 0.9209 0.9310 0.9379 0.9436
Topical 0.8327 0.8665 0.8779 0.8927 0.9028
Lexical 0.7369 0.7793 0.7979 0.8005 0.8037
Character 0.7185 0.7283 0.7330 0.7348 0.7298
Syntactic 0.3894 0.5104 0.5352 0.5828 0.6009

B. The effect of choosing different hyper-parameter

There are four hyper-parameters for the aforementioned
models. d1, d2 and d3 respectively denote the vector size of the
topical-lexical model, the character model, and the syntactic
model. W(tp) is only for the topical-lexical model, which
denotes the size of the sliding window for context.

Table IV shows the accuracy with varying W(tp) ∈
{2, 4, 6, 8}. The overall performance increases as the sliding
window size increases. When W(tp) = 8 the topical-lexical
model achieves the best performance. The topical modality of
the joint learning model follows a similar trend. However, it
is not significantly increased. The lexical modality follows a
reverse trend. Its performance decreases as the windows size
increases. This table shows that, as the sliding window size
increases, even though the performance of lexical modality
decreases, but the performance of the combination increases.

Table V shows the accuracy with varying d1, d2 and d3. We
set d1 = d2 = d3 = d and report the cross-validation accuracy
on the dataset. We pick d ∈ {200, 300, 400, 500, 600}. As the
vector size increases, the performance of the proposed models
increases. Except the character modality. It reaches its best
performance when d2 = 500. Based on these two experiments,
we pick d1 = 700, W(tp) = 8, d2 = 500, and d3 = 600 as
our hyper-parameter on the IMDb62 dataset. We pick d1 =
700 since we still see an obvious increase of accuracy when
we increase d1 from 500 to 600. Even though increasing the
vector size beyond 600 and sliding window size beyond 8 can
promote accuracy, we stay with d1 = 700, W(tp) = 8 since
it already achieves the best results compared the baselines.

C. Baselines

We choose to compare our proposed models and all the
methods reported in [14], [35], [54] as well as available
baselines in previous experiments.
• Token SVM. A SVM model trained on normalized token

frequency features [14].
• AT-P. A probabilistic attribution model AT-P [14] built on

the top of an author-topic (AT) model in [55]. It generates
each document according to the topic distribution of its
observed author [14].

5Available at http://www.csse.monash.edu.au/research/umnl/data/.
6http://www.imdb.com
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TABLE VI
(A) PERFORMANCE ON THE IMDB62 DATASET WITH MICRO F-MEASURE.
(B) PERFORMANCE ON THE IMDB62 DATASET WITH ACCURACY. ENTRIES

WITH †ARE CITED PERFORMANCE. [·] INDICATES RANGE.

[Lexical+Topical]* 0.972
SCAP [56]† 0.948

Typed-n-gram [6] 0.936
Modality [Topical]* 0.930

CNN-char [54]† 0.917
w2v-skigram+cbow 0.915

LSA 0.907
CNN-word-char [54]† 0.903

PV-DBOW+PV-DM 0.900
CNN-word-word-char [54]† 0.884

Static+1000-n-gram 0.869
CNN-word [54]† 0.843

SVM+Stems [54]† 0.839
CNN-word-word [54]† 0.820
Imposters (KOP) [57] 0.769

[Lexical] * 0.742
[Character]* 0.733

LDA+Hellinger-S† 0.720
LDA 0.665

[Syntactic] * 0.601
[Syntactic] * 0.601

Model Accuracy
[Lexical+Topical]* 0.972
Typed-n-gram [6] 0.937

[Topical]* 0.930
Token SVM [14]† 0.925

DADT-P [14]† 0.918
w2v-skigram+cbow 0.916

LSA 0.909
PV-DBOW+PV-DM 0.900

AT-P [14]† 0.896
Static+1000-n-gram 0.870

LDA+Hellinger-S [35]† [0.80, 0.85]
Imposters (KOP)† [0.70, 0.75]

[Lexical]* 0.742
[Character]* 0.733

LDA+Hellinger-M [35]† < 0.70
LDA 0.677

[Syntactic]* 0.601

• DADT-P. It is a combination of LDA and AT [14]. The
model draws two disjoint set of words according to docu-
ment topic and author topic. It separats words that discrim-
inate documents and words that discriminate authors.

• LDA+Hellinger-S. It merges writing samples of a candidate
author into a profile [35]. After applying LDA, the Hellinger
distance is used as the similarity between the anonymous
document and an author profile.

• LDA+Hellinger-M. This model is the same as the previous
except that it does not merge documents. It uses averaged
Hellinger distance over samples of a given author.

• KOP. A character n-gram approach proposed by [57]. It
evaluates a fraction of features to attribute the author, and
repeats this process several times. A candidate’s score is the
portion of times being attributed as actual author.

• SVM+Stems. A SVM classifier with stemmed words [54].
Words are weighted with tf-idf and scaled to unit variance.

• SCAP. A source code authorship profiling approach pro-
posed by [56] used in [54]. It uses the intersection of the
most frequent character n-gram to score a candidate author.

• CNN-word. A convolutional layer with max-pooling is ap-
plied on the top of the concatenated word embeddings. A
fully connected layer with dropout and soft-max predicts
the author. It is proposed by [58] and used in [54].

• CNN-word-word [54]. Similar to CNN-word, but the input
has an updatable word embedding and a non-updatable word
embedding from pre-trained GloVe model [59].

• CNN-char [54]. Similar to CNN-word, but the input is an
updatable character embedding channel.

• CNN-word-char [54]. Similar to CNN-word, but the input
has an updatable word embedding channel and a updatable
character embedding channel as input.

• CNN-word-word-char [54]. It is a combination of CNN-
word-word and CNN-char.
Table VI(a) compares our proposed models with baseline

methods from [54] with respect to the micro f-measure.
Still, the combination of the lexical modality and the topical
modality performs the best. The topical-lexical combination
as well as the topical modality along outperforms different

TABLE VII
SUMMARY OF THE ICWSM TWITTER CHARACTERIZATION DATASET.

Label type Label Users Valid tweets Tokens

Gender Female 192 115,746 1,366,699
Male 192 127,368 1,475,018

Age (18 - 23) 194 104,686 1,473,512
(25 - 30) 192 71,883 1,122,247

Political orientation Republican 200 147,423 2,545,947
Democrat 200 170,822 2,957,180

(l<25, p=0.9)

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Number of Tokens of     a Tweet

P
e

rc
e

n
ta

g
e

 (
p

)

Empirical Distribution Function

0.00

0.01

0.02

0.03

0.04

0.05

0 10 20 30 40

Number of Tokens of  a Tweet

D
e

n
si

ty

Kernel Density & Histogram

Fig. 7. Empirical distribution, kernel density and histogram on the tweets
length for the ICWSM2012 Twitter dataset.

variations of the convolutional neural network that contains
more parameters. Similar to Table VI(b), the lexical modality,
character modality and syntactic modality do not perform well.

D. Performance comparison
[14], [35] use accuracy while [54] use micro f-measure

for evaluation. Table VI(b) compares our models with base-
lines from [14], [35] with respect to the accuracy. Baseline
performance are not concretely mentioned in [35]. We can
only estimate a tie inclusive range of the accuracy from the
diagram. The combination of the lexical modality and the
topical modality performs the best, and the runner-up is the
typed n-gram. Topical modality performs closely to the typed
n-gram. Both the lexical modality and the character modality
along do not perform as well as other state-of-the-art LDA-
based methods such as DADT-P and AT-P. We also notice
that the Token SVM as well as LDA-based models perform
very well on this dataset, and we suspect that there is a strong
topical correlation between reviews written by same author. If
such a correlation exists, the lower accuracy achieved by the
lexical modality and the character modality show that they
carry less topical information than the topical modality.

VI. EVALUATION ON AUTHORSHIP CHARACTERIZATION

We evaluate the proposed models on the authorship charac-
terization task, which is to identify the socio-linguistic char-
acteristics of the author based on text. It has two paradigms.
Instance-based paradigm assumes each document of an author
is independent. Profile-based paradigm considers all docu-
ments by an author as a single one. This problem is mostly
formulated as a document classification problem where labels
can be age, gender, and political orientation, etc. We first learn
the stylometric representations for all the documents. Then a
logistic regression model is trained on vectors with known
labels. Finally, the classifier predicts labels for the testing data.

A. The Twitter characterization dataset
ICWSM2012 is a publicly available Tweets dataset with

labels [60]. The labels in this dataset are generated semi-
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TABLE VIII
PERFORMANCE COMPARISON FOR THE AUTHORSHIP CHARACTERIZATION
PROBLEM ON THE ICWSM2012 TWITTER DATASET. ENTRIES WITH †ARE

CITED PERFORMANCE.

Approach Age Gender Political
Orientation Average

Modality [Lexical+Topical] * 0.7887 0.8308 0.9318 0.8504
Modality [Topical] * 0.7606 0.8423 0.9205 0.8411
Modality [Lexical] * 0.7782 0.8154 0.9148 0.8361

[60] (all info)† 0.7720 0.8020 0.9150 0.8297
Modality [Character] * 0.7711 0.7846 0.9034 0.8197
[60] (target user only)† 0.7510 0.7950 0.8900 0.8120

Static+[5000-freq-ngram] 0.7606 0.7615 0.8580 0.7934
Static+[2000-freq-ngram] 0.7500 0.7731 0.8523 0.7918
Static+[1500-freq-ngram] 0.7782 0.7308 0.8352 0.7814

PV-DBOW+PV-DM 0.7323 0.7346 0.8693 0.7787
w2v-skipgram 0.7112 0.7692 0.8380 0.7728

w2v-cbow+skipgram 0.7253 0.7692 0.8238 0.7728
w2v-cbow 0.7218 0.7807 0.8096 0.7707

Static+[1000-freq-ngram] 0.7465 0.7385 0.8097 0.7649
Static+[0500-freq-ngram] 0.7641 0.7192 0.8011 0.7615

LSA-k=200 0.6937 0.7577 0.8097 0.7537
LSA-k=100 0.6937 0.7538 0.8097 0.7524
LSA-k=500 0.7007 0.7500 0.8040 0.7516

Typed-n-gram [6] 0.6780 0.773 0.764 0.739
PV-DBOW 0.6936 0.6653 0.8409 0.7333

PV-DM 0.6901 0.6653 0.8409 0.7321
Static+[0200-freq-ngram] 0.7570 0.7000 0.7301 0.7290

LDA-k=500 0.6338 0.7423 0.8040 0.7267
LDA-k=100 0.6303 0.7462 0.7869 0.7211

Static+[1500-info-ngram] 0.7254 0.7000 0.6847 0.7034
Static+[5000-info-ngram] 0.6866 0.7231 0.6960 0.7019
Static+[2000-info-ngram] 0.7289 0.6962 0.6790 0.7014

Static 0.6904 0.7324 0.6769 0.6999
Static+[0500-info-ngram] 0.7394 0.6692 0.6847 0.6978
Static+[1000-info-ngram] 0.7113 0.7000 0.6818 0.6977

LDA-k=200 0.5986 0.7269 0.7585 0.6947
Modality [syntactic] * 0.6303 0.6654 0.6364 0.6440

automatically and manually inspected [60]. This dataset con-
sists of three categories of labels for 1,170 Twitter users: age,
gender, and political orientation (see Table VII). Due to the
limitation of Twitter’s policy, the actual content of tweets were
not included in the dataset; however, the available users’ IDs
as well as the tweet IDs enable us to retrieve the tweets.
We preprocess the dataset by removing all the non-ASCII
characters and replace all the URLs with a special lexical
token. We pre-tokenize the tweets and parse POS tags using
the tagger from [61]. In this dataset there is other social-
network-based information, such as the target user’s friends,
and the friends’ tweets, etc. Since we focus on writing style,
we omit this information as well as those re-tweeted tweets.
• Gender. The label is either male or female. The labels are

generated based on the Twitter user’s name with a name-
gender database, and are manually inspected.

• Age. The label is either 18-23 or 25-30, which is generated
by birthday related tweets, e.g., “Happy birthday to me”.

• Political orientation. The labels can be either Democrat or
Republican, collected from the wefollow directory [60].
Figure 7 shows the empirical distribution, kernel density

and histogram on the tweets’ length. 90 percent of the tweets
have less than 25 tokens and most have a length of around
10 tokens. We combine all tweets of a single user into a
single document and treat each tweet as an individual sentence.
Following the same setup in [60], we conduct a 10-fold cross
validation on the Twitter dataset and measure the accuracy.

1) Baselines: We inherit the same set of baselines used in
the authorship verification experiment, except for those studies
reported in PAN2014 [18]. The baselines are used with a
logistic classifier. We also include two baselines:

TABLE IX
PERFORMANCE ON THE PAN2013 AUTHORSHIP CHARACTERIZATION

DATASET ACCURACY. ENTRIES WITH †ARE CITED PERFORMANCE.

EN EN ES ES
Gender Age Gender Age Avg

w2v-skigram+cbow 0.599 0.670 0.654 0.671 0.648
[Lexical+Topical]* 0.598 0.649 0.654 0.679 0.645

PV-DBOW+PV-DM 0.605 0.651 0.649 0.669 0.643
[Topical]* 0.589 0.637 0.648 0.677 0.638

[Character]* 0.591 0.644 0.640 0.660 0.634
López-Monroy et al. [62]† 0.569 0.657 0.630 0.656 0.628

[Lexical]* 0.592 0.634 0.627 0.649 0.626
Santosh et al. [63]† 0.565 0.641 0.647 0.643 0.624
Static+1000-ngram 0.572 0.656 0.612 0.641 0.620

LSA-800 0.588 0.631 0.582 0.625 0.607
[PAN16 2rd] [64] 0.588 0.631 0.582 0.625 0.607
[PAN16 1st] [65] 0.594 0.570 0.615 0.623 0.600

LDA-800 0.589 0.640 0.579 0.590 0.600
Cruz et al. [66]† 0.546 0.597 0.617 0.622 0.596

Ladra et al. [67]† 0.561 0.612 0.614 0.573 0.590
[Syntactic]* 0.560 0.605 0.554 0.608 0.582

Lim et al. [68]† 0.567 0.610 0.547 0.571 0.574
Typed-n-gram 0.593 0.432 0.607 0.645 0.569

Modaresi et al. [64]† 0.593 0.432 0.607 0.645 0.569
Flekova et al. [69]† 0.534 0.529 0.610 0.597 0.568

Meina et al. [70]† 0.592 0.649 0.529 0.493 0.566
Kern et al. [71]† 0.527 0.569 0.571 0.538 0.551

Pavan et al. [72]† 0.500 0.606 0.500 0.564 0.543
Gillam et al. [73]† 0.541 0.603 0.478 0.538 0.540

• target user info [60]. A SVM-based model trained on the
token-based text features and the socio-linguistic features.
• all info [60] is the same SVM-based model with additional

social-network features.
The runtime of cross-validation is prohibitively expensive due
to the large number of records. We did not hard tune the hyper-
parameter on this dataset. Instead, we heuristically pick d1 =
400, d2 = 400, d3 = 400, and W(tp) = 8 based on our
observation in the previous experiment. Vector size 400 is a
typical value suggested by [23]. For other baselines in previous
section we use their default hyper-parameter.

2) Performance comparison: Table VIII shows that the
lexical+topical modality achieves the highest accuracy value.
The runner-up is the topical modality. The character-level
modality does not perform as well as the other two. The
lexical+topical modality and the character-level modality also
outperform the PV-DM-related models, w2v-related models,
and other dynamic n-gram-based models. Unlike the results
for the authorship verification problem, the w2v-related base-
lines perform fairly well. They achieve a higher accuracy value
than PV-DM, PV-DBOW, LSA, and LDA.

We notice that the target user only approach and the all info
approach [60] have more advantages over the proposed models
and baselines. First, they use a SVM model that typically
outperforms a logistic regression model given the same data.
Second, our approaches only consider the stylometric informa-
tion reflected from the text. Other socio-linguistic, behavioral,
and social-network-related information is discarded. However,
These two baselines achieve a lower accuracy value than our
proposed joint model for lexical and topical modality.

Table VIII also shows that the proposed syntactic rep-
resentation learning model does not perform well on the
ICWSM2012 dataset, which is different from the previous
authorship verification problem. This is because the tweet
text data are relatively more casual than essay and novel,
which does not introduce much variation in the grammatical
bias. Moreover, it is difficult to determine the correct POS
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TABLE X
TRAINING AND TESTING TIME FOR THE PAN2013 AUTHORSHIP

PROFILING DATASET.

Model Hours:Minutes
Lexical+Topical 7:55
PV-DBOW+DM 6:00

Typed-n-gram 5:19
w2v-skigram+cbow 5:26

LSA 1:25
LDA 12:11

Static+n−gram 4:04
Vollenbroek et al. [65] [PAN16 1st] 11:44

Modaresi et al. [64] [PAN16 2nd] 3:39

tags for tweets.Regarding the feature selection measure, the
frequency-based approach outperforms the information-gain-
based approach. Even the top-100 frequency-ranked n-grams
outperform top-1500 information-gain-ranked n-grams, which
is different from the result in previous verification experiment.
Such a difference further confirms our argument that feature
selection metrics are scenario-dependent. Even the feature set
is dynamically constructed based on a different dataset, the
measurement for the selection process is data-dependent. A
language model over text is better.

B. The PAN2013 Authorship Characterization Dataset

Additionally we benchmark the PAN2013 blog post
dataset [74]. It contains an English (EN) dataset and a Spanish
(ES) dataset. Each dataset consists of a list of blog post, and
each blog post is labeled with the age and the gender of the
actual author. The age of the author falls into: 10s (13-17), 20s
(23-27), and 30s (33-47). The gender of the author falls into:
male and female. Each dataset comes with a training set and
a testing set. This dataset covers a wide spectrum of topics.
There are total 236,600 authors in the training set and 25,440
authors in the testing set for English. There are 75,900 authors
in the training set and 8,160 authors in the testing dataset for
Spanish. More than 80% Spanish blogs have about 15 words.

In this experiment, we compare our proposed models
with the top-10 models reported in [74], top two models
from PAN2016 competition [8], and available baselines from
previous experiments. Hyper-parameters tuning using cross-
validation is again infeasible due to the large size of the
dataset. Instead, we heuristically set d1 = 400, d2 = 300, d3 =
500, and W(tp) = 6 by considering the size of the dataset
and the length of text samples. We run the proposed models
on the blog posts and use a logistic model for classification.
Following the setup in [74] we use the classification accuracy
as performance measure. Table IX compares the proposed
models and the baselines. The Lexical+Topical model, the
topical model, and the character model all perform better than
the top two models from PAN2016 and the best methods re-
ported in [74]. The skigram+cbow model achieves the highest
average score. However, there is only a slight difference among
skigram+cbow, Lexical+Topical, and PV-DBOW+DM models.
In general, text representation learning methods outperform
n-gram-based dynamic approaches. The performance on the
Spanish dataset is better than the English dataset, which is out
of our expectation. A potential interpretation is that Spanish
has more expressed gender marks than English [75]. We also
report the runtime information in Table X.

TABLE XI
WILCOXON SIGNED-RANK TEST OVER ALL THE DATASETS. #, H#, AND  

RESPECTIVELY INDICATE p > 0.05, p ≤ 0.05 AND p ≤ 0.01. (*)
INDICATES THE AVERAGED PERFORMANCE.

Lexical
+Topical

DBOW
+DM

Typed
ngram

skigram
+cbow LSA LDA

Static
ngram

Lexical+Topical (.822) #       
DBOW+DM (.782)  #  #    

Typed-n-gram (.697)   # H# # # #
skigram+cbow (.739)  # H# # #   

LSA (.733)   # # #  H#
LDA (.641)   #   # H#

Static+ngram (.661)   #  H# H# #

C. Overall Comparison
We further collect the results for above experiments and

conducted a Wilcoxon signed-rank test for different baselines
across different dataset (see Table XI). The difference between
the proposed approach and the relevant baselines is signifi-
cant (p < 0.01). PV-DBOW+PV-DM model performs close
to the skipgram+cbow model. LSA is generally better than
LDA. These approach generally outperforms dynamic n-grams
(p < 0.05). In all the experiments, the topical and lexical
models perform generally well. In our interpretation, the
topical and lexical factors play a significant role in determining
the author’s identity and characteristics for these datasets. For
example, the n-gram-based approaches work very well in the
IMDB dataset. The PAN2014 dataset has some cross-topic
problems. Therefore, n-gram-based approach does not perform
very well. In the future we will explore cross-domain datasets.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we present our three models for learning the
vectorized stylometric representations of different linguistic
modalities for authorship analysis. To the best of our knowl-
edge, it is the very first work introducing the problem of
stylometric representation learning into the authorship analysis
field. By using the proposed models, guided by the selected
linguistic modality, we attempt to mitigate the issues related
to the feature engineering process in current authorship study.
Our experiments on the publicly available benchmark datasets
for the authorship verification problem, the authorship identi-
fication problem, and the authorship characterization problem,
demonstrate that our proposed models are effective and robust
on different datasets and authorship analysis problems.

We find that the proposed models work well for prolific
authors. For short text its performance will degrade. Our future
research will focus on exploring better models to capture
writing styles. A recurrent neural network is more suitable for
capturing the contextual relationship over long text. For learn-
ing the syntactic modality representation, a recursive neural
network that operates on the fully parsed syntactic tree will be
more suitable for the nature of grammatical variations than the
current one. Moreover, this work only focuses on capturing the
variations of writings in Indo-European Languages. Additional
changes need to be applied for text in other languages where
the word boundary is absent.
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SUPPLEMENTARY MATERIALS A
EXTENDED TECHNICAL DETAILS

This technical report extends the original model description
by adding more details on the derivation of our proposed
neural network models. Table I lists all the involved symbols
in this report.

Definition 1: (stylometric representation learning) The
given text dataset is denoted by D, and each document is
formulated as ω ∈ D. A document ω consists of a list of
ordered sentences S(ω) = s[1 : a], where sa represents one
of them. Each sentence consists of an ordered list of lexical
tokens T (sa) = t[1 : b], where tb represents the token at index
b. P(tb) denotes the Part-of-Speech tag for token tb. Given D,
the task is to learn four vector representations ~θtpω ∈ RD(tp),
~θlxω ∈ RD(lx), ~θchω ∈ RD(ch), and ~θsyω ∈ RD(sy), respectively,
for topical modality tp, lexical modality lx, character-level
modality ch, and syntactic modality sy for each document
ω ∈ D. D(·) denotes the dimensionality for a modality. �

TABLE I
SYMBOL DESCRIPTION.

Symbol Description
D The given text data set without any labels
ω A document of the data set.

S(ω) Sentences of a document.
sa A sentence.
T sa Tokens of a sentence.
tb A token at position b of a sentence.

~θtpω ∈ RD(tp) Topical modality representation of a document.
~θlxω ∈ RD(lx) Lexical modality representation of a document.
~θchω ∈ RD(ch) Character-level modality representation of a document.
~θsyω ∈ RD(sy) Syntactic modality representation of a document.

θ
C(tb)
sa Contextual bias for word tb in sentence sa
W(tp) Sliding window size for constructing the contextual bias.
C(tb, sa) A sliding window on sa where tb is in the middle.

~wt
out The mapped output vector for word t.
~wt
in The mapped input vector for word t.

CH(tb) The character bigrams of token tb.
bg A character bigram.

~bgin The mapped input vector for character bigram bg.
P(tb) The POS tag for the token tb
P2(tb) The concatenation of P(tb) and P(tb + 1).
PG(tb) The neighbor POS bigrams of word tb.

nb One of the neighbor POS bigrams of token tb.
~nb

out The mapped output vector for POS bigram nb.

A. Joint learning of topical modality and lexical modality

This section introduces our proposed joint learning model
for the topical modality and lexical modality. The goal is to
estimate ~θtpω ∈ RD(tp) and ~θlxω ∈ RD(lx) in Definition 1.

Figure 1 depicts the model, which is a neural network with
two feed-forward paths. The first feed-forward path simulates
the word picking process under a mixture effect of topical
bias, local contextual bias, and lexical bias. The second feed-
forward path captures the overall topics of the document.
These two feed-forward paths have different inputs but share
the same output vector space. The neural network updates the
weights according to these two paths simultaneously at each
training mini batch. The input to the whole neural network is
the sliding window over a text sequence. The output of the
first feed-forward path is the word in the middle of the sliding
window. The output of the second feed-forward path is each
of the words in the sliding window.

is a day !!great

Vector Vector Vector Vector Vector
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Fig. 1. The joint model for learning the stylometric representation of the
topical and lexical modalities. The input word vectors are randomly initialized
before training. The output word vectors are zeros before training.

We start by describing the first feed-forward path. Recall
that the contextual bias concerns the local information sur-
rounding the token to be picked. We represent the vectorized
local contextual bias surrounding token tb in its corresponding
sentence sa as θC(tb)sa . The output is the prediction probability
of the targeted word to be chosen by the author. The model
tries to maximize the log probability for the first path:

argmax
1

|D|

D∑
ω

S(ω)∑
sa

T (sa)∑
tb

log P(tb| ~θtpω︸︷︷︸
topical

, ~θlxω︸︷︷︸
lexical

, θC(tb)sa︸ ︷︷ ︸
contextual

) (1)

Similar to the other neural-network-based paragraph/word
embedding learning models [1]–[3], this model maps each lex-
ical token tb into two vectors: ~wtbin ∈ Rdw (the blue rectangles

in Figure 1) and ~wtbout ∈ Rdw (the yellow rectangles in
Figure 1) where dw denotes the dimensionality. ~wtbin is used to
construct the input of contextual bias for the neural network,
and ~wtbout is used for the multi-class prediction output of the
neural network. They are all model parameters to be estimated
on the textual data.

The local context of a token is represented by its surround-
ing tokens in the window. Given a token tb in a sentence sa
with a sliding window of size W(tp), the context of tb is
formulated as C(tb, sa) = {tb−W(tp), . . . , tb−1, tb, tb+1, . . . ,
tb+W(tp)}, where C(tb, sa) ⊆ T (sa).

The contextual bias input to the neural network is defined
as the average over the input mapped vectors of C(tb). We
define 〈·〉 as the vector element-wise average function:

θC(tb)sa =

〈C(tb,sa)∑
t

~wtin

〉
(2)

The other two inputs to the model are the topical bias ~θtpω ∈
RD(tp) and the lexical bias ~θlxω ∈ RD(lx). In order to have
the model working properly, we need to set D(lx), D(tp),
and dw equal to d1, where d1 is the parameter of the whole
model that indicates the dimensionality for the lexical modality
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representation, topical modality representation and contextual
representation. With these three input vectors we further take
their average as joint input vector θtbin since it is costly to have
a fully connected layer.

~θtbin =

〈
~θtpω︸︷︷︸

topical

+ ~θlxω︸︷︷︸
lexical

+ ~θC(tb)sa︸ ︷︷ ︸
contextual

〉
(3)

Example 1: Consider a simple sentence: ta = “it is a great
day !!” in Figure 1. For each token {tb|b ∈ [1, 6]} we pass
forward the neural network. We take b = 4 and tb =’great’ for
example. The process is the same for other values of b. Given
a window size of 2, which indicates two tokens on the left
and two tokens on the right, we construct the local context as
C(t4, sa) = {t2, t3, t5, t6} = {‘is’, ‘a’, ‘day’, ‘!!’}. We map
these tokens into their representations ~wt2in, ~wt3in, ~wt5in and ~wt6in.
With ~θtpω and ~θlxω , we calculate ~θt4in using Equation 3. �

Suppose that we use the typical soft-max multi-class output
layer. The first feed-forward path of this model captures the
probability of picking a word tb based on the joint bias input
θtbin as follows:

P(tb| ~θtpω︸︷︷︸
topical

, ~θlxω︸︷︷︸
lexical

, ~θC(tb)sa︸ ︷︷ ︸
contextual

) = P(~wtbout|~θ
tb
in) =

f(~wtbout,
~θtbin)∑V

t f(~w
t
out,

~θtbin)

f(~wtout,
~θtbin) = Uh((~wtout)

T × ~θtbin)
(4)

V denotes the whole vocabulary constructed upon the text
dataset D. Uh(·) denotes the element-wise sigmoid function.
It corresponds to the red circle on the first feed-forward path
in the Figure 1. This function scales the output to the range
of [0, 1], so its output can be interpreted as probability. ~wtout
is the mapped out vector for the lexical token t.

By substituting the log probability in Equation 1 with
Equation 4 and taking derivatives respectively on ~wtout and
~θtbin, we have the gradients to be updated for each tb at each
mini-batch in the back propagation algorithm that is used to
train this model:

∂

∂ ~wtout
J(θ)1 =

(
Jt == tbK−P(~wtout|~θ

tb
in)
)
× ~θtbin

∂

∂θtbin
J(θ)1 = ~wtbout −

V∑
t

P(~wtout|~θ
tb
in)× ~wtout

(5)

J·K is an identity function. If the expression inside this
function is evaluated to be true, then it outputs 1; otherwise 0.
For example, J1+2 == 3K = 1 and J1+1 == 3K = 0. Using a
full soft-max layer to model Equation 1 is costly and inefficient
because of the large vocabulary V . Following recent develop-
ment of an efficient word embedding learning approach [2],
we use the negative sampling method to approximate the log
probability:

log P(~wtbout|~θ
tb
in) ≈ log f(~w

tb
out,

~θtbin)

+

k∑
i=1

EtvPn(tb)Jt 6= tbKlog f(−1× ~wtout,
~θtbin)

f(~wtout,
~θtbin) = Uh((~wtout)

T × ~θtbin)
(6)

Uh(·) denotes the element-wise sigmoid function. It corre-
sponds to the red circle on the first feed-forward path in
the Figure 1. J·K is an identity function. If the expression
inside this function is evaluated to be true, then it outputs
1; otherwise 0. The negative sampling algorithm tries to
distinguish the correct guess tb with k randomly selected
negative samples {t|t 6= tb} using k + 1 logistic regressions.
EtvPn(t) is a sampling function that samples a token v from
the vocabulary V according to the noise distribution Pn(t) of
V . By taking derivatives, respectively, on ~wtout and ~θtbin, we
have the gradients to be updated:

∂

∂ ~wtout
J(θ) = Jt = tbK− f(~wtout, ~θ

tb
in)× ~θ

tb
in

∂

∂~θtbin
J(θ) =

k∑
i

EtvPn(t)

(
Jt = tbK− f(~wtout, ~θ

tb
in)
)
× ~wtout

We do not propagate the errors from the first feed-forward path
to the topical modality ~θtpω since the topical bias is determined
by the holistic distribution of vocabulary and is not determined
by the specific token selection on the local level. We update
~θtpω in the second feed-forward path.

Example 2: Continue from Example 1. We map t4 into
its output vector ~wt4out. Next we calculate P(~wt4out|~θ

t4
in) using

negative sampling (Equation 6). After that we calculate the
gradients w.r.t. ~wt4out and ~θt4in. We update ~wt4out according to its
gradient with a learning rate. We also update ~wt2in, ~wt3in, ~wt5in,
~wt6in, and ~θlxω equally according to the gradient of ~θt4in. �

The second feed-forward path of this model captures the
topical bias reflected on the document ω. The topics reflected
from the text can be interpreted as the union of effects of all
the local context in the sentence. Thus, the output of this path
(see the left part of Figure 1) is a multi-class prediction of
each word in the sentence sa, which is denoted by T (sa) in
Definition 1. The goal is to maximize the log probability on
~θtpω of document ω for each of its sentences S(ω):

argmax
1

|D|

D∑
ω

S(ω)∑
sa

T (sa)∑
tb

log P(tb| ~θtpω︸︷︷︸
topical

)

Similar to the first feed-forward path of this model, we map
each lexical token at the output to a numeric vector ~wtbout (the
yellow rectangles in Figure 1). By using negative sampling,
we maximize the following log probability:

Suppose that we use the typical soft-max multi-class output
layer. The second feed-forward path of this model captures
the probability of picking a word tb based on the topics θtbin
as follows:
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P(tb| ~θtpω︸︷︷︸
topical

) = P(~wtbout|~θtpω ) =
f(~wtbout,

~θtpω )∑V
t f(~w

t
out,

~θtbω )

f(~wtout,
~θtpω ) = Uh((~wtout)

T × ~θtpω )

(7)

The total number of parameters to be estimated is (|V | +
1) × d1. However, the term |V | is too large. Similar to the
first feed-forward path of this model, we use the k negative
sampling approach to approximate the log probability:

logP(tb| ~θtpω︸︷︷︸
topical

) ≈ log f(~wtbout, ~θtpω )

+

k∑
i=1

EtvPn(tb)

(
Jt 6= tbKlog f(−1× ~wtout,

~θtpω )
) (8)

By taking the derivatives respectively over ~wtbout and ~θtpω , we
have the derivatives to be updated for each tb:

∂

∂ ~wtout
J(θ) = Jt = tbK− f(~wtout, ~θtpω )× ~θtpω

∂

∂~θtpω
J(θ) =

k∑
i

EtvPn(t)

(
Jt = tbK− f(~wtout, ~θtpω )

)
× ~wtout

The total number of parameters is (k+1)× d1 for each tb.
Constant k is contributed by k negative samples, and constant
1 is contributed by the update of ~θtpω . Basically, the second
feed-forward path of this model is an approximation to the
full factorization of the document-term co-occurrence matrix.

Example 3: Continue from Example 1. For the output of
the second path, we map each token into a numeric vector
~wtbout, where tb ∈ {‘it’, ‘is’, ‘a’, ‘great’, ‘day’, ‘!!’}. For each
of the vectors we calculate P(~wtbout|~θtpω ) in Equation 8 using
negative sampling. Then we calculate the derivatives for each
~wtbout and ~θtpω and update them accordingly by multiplying the
gradients with a pre-specified learning rate. �

In this model, we count punctuation marks as lexical tokens.
Consequently, the information related to the punctuation marks
is also included. Punctuation marks carry information of into-
nation in linguistics and are useful for authorship analysis [4].
After training the model on a given text dataset D, we have a
topical modality vector representation ~θtpω ∈ Rd1 and a lexical
modality vector representation ~θlxω ∈ Rd1 for each document
ω ∈ D. Also, for each lexical token tb ∈ V we have a
vectorized representation ~wtbin ∈ Rd1 .

For an unseen document ω
′
/∈ D that does not belong to the

training text data, we fix all the ~wtbin ∈ Rd1 and ~wtbout ∈ Rd1
in the trained model and only propagate errors to ~θlx

ω′ ∈ Rd1
and ~θtp

ω′ ∈ Rd1 . At the end, we have both ~θlx
ω′ and ~θtp

ω′ for ω
′
.

The first feed-forward path corresponds to the PV-DM
model in [3]. The second feed-forward path corresponds to the
PV-DBOW model in [3]. The difference between this model
and PV-DM/PV-DBOW is that we joint them by pushing the
input of PV-DBOW to the input of PV-DM. The input of PV-
DBOW (the topical vector in Figure 1) captures what would
be the overall topic (i.e., word distribution) of the document.
By pushing it to the input of PV-DM at each mini batch, the
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Fig. 2. The model for learning the representation of the character modality.

lexical vector captures what is missing from the topic and
the current context or lexical preference, where people have
different word choice even under similar topic and similar
context. Thus, it is very different from the PV-DBOW and
PV-DM models.

B. The character-level modality

We propose a neural-network-based model to learn the
character modality representation on the plain text data. This
model captures the morphological differences in constructing
and spelling lexical tokens across different documents. Refer
to Figure 2. The input of this model is one of the character
bigrams generated by a sliding window over a lexical token tb
with the character-level bias. The output of this model is the
vectorized representation of the token tb. The purpose is to
learn ~θchω ∈ RD(ch) for each document ω ∈ D such that vector
~θchω captures the morphological differences in constructing
lexical tokens. Let CH(tb) = bg[1 : c] denote the list of
character bigrams of a given token tb, and bg is one of them.
The goal is to maximize the following log probability on D:

argmax
1

|D|

D∑
ω

S(ω)∑
sa

T (sa)∑
tb

CH(tb)∑
bg

log P(tb| ~θchω︸︷︷︸
char-level

, ~bgin)

We use a character bigram instead of unigram to increase the
character-level vocabulary size. Similar to the previous lexical
model, we map each lexical token tb into a numeric vector
~wbtout, which is used to output a multi-class prediction. We also
map each character bigram into a numeric vector ~bgin, which
is used for the network input. Both are model parameters to be
estimated. The input vectors of this model are ~bg

bt

in and ~θchω .
Both of them have the same dimensionality d2. After taking
an average, it is fed into the neural network, as depicted in
Figure 2, to predict its corresponding lexical token tb. Suppose
that we use the typical soft-max multi-class output layer:
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~θbgin =
〈
~θchω ,

~bgin

〉
P(tb| ~θchω︸︷︷︸

char-level

, ~bgin) = P(~wtbout|~θ
bg
in) =

f(~wtbout,
~θbgin)∑V

t f(~w
t
out,

~θbgin)

f(~wtout,
~θbgin) = Uh((~wtout)

T × ~θbgin)

(9)

Again, there are O(V ) parameters to be updated for each
pass of the neural network, which is not efficient. Thus, we
use the negative sampling approach to approximate the log
probability:

~θbgin =
〈
~θchω ,

~bgin

〉
(10)

P(tb| ~θchω︸︷︷︸
char-level

, bg) ≈ log f(~wtbout, ~θ
bg
in)

+

k∑
i=1

EtvPn(tb)

(
Jt 6= tbKlog f(−1× ~wtout,

~θbgin)
) (11)

Similar to the previous model, we have the following deriva-
tives by using negative sampling:
∂

∂ ~wtout
J(θ) = (Jt = tbK− f(~wtout, ~θ

bg
in))× ~θ

bg
in

∂

∂~θbgin
J(θ) =

k∑
i

EtvPn(t)

(
Jt = tbK− f(~wtout, ~θ

bg
in)
)
× ~wtout

The number of parameters to be updated for each bigram bg
of token tb is (k+2)×d2. The constant k is contributed by the
negative sampling function, and the constant 2 is contributed
by ~θchω and ~bgin. To learn ~θch

ω′ , for ω
′
/∈ D we fix all ~wtbout and

~bgin and only propagate errors to ~θch
ω′ .

Example 4: Consider a simple sentence: ta = “Fantastic
day !!” in Figure 2. For each token {tb|b ∈ [1, 3]} we
extract its character bigrams. Suppose the word in the target
is t1 = ‘fantastic’, and its bigrams are CH(t4) = {bgc|c
∈ 1, 2, 3, 4, 5, 6, 7, 8} = {‘fa’,‘an’,‘nt’,‘ta’,‘as’,‘st’,‘ti’,‘ic’}.
The process is the same for each word. Let us take a bigram
bg1 =‘fa’ as an example. First, we map bg1 to its represen-
tation ~bgin and map t1 to its representation ~wt1out. With ~θchω ,
we calculate ~θbgin according to the first formula in Equation 10.
Then we calculate the forward log probability for P(~wt1out|~θ

bg
in)

in Equation 11. We calculate the corresponding gradients and
update the respective parameters. The training pass for bigram
bg1 = ‘fa’ is completed, and we move to the next bigram
‘an’ following the sample procedure. After traversing all the
bigrams we move to the next token t2 = ‘day’. �

The character modality in this work only captures the intra-
word information. It only concerns with the morphology and
phonemes biases in the processing of spelling lexical word.
The inter-word information is useful. It is captured by the
lexical modality and the topical modality. This model can
be extended with inter-word information by using the current
character n-gram to predict the surrounding words.

C. The syntactic modality

The number of unique POS tags is quite limited, so
we use the bigrams of POS tags. See Figure 3. Let

JJ
NN

RB
RB

b+Uh(x)
sigmoid

ss

Vector

DT
JJ

Vector

Map to vector 
by the POS tag 
bigrams 

Text snippet:
Basically/RB every/DT  action-film/JJ today/NN  contains/VBZ very/RB much/RB unrealistic/JJ violence/NN ./. 

contains

RB
JJ

Vector Vector Vector

AVG
Vector

Map each lexical 
token into its 

numeric vector

pg

inθ  
  

t b
inw 

  sy
ω θ 

  

PG(t  )b

out
pg   

Map the syntactic-
level style of this 
document to a 

numeric vector

Fig. 3. The model for learning the representation of the syntactic modality.

P2(tb) be a POS tag bigram [P(tb),P(tb+1)], and nb ∈
PG(tb) = {P2(tb−3),P2(tb−2),P2(tb+1),P2(tb+2)} be the
neighbor POS bigrams of token tb. The goal is to maximize:

argmax
1

|D|

D∑
ω

S(ω)∑
sa

T (sa)∑
tb

PG(tb)∑
nb

log P(nb| ~θsyω︸︷︷︸
syntactic

, ~wtbin)

Similar to the previous models, this model maps each lexical
token tb into a numeric vector ~wtbin, and each of its neighbor
POS bigrams maps into an numeric vector ~nbout. The input of
the model, denoted by ~θnin, is the average of ~wtbin and ~θsyω , and
the prediction is one of the target token tb’s neighbor POS tag
bigrams, as shown in Figure 3. ~wtbin and ~θsyω share the same
dimensionality d3. The prediction can be implemented as a
soft-max layer:

~θnin =
〈
~θsyω , ~w

tb
in

〉
P(nb| ~θsyω︸︷︷︸

syntactic

, tb) = P(~nbout|~θnin) =
f(~nbout,

~θnin)∑Vn

n f(~nout, ~θnin)

f(~nout, ~θ
n
in)) = Uh((~nout)

T × ~θnin))

(12)

where Vn denotes the union of all distinct POS bigrams,
and the number of parameters to be updated for each nb is
bounded by Vn, which is around a few hundreds. It is still
computationally feasible to directly use the soft-max layer. It
is possible to use the negative sampling as well:

~θnin =
〈
~θsyω , ~w

tb
in

〉
P(nb| ~θsyω︸︷︷︸

syntactic

, tb) ≈ log f(~nbout, ~θnin)

+

k∑
i=1

EnvPn(nb)Jn 6= nbKlog f(−1× ~nout, ~θnin)

(13)

where Pn(n
b) denotes the negative sampling function for

Vn. Accordingly, we have the following derivatives for back
propagation:
∂

∂~nbout
J(θ) = (Jn = nbK− f(~nbout, ~θnin)× ~θnin)

∂

∂~θnin
J(θ) =

k∑
i

EnvPn(nb)

(
Jn = nbK− f(~nout, ~θnin)

)
× ~nout
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At the end of the training, we have ~θsyω for each document
ω ∈ D. To estimate ~θsy

ω′ for ω
′
/∈ D, we fix all ~wtbin and ~nout

and only propagate errors to ~θsy
ω′ .

Example 5: Consider a sentence and its corresponding
sequence of POS tags in Figure 3. For each token {tb|b ∈
[1, 10]} we extract its POS neighbor bigrams. Suppose the
word in target is t5 =‘contains’, and its POS neighbor
bigrams are PG(t5) = {‘DT JJ’, ‘JJ NN’, ‘RB RB’, ‘RB
JJ’} given a window size of 2. The process is the same
for other lexical tokens. Let us take one of its (t5’s) POS
neighbor bigrams n5 =‘DT JJ’ as an example. First we map
n5 to its vectorized representation ~n5in and map t5 to its
representation ~wt5in. With ~θsyω , we calculate ~θnin according to
the first formula in Equation 13. In combination with ~n5in,
we calculate the forward log probability for P(~n5in|~θnin) in
Equation 13. Then we calculate the corresponding gradients
and update the respective parameters. The training pass for
bigram n5 =’DT JJ’ is completed, and we move to the next
bigram ‘JJ NN’ following the same procedure. After all the
bigrams are processed, we move to the next token t6. �
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