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The Internet provides an ideal anonymous channel for concealing computer-mediated malicious activities,
as the network-based origins of critical electronic textual evidence (e.g., emails, blogs, forum posts, chat
logs, etc.) can be easily repudiated. Authorship attribution is the study of identifying the actual author of
the given anonymous documents based on the text itself, and for decades, many linguistic stylometry and
computational techniques have been extensively studied for this purpose. However, most of the previous
research emphasizes promoting the authorship attribution accuracy, and few works have been done for the
purpose of constructing and visualizing the evidential traits. In addition, these sophisticated techniques are
difficult for cyber investigators or linguistic experts to interpret. In this article, based on the End-to-End
Digital Investigation (EEDI) framework, we propose a visualizable evidence-driven approach, namely VEA,
which aims at facilitating the work of cyber investigation. Our comprehensive controlled experiment and the
stratified experiment on the real-life Enron email dataset demonstrate that our approach can achieve even
higher accuracy than traditional methods; meanwhile, its output can be easily visualized and interpreted
as evidential traits. In addition to identifying the most plausible author of a given text, our approach
also estimates the confidence for the predicted result based on a given identification context and presents
visualizable linguistic evidence for each candidate.
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1. INTRODUCTION

Research in authorship attribution on anonymous documents is experiencing a con-
tinuing exponential growth in recent years because a reliable authorship attribution
technology is useful and valuable in many fields, such as literary science, sociolin-
guistic research, Psycholinguistics, social psychology, forensics, and medical diagnosis
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[Daelemans 2013]. Especially under the globalized and decentralized nature of the
Internet, the communications of malicious activities (e.g., illegal material distribution,
ransom, and harassment [Abbasi and Chen 2008; Iqbal et al. 2013]) can be easily
hidden or repudiated. Authorship analysis techniques are capable of delving into the
information from different linguistic levels and of identifying the textual identity trace,
which potentially greatly facilitates the work of cyber forensic investigators and sus-
tains the social accountability. Stylometry even has been employed as evidence in a
court of law [Brennan et al. 2012].

The study of authorship attribution has a long-standing history [Mosteller and
Wallace 1964], and many linguistic stylometry and computational techniques have been
developed for solving this problem. These methods have demonstrated outstanding ef-
fectiveness in identifying the actual authors; however, those techniques that achieve
the highest accuracy always involve sophisticated, obscure computational models
[Stamatatos 2009], and their output is too simple to use as evidence in courts of law.
Some of these models, such as neural network and support vector machine (SVM),
can be hardly interpreted by an investigator as black-box approaches. Other relatively
simple models also require time and resources to obtain a justifiable result through
manual inspection.

These issues handicap traditional methods from being widely applied to the real-
life lawsuits as convincing evidence. Practically, computational stylometry is calling
for “more explanation as opposed to purely quantitative measure” [Daelemans 2013].
A better approach should provide explainable and presentable convincing traces as
evidence.

Most of the previous research did not measure the degradation of their methods’
performance, as the quantity/quality of the available information degraded simultane-
ously, which is also noted by Solan [2013]. These models are mostly evaluated only on
formal writings, which are relatively long, informative, well-structured, and free from
grammatical errors. On the contrary, short snippets are relatively casual, and their
stylometric features have larger variation. As shown in recent research [Koppel et al.
2011; Luyckx and Daelemans 2011; Narayanan et al. 2012], authorship attribution ac-
curacy is greatly and directly affected by many objective factors (text length, number of
known author samples, etc.) due to the unstructured nature of the text itself. It is crit-
ical for authorship analysis researchers to conduct attribution evaluation experiments
in varying attribution scenarios to “exclude a bogus conclusion based on inadequate
data” [Solan 2013] when applied to real-life legal cases.

In this article, we present a visualizable evidence-driven approach, namely VEA,
for the purpose of facilitating the work of cyber investigation and the decision-making
process in a court of law. Our approach is driven by evidence and based on the lazy
learning scheme [Narayanan et al. 2012]. Basically, our method searches inside the
anonymous document for all writing styles of different linguistic modalities as evi-
dence and matches them to the prebuilt candidate profiles. Evidence from different
linguistic modalities are combined by using confidence estimation. Finally, it visual-
izes all of the evidence on the given hypotheses, and it is able to present a visual
discrimination between hypotheses. Besides, it also provides an estimated confidence
value based on the quality of the evidence and the amount of available information in
a given attribution scenario. More importantly, we modeled the attribution scenario
and conducted our experiments in varying situations (varying length of text, varying
candidate size, etc.) to fully evaluate our method.

In the authorship attribution problem, a set of candidate authors, along with their
corresponding individual writing samples, are available, and the task is to identify
the most plausible author among these candidates based on the given anonymous
document [Mosteller and Wallace 1964; Holmes 1998; Iqbal et al. 2013]. In most of
the previous studies, the candidate sets involved in their scenarios are mostly of size
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ranging from 2 to 20. Some recent studies [Koppel et al. 2011; Narayanan et al. 2012]
present the authorship attribution problem with thousands of possible candidate au-
thors and try to solve it in a scalable way. In this case, it is more appropriate to first
employ scalable methods from these studies to determine a potential candidate subset,
then use other relatively more accurate techniques to figure out the most plausible
conclusion and derive the justifiable result.

An open-set authorship attribution problem is a variant of the original authorship at-
tribution problem [Koppel et al. 2011]. In this research problem, the solution is allowed
to output an alternative “unknown” option to indicate that the actual author could not
be found or determined from the given candidate set based on presented available
information. In fact, any solutions that are capable of outputting a monotonous proba-
bility indicating the confidence of a predicted result can be applied to this problem by
setting an appropriate threshold on this output probability value.

The authorship attribution problem is similar to the text classification problem. The
plain text classification task is tough, inherently due to unstructured nature of textual
data. By unifying the feature vector and extracting the vector for each sample text,
the textual data can be transformed into structured samples, which is the typical and
traditional authorship attribution solution [Holmes 1994; Stamatatos 2009]. However,
the deviation of each element inside the vector is still strongly affected by the length
of available text. Online texts are mostly very short and therefore contain limited
information about the writing style [Iqbal et al. 2013], which causes a larger fluctuation
around the mean value in the unified feature vector. This introduces difficulties in
achieving higher accuracy due to the presence of more outliers.

To retain reasonable accuracy in the identification task, we try to maximize the
information gained from the given anonymous document and combine both statistical
similarity and data mining techniques to develop a hybrid model using the lazy learning
mechanism. Specifically, our contributions are summarized as follows:

—To the best of our knowledge, this is the first trial to design an authorship attribution
approach with the goal of promoting not only the accuracy measure but also the inter-
pretability and the visualizability of the predicted result. From the very beginning,
this approach is designed from the perspective of collecting evidence. We system-
atically outlined our approach by employing the End-to-End Digital Investigation
(EEDI) framework [Bosworth et al. 2012], one of the recognized forensic processes
used in digital forensics investigations. By doing this, we are able to construct a cu-
mulative evidentiary effect supporting the final output result, and the construction
process can be easily explained using the EEDI framework.

—Our approach is concise in design, and its output is visualizable. Inspired by the
visualization of fingerprint matching in Figure 1, where the correlations among fin-
gerprint minutiae can be visually compared, we devise an approach visualizing all
supporting evidence on top of our visual representation of hypotheses rather than
presenting a simple numeric result. We are able to present a visual discrimination
among these hypotheses and present detailed supporting evidence. More importantly,
we systematically conducted our experiments under varying authorship attribution
scenarios to fully evaluate our approach. Our experiments demonstrate that our
approach achieves state-of-art attribution accuracy, and the output evidence is visu-
alizable, presentable, and explainable.

—Based on the specific context of the given authorship attribution problem, our ap-
proach is also able to estimate a confidence value. Based on those scenario-related
features that we identified, our method can accurately model and predict the final
classification accuracy. Moreover, to our best knowledge and differing from previ-
ously employed voting-based ensemble methods such as Koppel et al. [2011], it
is the first trial to combine multiple classifiers by normalizing their scoring vector
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Fig. 1. A sample fingerprint minutiae matching diagram generated by using fingerprint software and data
from NEUROtechnology.1

using individually estimated confidence values on given classification contexts. We
consider classifiers built on features of different linguistic modalities separately. We
explain the necessity of this step by arguing that stylistic features from different
linguistic modalities have different capacity in determining the actual author and
varying sensitivity to the objective conditions in a given scenario. This is due to the
unpredictable coherence of writing style among known authors’ sample writings,
and it is in accordance with our observations in the experiments. In addition, our
approach is extensible, where other features from different linguistic modalities or
nonlinguistic features can be further added as additional events.

The rest of this article is organized as follows. Section 2 reviews and discusses recent
development and issues in authorship analysis. Section 3 elaborates our visualizable
evidence-driven approach of authorship attribution in detail. Section 4 evaluates our
proposed method—VEA—on the Enron real-life dataset. Section 5 concludes the article.

2. RELATED WORKS

The history of authorship attribution backed up by computational and statistical meth-
ods can be dated from the 19th century [Stamatatos 2009]. Contributions to this area
can be broadly categorized from three aspects: the involved stylometric features, the
employed attribution techniques, and the attacks against authorship attribution tech-
niques. Previous research mainly focuses on promoting quantitative evaluation, and
limited research has been done for visualization or explanation. Most explanations for
the choice of features and algorithmic parameters are simply driven by the classifica-
tion accuracy. In this section, we will discuss several recent related works and research
trends in authorship analysis research. An inclusive survey on the complete history
is beyond the scope of this work. Broader comprehensive surveys can be referred to
Holmes [1994], Juola [2006], and Stamatatos [2009].

2.1. Stylometric Features

Stylometry is the solution of authorship recognition by investigating the linguistic char-
acteristics inside the given text document, and stylometric features are those linguistic
marks that could qualify or quantify these linguistic characteristics [Stamatatos 2009;
Brennan et al. 2012]. Stylometric features can be categorized into different linguis-
tic levels [Daelemans 2013; Stamatatos 2009] or, more precisely, linguistic modalities

1The NEUROtechnology software used to generate this diagram is available at http://www.neurotechnology.
com/.
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[Sapkota et al. 2013; Solorio et al. 2011]. Various features of different modalities have
demonstrated their effectiveness in distinguishing human writing patterns, including
lexical [Koppel et al. 2006; Halteren 2007; Savoy 2012], character-based [Koppel et al.
2011, 2012; Escalante et al. 2011], syntactic [Kim et al. 2011; Sidorov et al. 2013;
Raghavan et al. 2010], semantic [Hedegaard and Simonsen 2011; Seroussi et al. 2011,
2012], and application-specific modalities [Cristani et al. 2012].

Among all of these stylometric features, the character n-gram model in character-
based linguistic modality performs the best, and it is comparatively more robust against
the others [Luyckx and Daelemans 2011; Koppel et al. 2011]. The character n-gram
model actually captures information crossing different modalities [Houvardas and
Stamatatos 2006]; for example, a frequent ‘ed’ bigram in a character-based modal-
ity may also carry the frequent usage of past tense in a syntactic modality. However,
as pointed out in Narayanan et al. [2012], solutions using these features also take
the risk of capturing the context rather than the authors’ writing style. Regarding the
relationship between stylometric modalities, Sapkota et al. [2013] employed the word
orthogonal to assimilate them as independent components. To the best of our knowl-
edge, the correlation among linguistic modalities has not formally been investigated in
previous authorship studies. In this work, we are not going to evaluate whether corre-
lations may exist among linguistic modalities, but we argue that they have different
capacity in attributing the correct author based on the given problem context.

Stylometric feature sets involved in previous studies can also be divided into two
groups: the unified feature set and the class-specific feature set. Under the unified
feature set, which is employed by most previous solutions, every candidate is modeled
using the same set of features; however, under the class-specific feature set, candidates
are given distinct feature sets and a model is learned for each candidate. As shown by
Abbasi and Chen [2008] and Iqbal et al. [2013], the distinct algorithmic feature set can
better distinguish among candidates’ writing styles and achieve higher performance.

2.2. Attribution Techniques

After the selection of the specific feature scheme, attribution techniques are employed
to predict the actual author of a given snippet. Attribution techniques can be divided
into the similarity-based approach [Peng et al. 2003; Halteren 2007; Koppel et al.
2011] and the model-based approach [Sanderson and Guenter 2006; Lambers and
Veenman 2009]. The similarity-based approach employs distance functions [Savoy
2012] to quantify the proximity between a candidate profile and a given anonymous
document, whereas the model-based approach builds complicated models to classify
the given document. For the supervised–unsupervised distinction in model learning,
previous methods fall into to the supervised and semisupervised categories. Those
solutions that achieve the best performance on benchmark datasets are mostly related
to machine learning models.2 Among the model-based approaches, the SVM-based
approach [Abbasi and Chen 2008] and the association-rule–based approach [Iqbal
et al. 2013] achieve higher accuracy because they both consider the combination of
feature values among the high-dimensional space. Other machine learning models,
including decision tree, neural network [Tweedie et al. 1996], metalearning [Koppel
et al. 2007], and clustering [Layton et al. 2013], are also employed to solve the
problem of authorship attribution. Typically, a one-versus-all SVM is chosen as the
standard method when comparing different stylometric features because it has a
better multiclass classification capacity [Duan and Keerthi 2005].

Even though a model-based approach can achieve higher quantitative performance,
most such approaches involve a complicated computational model, and it is difficult to

2Contest organized in 2004 ALLC/ACH.
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interpret its decision-making process. The similarity-based approach is much easier to
visualize and interpret because it retains a monotonous linear relationship between ev-
idence and conclusion: the smaller the distance between author profile and the targeted
document, the more similar writing styles they possess.

2.3. Ensemble Method

Recent studies in authorship analysis demonstrate a trend of employing ensemble
methods to combine several separately trained classifiers due to the fact that multiple
classifiers can better fit into sample data and boost the attribution accuracy. In Koppel
et al. [2011], multiple classifiers are built based on different feature sets that are ran-
domly selected from all available space-free character 4-grams, and the final output
depends on their votes. In Kourtis and Stamatatos [2011], a co-training approach is
employed by using two classifiers. In Narayanan et al. [2012], an agreement-based com-
bination of the nearest neighbor model and the SVM model achieve higher identification
accuracy for blog data. Additionally, in Raghavan et al. [2010], higher performance is
achieved by employing the votes from classifiers built on different feature sets.

However, all of these works consider classifiers equally weighted. Based on different
classification contexts (the length of an anonymous snippet, candidate score distribu-
tion, etc.), classifiers built by using features of varying linguistic modalities will have
varying capacity to attribute the author correctly. It is more rational to weight them ac-
cordingly: under the specific classification context, the one that can better discriminate
writing style should be weighted more. In our approach, each classifier is built based
on features from different linguistic modalities and is weighted based on its demon-
strated consistency among prior written samples. In machine learning literature, there
are lots of works that have studied the boosting, stacking, and ensemble methods, but
few of them have been applied to the authorship attribution problem. Our purpose is
not to show that our approach is advantageous over these approaches, but rather we
try to illustrate that such an approach can promote the prediction accuracy and the
interpretability. As a whole, it is a one-step-forward real-life application of authorship
attribution techniques. A full comparison between our approach and other stacking
approaches is outside the scope of this work.

2.4. Adversary Stylometry

From the perspective of the adversary, several studies are trying to circumvent au-
thorship attribution techniques [Kacmarcik and Gamon 2006; Juola and Vescovi 2010;
Brennan et al. 2012]. The most influential study is by Brennan et al. [2012]. They con-
ducted an experiment on the effectiveness of stylometry obfuscation and imitation. By
recruiting volunteers and using the Amazon Mechanical Turk3 platform, they asked
participants to submit their prior written samples and then write an imitation passage
and an obfuscation passage (no guideline was given to participants on how to obfuscate
or imitate). Their results demonstrate that there is a significant drop in identification
accuracy when it comes to these attacks. In addition, the accuracy drops when it comes
to one-step, two-step translation attacks.

However, their experimental setup may not truly reflect the effectiveness of their
obfuscating approach. First, the decrease in identification accuracy is mostly caused by
the mismatch of context between the obfuscated passages and the training passages.
Obfuscated passages are about the description of participants’ neighbors, whereas pre-
existing writing samples are mostly “scholarly” and thus are more formal. Second,
their experiment also combined and split passages to generate known author writing
samples, which may also lead to a high contextual correlation among samples. As we

3https://www.mturk.com/mturk/welcome.
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know, word-level tokens are good at capturing contextual and thematic correlation
[Fung et al. 2003]. We ran our model based on pure lexical n-gram on their dataset,
and it showed a high correlation of word-level n-gram among training samples (86.01%
identification accuracy for 45 authors; around 500 tokens per sample), with a low
correlation between obfuscated texts and training texts. Additionally, in the study of
Juola [2012], a method for detecting the obfuscated texts is proposed using character
3-grams and word 3-grams. Their experiments also demonstrated a large difference
in n-gram usage between pre-existing samples and obfuscated samples. The difference
in the n-gram usage pattern implies the contextual and thematic variations, which
naturally leads to the unsatisfactory result when it comes to authorship attribution
techniques that employ character bigrams and trigrams.

2.5. Attribution Result and Its Visualization

Most of the aforementioned studies simply display the most plausible candidate as
their output result. Some recent research is able to add an estimated value indicating
the attribution confidence [Koppel et al. 2011; Narayanan et al. 2012]. However, be-
cause authorship analysis techniques are not reliable enough to be widely recognized,
this kind of simple output will still raise doubts when applied in real-life cases. In-
stead, visualized evidence corroborating why this candidate author is selected to be
the most plausible one will be more helpful. The only work that we found on formally
visualizing attribution output is by Abbasi and Chen [2006]. Nonetheless, the visual
representation of the Writeprint, which consists of a coordinate graph for each single
feature, cannot scale up with large numbers of features, and it is difficult to compare
different Writeprints holistically.

3. VISUALIZABLE EVIDENCE-DRIVEN APPROACH FOR AUTHORSHIP ATTRIBUTION

In this section, we present our visualizable evidence-driven approach for the author-
ship attribution problem, addressing the issues and problems mentioned in Section 1.
For the purpose of promoting its interpretability and explainability, our approach is
designed according to the nine processes defined by the EEDI framework [Bosworth
et al. 2012]. Considering that every digital crime fundamentally consists of a source
point and a destination point, the EEDI framework is a structured flow of processes
to establish an evidence chain connecting these two points. EEDI is a popular frame-
work employed by digital investigators due to its capacity for structurally organizing
multiple evidence sources to test the conclusion.

We design our approach by adopting the EEDI framework based on the fact that the
authorship attribution problem can also be fundamentally regarded as consisting of two
points: hypothesis and conclusion. By elaborating the linguistic evidences to establish
an evidentiary chain, we can connect these two points together and thus enable our
approach to present the completed chain as visualized evidence. In addition, the process
of chain construction can be easily explained by employing the EEDI framework. The
briefs of procedures employed are outlined in Figure 2.

To begin with, we formally define the authorship identification problem with a prob-
ability confidence value output, as mentioned in Section 1. To be consistent in terminol-
ogy, in this article, “candidates” or “candidate authors” refers to the potential authors
of the anonymous message, and “author” or “actual author” refers to the true author
of the anonymous message. Let C = {C1, C2, . . . , CN} be a set of N candidate authors
and M = {M1, M2, . . . , MN} be a set of their corresponding writing samples, where Mi
denotes the set of known samples authored by Ci. The task is to identify the actual
author of given anonymous snippet ω from the candidate set C based on the informa-
tion available in M. Furthermore, the algorithm should be able to output a probability
value p ∈ [0, 1], which denotes the algorithm’s confidence in its predicted result on the
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Fig. 2. Overview of VEA in the EEDI framework.

given problem context: p = 0 indicates an unreliable result, whereas p = 1 indicates a
fully reliable result.

At the same time, we also formally define the term authorship hypothesis (see
Definition 3.1). Basically, an authorship hypothesis is a statement claiming a cand-
idate to be the author of a given anonymous snippet ω. According to the problem defined
earlier, where N candidate authors are involved, N hypotheses are thus formulated,
respectively targeting on each candidate in C.

Definition 3.1 (authorship hypothesis). Given an unknown author snippet ω and a
known candidate Ci, a hypothesis in the authorship attribution problem is the state-
ment that candidate Ci authored snippet ω.

3.1. Collecting Evidence

The first phase in the original EEDI framework is collecting evidence [Bosworth et al.
2012]. The purpose of this phase is to detect and collect potential evidence from all
available sources of information. The type of evidence may vary. For example, to identify
an intrusion, evidentiary types could be logs of system access, logs of network packages,
and firewall logs. They require different collection and preprocessing methods. Under
the EEDI framework, evidence of different types are grouped together and initiated
into independent events, which will be passed to the next process of EEDI.

Accordingly, based on the given anonymous snippet ω, during this phase our task
is to identify all linguistic evidence. Likewise, linguistic characteristics reflected on
the given snippet ω are of varying types based on their particular linguistic modali-
ties (syntactic, lexical, character based, etc.), and linguistic characteristics of certain
modality require specific techniques for feature extraction [Stamatatos 2009]. Thus,
we group evidence into independent events based on their linguistic modalities and
construct them respectively.

We start this phase by defining the term evidence unit. Let F(ω) = { f1, f2, . . . , fu}
denote the universe of writing style features extracted from the anonymous snip-
pet ω. Basically, an evidence unit is defined as one specific writing style feature el-
ement with its associated scoring vector (see Definition 3.2). The similarity metric
that we employed to describe the correlation between candidate Ci and the linguis-
tic feature feum will be discussed in Section 3.2 (see Equation (3)). Evidence unit is the
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Table I. Employed Linguistic Features

Modality Characteristics Details Examples
Lexical Word-level n-gram Length:1–8 ‘It,’ ‘it is,’ ‘it is noticed,’ ‘is noticed,’ etc.

Character Character-level n-gram Length:1–8 ‘no,’ ‘not,’ ‘notic,’ ‘tice,’ ‘notice,’ ‘a,’ ‘an,’ ‘nd,’ etc.
Syntactic POS n-gram Length:1–8 ‘PRP VBZ VBN,’ ‘CC VBN,’ ‘VBN CC VBN,’ etc.

Note: Features in the examples are extracted from the text: ‘it is noticed and appreciated’; the corre-
sponding Part-of-Speech (POS) tag sequence is ‘PRP VBZ VBN CC VBN.’ The n-gram is extracted in an
overlapping manner.

minimum scoring unit and minimum visualization unit, which will be discussed further
in Section 3.2.

Definition 3.2 (evidence unit). Evidence unit eum is formulated as set { feum, �veum}:
given a certain linguistic feature feum, �veum ∈ R

N is a numeric vector (v1, . . . , vi, . . . , vN),
where N indicates the number of candidates in C and value vi indicates the score
describing the correlation between candidate Ci and the linguistic feature feum.

The linguistic writing characteristics employed in this article include lexical
modality, character modality, and syntactic modality. Specifically, they include lexical
word n-gram, character-level n-gram, and syntactic-level Part-of-Speech (POS) n-gram
[Stamatatos 2009]. For the POS tagging, we used the pretrained Maxent model
from Opennlp.4 Table I provides detailed information and examples. The length of
these n-grams varies from 1 to 8 because we can hardly find any n-gram present
repetitively with length more than 8 in the dataset. We employ the n-gram technique
because previous studies [Koppel et al. 2011; Savoy 2012; Sidorov et al. 2013] show its
effectiveness in capturing the writing style. Additionally, they are comparatively easier
to visualize and present as evidence units; more details will be discussed in Section 3.5.

ALGORITHM 1: Event Construction (EC)
Input number of candidates N, linguistic type T ype, anonymous snippet ω
Output event ev
1: Tev ← T ype � associate this event with the given type of linguistic modality
2: f eatures ← extract all linguistic characteristics of type Tev from snippet ω
3: for m = 1 to | f eatures| do
4: �veuev

m ∈ R
N, �veuev

m ← {0} � initialize as a zero vector
5: feuev

m = f eatures[m] � pair each feature with a new evidence unit
6: EUev ← EUev ∪ {euev

m }
7: end for
8: return ev

To preserve the explainability of our approach, unlike previous research, we do not
employ any feature selection techniques, such as methods found in Yang and Pedersen
[1997], meaning that we employ the full set of n-grams rather than an optimal top-K
subset. Previous research, such as Houvardas and Stamatatos [2006], demonstrate
that such a top-K culled subset can already achieve high accuracy in the authorship
attribution problem, but it is difficult to explain why and how this parameter K, which
indicates the size of employed features, is chosen. In the previous research, the optimal
K value is learned from the presented experimental results, and it is assumed that
this value would work accordingly against other data. Moreover, forensic investigation
prefers completeness, and selecting a subset of evidence requires an explanation. Tak-
ing the full set can avoid such an issue. Even though this approach introduces high

4Available at http://opennlp.apache.org.
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runtime complexity, it is acceptable in an investigation scenario to run it only once for
the purpose of collecting evidence. We believe that this trade-off between explainability
and runtime complexity is reasonable.

Definition 3.3 (event). Given an event evn denoted by {Tevn, Confevn,
�Vevn, EUevn}, Tevn

is the type of linguistic modality with which this event is associated, EUevn is a set of
evidence units such that ∀euevn

m ∈ EUevn, and feuevn
m is of type Tevn. In addition, �Vevn ∈ R

N

is a numeric vector of size N that describes to what extent this event evn supports
each predefined hypothesis, and Confevn ∈ [0, 1] is a numeric value that indicates the
confidence that this event will arrive at its conclusion based on the present classification
context.

We define event as a set of evidence units of same linguistic modality and other asso-
ciated properties (see Definition 3.3). Based on the selected linguistic feature scheme,
the extraction procedure is shown in Algorithm 1. The input includes the number of
candidates in C, linguistic modality type T ype, and the anonymous snippet ω. In line 2,
all features of given linguistic type are extracted from the anonymous snippet ω. Based
on our selected features, all n-grams of given length 1 to 8 are thereby extracted and
then assigned to the evidence units (see line 5).

For each linguistic modality, we construct an event by using Algorithm 1. After event
constructions, all events will be passed into the next process, as shown in Figure 2. In
our case, three events are created: a lexical event (1- to 8-word n-grams), a character
event (1- to 8-character n-grams), and a syntactic event (1- to 8-POS n-grams).

Example 3.4. Considering a sample text ‘it is,’ to construct the lexical event ev1 in
our case, first all n-grams are extracted as evidence units: feu

ev1
1

= ‘it,’ feu
ev1
2

= ‘it is,’ and
feu

ev1
3

= ‘is.’ Assuming that we have two candidate authors, thus C = {C1, C2}, after
applying Algorithm 1, the feature vectors for these evidence units are �veu

ev1
1

= (0, 0),
�veu

ev1
2

= (0, 0), and �veu
ev1
3

= (0, 0).

3.2. Analysis of Individual Event

The second phase in EEDI process flow is to analyze each event independently. The goal
in this phase is to isolate each event and access the impact of each event on the overall
investigation problem individually [Bosworth et al. 2012]. Correspondingly, during this
phase in our algorithm, we are going to independently assess each event with respect
to its contribution in the overall author identification problem. For each event, two
analyses are conducted:

—Scoring: Used to score each hypothesis (i.e., to score each candidate author) based
on the given event’s feature set, and determine which hypothesis is more plausible
to be the correct one.

—Consistency analysis: Used to evaluate the feature set of a given event regarding its
capability of distinguishing the writing styles among different candidates based on
all known samples M.

The first analysis adopts the similarity-based approach to score each hypothesis,
which is shown in Algorithm 2. To begin with, by using a t f − idf scoring scheme
and regarding all extracted n-grams from an event as an unified feature vector, N + 1
numeric vectors are constructed: one numeric vector �a for anonymous snippet (line 2)
and N candidate author numeric vectors (�c in line 7).

Although there exist other scoring functions that may achieve higher identifica-
tion accuracy [Martineau et al. 2009; Lambers and Veenman 2009], we use the
t f − idf scheme [Zobel and Moffat 1998] for its simplicity. As in Equations (1) and
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Fig. 3. A sample 3 n-gram space. Each n-gram represents one dimension.

(2), the t f score captures the normalized frequency of a given n-gram, and the idf
score gives weight to each n-gram by considering its discriminant power. Variable
|AuthorsEverUsed(gram)| represents the number of candidate authors who ever used
n-gram gramin their writing samples. The constant b is used to avoid the divide-by-zero
problem, and it is typically chosen as 1. We set b as 0.1, and in this way it is in a smaller
order of magnitude when compared to |AuthorsEverUsed(gram)|. For the anonymous
text, we only consider the t f score. Other scoring schemes could be employed by con-
sidering them as separate events, which could be explored in future studies.

t f (gram, Mi) = f requency(gram, Mi)
maxGramFrequency(Mi)

(1)

idf (gram) = log
(

N
b + |AuthorsEverUsed(gram)|

)
(2)

After the construction of aforementioned N + 1 numeric vectors, a final score is
derived for each hypothesis (candidate) by comparing the distance between each can-
didate vector �c and the vector for anonymous snippet �a. Here we adopt the dotproduct
distance to derive this score, as shown in line 12 of Algorithm 2.

similarity( �Pi, �Pω) = proj �Pω

�Pi × ‖ �Pω‖
= ‖ �Pi‖ × cos(�i) × ‖ �Pω‖

= ‖ �Pi‖ ×
�Pi · �Pω

‖ �Pi‖ × ‖ �Pω‖
× ‖ �Pω‖ = �Pi · �Pω

(3)

Considering a sample 3 n-gram space in Figure 3, �PV1, �PV2, and �PV , respectively, are
the style vectors of candidate1, candidate2, and the anonymous snippet ω. In previous
work, such as Koppel et al. [2011], where n-gram–related features are employed, the
cosine distance [Salton and Buckley 1988] is generally used to measure the distance be-
tween vectors. It only considers the included angles between vectors: the difference be-
tween �1 and �2 in the example. However, the difference in writing style is reflected in
both n-gram coverage and normalized frequency of n-gram usage. Regarding the direc-
tion of �PV as the anonymous snippet’s writing style, we take the projection �PV ′

1 of �PV1

on �PV and the projection �PV ′
2 of �PV2 on �PV for comparison. The projection models the

amount of demonstrated evidence from a given vector and shows the strength of support
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Table II. Features for Confidence Estimation (Identification Context)

scoreavg Average score in scoring vector ( �Vev)

scoremax Maximum score in scoring vector ( �Vev)

scoremin Minimum score in scoring vector ( �Vev)

distmax−runnerup Gap statistic between max and the runner-up

testlength Number of tokens in testing (anonymous) document ω

tokenscommon Number of shared tokens between M and ω

of the vector in this direction. The distance function is shown in Equation (3), and for the
ease of computation, we multiply the norms of the anonymous vector, which is indepen-
dent to the values of other vectors, and finally derive the dotproduct distance function.

ALGORITHM 2: Event-Based Scoring (ES)
Input event ev, writing samples M, anonymous snippet ω
Output scoring vector: �s
1: �s ∈ R

N, �s ← {0} � create a numeric vector of size N
2: �a ∈ R

|EUev |, �a ← {0}
3: for m = 1 to |EUev| do
4: �a[m] = tf( feuev

m , ω) � this vector is for anonymous snippet ω
5: end for
6: for i = 1 to N do
7: �c ∈ R

|EUev |, �c ← {0} � this vector is for candidate author i
8: for m = 1 to |EUev| do
9: �c[m] = tf( feuev

m , Mi) × idf( feuev
m ) � here feature feuev

m is an n-gram
10: �veuev

m [i] ← �c[m] × �a[m] � global values that will be used for evidence unit
visualization

11: end for
12: �s[i] = �a · �c
13: end for
14: return �s

At the end of the first analysis (see line 10 of Algorithm 2), each evidence unit’s
scoring vector �v is updated with the corresponding score vi that describes the correlation
between candidate i and this given linguistic feature. This updated value will be used
in the visualization process elaborated in Section 3.5.

Algorithm 3 shows the second analysis. As defined in Definition 3.3, each event is
represented as a set of linguistic features. The goal of this analysis is to evaluate fea-
tures of a given event with respect to their demonstrated consistency and discriminant
power among the known author writing samples M. Such properties vary for different
linguistic modalities under the given identification context (anonymous snippet length,
size of known author writing, and number of candidates, etc.). Hence, we treat each
event as a stand-alone similarity-based classifier. Then a confidence value is estimated
for each event in an isolated manner by building linear models. The features used
to model an identification context are listed in Table II. In this way, an event is the
minimum confidence estimation unit.

To proceed with this analysis, a 10-fold cross-validation test is conducted by parti-
tioning all available writing samples from M into 10 groups of roughly equal size (line
1 of Algorithm 3). Of these 10 groups, 1 group is selected as the test set, then the
remaining 9 groups are used to build events following Algorithm 1 and to predict the
author of samples from the test set by using Algorithm 2 (lines 7 and 8 of Algorithm 3).
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ALGORITHM 3: Event-Based Identification (EI)
Input known author writing samples M, candidate set C, event ev, anonymous snippet ω
Output event ev
1: f olds ← split(M) � split M into 10 folds for cross-validation; each fold includes nine

training groups and one testing group
2: samples ← ∅; � create an empty set of samples; each sample follows attributes in

Table II
3: for each f old in f olds do
4: f oldSamples ← ∅; � an empty set of samples following attributes in Table II
5: correctGuess ← 0
6: for each doc in T estSetf old do
7: ev′ ← EC(N, Tev, doc) � corresponds to Algorithm 1
8: scores ← ES(ev′, T rainSetf old, doc) � corresponds to Algorithm 2
9: index =IndexOfMaxValue(scores)
10: predictedAuthor = C[index]
11: if predictedAuthor is ActualAuthor(doc) then
12: correctGuess = correctGuess + 1
13: end if
14: sample ← GenerateSample(scores, doc) � collect feature values (Table II)
15: f oldSamples ← f oldSamples ∪ {sample}
16: end for
17: precision ← correctGuess

|T estSet f old| � calculate the precision value for this fold
18: for each sample in f oldSamples do
19: sample ← pad the vector sample with precision as target attribute.
20: end for
21: samples ← samples ∪ f oldSamples
22: end for
23: Modelev ← buildModel(samples) � build a prediction model for this event ev using

precision as target attribute
24: �Vev ← ES(ev, M, ω) � collect sample from current classification context
25: Confev ← Modelev.predict( �Vev, ω) � estimate confidence
26: return ev

The candidate with the highest score output (lines 9 and 10 of Algorithm 3) will be the
predicted result. The next step is to collect vector values for the attributes listed in
Table II as a sample (line 14 of Algorithm 3). After iterating documents from the test
set, the precision value of the test is calculated (line 17 of Algorithm 3) and padded
to each sample vector in this fold as values of target attribute (lines 18 through 20 of
Algorithm 3). This process is repeated 10 times, and each group is used as the test set
exactly once. Based on the collected samples, a linear model is built for each event (line
23 of Algorithm 3).

In line 24, the event derives a scoring vector for given candidates based on the
anonymous snippet ω by using Algorithm 2. Based on this scoring vector, a sample is
created following attributes in Table II, and then it is fed into the built model to derive
the predicted precision value, which will be used as the confidence value (line 25 of
Algorithm 3).

Regarding the employed attributes to model the identification context, in addition to
using the “gap statistic” that describes the gap between the max score and the runner-
up in [Narayanan et al. 2012; Koppel et al. 2006, 2011], we also include more attributes
that describe the scoring distribution, including the maximum, the minimum, the
average, and the length of testing document. Our experiment in Section 4.4 shows that
all of these attributes are significantly important for confidence estimation. However,
we do not include the size of known author writings, because when we conduct the
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10-fold cross-validation process (lines 3 through 22 of Algorithm 3), the intercept value
in the built linear model already reflects its effect as baseline.

ALGORITHM 4: Confidence-Based Normalization (CN)
Input event ev, anonymous snippet ω
Output event ev
1: for i=1 to N do
2: �Vev[i]= �Vev[i] × Confev � normalize score for this event
3: end for
4: for m = 1 to |EUeu| do
5: for i = 1 to N do
6: �euev

m [i] = �euev
m [i] × Confev � normalize the score inside each evidence unit

7: end for
8: end for
9: return ev

3.3. Event Normalization

The event normalization process under the EEDI framework is to normalize all evi-
dentiary data of the same type from different sources into the same measurement level
and to further consider the possibility of combining them [Bosworth et al. 2012]. For
example, different events from different sources may have varying timing formats or
different time zone settings; to chain them together, these formats must be normalized.

Accordingly, in our approach, after the previous process each event now has a scoring
vector but different confidence values, which means they have different performance
levels on discriminating candidates. Before considering the combination of evidentiary
data from these events, normalization of performance for each event must be done.
Hence, we conduct our normalization step by multiplying the scoring vector with cor-
responding confidence value for each event (line 2 of Algorithm 4). Correspondingly,
we update the numeric vectors stored inside all evidence units of each event by multi-
plying the original score with the confidence value (lines 4 through 8 of Algorithm 4).
After normalization, all events are passed into the next process.

3.4. Secondary-Level Correlation

Under the EEDI framework, this process examines the correlation between events and
considers ways of combining the evidence into an evidentiary chain [Bosworth et al.
2012]. In our case, accordingly, all events from the previous process are combined to
derive a unidimensional score for each candidate author. The idea is to summarize the
fine-grained evidence of different linguistic modalities into a single kind of evidence:
the linguistic evidence.

The procedure for event combination is shown in Algorithm 5. Considering that
in the previous process all events have been normalized into the same identification
performance level, the final scoring vector is simply the sum of the scoring vector from
each input event. In this algorithm, lines 1 through 8 combine scoring vectors from all
input events, and line 9 determines the prediction result as the candidate author that
achieves the highest score.

p = EV
max

evn
P(predicted author | evn)

= EV
max

evn

{
Confevn, if evn agrees on final predicted author
0, otherwise

(4)

To combine multiple confidence values of different classifiers, typical approaches
include Product Rule, Max Rule, Min Rule, and Majority Vote Rule [Kittler et al. 1998].
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ALGORITHM 5: Event Combination (EC)
Input writing samples M, candidate set C, set of event EV , anonymous snippet ω
Output author, confidence value p
1: �f s ∈ R

N, �f s ← {0} � initialize final scoring vector with 0
2: conf ∈ R

|EV |, conf ← {0} � a vector of confidence values
3: for n = 1 to |EV | do
4: for i = 1 to N do
5: �f s[i] = �f s[i] + �Vevn[i]
6: end for
7: conf[n] = Confevn

8: end for
9: prediction ← IndexOfMaxValue( �f s) � determine the prediction result
10: author ← C[prediction]
11: agreedConf ∈ R

|EV |, conf ← {0}
12: for n = 1 to |EV | do
13: if evn agrees prediction then
14: agreedConf[n] = conf[n]
15: else
16: agreedConf[n] = −1
17: end if
18: end for
19: p = max(agreedConf) � estimate the final confidence value
20: return author, p

Here we combine the Max Rule and Majority Vote Rule to derive our final estimated
confidence value. As lines 12 through 19 of Algorithm 5 show, the final confidence value
is determined as the maximum estimated confidence value among all events that agree
on the final output candidate (see Equation (4), in which predicted author indicates
the final output prediction from line 9 Algorithm 5).

Previous research [Koppel et al. 2011; Narayanan et al. 2012] mostly combine clas-
sifiers using the ensemble method and derive the final result in a voting manner.
Differently from these, we combine classifiers—or rather events, in our case—in the
scoring vector level, and each scoring vector is normalized by the estimated confidence
(see Equation (5), in which �f s[k] is the final score for candidate k as used in line 1
Algorithm 5, and �Vevn[k] is the final score for candidate k in the scoring vector of event
evn as defined in Definition 3.3). Our experiment demonstrates that this approach can
achieve higher accuracy.

�f s[k] =
EV∑
evn

�Vevn[k] × Confevn (5)

3.5. Chain of Evidence Construction

In this process, under the EEDI framework, evidences are aligned on a timeline, and
based on this timeline, a coherent chain of evidence is developed [Bosworth et al.
2012]. This chain of evidence is able to connect the starting point and ending point of
the criminal incident. However, in our solution, temporal priority among all linguistic
evidence is nonexistent. Based on the employed dot-point distance, the cumulative
effect of evidences is instead established from hypotheses to conclusion.

�f s[k] =
EV∑
evn

EUevn∑
euevn

m

�veuevn
m [k] (6)
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At this point, based on the input events, the cumulative effect to derive the final
unidimensional score for each hypothesis can be expressed as Equation (6) by employ-
ing the intermediate results stored in evidence units according to Algorithms 2 and 4.
�f s[k] refers to the final score for candidate k in line 1 of Algorithm 5, which is the same

variable in Equation (5) but is calculated using different intermediate results.
The task of this process is to visualize all evidence units with respect to their prox-

imity to each hypothesis. The visually cumulative effect of all evidence units should
be able to reflect the difference between candidate scores �f s[k]. Formally, a visual
measurement function v f should have the following property.

Property 1 (proportionally visualizable). Given a set of hypotheses H, we say that
they are proportionally visualizable over a visual effect function v f if they satisfy
∀Hk ∈ H v f (Hk) ∝ �f s[k].

To begin with, hypotheses are visualized. As defined in Definition 3.1, the hypothesis
is the statement that an anonymous snippet ω is authored by one specific author. Given
N candidates in C, we thus have N hypotheses, and each hypothesis is represented
by the raw tokens extracted from the anonymous snippet ω with the corresponding
statement about one specific candidate.

As shown in Figure 4, two hypotheses are presented as examples . Each hypothesis
is represented by the hypothetical statement on the title along with the following
evidence extracted from anonymous snippet ω: the first row represents character-level
tokens, the second row represents word-level tokens, and the third row represents
Part-of-Speech tokens. To make the representation simpler and clearer, in the first row
we display the character tokens with a transparent font color so that each character
token can be easily matched to the lexical token beneath.

After presenting the visualizations of hypotheses, we are going to visualize all ev-
idence units (defined in Definition 3.2) by coloring each evidence unit’s tokens in the
preceding representations of hypotheses. The color is determined by how affiliated
an evidence unit is to the given hypothesis. An evidence unit hereby is our smallest
visualization unit.

To color the tokens, the HSL color scheme is employed. The HSL scheme encodes
color by using three parameters: Hue, Saturation, and Lightness. Hue represents the
selected tint ranging from 0 to 360, and in most cases it is used as a qualitative rep-
resentation in data visualization: the difference in kinds reflected in the difference of
tint. Saturation controls its colorfulness (from 0 to 100), and Lightness measures how
much light should be reflected from this color, ranging from 0 (appears as black) to 100
(appears as white); 50 is normal [Çelik et al. 2012]. Lightness is visually suitable as
a quantitative/sequential data representation. Dark equals more is a standard carto-
graphic convention [Harrower and Brewer 2003], and the difference of lightness can
still be perceived by people with red-green color vision impairments [Harrower and
Brewer 2003]. Thus, we adopt the lightness value representing the scores of evidence
units.

Based on our observation, given an evidence unit euevn
m and its scoring vector �veuevn

m ,
in most cases the range of this vector range(�veuevn

m ) is only a small fraction of the overall
score range. Simply picking up the lightness value of the given evidence unit euevn

m , for
hypothesis k based on its score �veuevn

m [k], will naturally lead to the imperceptible visual
discrimination among hypotheses. Hence, instead of visualizing the original scores, we
visualize di f (euevn

m , k) in Equation (7), which represents how the original score differs
from the minimum score in that scoring vector. The constant α is used to shift the
range, avoiding assigning a blank background on euevn

m for hypotheses k when �veuevn
m [k]

equals min(�veuevn
m ), to visually distinguish the absence of an n-gram (blank background)
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Fig. 4. Evidentiary chain visualization: hypothesis representations and the visualized evidence units.

and the presence of an n-gram, but for a given hypothesis, it is the minimum score in
the scoring vector.

To calculate the value di f (euevn
m , k) for each hypothesis k on each evidence unit euevn

m ,
the global range maxR of the scaled difference is first calculated by using the first
three equations in Equation (7). The range of the scaled difference in scoring vectors
is calculated for each event and then all ranges are combined to reach maxR (globally
maximum scaled difference in all scoring vectors).

range′(eum) = max(�veum) − min(�veum)

maxRevn = max
({

euevn
m ∈ EUevn | range′(euevn

m

)})
maxR = max({evn ∈ EV | maxRevn}) + α

di f
(
euevn

m , k
) = �veuevn

m [k] + α − min(�veum)
maxR

(7)

Example 3.5. Consider a sample text ‘your organization’ and two candidates C1 and
C2. Assume that we only employ the lexical event EV = {ev1}, so we have three lexical
n-grams: euev1

1 ‘your,’ euev1
2 ‘organization,’ and euev1

3 ‘your organization.’ In addition, we
assume that their corresponding scoring vectors are �veu

ev1
1

= (0.3, 0.6), �veu
ev1
2

= (0.8, 0.5),
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and �veu
ev1
3

= (0.1, 0.2). In this case, range′(euev1
1 ) = 0.3, range′(euev1

2 ) = 0.3, range′(euev1
3 ) =

0.1, and maxRev1 = 0.3. By setting α = 0.1, since we only use one event, we have
maxR = 0.4. Applying the fourth function in Equation (7) on each evidence unit’s
scoring vectors, we then have di f (euev1

1 , 1) = 0.25, di f (euev1
1 , 2) = 1, di f (euev1

2 , 1) = 1,
di f (euev1

2 , 2) = 0.25, di f (euev1
3 , 1) = 0.25, and di f (euev1

3 , 2) = 0.5.

The linguistic feature we chose is based on the n-gram model, where each evidence
unit is represented as a sequence of tokens. As such, different evidence units may
share the same token in the hypothesis representation. Accordingly, each evidence
unit is colored in an overlapping manner.

LHk
tokenn

(
euevn

m

) =
{

LHk
tokenn

− η × di f
(
euevn

m , k
)
, if euevn

m stem from tokenn

LHk
tokenn

otherwise
(8)

Given a visual representation of hypothesis Hk, we start by initializing all tokens’
backgrounds with a maximum lightness value (i.e., the background color reflects 100%
light and appears to be blank), and then we enumerate tokens in the hypotheses repre-
sentation to apply Equation (8). Given a tokenn in Hk, for each previously extracted evi-
dence unit euevn

m , if feuevn
m stems from tokenn then the token’s lightness value degrades by

the multiplication of degradation factor η and its normalized variant score di f (euevn
m , k).

Degradation factor η ∈ (0, 100] controls the contrast between hypotheses and can be
designated by the user or empirically as 100.0/MaxMatch, where MaxMatch indicates
the maximum number of evidence units that can stem from the same token. euevn

m stems
from tokenn, which means that the evidence unit euevn

m partially or completely originates
from the tokenn. For example, the evidence unit ‘your organization’ can stem from the
token ‘your’ in the phrase ‘to your organization’ but not from the token ‘your’ in the
phrase ‘your teams.’

Since this “stem” mapping between tokens and evidence units is identical for all
hypotheses, given the same evidence unit, the lightness value of a token is inversely
proportional to the score di f (euevn

m , k) of the hypothesis. In this way, it is also inversely
proportional to the original score �veuevn

m [k] (Equation (9)).

Example 3.6. Continue Example 3.5. For the word ‘your,’ there are two n-grams,
euev1

1 ‘your’ and euev1
3 ‘your organization’ that stem from this word. By setting η = 30,

the lightness of the word ‘your’ for candidate C1 (i.e., hypothesis H1), LH1
yours = 100 −

30×di f (euev1
1 , 1)−30×di f (euev1

3 , 1) = 100−30×0.25−30×0.25 = 85. Correspondingly,
for candidate 2 (i.e., hypothesis 2), LH1

yours = 100 − 30 × 1 − 30 × 0.5 = 55.

LHk
tokenn

(
euevn

m

) ∝ di f
(
euevn

m , k
)−1

∝ (�veuevn
m [k] + α − min(�veuevn

m ))−1 ∝ �veuevn
m [k]

(9)

Our selected visual function v fVEA(Hk) for hypothesis k is the global darkness of
its visual representation, denoted by GD(Hk), which is inversely proportional to the
global lightness GL(Hk) function. We assume that the global lightness value is con-
tributed by the cumulative lightness of all tokens on the representation. This assump-
tion is reasonable when the anonymous snippet is short. GD(Hk) is formulated in
Equation (10).

v fVEA(Hk) = GD(Hk) ∝ GL(Hk)−1 (10)

It can be shown that this visual function satisfies Property 1 as follows. First, the
global lightness function GL(Hk) for hypothesis k is formulated as the cumulative
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Fig. 5. Cumulative evidence unit scoring diagram: the serial that achieves the highest score at the end of
x-axis is for the most plausible candidate.

lightness of all tokens (see step 1 in Equation (11)). By combining Equation (9), the
GL(Hk) function is inversely proportional to the final score of hypothesis k (see steps 2
through 5 in Equation (11)). �f s[k] refers to the same variable in Equations (5) and (6).

GL(Hk) =
tokens(Hk)∑

tokenn

EV∑
evn

EUevn∑
euevn

m

LHk
tokenn

(
euevn

m

)

∝
⎛
⎝tokens(Hk)∑

tokenn

EV∑
evn

EUevn∑
euevn

m

di f
(
euevn

m , k
)⎞⎠

−1

∝
⎛
⎝tokens(Hk)∑

tokenn

EV∑
evn

EUevn∑
euevn

m

�veuevn
m [k]

⎞
⎠

−1

∝
⎛
⎝ EV∑

evn

EUevn∑
euevn

m

�veuevn
m [k]

⎞
⎠

−1

∝
(

�f s[k]
)−1

(11)

In this way, by combining Equation (10), the visual function GD(Hk) is proportional
to the final score of hypothesis k (Equation (12)). Thus, our selected presentation of
hypothesis and evidence unit satisfies Property 1 over visual function GD(Hk), which
indicates that the darker is the hypothesis representation’s holistic color, the higher
final score that this hypothesis possesses.

v fVEA(Hk) = GD(Hk) ∝ GL(Hk)−1 ∝ �f s[k] (12)

After all of the aforementioned coloring is done, one can conclude that the hypoth-
esis with the most holistically darkest coloring representation is the most plausible
one. As the example in Figure 4 demonstrates, representation of hypothesis 2 is more
holistically darker than that of hypothesis 1, and thus the corresponding candidate,
candidate Y, is the plausible author.

In addition, we construct an evidence unit cumulative scoring diagram, as shown in
Figure 5. An area with a different color represents a different hypothesis, and the one
that achieves the highest score at the end of x-axis is the most plausible one. If many
candidates are involved, or the given anonymous text is too long, the cumulative visual
discrimination will be difficult to perceive in Figure 4, although this scoring diagram
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Table III. Confidence Estimation

Events Estimated Confidence
n-gram (lexical level) 0.8311

n-gram (character level) 0.9560
n-gram (syntactic level) 0.6867

Voted maximum 0.9560

is still able to show which hypothesis achieves the highest final score, and the detailed
evidence can still be referred to the visualized evidence.

At the end of this phase, we listed all estimated confidence values in Table III. In
this example, since all three events agreed on same plausible hypothesis, the overall
confidence value is simply the maximum: one.

3.6. Corroboration

Note that linguistic evidence is only one kind of event; other nonlinguistic evidence
exists related to the criminal incident and may support the authorship identification
problem. Evidence may include system logs, network logs, or IP-related information
from an ISP, or even the socioeconomic relationship between each candidate and this
incident. By including this process, linguistic evidence for this authorship attribution
problem becomes a stand-alone event, and investigators can further connect the lin-
guistic and nonlinguistic events to corroborate their final hypothesis on the incident.

4. EXPERIMENTAL RESULTS

The objective of the experiment is to evaluate our approach with respect to the identi-
fication accuracy and robustness under varying circumstance in the authorship attri-
bution problem. We adopted the Enron email dataset, which was made public by the
Federal Energy Regulatory Commission [Shetty and Adibi 2004]. This dataset contains
517,424 emails from 151 users. Email data tend to be relatively short compared to other
literature works and bring more challenges to the authorship identification problem.

As previous work demonstrated, the identification context (the available samples and
available hypotheses/candidates, etc.) of the authorship attribution problem strongly
affects the solution’s performance, whereas most of the previous experiments by de-
sign failed to test their model systematically. To avoid other possible explanations of
our experimental results, we first conducted statistical analysis of the dataset and
then conducted both controlled sampling experiments and stratified randomized ex-
periments.

4.1. Dataset Preprocessing, Analysis, and Experimental Setups

We started by conducting preprocessing procedures on this dataset. The first proce-
dure extracted the body from each email, and the second procedure cleaned up the
identity-related information. The extraction procedure was completed by using a set of
regular expressions that removed the “forward” and “reply” part of the email as well as
all header information. Removing the identity-related information is relatively more
complex. We completed this procedure by employing the following steps:

—We utilized the regular expressions to replace URL links with the <link/> tag.
—We utilized the Name Finder in the OpenNLP5 project to replace all of the found

name entries with the <name/> tag.
—We fetched the employee information from the dataset and generated a list of first

names and a list of last names. We replaced all tokens that were exactly the same,
case ignored, as the names in these two lists with the <name/> tag.

5Available at http://opennlp.apache.org.
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Fig. 6. Dataset analysis.

—Based on the preceding name lists, we found all tokens that had exactly one string
editing distance [Levenshtein 1966] to the names, case ignored, and replaced these
tokens with the <name/> tag. We assume that the author of a given email can only
make one character mistake when typing his or another’s first/last name.

—Also based on the employee information, we constructed a list of short names by
concatenating the first character of a first name and that of the last name. We found
these tokens and replaced them with the <name/> tag in the last sentence for each
email.

After preprocessing, we analyzed the distribution of email length for this dataset. As
plotted in Figure 6, we conducted the empirical distribution analysis, the kernel density
analysis, and the histogram analysis. These diagrams show that most of the emails
inside this dataset are of length less than 11 tokens. According to the criteria concluded
in Burrows [2007], at least 1,000 emails per author are required to guarantee a good
identification result. This introduces a great challenge to authorship identification
solutions when it comes to a context with a small number of writing samples. For the
length distribution, emails of length ranging from 1 to 26 tokens comprise 50% of the
total, emails of length ranging from 1 to 55 tokens comprise 75% of the total, and 99%
of the total are emails of length ranging from 1 to 320 tokens.

To systematically test our approach, we designed two experiments: a controlled ex-
periment and a stratified randomized sampling experiment. The first experiment was
done to evaluate the performance of our approach under different authorship attribu-
tion contexts and to evaluate its performance degradation as the available information
systematically degrades. The second experiment was performed to simulate the real
authorship identification scenario, where emails of varying lengths are sampled for
each candidate author and, in most cases, the size of known author writing samples is
unbalanced.

The authorship attribution problem can be regarded as a multiclass text classifica-
tion problem: we classify the anonymous snippet into a set of predefined classes (i.e.,
candidate authors) based on the known samples from each class (i.e., known author
writing samples). We evaluate our approach with respect to the classification accuracy,
which indicates the percentage of anonymous snippets that are correctly classified.

For all experiments described next, we adopt the 10-fold cross-validation test, where
the emails for each author are split into 10 groups. For a total of 10 iterations, each is
used as a validation set exactly once (used as anonymous samples), and the remaining
9 groups are used as known author samples. The final accuracy measure is the average
of accuracy values of these 10 iterations.
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4.2. Controlled Experiment

In this experiment, we randomly sampled documents multiple times under controlled
conditions and systematically tested our approach with respect to its identification
accuracy. First, based on previous work, we identified the three most critical factors
that significantly affect authorship attribution performance: the size of known author
writings, the size of the candidate set, and the document length. We counted the
document length with respect to the number of tokens that it had. The size of known
author writings is measured by the number of documents (i.e., emails). We did not
break a complete email or reconstruct an email by concatenation. The following are the
selected factors and their selected value intervals:

—The distribution of the email length naturally leads us to conduct experiments on
three different levels: emails of length 1 to 26 tokens (50%), emails of length 27 to 55
tokens (25%), and emails of length 56 to 320 tokens (24%).

—For the size of samples for each author, we selected 20, 40, 80, and 120 emails.
—For the size of candidate set, we chose the typical values: 2, 5, 10, and 20 authors.

Since each candidate author is regarded as a class in a classification problem, it has
its own accuracy value (number of samples that are identified correctly) during the
10-fold validation. In this case, because each author has the same controlled number of
known writing samples, our problem can be attributed to the balanced-class classifica-
tion problem. Hence, we only adopted the Macro Average [Savoy 2012] to calculate the
overall accuracy value in each round. Macro Average accuracy is simply the average of
all accuracy, where all classes are equally weighted.

By controlling the combination of the aforementioned conditions, we conducted three
tests. The first one was conducted by isolating each event to systematically test the
difference between the events with respect to their identifying accuracy. The second
one was conducted by employing the complete VEA approach in Section 3 to compare
its performance with other typical approaches. Since our approach of combining events
(i.e., linguistic modalities) can be attributed as an ensemble method, we also compared
our approach with the typical voting ensemble method.

Figure 7 shows the experimental result of the first test, in which each event is
tested in an isolate manner by employing Algorithm 2. In each diagram, the Num of
Candidates axis represents the size of candidate authors, and the Num of Samples
axis represents the size of samples for each author in the 10-fold validation. The z-
axis indicates Macro Average accuracy under the given values of x and y. Additionally,
the color of the gradient surface indicates the accuracy value: the brighter the color,
the higher accuracy value of the point. For all three diagrams in this figure, the upper
surface is the event for lexical n-gram, which means that it achieves the best identifying
accuracy across all given conditions, and the intermediate surface is the event character
n-gram; on the bottom, the lowest surface is for the event Part-of-Speech n-gram.

The three diagrams in Figure 7 show that as the available information decreases
in the identification context, the identification accuracy for all isolated events drops
significantly. Lexical n-gram performs the best across all given conditions, but it is
significantly affected by the length of the given anonymous document, whereas the
POS n-gram event appears to suffer less from this condition even though it achieves at
most around 80% accuracy. In addition, as the size of candidate increases, performance
of the event lexical n-gram appears to drop more slowly than the other two surfaces.

This result indicates that evidence of different linguistic modalities has different
degrees of sensitivity to the conditions of the given investigation scenario. Hence, for a
confidence estimation task, where a confidence value is part of the identification result
implying reliability of this result, a distinct model should be built for each linguistic
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Fig. 7. Performance comparison between isolated events. For all diagrams, the upper surface is a lexical
n-gram event, the intermediate surface is a character n-gram event, and the lowest surface is a POS n-gram
event.

modality. As well, when combining evidence from these modalities, they should be
weighted accordingly.

Figure 8 shows the experimental results of the second test. In this experiment, we
compare the performance of VEA to the other two typical stylometric techniques. The
selected stylometric feature set of these two approaches consists of 2,302 stylometric
features, as shown in Table IV. The first 302 static features are used and discussed in
Iqbal et al. [2013]. We also included the top 2,000 n-grams ranked by their occurring
frequency; n ranges from 1 to 4. Previous AA research already experimentally demon-
strated that frequency value carries enough stylistic information and outperforms the
information gain scheme [Stamatatos 2009]. We also tried information gain for feature
selection but did not notice significant difference in their performance. As we are not
comparing which feature selection scheme is better, here we only show the result us-
ing frequency. Two attribution techniques were selected for comparison: SVM and J48,
which demonstrated the most comparable performance in Iqbal et al. [2013]. We choose
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Fig. 8. Performance comparison between approaches. For all diagrams, the upper surface is VEA, the
intermediate surface is the stylometric J48, and the intermediate surface is the stylometric SVM.

Table IV. Employed Features for SVM and J48 (2,302 Fatures in Total)

Feature Type Features Count Example
Lexical features 105 Ratio of digits and vocabulary

richness, etc.
Function words 150 Occurrence of after

Static Punctuation marks 9 Occurrences of punctuation !
Structural features 15 Presence/absence of greetings
Domain-specific features 13 Occurrences of words contract,

time, draft, etc.
Gender-preferential features 10 Ratio of words ending with ful

Dynamic Top 2,000 word n-grams, character
n-grams, and POS n-grams ranked by
the occurring frequency

2,000 ‘It is noticed,’ ‘notic,’ ‘tice,’ ‘PRP
VBZ VBN,’ etc.
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Fig. 9. Performance comparison between VEA, voting ensemble, and lexical n-gram event. The x-axis rep-
resents the combination of condition (e.g., 2–120 represents a scenario with 2 candidates and 120 emails for
each of them). Part of the line for the series error rate is omitted, as it is below the lower bound of other
series.

the libSVM [Chang and Lin 2011] for SVM implementation and the J48 decision tree
C4.5 implementation in weka.6

As indicated in Figure 8, which is the same diagram representation used in
Figure 7, our VEA approach consistently outperforms the other two typical approaches.
Even though the given anonymous document is only of length 1 to 26, it can still achieve
more than 85% accuracy in a two-candidate scenario. In addition, as the diagrams show,
our VEA approach is more robust against information drops with respect to the candi-
date size and the available known author samples.

In the third test, we compared our VEA approach with an ensemble method based
on voting, an ensemble method combining events using the classification error rate,
and the lexical n-gram-event-only approach. The classification error rate is collected
by conducting a 10-fold cross-validation test on the known author writing samples.
Thus, each of the known author writing samples is tested exactly once. We use similar
equations in AdaBoost [Freund and Schapire 1995] to derive the weight for each event.
First, the error rate is calculated using the first equation in Equation (13), and Xdoci = 1
if the given event incorrectly classifies document doci; otherwise, Xdoci = 0. Then, the
weight of event evn is calculated using the second equation in Equation (13). If the
weight is less than zero, then we treat it as zero (i.e., if the event cannot correctly
classify 50% of the samples, then the weight will be zero). Finally, each classifier is
combined to derive the final prediction by using weighted voting.

The experimental result is shown in Figure 9. The y-axis represents Macro Average
accuracy, and the x-axis stands for the combination of conditions. For example, “2–
120” stands for 2 candidate authors, each of whom has 120 writing samples. As the
diagram illustrates, our VEA approach promotes the identifying accuracy and performs
better than all of the others, especially when the given documents are short. It always
outperforms the voting ensemble approach, and it performs better than the pure lexical
n-gram approach, except in three scenarios. By using the pairwise t-test, it also turns

6http://www.cs.waikato.ac.nz/ml/weka/.
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Fig. 10. Performance of VEA on unbalanced-class problem. The x-axis represents the case of sampling (e.g.,
2a is a sampling with two authors, whereas 2b is another sampling with two different authors).

out that the VEA approach outperforms the others.

error(evn) = 1
10 × |M|

M∑
doci

Xdoci weightevn = log
1 − error(evn)

error(evn)
(13)

4.3. Stratified Randomized Sampling Experiment

In this section, we describe the second experiment. To simulate the actual authorship
identification task, we conducted the stratified randomized experiment, where the
sample size for each author is unbalanced and the variant in document length of the
samples is much larger. In this experiment, the number of emails that we randomly
sampled (without replacement) for each candidate depends on how many emails this
candidate actually had in the whole dataset. We also manually examine and conduct
preprocessing steps for each email with respect to its identity-related information to
avoid the explanation that the high accuracy is simply attributed to the capture of
identity-related information rather than the writing style.

Both the Macro Average and Micro Average accuracy measures are employed in this
experiment. As mentioned earlier, Macro Average is simply the average of accuracy
value from each author (i.e., class in classification problem). Micro Average accuracy
employs the confusion matrix to calculate the accuracy value for multiclass classifica-
tion [Savoy 2012]. Typically, Micro Average will yield better results in an unbalanced
classification problem because it gives more weight to the class that has more samples.
For example, in a two-class classification problem, if for the first class 1 sample is cor-
rectly classified out of 10, and for the second class 19 are correctly classified out of 20,
the Macro Average accuracy is simply (1/10+19/20)/2 = 0.525, but the Micro Average
is (1 + 19)/(10 + 20) = 0.667.

The experimental result is shown in Figure 10. The labels on the x-axis indicate
the given scenario. For instance, “2a” means a stratified sampling on two random
authors, whereas “2b” is another stratified sampling on two random authors. The y-
axis represents the accuracy value, and two serials in the diagram respectively stand
for the Macro Average and the Micro Average. As shown in this diagram, our VEA
approach can still handle unbalanced class problems and achieve good identifying
accuracy with respect to both Macro Average and Micro Average.

ACM Transactions on Information and System Security, Vol. 17, No. 3, Article 12, Publication date: March 2015.



A Visualizable Evidence-Driven Approach for Authorship Attribution 12:27

Table V. Confidence Estimation Result

Variable Coefficient z-Value Pr(>| z |)
scoreavg 1.204e + 01 7.429 1.10e − 13
scoremax −4.234e + 00 −5.747 9.07e − 09
scoremin −7.368e + 00 −4.333 1.47e − 05

distmax−runnerup 2.032e + 00 4.818 1.45e − 06
testlength 4.775e − 04 5.004 5.63e − 07

tokenscommon 5.811e − 04 4.378 1.20e − 05
MAE : 0.057536618 R2 : 0.90564199

4.4. Confidence Estimation

In this section, we present our confidence estimation results. To verify how well our
selected features can model the identification precision value, we first collected the
input samples for building the estimation model from all previous runs of the VEA
approach in the preceding experiments. Specifically, these samples were collected from
line 23 of Algorithm 3 based on the features in Table V. These samples have been
padded with the prediction precision on test set (see lines 17 through 20 of Algorithm 3).
This test is to evaluate whether the features that we selected can model the output
precision value. The regression modeling result is on the first six rows of Table V, which
includes the estimated coefficients and the standard z-test for each coefficient. In this
table, the z-values indicate that our selected features all significantly affect the target
precision attribute. Note that the gap statistic distmr [Koppel et al. 2006] affects the
prediction result, but the distribution-related features in scores (i.e., socreavg, scoremax)
play relatively more important and stable roles.

MAE = 1
|AllT est|

|A llTest|∑
i

|EstimatedConf idencei − Classi f icationPrecisioni| (14)

To verify whether our estimation model can actually predict the accuracy value of the
unseen data (unseen scenarios), we collect all estimated confidence values from VEA in
all of the preceding experimental runs. Specifically, these predicted values come from
line 19 of Algorithm 5. We also gather the corresponding actual accuracy value in the
testing phase in all of our 10-fold cross-validation experiments. By comparing these
predicted accuracy values and actual accuracy values, its performance on the unseen
data can be evaluated. Both mean absolute error (MEA) and R2 statistics are shown in
the last row in Table V. The MAE value, calculated using Equation (14), indicates that
on average our predicted confidence value has a 5% difference to the actual accuracy
value, whereas the R2, which closes to 1, indicates good prediction.

5. CONCLUSIONS

In this article, we present our VEA for the authorship attribution problem. To facilitate
its interpretability and explainability, it is designed according to the EEDI framework
and is able to visualize and corroborate the linguistic evidence supporting our out-
put attribution results. Additionally, we conducted comprehensive experiments to fully
evaluate our VEA approach and have shown that it can achieve state-of-the-art au-
thorship attribution accuracy. We have noticed the scalability issues of this method;
when dealing with a scenario that includes more than 20 candidates, it is more suitable
to identify a small subset of candidates using other scalable methods, then after that
employ our method to construct cumulative visualized evidence.

Our future research will focus on the following directions. First, to evaluate the
performance of the proposed approach regarding the precision versus recall measure
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(e.g., F-measure and ROC cure) on the open-set authorship problem, systematic exper-
iments are required to be carefully designed and conducted. Second, tremendous works
already exist in the literature of machine learning for classifier combination, and we
will explore more deeply for higher accuracy in the future. In addition, the proposed
visualization scheme is not very applicable to long anonymous documents. One possible
solution is to remove n-grams that share similar lightness among hypotheses.
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