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three layers. The data storage level and the computational level
provide flexibility of deploying on a single workstation or on a cluster.

Figure 1. The binary analysis process.
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Assembly code is one of the critical processes for detecting
and proving software plagiarism and software patent | |
infringements when the source code is unavailable. Itisalsoa + -y O Ul R
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Figure 2. An example of cloned subgraph. it can identify the cloned parts that
have been previously analyzed.

Evaluations

We construct a new labeled
one-to-many clone dataset by linking
the source code and assembly code
level clones.

-
Challenges

However this task is challenging.

The number of assembly functions scales

up to millions. As a clone search engine, it
needs to achieve the following requirements:

We benchmark the performance of twelve

existing state-of-the-art solutions. Kam1n0
boosts the clone search quality and it scales to
millions of assembly functions.

Commented assembly

function

® Scalable: the repository can index millions of

assembly functions. Kam1n0 won the second prize at the 2015 Hex-Rays

e Efficient: the average clone search response © “plugin Contest. It is published in the 2016 ACM SIGKDD
@ time should be around 1 second. Conferences on Knowledge Discovery and Data Mining.
® Accurate: low false positive rate for query

that has lots of results; high recall for El_..!._ AE Kam1nO is open-source and available on
query that has less results. e GitHub. Scan the code to check out
Kam1nO and the publication.

Figure 3. A shared repository.



