Kam1n0®

Simplifying Reverse Engineering of Software for Security Analysis
Steven H. H. Ding* Benjamin C. M. Fung* Philippe Charland*

*Data Mining and Security Lab, School of Information Studies TEChnical DEta“S
McGill University, Montreal, Canada

+Mlission Critical Cyber Security Section,
Defence R&D Canada - Valcartier, Quebec, Canada cesutsinson . [pE— ' s

format
LSH-based Assembly code POST/GET

MR-based .
assembly code processing
subgraph search e
clone search utilities

Return results Submit jobs

DPersists data

Research Problem

Reverse engineer

(Memory and CPUs)

__ Spor ‘

|
Load/cache data C

, /

5 / Data Storage layer (hard drives)

- /

Did anvone analvze Graph-based Bucket-based . -
_ . / K imil y data storage data storage ZO SEL 2atabaze %
A binary file k ZO:cnet ?lng similar model model pache Cassandra
erore:
Disassemble S - :
- s it a library Figure 4. The solution stack.
GEEENN function?

LDR R3, [R11,#sct]

or R 0 Manual analysis The Kam1n0 engine is designed for general key-value storage and
SR ' Apache Spark computation framework. Its solution stack consists of

BEQ loc_DFDO
LDR R3, [R11,#sct]
LDR R3, [R3]

STR R3, [R11,#sct]

loc_DFCO ‘
LDR R3, [R11,#sct]

CMP R3, #0
BNE loc_DFAO

three layers. The data storage level and the computational level
provide flexibility of deploying on a single workstation or on a cluster.

Figure 1. The binary analysis process.

! ! H ! ! ! 1 1 1 1 1 1 i 1 1 1

! H ! ! ! H 1 1 1 ! 1 ' i ' 1 1
i 1 1 1 i 1 i i i i 1 i i i i i
| P b P . i Pt P! i
! ! ! ! ! 1 1 1 1 1 1 i ' 1 1

M A A

.
.
.
.
, i
i :
______ \,a \ p
1 |' 1] I
o P i
1] 1 !

i AL A LR
Reducer\ ;
10 CI CIL S 1B

i
i
i
i i
\, J

\
i

{ /

\ A

\
H
H

Assembly code is one of the critical processes for detecting
and proving software plagiarism and software patent | |
infringements when the source code is unavailable. Itisalsoa + -y O Ul R

H
o=

i

i

i

i

i

i

-
VoS
o
[
o
o
P
[
[
o
o
[

push eax push eax

push offset Format

push offset [LitaElE

common practice to discover exploits and vulnerabilities in tevelter O G fka-cke | rea
existing software system. However, it is a manually intensive and o 5
, . levelt o W' W fKoCke] e s donepar
tlme_consumlng proceSS- """""""""""""""""""""""""" S W e { | I ' 0000 oo A cloned subgraph
AVAVAVA | AVA ™1 Cloned subgraphs
bl bl sl S Clone: Repository Function _ LOVEIO e o e A K AT e ofafncten
e .. B A binary file can be _ h . . " - aloorith
R - disassembled to a list Figure 5. The proposed new LSH and graph search algorithm.
o oo | L e (ool " of assembly functions.

A function can be We seek to design new data mining techniques that address

call ds:printf call ds:printf

ottt | L[e the challenges of assembly clone search. We design an
e I b v T — represented as a control . . L . .

e — flow graph (see Fig. 2) A Adaptive Locality Sensitive Hashing algorithm to
N O o - 162 mitigate the imbalanced data distribution problem

push offset aTheKeyIsD |

S | :pri
call ds:printf : call ds:printf jz short loc_4010C3

A eceyizn o |0V [ebveare.0l, 2 practical clone search engine

aid esp, 3 peni 260 esp, 8 of traditional LSH. Moreover, we proposed a new
jmp short loc_401050 ICIone jmp EI.E_;IQlQDS Should be able to decompose the . ’ p p
e || e o — : . MpaReduce algorithm to search for the
mov edx, [ebp+arg_o0] I mov eax, [ebp+arg_o0] mm [ebptar:a] g|Ven funCUon In tO a Set Of I d b h
::3:: :'(;:set alnvMsg l zz:: ::set alnvMsg ﬁ :Fﬂ . C One Su ra S-
i ozn cloned subgraphs. A subgraph consists of grap
thort Toc aonioo IENESY R - several interconnected basici blocks. An
T e | s N effective and effcient code clone search
- = R R T Smaeens © engine with a shared repository can greatly

reduce the effort of this process, since

Figure 2. An example of cloned subgraph. it can identify the cloned parts that
have been previously analyzed.

Evaluations

We construct a new labeled
one-to-many clone dataset by linking
the source code and assembly code
level clones.

-
Challenges

However this task is challenging.

The number of assembly functions scales

up to millions. As a clone search engine, it
needs to achieve the following requirements:

We benchmark the performance of twelve

existing state-of-the-art solutions. Kam1n0
boosts the clone search quality and it scales to
millions of assembly functions.

Commented assembly

function

® Scalable: the repository can index millions of

assembly functions. Kam1n0 won the second prize at the 2015 Hex-Rays

e Efficient: the average clone search response © “plugin Contest. It is published in the 2016 ACM SIGKDD
@ time should be around 1 second. Conferences on Knowledge Discovery and Data Mining.
® Accurate: low false positive rate for query

that has lots of results; high recall for El_..!._ AE Kam1nO is open-source and available on
query that has less results. e GitHub. Scan the code to check out
Kam1nO and the publication.

Figure 3. A shared repository.

