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Computers are increasingly used as tools to commit crimes such as unauthorized access
(hacking), drug trafficking, and child pornography. The proliferation of crimes involving
computers has created a demand for special forensic tools that allow investigators to look for
evidence on a suspect's computer by analyzing communications and data on the computer's
storage devices. Motivated by the forensic process at Sûreté du Québec (SQ), the Québec
provincial police, we propose a new subject-based semantic document clustering model that
allows an investigator to cluster documents stored on a suspect's computer by grouping them
into a set of overlapping clusters, each corresponding to a subject of interest initially defined
by the investigator.
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1. Introduction

The process of investigating digital devices for the purpose of generating digital evidence related to an incident under
investigation is commonly referred to as Digital Forensic Investigation (DFI). According to Carrier et al. [5], digital evidence of an
incident is any digital data that supports or refutes a hypothesis about the incident. The task of analyzing persistent documents
found on a storage device of a suspect's computer is an essential part of the DFI process to gather credible and convincing
evidence. However, this task is daunting due to the large number of documents usually stored on a hard disk. The continuously
increasing size of storage devices makes the task even more difficult.

Existing digital forensic tools for analyzing a set of documents provide multiple levels of search techniques to answer questions
and generate digital evidence related to the investigation. However, these techniques stop short of allowing the investigator to
search for documents that belong to a certain subject he is interested in, or to group the document set based on a given subject.

In this paper, we propose a new document clustering model that allows an investigator to cluster all documents on a suspect's
computer according to certain subjects he is interested in (e.g. hacking, child pornography). Once the documents are clustered in
groups, each corresponding to a subject, the investigator can search for documents that belong to a certain subject.

There have been several attempts to define a digital forensic model that abstracts the forensic process from any specific
technology, such as the Digital Forensics Research Workshop (DFRWS) model for digital forensic analysis [31], Lee's model of
scientific crime scene investigation [25], Casey's model for processing and examining digital evidence [6], and Reith's model for
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digital forensic analysis [7]. DFRWS is a pioneer in developing the forensic process. It defined Digital Forensic Science as a linear
process:
The use of scientifically derived and proven methods toward the preservation, collection, validation, identification, analysis,
interpretation, documentation and presentation of digital evidence derived from digital sources for the purpose of facilitating or
furthering the reconstruction of events found to be criminal, or helping to anticipate unauthorized actions shown to be disruptive
to planned operations.

[31]
Fig. 1 illustrates the Digital Forensic Investigation (DFI) process as defined by DFRWS. After determining items, components,
and data associated with the incident (Identification phase), the next step is to preserve the crime scene by stopping or
preventing any activities that can damage digital information being collected (Preservation phase). Following that, the next step
is collecting digital information that might be related to the incident, such as copying files or recording network traffic (Collection
phase). Next, the investigator conducts an in-depth systematic search of evidence related to the incident being investigated, such
as filtering, validation, and pattern matching techniques (Examination phase) [7]. The investigator then puts the evidence
together and tries to develop theories regarding events that occurred on the suspect's computer (Analysis phase). Finally, the
investigator summarizes the findings by explaining the reasons for each hypothesis that was formulated during the investigation
(Presentation phase). In the examination phase, investigators often utilize certain forensic tools to help examine the collected
files and perform an in-depth systematic search for pertinent evidence. However, there are three problems with today's computer
forensic tools:

High-level search. Since manual browsing is time consuming, investigators often rely on the automated search capability
provided by either the operating system or existing DFI tools to conduct a search on the documents stored on the suspect's
computer in order to identify related evidence. The main automated search techniques provided by current DFI tools include
keyword search, regular expression search, approximate matching search, and last modification date search. Unfortunately, such
techniques are applied directly against all of the stored documents without any advance knowledge about the topics discussed
in each document. Hence, the results based on these search techniques generally suffer from a large number of false positives
and false negatives.
Evidence-oriented design. Existing DFI tools are designed for solving crimes committed against people, in which the evidence
exists on a computer; they were not created to address cases where crimes took place on computers or against computers. In
general, DFI techniques are designed to find evidence where the possession of evidence is the crime itself; it is easier to solve
child pornography cases than computer hacking cases [13].
Limited level of integration. Most existing forensic tools are designed to work as stand-alone applications and provide limited
capability for integration with each other or other custom tools or resources the digital forensic team might have already
developed.

Our solution attempts to address these problems by answering the question of whether or not evidence for events defined by
the investigator, such as hacking or child pornography, is present in the documents collected from the suspect's computer. The
investigator initially defines the subjects (events) he is interested in investigating by providing a set of terms to describe each
subject, such as vocabularies that are commonly used in the subject. We introduce a novel subject-based semantic document
clustering algorithm that groups (clusters) all documents into a set of overlapping clusters, each corresponding to one unique
subject. Fig. 2 illustrates the overall process of our solution.

The general intuition of our clustering approach is to generate a set of expansion vectors for each given subject using its initial
subject definition. Each expansion vector consists of a set of weighted terms related to the subject, where each term is generated
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Fig. 1. Digital Forensic Investigation (DFI) process as defined by DFRWS.
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using WordNet [29]. Our clustering algorithm also supports integration with the Extended Synonym List (ESL), a list of
forensic-specific synonyms and related terms provided by the digital forensic investigation team at Sûreté du Québec (SQ) for the
purpose of generating terms that are related to the subject. Once the expansion vectors for a subject are generated, they will be
used with the initial subject definition to construct a vector of weighted term frequencies called subject vector such that the
problem of measuring the similarity between a document and a subject is reduced to measuring the similarity between the
document and the subject vector.

The generated clusters overlap for two reasons: First, the subjects are not necessarily independent of each other; for example,
“hacking” and “cyberterrorism” subjects can be related as the cyberterrorist might be a hacker who broke into a government's
website. Second, a document might discuss more than one subject (topic), and consequently it belongs to more than one cluster.
In order to define a subject, an investigator has to provide a set of associated terms that are commonly used in the same context of
the subject.

Example 1.1. Let us assume that the investigator is interested in investigating whether hacking events occurred on the suspect's
computer. He might provide the following set of terms (along with their PoS tag) to define the subject:

bHacking>hack:Verb,security breach:Noun,login:Noun,Nmap:Noun,permission:Noun,exploit:Verbb/Hacking> ■

During the clustering process, the files our clustering algorithm concluded did not belong to any of the subjects are grouped
together in one generic cluster. The investigator can then browse the documents in this cluster manually or apply a standard
clustering algorithm, such as bisecting k-means algorithm, to conduct further analysis on them.
1.1. Contribution

As illustrated in Fig. 1, our contributions fall under the examination phase of the digital forensic investigation process. We
summarize the major contributions of the paper as follows:

• Subject Vector Space Model: We model our clustering solution by proposing Subject Vector Space Model (SVSM), a new model
based on Vector Space Model (VSM) [36] and Topic-based Vector Space Model (TVSM) [3]. In SVSM, each dimension represents
a subject, where terms and documents are represented in the space according to their relations to all subjects. This allows a
more realistic representation of the terms because terms inherently are not are orthogonal to each other. This representation
also allows us to reduce the clustering problem of a document to determine the coordinate of this document on each subject
vector. This is reflected in our proposed similarity function Sim(d,si) that measures the similarity between any document
d ∈ D and subject si ∈ S, where D is a collection of documents and S is a set of subjects.

• Novel subject-based semantic document clustering algorithm: We introduce an efficient and scalable subject-based semantic
document clustering algorithm that expands the term vector representing each subject using WordNet [29]. Word Sense
Disambiguation (WSD) algorithm [9] is integrated in the process to determine the appropriate sense (and accordingly, the
synonym set) of a term inWordNet in the context of the initial terms that define a subject. The integration of WSD improves the
precision of our clustering algorithm by reducing the polysemy affect [10,40].
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• Dynamically capturing suspects' terminologies: We make use of the document set to incrementally expand the subject vector
by adding top frequent terms from the most similar documents to the subject. WSD is also integrated in this phase to determine
the dominant sense of the term, which is the sense used the most in the several contexts in which the term appears.

• Experiments on real-life data: We conduct an extensive experimental study over three real-life data sets and examine the
effectiveness of the algorithm according to subject vector length and document-score thresholds. We also demonstrate that our
approach is highly scalable for large data sets.

The rest of the paper is organized as follows. Section 2 reviews background knowledge and related work. Section 3 provides
the formal definition of our clustering problem. Section 4 demonstrates the modeling of our solution. Section 5 introduces a
three-stage semantic clustering algorithm. Comprehensive experimental results are presented in Section 6. Finally, we conclude
the paper in Section 7.
2. Related work and background knowledge

The traditional document classification algorithms [11,39,28,21] cannot solve our subject-based clustering problem because
there is no training data available to train the classifiers of the classification algorithms. Similarly, semi-supervised document
clustering approaches [14,35,23,17,16] are unable to solve our clustering problem, regardless of whether they are search-based or
similarity-based. This is because the initial definition of a subject, a short set of representative terms, cannot be mapped to labeled
documents, constraints, or used as a feedback to adjust the resulting clusters. Zhao and Karypis [42] proposed a semi-supervised
clustering approach to address this problem; however, their approach assumes that there exists prior knowledge of the natural
(major) clusters within the document set. This is not applicable to our case as investigators are unlikely to have prior knowledge
of all criminal events that have already occurred on a suspect's computer. In our case, the investigator provides an initial vector for
each subject (topic) that he would like to investigate, regardless of whether or not this subject exists in the document set.

The traditional partitional [18,19,30] and hierarchical [12,41,8] document clustering algorithms are not designed to accept any
feedback from the user; therefore, they cannot solve our subject-based clustering problem because they cannot take advantage of
the user-provided initial subjects definitions.

Kuropka et al. [3] proposed an algebraic model called Topic-based Vector Space Model (TVSM) for information retrieval. TVSM
is a d dimensional space where each dimension represents one fundamental topic, and all fundamental topics are independent
from each other (orthogonal). Terms, documents, and queries are represented as vectors, each represented by its coordinates on
all dimensions (topics). TVSM does not define the term-topic relation (length of each term vector and the inter-term vector
angles). This is important in order to determine the similarity between a document and topic. Enhanced Topic-based Vector Space
Model (eTVSM) [33] attempted to define the term-topic relation by providing an algorithm that uses WordNet ontology as the
source of semantics. Our proposed Subject Vector Space Model (SVSM) on the other hand is also based on TVSM, where each
dimension corresponds to an interested subject originally provided by the investigator. However, we propose a novel approach to
define the subject vector for each dimension in SVSM, consequently allowing us to determine the term-subject relation of any
term and subject in SVSM. In addition, we propose a novel similarity function that calculates the similarity (angle) between any
document vector and subject vector in SVSM.

WordNet [29], a lexical database for the English language, is utilized to establish semantic relations between terms during
several phases of our clustering algorithm. WordNet's lexicon is divided into four major categories: nouns, verbs, adjectives, and
adverbs. The basic unit of a WordNet lexicon is synonym set (synset), in which each synset includes a word, its synonyms,
definition, and sometimes example. Any word is assumed to have a finite number of discrete meanings, where each meaning
under one type of part of speech (PoS) is called a sense. Each sense of a word in WordNet is represented in a separate synset.
WordNet supports two types of relations: semantic and lexical.

• Semantic relation defines a relationship between two synsets by relating all of the words in one of the synsets to all of the words
in the other synset. Hypernymy, hyponymy, meronymy, and troponymy are some examples of sematic relations.

• Lexical relation defines a relationship between two particular words within two synsets of WordNet synsets. Antonym and
Synonymy are two examples of lexical relations.

According to Leibniz,1 synonymy can be defined as follows: “two expressions are synonymous if the substitution of one for the
other never changes the truth value of a sentence in which the substitution is made.” However, since such global synonymy is rare, we
use synonymy relative to a context: “two expressions are synonymous in a linguistic context C if the substitution of one for the other in
C does not alter the truth value.”

Some words are monosemous with only one meaning or sense. However, many words have multiple senses, so words can be
either homonyms2 or polysemous.3
1 http://plato.stanford.edu/entries/leibniz/.
2 Two senses of a word are considered homonyms if they have the same spelling but completely different meanings.
3 A word is considered polysemous if all of its senses are various shades of the same basic meaning.

http://plato.stanford.edu/entries/leibniz/
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3. Problem definition

In this section, we formally define the research problem. First, we illustrate the user input to define each clustering subject in
Section 3.1. Then, we explain the preprocessing steps of the data set in Section 3.3 and provide the formal definition of our
clustering system in Section 3.4, followed by a problem statement.

3.1. Initial subject definition

Suppose an investigator of a digital forensic case is interested in clustering a collection of documents by relevant subjects,

denoted by S. For each subject si ∈ S, the investigator has to provide a set of terms, denoted by s0i ¼ t1;…; t s0ij j
n o

, that describes

the subject. The input terms, for example, can be the vocabularies that are commonly used in the subject.
For each input term t ∈ si

0, the investigator should provide its part of speech PoSt. Providing PoS for each term is notmandatory;
however, it is highly recommended to help increase the accuracy of our clustering algorithm by avoiding homonymous word
problems, where more than one distinct meaning exists for the same word. Moreover, PoSt should be either “verb” or “noun.”We
limited ourselves to only verbs and nouns because they are the most content-bearing types of words [27].

3.2. Extended Synonym List (ESL)

The digital forensic investigation team at Sûreté du Québec (SQ) maintains the Extended Synonym List (ESL), a list of forensic-related
synonyms and related terms such as acronyms and slang terms that are commonly used by criminals and do not usually exist in
standard dictionaries. ESL is not an incident-specific list, but rather a shared resource that is accessible by all investigators and usable
in any incident. Our clustering algorithm utilizes this tool in order to generate terms related to clustering subjects.

3.3. Preprocessing

The following preprocessing procedures are applied on the initial vectors and the document set.

3.3.1. Initial vectors preprocessing
In each initial vector, words that have morphological forms are normalized to their canonical form. We employed the Porter

stemming algorithm [34] for this purpose. This algorithm, for example, reduces the words “exploiting”, “exploited”, and
“exploitation” to the root word “exploit”.

3.3.2. Document set preprocessing
Stopwords removal, stemming, and tokenization preprocessing procedures are applied on each document with the goal of

reducing its dimensionality, noise, and computational complexity while avoiding a significant loss of information.

3.3.2.1. Stopwords removal. Words that do not convey any meaning as well as common words, such as ‘a’ and “the”, are removed.
We compiled a static list of stopwords to be used for this purpose.

3.3.2.2. Tokenization. Given a sequence of characters in a document, the tokenization process separates the characters into tokens
by using white spaces and punctuation marks as separators. For example, the string “George, Sam and Mike” will yield three
tokens: “George”, “Sam”, “Mike”.

After the preprocessing, the set of distinct terms in a given document set is denoted by T. Next, we index all documents by
their terms and compute the weight of the terms in each document:

Indexing. For each term t∈T, we maintain a list of documents that contain t so this list can be efficiently retrieved.
Weight assignment. As we will see in Section 4.2, each document is represented by a vector whose coordinates are the weights
of the document in each subject dimension. To achieve such representation, we first determine the weight of each term in each
document using term frequency–inverse document frequency (tf–idf) [37]. Specifically, we determine each weighted term
frequency ℧t,d = tf(t,d) × idf(t,D), where tf(t,d) is the frequency of term t in document d and idf(t,d) is the inverse document
frequency of term t in the document set D:
idf t;Dð Þ ¼ 1þ log
Dj j

1þ Freqt;D

 !
ð1Þ

|D| is the number of documents in the document set D, and Freqt,d is the number of documents in D that contain the term t.
where
The tf–idf method was chosen because it considers both the local and global frequencies of a term when computing its weight. In
other words, the weight of a term in a document is computed not only based on its frequency in this document, but also on the
frequency of the term within the document set.
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3.4. Clustering system definition

We can now define our clustering system as a tuple:
where

where
CL ¼ D; S; SVSM; Sim d; sið Þ; C½ �

:

• D = {d1,d2,…,d|D|} is a set of input documents to be clustered.
• S = {s1,s2,…,sn} represents a set of n subjects, where each subject si is a set of weighted terms that are semantically generated
based on the initial definition vector si0.

• SVSM is a framework for representing terms, documents, and subjects as vectors, as well as defining the relationship between
them.

• Sim(d,si) is a similarity function that measures the similarity between a document d ∈ D and a subject si ∈ S, and returns a real
value that ranges between 0 and 1.

• C ¼ C1; C2;…; Cnf g is a set of n overlapping output clusters, each of which is associated with one subject. In other words, each
cluster Ci∈C contains a set of retrieved documents for subject si ∈ S given a similarity threshold τ:
Ci ¼ d d∈D; Sim d; sið Þ≥ τj g : τ∈ 0;1½ �f ð2Þ
3.4.1. Problem statement
Given a set of subjects S, the initial definition of each subject si ∈ S, a collection of documents D, and a similarity threshold τ,

the problem of subject-based semantic document clustering is to group the documents in D into a set of overlapping clusters
C ¼ C1; C2;…; C Cj j

� �
such that each cluster Ci is associated with one and only one subject si ∈ S and Ci ¼ d d∈D; Sim d; sið Þ≥τj gf .

4. Solution modeling

One major contribution of our proposed clustering method is to incrementally expand the subject vectors from the initial
subject definitions. In this section, we first describe the concept of expansion vector, followed by the Subject Vector Space Model
(SVSM) and the similarity function that measures the similarity between a document and subject vector in SVSM.

4.1. Subject vector generation

Our goal is to represent each given subject by a set of weighted terms that are most related to the subject. Therefore, for each
subject si ∈ S, our clustering algorithm generates a set of expansion vectors s1i ; s

2
i ;…spii

� �
such that each expansion vector sir is a

set of weighted terms that are semantically related to the terms in the previous expansion vector sir − 1, and the first expansion
vector si

1 is semantically generated from the initial subject definition vector si
0 provided by the investigator for subject si. The

number of generated expansion vectors varies from one subject to another. Note that all terms that belong to the same expansion
vector are assigned the same weight value. However, the more expansion vectors we generate for a subject, the higher the chance
of introducing noise from unrelated terms that degrades the accuracy of our clustering algorithm. Therefore, the weight of the
generated terms decreases as we generate more expansion vectors.

Subject vector si can then be constructed by taking the union of the terms in the initial definition vector si0 with all the terms in
the expansion vectors of si:
si ¼ s0i ∪
r¼pi

r¼1
sri ð3Þ
4.2. Subject Vector Space Model (SVSM)

We introduce the Subject Vector Space Model (SVSM), an algebraic model generated based on the Vector Space Model (VSM) [36]
and the Topic-based Vector Space Model (TVSM) [3]. SVSM is an n-dimensional vector space in which each dimension (axis)
represents a subject si ∈ S. Similar to TVSM, all axis coordinates in SVSM are positive, and all axes are orthogonal to each
other:
∀ si
→
; sj
→ ∈SVSMn

≥0 :si
→ ⋅ sj

→¼ 0

(si
→ ⋅ sj

→
) denotes the dot product between si

→
and sj

→
.
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Fig. 3 illustrates an example of the Subject Vector Space Model. The representation of terms and documents in SVSM is
analogous to their representation in TVSM.

4.2.1. Term representation
Terms are represented in SVSM with respect to subject dimensions in SVSM, i.e., each term t∈T is represented as an

n-dimensional vector t
→

whose coordinates are the weights of the term in each dimension:
where
t
→¼ ℧ t;si

ji ¼ 1;2;…;n
n o

℧ t;si is the weight of term t in subject dimension si. If a term t exists in the set of weighted terms of subject si, then there will
where
be a weight value assigned to t and ℧ t;si will be equal to this value; otherwise, ℧ t;si ¼ 0.

The norm (positive length) of a term vector t
→��� ������ ��� represents the global weight of that term:
jj t→ jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

℧ t;si

� �2vuut :
To measure the similarity between term vectors, we utilize the cosine similarity measure [38]. Other similarity measures could
have been used instead, such as Pearson coefficient or Euclidean distance; however, we chose the cosine similarity measure
because it abstracts the length of the documents and focuses on the correlation between their vectors. Since all axis coordinates
are positive, the cosine similarity value between any two term vectors is always between zero and 1:
0≤ θ ti
→

; tj
→� �

≤ π=2⇒cos θð Þ∈ 0;1½ �

θ is the angle between term vectors ti
→

and tj
→

in SVSM.
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4.2.2. Document representation
Each document d ∈ D is represented as an n-dimensional vector d

→
whose coordinate in each dimension si

→
is the summation of

the products of each term coordinate with the weight of a term in document d:
where
d
→
¼ 1

ψd
∑
t∈T

t
→

:℧ t;d ψd ¼j jj∑
t∈T

t
→

:℧ t;djj

, ℧t,d is the weight of term t in document d. Also note that we divide all the coordinates of the document by its norm value
where
ψd to normalize the document length to 1.

Similar to term vectors, we utilize the cosine similarity measure to gauge the similarity between two document vectors. Since
the similarity value between any two term vectors is between zero and one, the similarity value between any two document
vectors is also between 0 and 1. This provides a more intuitive way to understand the similarity between documents, where 0
means the two document vectors are not similar at all and 1 means the two document vectors are either identical or their
coordinates differ by a constant factor.

4.3. Document-subject similarity function

Having determined the way to represent terms and documents in SVSM, we can now define a new similarity function that
measures the similarity between a document and a subject and returns a real value that ranges between 0 and 1. We observe that
the similarity between a document d and a subject si corresponds to the coordinate value of document vector d

→
in dimension si

→
,

i.e.,
Sim d; sið Þ ¼ 1
ψd

∑
t∈T

℧ t;si
�℧ t;d ð4Þ

℧ t;si ;℧ t;d are the weight of term t in subject si and document d, respectively.
5. Semantic clustering algorithm

In this section, we illustrate our approach for semantically clustering a document set D based on initial subject definitions
{s10,s20,…,sn0}. The objective is to utilize the initial subject definition vector of each subject si ∈ S to semantically generate
expansion vectors such that the final representation of the subject can be expressed as defined by Eq. (3). To achieve this
objective, we apply two computational linguistics techniques — Word sense disambiguation (WSD) and part-of-speech (PoS)
tagging. WSD is used with words that have multiple meanings in order to determine the most appropriate sense of a word
within a sentence. PoS tagging, on the other hand, is used to label a word in a sentence with its corresponding lexical
category (Noun, Verb, etc.). Brill's tagger [4] is a rule-based tagger employed in our algorithm to perform the PoS tagging
tasks.

5.1. Slang words processing

If the slang word to be processed is provided by the investigator as part of the initial subject vector, then no PoS tagging is
required as the investigator must provide the PoS for each word in the initial vector. However, to determine the most appropriate
sense of a slang word, our algorithm usesWordNet while applying LeskWSD algorithm (as we will see in Section 5.1.2). WordNet
can still be used in this case because it partially supports informal words. For example, if we search WordNet for the keyword
“coke”, the sixth noun sense we get is: “coke, blow, nose candy, snow, C — (street names for cocaine).” If the slang word does not
exist in WordNet, then the word remains in the subject vector, and does not contribute to the expansion of the vector, but can still
be used to cluster the document set. On the other hand, if the slang word was captured from the suspect's documents by
identifying it as a frequent term, then we use WordNet and Lesk algorithm to perform WSD and PoS (as we will see in
Section 5.1.3). If the word does not exist in WordNet, then our tagger will attempt to identify its PoS using the context (sentence)
in which the word exists.

After modeling the subjects, the algorithm clusters the documents by measuring the similarity between each document d ∈ D
and each subject si ∈ S and generates a set of overlapping clusters C accordingly.

Algorithm 1 provides an overview of the subject vector generation process. The algorithm iterates through the following three
steps to generate expansion vectors for each subject si ∈ S:

Step 1 ESL Lookup (lines 6–11): Generate an expansion vector by looking up synonyms/related words in the Extended Synonym
List (ESL) of each input term of this step.

Step 2 WordNet Synonyms (lines 17–18): Utilize WordNet to determine the synsets of each input term of this step, and then
generate an expansion vector using the synonym terms resulting from applying Lesk's [26] word sense disambiguation
technique to determine the appropriate synonyms of each term.
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Step 3 Top Frequent Terms (lines 24–30): Compute frequently used terms from the top-ranked documents of the document set,
and then generate an expansion vector by extracting top frequent terms (tft) using Jiang–Conrath's [20] relatedness
distance measure. Word sense disambiguation technique is utilized for part-of-speech (PoS) tagging and sense
determination in a context to address the problem of homonyms and polysemous words.

Algorithm 1. Subject vector generation
Require: |si0| > 0
1: si ← si

0

2: r ← 1
3: for each subject si ∈ S do
4: €a←s0i
5: while |si| ≤ δ do
6: sri←LookupESL €að Þ
7: if r == 1 then
8: ℧sri

¼ 1
9: else
10: ℧sri

¼ λ�℧sr−1
i

11: end if
12: if |si + si

r| > δ then
13: break
14: else
15: si ← si + si

r

16: r ← r + 1
17: sri ¼ Synonym wsdWordNet €a þ sr−1

i

� 	� 	
18: ℧sri

¼ λ�℧sr−1
i

19: if |si + si
r| > δ then

20: break
21: else
22: si ← si + si

r

23: r ← r + 1

24: €q← ∪l¼r−1
l¼1 sli

n o
25: D′ ← {d|d ∈ D,score�(q,d)}

26: M̂←tfidf t∈D′ � d∈D′
� �

27: tft P̂
� �

← t ∑d∈M̂ tf t; dð Þ⋅idf t;D′
� �

≥σ
��� on

28: wsd tð Þ←St⊂dominant∪x∈Xwsdx tð Þ : t∈tft P̂
� �

29: sri ¼ t t∈tft P̂
� �

;∑tc∈s0
i
jcn t; tcð Þ≥σ ′

��� on
30: ℧sr

i
¼ λ�℧sr−1

i

31: if |si + si
r| > δ then

32: break
33: else
34: si ← si + si

r

35: €a←sri
36: r ← r + 1
37: end if
38: end if
39: end if
40: end while
41: end for
Output: S = {s1,s2,…,sn}
We define a threshold δ to be the maximum length allowed for any subject vector. That is, our algorithm keeps expanding each
subject vector as long as its length (the number of terms) does not exceed the threshold δ.

Note that the weight of each term in any initial vector si0 is equal to 1. However, as we start to construct each subject si ∈ S by
generating a set of expansion vectors, the weight of each term in any expansion vector sir + 1 will be less or equal to the weight of
any term in the previous expansion vector sir, i.e.,
℧ t′ ¼ λ�℧ t : t∈sri and t′∈srþ1
i :
Based on an extensive number of experiments conducted, we observed that our clustering algorithm provides better results
when λ = 1 in Step 1 — ESL Lookup. This is because introducing new terms using ESL imposes a minimal risk of adding noise
because the list is provided by the investigator. We also observed that our clustering algorithm provides better results when λ =
0.5 in Step 2 — WordNet Synonyms and Step 3 — Top Frequent Terms. This is because using ontology terms or external source
terms as additional features may introduce noise [15].
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Fig. 4 illustrates the subject si vector generation process.

5.1.1. ESL Lookup (lines 6–11)
The objective of this step is to generate an expansion vector sir by looking up synonyms/related words in the Extended Synonym

List (ESL) such that r − 1 expansion vectors have already been generated.
The input in this step is a set of weighted terms denoted by €a ¼ t1; t2;…; t €aj j

� �
. If this is the first expansion vector to be

generated (r = 1), then €a is the initial subject definition vector si0 for subject si; otherwise, €a is the expansion vector sir − 1 for
subject si.

For each t∈€a, line 6 scans the ESL. If t � ESL, then any related term t′ � ESL will be added to si
r such that t′ will be assigned a

weight equal to the weight of t.

5.1.2. WordNet Synonyms (lines 17–18)
The next phase is to utilize WordNet to determine the synsets of each input term and to generate an expansion vector sir + 1

using the synonym terms resulting from applying Lesk's word sense disambiguation technique [26] to determine the appropriate
synonyms of each term.

The input for this step is a set of weighted terms denoted by €b that combines the terms from both €a and si
r from the previous

step (ESL Lookup).
While generating si

r + 1, it is important that we handle homonyms and polysemous words carefully by finding the best sense
that represents the meaning of each term t∈€b in context. To achieve this goal, we utilize a word sense disambiguation (WSD)
technique for part-of-speech (PoS) tagging and sense determination in a context.

Our lexical semantic expansion approach using WordNet involves three stages: First, we identify all the senses for each term
t∈€b (Section 5.1.2.1), then use WSD algorithm to select the most appropriate sense for each term (Section 5.1.2.2), and finally
generate the expansion vector si

r + 1 by assigning the synonym terms (Section 5.1.2.3). Fig. 5 illustrates the lexical semantic
expansion approach using WordNet.

5.1.2.1. Synset repository construction. Let €b ¼ t1; t2;…; t bj j
� �

be the set of input terms. We define a synonym function Syn() that
takes a term t as input and returns the synsets of t that correspond to the senses matching the term's part of speech (PoS) from
WordNet:
Syn tð Þ ¼ Sj Sj∈SynsetWN tð Þ∧PoSSj ¼ PoSt
��� on

PoSSj denotes the part of speech of all synonyms in synset Sj. We observe that associating only the synsets of the senses
where
with matching PoS for each term has a major impact on the WSD algorithm, as it helps improve the overall disambiguation
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accuracy while reducing the computational time of the algorithm due to the reduction in search space. However, if the term is not
tagged (no PoS is assigned to it), then we associate the synsets of both verb and noun senses with that term:
Syn tð Þ ¼ Sj Sj∈SynsetWN tð Þ; PoSSj∈ Verb;Noun½ �
��� o

:
n

Note that Syn(t) = ∅ when term t cannot be recognized by WordNet. This case could occur since WordNet lexicon contains
the majority (but not all) of the English words. This could also happen if the initial subject definition vector si0 contains special
terms, e.g., slang and special expressions, that are commonly used within criminal society but do not exist in standard English
dictionaries.

5.1.2.2. Unique synset assignment. In the previous step, we associated a set of synsets with each term t. In this step, the objective is
to identify the best fit synset in the context of subject si for each term t∈€b. To achieve that, we use an adapted version of a word
sense disambiguation method based on Lesk's algorithm [26]. Lesk's algorithm disambiguates a word by comparing the gloss of
each of its senses to the glosses of every other word in a phrase. A word is assigned to the sense whose gloss shares the largest
number of words in common with the glosses of the other words. The adapted version [9] of Lesk's algorithm will be applied to
each term t∈€b to solve the ambiguity problem as follows:

(1) Define the context around target term tl∈€b to be all the terms in the initial subject definition vector si0.
(2) For each context term tk ∈ si

0, list all the possible senses:
Sj∈SynsetWN tkð Þ PoSSj ¼ PoStk

��� o
:

n

(3) For the target term tl, as well as each context term tk ∈ si
0, list the following: its own WordNet gloss/definition, the

concatenated glosses of all hypernym synsets, the concatenated glosses of all hyponym synsets, the concatenated glosses of
all of the meronym synsets, and the concatenated glosses of all of the troponym synsets.
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(4) Measure the relatedness between each gloss of target term tl with each gloss from each term tk ∈ si
0 by searching for

overlaps. The overall score of each sense of a target term is the sum of the scores for each gloss pair.
(5) Once each combination has been scored, assign the synset of the corresponding sense with the highest score to the target

term.
(6) Repeat this process for every term tl∈€b to determine the most appropriate sense for each term.

According to Banerjee [2], the adapted version of Lesk's algorithm to WordNet can achieve F-measure values 0.421 for nouns
and 0.239 for verbs.

5.1.2.3. Expansion using synonyms. Having assigned a synonym set St to each term t∈€b, the subject expansion vector sir + 1 can now
be generated by assigning the synonym terms of each term t∈€b to it:
■

∀t∈€b : srþ1
i ¼ t′i∈Synonym Stð Þ St ¼ wsd tlð Þ; t′∉€b

��� on

wsd(tl) represents the best fit synset in the context of subject si for each term tl. The terms in expansion vector sir + 1 will be
where
assigned a weight that equals half the weight of the terms in si

r.

5.1.3. Top frequent terms (lines 24–30)
The goal in this step is to generate an expansion vector si

r + 2 for subject si based on the expansion vector si
r + 1 that was

generated in the previous step. First, we determine the documents in D that are the most related to already generated expansion
vectors in Section 5.1.3.1, then we compute top frequent terms (tft) in Section 5.1.3.2. For each term in tft we then apply the WSD
algorithm to determine the context dominant sense in Section 5.1.3.3. Finally we apply the Jiang–Conrath similarity measure [20]
to determine the most related terms to the initial subject definition si

0 in Section 5.1.3.4.

5.1.3.1. Compute top documents. The input for this section is a set of terms €q that represents all the system-generated subject
vectors for subject si ∈ S that have already been created:
€q ¼ t t∈ ∪
l¼rþ1

l¼1
sli

����


:

�

Our algorithm utilizes €q as a query vector. Hence, it computes the score between each document vector d ∈ D and €q by
computing the dot-product between each pair of vectors as follows:
score €q;dð Þ ¼ ∑
t∈€q

tf t; dð Þ⋅idf t;Dð Þ: ð5Þ
The score of all documents will then be normalized to be a real number between 0 and 1. Given a threshold �∈Nþ, we consider
the top of the documents with the highest score as the most related set of documents denoted by D′.

5.1.3.2. Compute top frequent terms. To determine the top frequent terms in D′, we first build a term-document matrixM̂ in which
each row corresponds to a document d ∈ D′ and each column corresponds to a term t ∈ D′. The entries in the matrix are the term
frequency–inverse document frequency (tf–idf) [37] of each term in each document.

Based on matrix M̂, we then determine the set of top frequent terms using the function (tft). Let M̂ be a term-document
matrix where each entry corresponds to a term frequency–inverse document frequency (tf/idf) of a term t ∈ D′ in a document
d ∈ D′, and let σ be a minimum support threshold. We define the function top frequent terms (tft) of matrix M̂ as follows:
tft M̂
� �

¼ t∈M̂ ∑
d∈M̂

tf t; dð Þ � idf t;D′
� �

≥σ

�����
)(
5.1.3.3. Word sense disambiguation. Even though we have extracted the set of frequent terms tft M̂
� �

from the document set D′, it
is not clear – for each term – which sense was used the most in the contexts where the term appeared. We call such sense a

dominant sense, and our goal here is to determine the dominant sense for each term t∈tft M̂
� �

.

As previously, we use the adapted version of the word sense disambiguation method based on Lesk's algorithm [26]. However,
the main difference in this case is that each term exists in multiple contexts X. We define each context x ∈ X of term t as a frame of
e terms that appear to the left and right of the term in each of its occurrences.

Since the terms are not tagged, we associate with each term (in each context) the synsets of both its verb and noun
senses:
Syn tð Þ ¼ Sj Sj∈SynsetWN tð Þ; PoSSj∈ Verb;Noun½ �
��� o

:
n
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We first determine the most appropriate sense for a term in each context x ∈ X:
and th

4 Apa
5 Apa
wsdx tð Þ ¼ St St∈Synx tð Þ��
en we determine the sense to be assigned to the term by finding the dominant one among all senses in all contexts:

wsd tð Þ ¼ St St∈dominant
∪
x∈X

wsdx tð Þ
� 
����
5.1.3.4. Relatedness distance measure. The set of terms tft M̂
� �

we extracted from the document set to capture the suspects'
terminologies might be unrelated (or weakly related) to the initial subject definition. To reduce noise and avoid a reduction in
both the recall and precision of our clustering algorithm, we use a similarity measure to determine the relatedness of each term

t∈tft M̂
� �

to the initial subject definition vector si
0. The Jiang–Conrath similarity measure (jcn) [20] is used for this purpose.

According to Pedersen et al. [32], it enriches the information content of the least common subsumer of two concepts with the sum
of the information content of the individual concepts by subtracting the information content of the least common subsumer from
this sum, and then takes the inverse to convert it from a distance to a similarity measure.

Using jcn, we compute the distance between each term t∈tft M̂
� �

and all terms in si
0. The terms that meet a certain threshold

σ′ will be used to construct the expansion vector sir + 2:
srþ2
i ¼ t∈tft M̂

� �
∑
tc∈s0i

jcn t; tcð Þ≥σ ′

�����
)
:

(

The expansion vector sir + 2 will be assigned a weight (real value between 0 and 1) that equals half the weight of the previous
expansion vector for the same subject, i.e.,
℧srþ2
i

¼ 0:5�℧srþ1
i

e weight of each term t ∈ si
r + 2 is equal to the weight of the expansion vector itself℧srþ2

i
. Once sir + 2 has been computed, it will

r + 2

and th
then be used to start a new iteration of subject vector expansion by starting to look up all the terms in si in the Extended Synonym
List (ESL) in Section 5.1.1.

Once the generation of expansion vectors for all subjects si � S is completed, our algorithm starts the clustering process by applying
the similarity function Sim(d,si) between each document d � D and each subject si � S and generates a set of overlapping cluster C
accordingly. Algorithm 2 provides an overview of the clustering process used to assign each document to one or more clusters.

Algorithm 2. Document clustering.
Require: |si| b δ
1: for each subject si ∈ S do
2: for each document d ∈ D do
3: if Sim(d,si) > τ then
4: Ci←d
5: end if
6: end for
7: end for
Output: C ¼ C1; C2;…; Cnf g
6. Experimental evaluation

Based on our proposed clustering solution, we have developed a tool called Cyber Forensic Search Engine (CFSE) for the Sûreté
du Québec (SQ) as a proof of concept. CFSE is a Java-based application that is composed of three components:

Indexing engine. This engine parses documents on the suspect's computer, analyzes the documents by applying the
preprocessing steps, namely tokenization, stemming, stop word removal, and text normalization, and then indexes the
documents. We used Apache Tika4 and Lucene5 to parse, preprocess, and index the documents.
Clustering engine. This engine groups all the documents into a set of overlapping clusters according to the algorithm proposed
in this paper, in which each cluster is associated with one and only one pre-defined subject, such that the similarity between a
document and its assigned subject is maximized.
che Tika. http://tika.apache.org/.
che Lucene. http://lucene.apache.org/.

http://tika.apache.org/
http://lucene.apache.org/
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Search engine. This engine allows an investigator to search the resulting clusters and retrieve relevant documents according to
a given search query and a specific subject.

The objective of the experiments is to evaluate the performance of our proposed subject-based semantic document clustering
algorithm implemented in the clustering engine in terms of accuracy, efficiency, and scalability.

6.1. Data sets

We use three data sets in our experiments: Classic3, Forensic-1 and Forensic-2. The pre-classification of each document will be
used to measure the accuracy of the clustering results; however, during the clustering process, this information will be hidden.

Below is a brief summarization of each data set's characteristics:

• Classic3 is a benchmark data set used in text mining.6 It consists of 3893 documents from 3 disjoint classes: 1400 aeronautical-
system documents (CRAN), 1033 medical documents (MED), and 1460 information-retrieval documents (CISI).

• Forensic-1 is a data set we collected for validating our clustering algorithm against a set of crime-related documents. This data
set consists of 90 documents from 3 different classes: 30 drugs-related documents, 30 hacking-related documents, and 30
sexual assault-related documents.

• Forensic-2we collected more data and extended Forensic-1 to build a larger data set. Forensic-2 consists of 320 documents from
3 different classes (topics): 80 drugs-related documents, 80 hacking-related documents, 80 sexual assault-related documents,
and 80 overlapping documents that belong to more than one class (contain more than one topic).

6.2. Evaluation method

We use F-measure [24] to measure the accuracy of the clustering solution produced by our method.
Let C ¼ C1; C2;…; Cnf g be the set of clusters generated by our system against a document set D. Let K ¼ K1;K2;…;Klf g be the

natural classes of the document setD. We compute the Precision and Recall of clusterCj∈Cwith respect to classKi∈K as follows:
where

6 Clas
Precision Ki; Cj
� �

¼ true positive
true positiveþ false positive

¼
Ki∩Cj
��� ���

Cj
��� ��� ð6Þ

Recall Ki; Cj
� �

¼ true positive
true positiveþ false negative

¼
Ki∩Cj
��� ���

Kij j ð7Þ

Kij j, Cj
��� ���, and Ki∩Cj

��� ��� denote the number of documents in classKi, in cluster Cj, and in bothKi and Cj respectively. We use F1
where

in our experiments to compute the accuracy of cluster Cj with respect to class Ki as follows:
F1 Ki; Cj
� �

¼
2� Precision Ki; Cj

� �
� Recall Ki; Cj

� �
Precision Ki; Cj

� �
þ Recall Ki; Cj

� � ∈ 0;1½ � ð8Þ

F1 score reaches its best value at 1 and worst score at 0.
6.3. Experimental results

In this section, we evaluate our subject-based semantic document clustering algorithm in terms of accuracy, as well as
efficiency and scalability. All experiments were conducted on an Intel Core2 Quad E6650 3 GHz PC with 4 GB RAM.

6.3.1. Accuracy
Our clustering algorithm allows for two user-specified thresholds δ and τ, where δ is the maximum length (maximum number

of terms) threshold of a subject vector and τ is the minimum similarity threshold for all clusters. A document d ∈ D is added to
cluster Ci if its normalized score returned by the similarity function is larger than τ (Eq. (2)).

Fig. 6 depicts the F-measure values (accuracy) of the clustering algorithm with respect to δ and τ. We set δ to three different
values relative to the average document length avg_dl in the data set: 0.25 ∗ avg_dl,0.50 ∗ avg_dl, and avg_dl, whereas τwas set to
a range of values between 0.05 and 0.5. We observe that the F-measure value spans from 0.61 to 0.72 when the minimum
similarity threshold τ increases from 0.05 to 0.5. Assigning a value between 0.1 and 0.175 to τ provides high accuracy for all three
different values of δ. Based on the extensive number of experiments conducted, we observe that our clustering algorithm provides
a high accuracy value when τ ∈ [0.08,0.2] and δ = avg_dl.
sic3. ftp://ftp.cs.cornell.edu/pub/smart/.

ftp://ftp.cs.cornell.edu/pub/smart/
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We also observe that the change in δ value affects the accuracy of the algorithm in a minimal way. We argue that the
integration of WSD technique in step 2 and step 3 of our subject vector generation algorithm helps reduce the noise and
consequently reduces the sensitivity of our clustering algorithm to the input parameter δ. We also observe that when the
maximum length of a subject vector is equal to the average document length in the document set (δ = avg_dl), the algorithm in
most cases provides higher F-measure values.

Having determined that higher accuracy is obtained when δ = avg_dl, we perform additional accuracy experiment on Forensic-2.
Fig. 7 depicts the F-measure values of the clustering algorithm with respect to τ, where δ = avg_dl. We observe that the F-measure
values span from 0.59 to 0.75 when the minimum similarity threshold τ increases from 0.05 to 0.5. This accuracy range slightly
differs from the accuracy range we obtained in the previous experimentwhen Classic3was used. Based on these results, we conclude
that our algorithm is insensitive to whether the classes in the data set are disjoint (Classic3) or overlapping (Forensic-2).

Fig. 7 also depicts the sensitivity of the algorithm with regard to the two major steps, namely WordNet Synonyms and Top
Frequent Terms. We observe that the accuracy of our algorithm decreases dramatically when WordNet (WordNet Synonyms step)
is eliminated. That is, the accuracy drops by an average of 65% when we eliminate WordNet from the process. We also observe
that the higher the minimum similarity threshold τ is, the higher the drop in accuracy. That is, when τ = 0.05, the drop
percentage is 45%; however, when τ = 0.5, the drop percentage increases to 81%. Similarly, we observe that the accuracy of our
algorithm decreases when TFT (Top Frequent Terms step) is eliminated. The average drop in accuracy is 14%, a much smaller value
compared to the impact of the elimination of WordNet; however, unlike WordNet, the drop in accuracy does not seem to
correlate with the value of the minimum similarity threshold τ.
6.3.2. Efficiency and scalability
One major contribution of our work is the development of an efficient and scalable algorithm for semantic document

clustering that expands the term vector representing each subject using WordNet. According to Algorithm 1, the runtime
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complexity of our approach is dominated by the maximum subject vector length δ and the data set size; therefore, we study the
runtime under different subject vector lengths and different data set sizes.

Fig. 8 depicts the runtime on the three data sets Forensic-1, Forensic-2, and Classic3, with respect to δ that ranges between
0.25 ∗ avg_dl and 1.25 ∗ avg_dl. We observe that the runtime scales linearly with respect to the subject vector length under all
data sets. We also observe that regardless of the size of the data set (Classic3 is 43 times larger than Forensic-1 and 12 times larger
than Forensic-2), the gradient (slop) of each data set's runtime remains the same.

We choose Classic3, the larger data set with 3893 files, to examine the runtime with different data set sizes. The files in the
data set are duplicated so scalability can be measured starting from 10,000 documents, going up to 100,000 documents. To ensure
a balanced duplication of the data set, we define the scaleup factor α as follows:
α ¼ ⌊
Target # of documents

Dj j ⌋: ð9Þ
We also define the remainder factor α′ as follows:
α′ ¼ Target # of documentsð Þ% Dj j ð10Þ

⌊ ⌋ and % are the floor function and remainder function, respectively. We first copy all files in Classic3 (α − 1) times, and thenwe
where
copy α′ random files 1 time. The total number of files, including the original files in Classic3, is equal to the target number of documents.

Our subject vector generation algorithm consists of three phases: ESL Lookup,WordNet Synonyms, and Top Frequent Terms. The
objective is to measure the runtime of each phase to ensure it does not grow proportionally to the total number of documents in
the data set. Fig. 9 depicts the runtime of the three phases with respect to the total number of documents being clustered. The
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total runtime for processing 100,000 documents is 313 s, where 3 s are spent looking up synonyms from ESL, 46 s are spent
generating synonyms using WordNet, and 264 s are spent analyzing the document set to extract frequent terms that capture the
suspects' terminologies. The runtimes of both the ESL Lookup phase and WordNet Synonyms phase are independent of the total
number of documents. As for the Top Frequent Terms phase, the runtime grows as the total number of documents increases. This
is due to the internal parameter that is used to capture the suspect's terminologies and is set to 1% of the data set size. The
runtime scales linearly with respect to the data set's size. Since each phase of the algorithm is either independent or grows
linearly with respect to the total number of documents, the experimental results on real-life data sets suggest that our algorithm
is scalable.

7. Conclusions and further work

In this paper, we have proposed a subject-based semantic document clustering algorithm for digital forensic investigations
with the objective of using data mining to support investigations. Motivated by the digital forensic process at Sûreté du Québec
(SQ), we modeled our clustering solution by proposing the Subject Vector Space Model (SVSM). Moreover, we introduced an
efficient and scalable algorithm for building full definition of each subject based on the initial definition. This was achieved via the
utilization of WordNet to extract term synonyms, the integration of Word Sense Disambiguation (WSD) to determine the
appropriate sense for each term, and the dynamic capturing of suspects' terminologies. For future work, it would be interesting to
investigate the impact of allowing other types of words, such as adjectives and adverbs, to be part of the initial subject definition.
Also, it would be interesting to study how the application of dimensionality reduction techniques [22,1] during the generation of
subject vectors can further enhance the accuracy of our algorithm.
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