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Representation learning has been applied to Electronic Health Records (EHR) for medical concept embedding and the
downstream predictive analytics tasks with promising results. Medical ontologies can also be integrated to guide the learning
so that the embedding space can better align with existing medical knowledge. Yet, properly carrying out the integration
is non-trivial. Medical concepts which are similar according to a medical ontology may not be necessarily close in the
embedding space learned from the EHR data, as medical ontologies organize medical concepts for their own specific objectives.
Any integration methodology without considering the underlying inconsistency will result in sub-optimal medical concept
embedding, and in turn degrade the performance of the downstream tasks. In this paper, we propose a novel representation
learning framework called ADORE (ADaptive Ontological REpresentations) which allows the medical ontologies to adapt their
structures for more robust integrating with the EHR data. ADORE first learns multiple embeddings for each category in the
ontology via an attention mechanism. At the same time, it supports an adaptive integration of categorical and multi-relational
ontologies in the embedding space using a category-aware graph attention network. We evaluate the performance of ADORE
on a number of predictive analytics tasks using two EHR datasets. Our experimental results show that the medical concept
embeddings obtained by ADORE can outperform the state-of-the-art methods for all the tasks. More importantly, it can result
in clinically meaningful sub-categorization of the existing ontological categories and yield attention values which can further
enhance the model interpretability.
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1 INTRODUCTION
Analyzing Electronic Health Records (EHR) data to achieve better patient care is attracting increasing attention. 
The representation learning approach has been found promising in analyzing the EHR data. It learns a latent 
embedding space to organize medical concepts where concepts frequently co-occurring in the EHR will be 
considered semantically similar and close in the embedding space [5, 9]. The learned embeddings could further be 
used as input for downstream applications, including clinical event prediction [6, 19, 28], next-admission diagnosis 
prediction [18, 24], treatment effect prediction[16], among others. Despite the promising results obtained, the 
inevitable noise and missing information makes it challenging to learn highly accurate representation. In addition, 
the semantic relationship among the medical concepts captured by the embedding space may not well align with 
the existing medical knowledge. This further limits the reliability and interpretability of the approach.
Integrating medical ontologies for medical concept embedding has been explored to enhance the alignment 

between the embedding space and the medical knowledge. For example, Clinical Classifications Software (CCS) 
which encodes the hierarchical categorization of diseases has been adopted for integrating into the representation 
learning process [6, 19, 31]. The integration generally leads to better organization of the embedding space in 
that the relationship between medical concepts align with the given ontology. Yet, there also exists inconsistency 
between the co-occurrence information in the EHR data and the semantic relationship described in the ontologies. 
For instance, according to the CCS ontology, the two diagnoses “Type I Diabetes Mellitus (T1DM, ICD-9 code: 
25001)” and “Type II Diabetes Mellitus (T2DM, ICD–9 code: 25000)” share the same ancestor “Diabetes mellitus 
without complication” (is-a relationship) are supposed to be close in the medical concept space. However, it is 
inconsistent to the fact that they never co-occur in the EHR data as they are mutually exclusive. It is desired that 
the learned embeddings could respect such information in the EHR data in addition to following the structure of 
the ontologies. Finding the optimal way for the integration of medical ontologies and EHR data to achieve better 
representation learning and thus improve prediction accuracy is still an open issue.

In addition, there are multiple publicly available medical ontologies which are designed for different purposes 
and hence organize the medical concepts differently. How to utilize these resources together and at the same 
time minimize their potential inconsistency is another important and yet challenging problem. The CCS is a 
categorical ontology with one relationship type (is-a). The Systematized Nomenclature of Medicine Clinical Terms 
(SNOMED–CT) is a multi-relational ontology where rich medical knowledge is specified using multiple types 
of relationships. For instance, the diagnosis “Fracture of leg” has the relationship associated-morphology 
with “Fracture”, and “Fracture of leg” also has the relationship finding-site with “Bone structure of lower limb”. 
Such relationship triplets (entity–relationship–entity) obviously provide additional information for medical 
concept representation learning. While we can learn for each relationship type an embedding for integrating 
the categorical ontology CCS and the multi-relational ontology SNOMED-CT in the embedding space in ways 
similar to the knowledge graph embedding approach, the optimality of such integration is yet to be studied.

To address the issues, we argue that it is vital to allow more adaptive integration of multiple ontologies with the 
EHR data so that the ontologies can have their ways of organizing the medical concepts adjusted “collaboratively” 
under the representation learning framework. Based on our preliminary work on representation learning from 
categorical ontology and the EHR data [31], we further extend the idea to learn an adaptive number of basic 
embeddings for each category so that medical concepts under the same category can readily be reorganized to be 
not necessarily close in the embedding space unless the EHR data supports that. An attention mechanism similar 
to the idea of “multi-sense” for word embedding [13] is introduced to allow adaptive node splitting (except for the 
root node) to achieve the automatic ontology reorganization. Take diabetes mellitus again as the example, “T1DM” 
and “T2DM” are very different in the sense of therapy while they rarely co-occur in the data set. Therefore, 
they may be represented by two different “senses” of their shared ancestor. Furthermore, for integrating as well 
multi-relational ontologies, we first learn each relationship type an embedding and propose a category-aware
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graph attention network where the category information according to the categorical ontology is taken into
account to obtain the embedding of the relationship.

In this paper, we propose ADaptive Ontological REpresentations (ADORE), that incorporates the aforementioned
mechanisms for adaptive integration of the EHR data, the categorical ontologies and themulti-relational ontologies.
We evaluated the performance of ADORE by integrating the categorical ontology CCS and the multi-relational
ontology SNOMED–CT with two different open-source EHR datasets — MIMIC–III [15] and eICU [26]. Our
experimental results demonstrate that ADORE could learn representations that not only align with the medical
ontologies, but also respect the EHR data; therefore, it has much improved interpretability compared to existing
methods. In addition, the boost in predictive performance also validates the effectiveness of ADORE and the
obtained representations. To the best of our knowledge, incorporation of multi-relational ontologies into medical
concept representation learning has not yet been well explored. Also, this is the first attempt that allows adaptive
integration of the categorical ontology CCS, the multi-relational ontology SNOMED–CT and the EHR data
to achieve robust and interpretable medical concept representation learning where the inconsistency issue is
explicitly addressed.

2 RELATED WORK
Representation learning has been actively explored for medical predictive analysis. The earlier work mostly
adopts one-hot representation, and the semantic relationships cannot be well preserved [30]. The vector-based
representation can also be learned in ways similar toWord2Vec [21] by considering the co-occurrence information
of the medical concepts in the EHR data [5] or clinical narratives [9]. Similarly, Daehr [35] which is an extension
of Linear Discriminant Analysis (LDA) exploits the disease co-occurrence to detect mental health disorders.
Models like RETAIN [7], Dipole [18], and MiME [8] also consider the ordering of the co-occurrence of the clinical
events and learn recurrent neural networks to capture the sequential relationships among the medical concepts. In
addition, there are works that apply representation learning to the EHR data in the federated learning setting [10].

In addition to the EHR data, publicly available medical ontologies also provide rich information for learning the
medical concept embedding space. The International Statistical Classification of Diseases and Related Health Prob-
lems (ICD) [33] is a widely used disease coding system where diseases and procedures are classified hierarchically.
The Anatomical Therapeutic Chemical (ATC) [34] Classification System is a drug classification system of active
ingredients of drugs according to their therapeutic, pharmacological, and chemical properties. The Systematized
Nomenclature of Medicine Clinical Terms (SNOMED–CT) [23] is a standard used in U.S. Federal Government
systems for the electronic exchange of clinical health information, which consists of medical concepts including
diseases, drugs and their relationships. Medical ontologies are essentially knowledge graphs. Various knowledge
graph embedding methods have been developed and found effective when applied to real-world knowledge
graphs likeWordnet [22] and Freebase [3]. In particular, the translation-based family (e.g., TransE [4], TransH [32],
TransD [14], TransR [17], among others [12, 37]) has been rigorously studied where entities and relations of
knowledge graphs are projected onto the low-dimensional embedding spaces for applications like completion of
the missing relations. Alternatively, the Relational Graph Convolutional Network (R-GCN) [27] has also been
proposed for modeling multi-relational data.

Approaches for integrating EHR data with categorical medical ontologies (e.g., CCS) using deep learning models
for medical concept embedding have been explored in the literature. GRAM [6] adopts a graph-based attention
model to learn the embedding space from ontologies. KAME [19] makes use of a knowledge attention mechanism
based on the patient representation to attend to the medical concepts in the knowledge graph. HAP [38] tries to
propagate attention across the whole ontology hierarchically so that a medical concept learns its embedding
with reference to all other medical concepts in the hierarchy instead of only its ancestors. G-BERT [29] enhances
the medical concept embedding space learned from the medical ontology using BERT and graph neural networks.
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(a) CCS (b) SNOMED–CT

Fig. 1. Snapshots of the medical ontologies used in this paper. (a) The CCS is a categorical ontology, providing hierarchical 
information for diagnoses. (b) The SNOMED–CT is a multi-relational ontology that describes different types of relationships 
between medical concepts and entities.

Some other variations include the adoption of Transformer (e.g., SETOR [25]) and leveraging information extracted 
from the clinical notes (e.g., Trove [11]).
Yet, integrating the EHR data and the ontologies for medical concept embedding is still an open research 

question. First, the aforementioned models do not explicitly consider the potential inconsistency between the 
co-occurrence patterns learned from the EHR data and the semantic similarity described in the ontologies. Also, 
extending them to include also multi-relational ontologies (like SNOMED–CT) is non-trivial. ADORE is proposed 
in this paper to address the issues by allowing more adaptive integration.

3 NOTATIONS AND PRELIMINARIES

3.1 Basic Notations
We denote the medical concepts in the EHR data set such as diagnoses and medication codes by 𝑐1, 𝑐2, . . . , 𝑐 |𝐶 | ∈ C, 
where |C| is the total number of medical concepts in the given EHR data. The hospital admissions of a patient are 
denoted as A1, A2, . . . , A𝑡 , where each contains a subset of the medical concepts, i.e. A𝑡 ⊂ C for the 𝑡𝑡ℎ hospital 
admission. Also, the hospital admission A𝑡 is denoted by a binary vector x𝑡 ∈ {0, 1} | C | where the 𝑖𝑡ℎ entry of x𝑡 
equals to one if 𝑐𝑖 ∈ A𝑡 , and zero otherwise.
In the paper, we focus on the problem of integrating the EHR data with a categorical medical ontology 

and a multi-relational medical ontology for predictive analytics. We denote the medical concept embeddings 
corresponding to the categorical ontology as V and the ones corresponding to the multi-relational ontology as G. 
Notations used in this paper are listed in Table 1.

3.2 Medical Ontologies
Medical ontologies can be represented as knowledge graphs with the entities corresponding to medical concepts 
(e.g., diagnosis codes, body parts, etc.) and the relations corresponding to the relationship between them. They 
are created with different purposes and thus take different structures. International Classification of Diseases, 
Ninth Revision, Clinical Modification (ICD–9–CM) [33] is a categorical medical ontology that was developed 
for hierarchical categorization of diseases. It follows a tree structure, where the leaf nodes represent specific 
diseases and their ancestors are disease categories. E.g., 921.3 “contusion of eyeball” is under the category of
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921 “contusion of eye and adnexa”. The Clinical Classifications Software (CCS)1 for ICD-9-CM is a diagnosis and
procedure categorization scheme where the ICD-9-CM’s multitude of codes are collapsed into a smaller number
of clinically meaningful categories that are useful for presenting descriptive statistics. Fig. 1(a) illustrates a small
portion of the CCS ontology. SNOMED–CT [23] is a multi-relational medical ontology, which is a standardized,
multilingual vocabulary of clinical terminology. It contains relationships of different types to link up medical
concepts, e.g., diagnoses, drugs, and body parts. Figure 1(b) shows a small snapshot of SNOMED–CT where three
different disorders are connected to some medical concepts via different relationships.

Table 1. Notations used in this paper.

Notation Description

𝑐𝑖 The 𝑖𝑡ℎ medical concept
C The set of all medical concepts

A𝑡 The 𝑡𝑡ℎ hospital admission
𝑥𝑡 ∈ {0, 1} | C | The binary representation of A𝑡
𝑦𝑡 The label of the 𝑡𝑡ℎ hospital admission

e𝑖𝑗 The 𝑖𝑡ℎ basic embedding of entity 𝑗 in categorical ontology
h𝑘 The basic embedding of entity 𝑘 in multi-relational ontology

V Medical concept embedding matrix (categorical ontology)
G Medical concept embedding matrix (multi-relational ontology)
W Medical concept embedding matrix (co-occurrence in EHR)
U Final medical concept embedding matrix

4 PROPOSED MODEL
In this paper, we propose a novel representation learning framework ADORE to learn the medical concept
embedding space. ADORE allows a categorical medical ontology and a multi-relational medical ontology to
adaptively reorganize their structures and representations for better integration with the EHR data in the
embedding space. ADORE contains four components: 1) a multiple ontological representation network to learn
the embeddings of medical concepts according to a tree-based categorical ontology (e.g., CCS), 2) a category-
aware graph attention network (CAGAT) that can derive a flexible representation of the relationships between
different medical concepts from a multi-relational ontology (e.g., SNOMED–CT) for more adaptive integration, 3)
a co-occurrence embedding module that utilizes the co-occurrence statistics from the given EHR database, and 4)
a prediction network that drives the learning of the overall embedding space. Fig. 2 depicts the overview of the
proposed ADORE framework.

4.1 Learning Multiple Embeddings in Categorical Ontology
A categorical ontology (e.g., CCS) can be represented in the form of a tree with its leaf nodes corresponding to
the set of all medical concepts C. As in [6, 31], the “ancestor-descendant” relationships among the nodes of the
tree are used to learn the embeddings of the medical concepts. Specifically, a node in the tree is associated with a
basic embedding e ∈ R𝑑 . The final embedding of a node is calculated from the convex combination of attention
coefficients from node’s ancestors.
1https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp



6 • Cheong et al.

Fig. 2. Overview of the proposed ADORE framework. ADORE integrates EHR data with multi-relational ontologies
and categorical ontologies for learning a medical concept embedding space. The upper left shows the category-aware
multi-relational graph attention network that derives the multi-relational embeddings G. The upper right shows the multiple
ontological representation network that learns multiple ontological representations for the categorical ontology with G as
its input. The leaf nodes (dotted circles) indicate the medical concepts, while the non-leaf nodes (solid circles) denote the
categories in ontologies. The basic embeddings of the nodes in the categorical ontology (upper right) and the multi-relational
ontology (upper left) are denoted as e and h respectively. For the categorical ontology, ADORE first learns multiple basic
embeddings for each node (except the root node), and then combines them via an attention mechanism to derive the
categorical medical concept embeddings V. The final overall embeddings U are formed by the concatenation of V and
co-occurrence embeddings W for computing the predictive result.

(a) (b) (c)

Fig. 3. An illustration of the adaptive integration of categorical and multi-relational ontologies to learn the embedding space.
(a) A simple categorical ontology with three diseases 𝐷1, 𝐷2 and 𝐷3 belonging to two different categories 𝐶 1 and 𝐶2, and 
connected to the same medical entity 𝐸1 via relationship 𝑟1 according to a multi-relational ontology. (b) The medical concept 
embeddings learned by the GCN methods where diseases of categories 𝐶1 and 𝐶2 are undesirably placed together due to 
their shared relationship with 𝐸1. (c) ADORE alleviates this limitation by introducing the category-aware relational bias 
𝜖𝑐𝑖 b𝑟 to separate the disease embeddings corresponding to the two categories.
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The validity of this methodology assumes that the embedding of each node to be similar to its ancestor’s, which
may not be supported by the observations in the EHR data. Simply enforcing that will result in inconsistency
between the knowledge in the ontology and patterns discovered in the EHR data. We therefore propose to allow
the categories, i.e., non-leaf nodes (except the root node) in the tree, to carry multiple semantic meanings, or
“senses”. Formally, instead of learning one single vector representation for each non-leaf node, multiple basic
embeddings, denoted as e(1) , e(2) , . . . , are assigned. For each category node 𝑐 𝑗 , we estimate the optimal number of
the basic embeddings 𝐾 ( 𝑗) adaptively. Similar to [31], we adopt an attention mechanism for learning the multiple
basic embeddings for the nodes in the tree so that the final embedding v𝑖 for node 𝑐𝑖 can be derived as:

v𝑖 = 𝛼𝑖𝑖g𝑖 +
∑︁

𝑗∈path(𝑖 )

∑︁
𝑘=1,...,𝐾 ( 𝑗 )

(
𝛼
(𝑘 )
𝑗𝑖

e(𝑘 )
𝑗

)
, (1)

where g𝑖 is the basic embedding of leaf node 𝑐𝑖 , e(𝑘 )𝑗 is the 𝑘𝑡ℎ basic embedding for the category node 𝑐 𝑗 , 𝐾 ( 𝑗) is
the number of basic embeddings of node 𝑐 𝑗 , and 𝛼 is the attention weightings which are non-negative and sum
up to one, i.e.

∑
𝑗∈path(i)

∑
𝑘=1,...,𝐾 ( 𝑗 ) 𝛼

(𝑘 )
𝑗𝑖

= 1, 𝛼 (𝑘 )
𝑗𝑖
≥ 0. Note that we fix 𝐾 (1) = 1 for the root node so that the root

node has only one basic embedding. To obtain the attention weightings 𝛼 , we compute the score between the
basic embedding of a category e𝑗 and that of a leaf node g𝑖 via a compatibility function, given by:

𝑓 (e𝑗 , g𝑖 ) = s⊺ tanh
(
M

[
e𝑗
g𝑖

] )
, (2)

where s and M are both learnable parameters. Then, we compute the attention weightings by using the softmax
function, i.e.,

𝛼
(𝑘 )
𝑗𝑖

=
exp(𝑓 (e(𝑘 )

𝑗
, g𝑖 ))∑

𝑗 ′∈path(𝑖 )
∑
𝑘 ′=1,...,𝐾 ( 𝑗 )

(
exp(𝑓 (e(𝑘

′ )
𝑗 ′ , g𝑖 ))

) . (3)

The idea of using multiple embeddings per category has been shown promising in [31], where the value of
𝐾 ( 𝑗) was simply fixed to be two. Here we argue that for a medical concept (i.e., a leaf node) 𝑐𝑖 , if its ancestor (i.e.,
a non-leaf node) indexed by 𝑗 has attention score 𝛼 (𝑘 )

𝑗𝑖
that is sufficiently low, it will have very marginal impact

on the final embedding of the medical concept 𝑐𝑖 . Therefore, it is less likely to force the final embedding of 𝑐 𝑗 to
be close to its sibling. Therefore, we need only increase the number of basic embeddings 𝐾 ( 𝑗) for the category
node 𝑐 𝑗 with a higher attention score (say larger than a threshold). With this insight, we initialize the number of
basic embeddings of all non-leaf nodes to be one, and adaptively increase 𝐾 ( 𝑗) for all the category nodes during
the training process by:

𝐾𝑛𝑒𝑤 ( 𝑗) ←
{
𝐾𝑜𝑙𝑑 ( 𝑗) + 1 if max𝑖 (𝛼 𝑗𝑖𝐾𝑜𝑙𝑑 ( 𝑗 ) ) > 𝜆,
𝐾𝑜𝑙𝑑 ( 𝑗) otherwise,

(4)

where 𝜆 is a pre-defined threshold on the attention score. We tested different values for 𝜆 and found that it works
best when it is set to 0.8.

Take the CCS class Other bacterial pneumonia as an example, ADORE can adaptively learn three basic embed-
dings to represent three subgroups of this class. Specifically, three pneumonia diseases related to streptococcus
(48230, 48241, and 48242) are represented by the first embedding, the pneumonia due to pseudomonas (4821) and
hemophilus (4822) by the second embedding, and the unspecified pneumonia by the third embedding. Those
adaptive splits of embedding representations are clinically meaningful and so provide better sub-grouping of
diseases. On the other hand, the CCS class Empyema and pneumothorax contains only two diseases (Primary
spontaneous pneumothorax and secondary spontaneous pneumothorax). Forcing it to have multiple embeddings,
as in [31], is unnecessary because these two diseases are clinically similar. The primary one indicates pneumotho-
rax in the absence of known lung disease, and the secondary one is for the patients with underlying lung diseases.
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Instead, ADORE sticks with only one embedding for this class during the training to promote the parameter
sharing and learn a more compact space.

4.2 Learning Category-aware Relational Embeddings in Multi-relational Ontology
There are publicly available multi-relational medical ontologies which provide information about the relationships
among the medical concepts [23]. Incorporating them into the representation learning framework [4] in principle
can guide the learning to achieve higher accuracy. Yet, different ontologies are established for specific purposes
with distinct semantic relationships encoded. Integrating them by simply combining them, say fusing a categorical
ontology and a multi-relational ontology into a single graph, could inevitably end up with conflicting objectives
for guiding the representation learning. Fig. 3 shows an example to illustrate this point. In the example, there
are two diseases 𝐷1 and 𝐷2 under the category 𝐶1, and another one 𝐷3 under the category 𝐶2 according to a
categorical ontology. At the same time, all three diseases are related to a clinical entity 𝐸1 with 𝑟1 being the
relationship according to another multi-relational ontology. As 𝐷1, 𝐷2, and 𝐷3 all share the relationship with a
common entity, their embeddings would naturally be close in the embedding space, as shown in Fig. 3(b). This
however is undesirable as they are under different categories according to the categorical ontology and their
embeddings should be sufficiently distinct.
To allow it to respect also the information in the categorical ontology, we propose a category-aware graph

attention network (CAGAT) to learn embeddings for a multi-relational ontology (e.g., SNOMED–CT) with
reference to the categorical heterogeneity encoded in the categorical ontology (e.g., CCS). The key idea is that
CAGAT allows a length-varying relational bias to be learned so that the embeddings of diseases under two
different categories can stay apart in the embedding space even they share the same type of relationship with the
same entity, as illustrated in Fig. 3(c). Specifically, for each medical concept, we first compute a new embedding
based on the multi-relational ontology and then use it to replace the basic embedding of the corresponding
leaf-node for the categorical embedding learning in Eq. ((1)). We denote the embedding of the node corresponding
to the 𝑖𝑡ℎ medical concept in the multi-relational ontology as {h𝑖 }. For each node, a weighted sum of its own
embedding and those of its neighbors in the multi-relational ontology can be computed with an attention
mechanism, given as:

g𝑖 = 𝛽𝑖𝑖h𝑖 +
∑︁
( 𝑗,𝑟 ) ∈𝑁𝑖

𝛽𝑖 𝑗 (h𝑗 + 𝜖𝑖b𝑟 ), (5)

where 𝑁𝑖 is the set of all node-relationship pairs associated with h𝑖 , b𝑟 is the learnable relationship bias for the
𝑟 𝑡ℎ relationship, and 𝜖𝑖 is the category-wise coefficient determining how far h𝑖 and h𝑗 should fall apart, which in
turn depends on the category of the 𝑖𝑡ℎ medical concept in the categorical ontology. The 𝜖𝑖 is estimated as:

𝜖𝑖 =
∑︁

𝑗∈path(𝑖 )

p⊤s𝑗

∑
𝑗 ′∈path(𝑖 ) s𝑗 ′




2

, (6)

where path(𝑖) is the set of ancestors of the medical concept 𝑐𝑖 in the categorical ontology, s𝑗 is the auxiliary
embedding of the category indexed by 𝑗 and p ∈ R𝐷 is a learnable parameter that projects the embedding onto a
scalar.
Then, the attention weightings can be obtained by applying the softmax function, i.e.,

𝛽𝑖 𝑗 =
exp(𝑔(e𝑗 + 𝜖𝑖br, g𝑖 ))∑

(𝑘,𝑡 ) ∈𝑁𝑖
exp(𝑔(e𝑘 + 𝜖𝑖bt, g𝑖 ))

, (7)

where the function 𝑔(·, ·) is approximated using a single layer perceptron, i.e.,

𝑔(e𝑗 , e𝑖 ) = n⊺ tanh
(
H
[
e𝑗
e𝑖

]
+ z

)
, (8)
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and n, z and H are the parameters to be learned.
Considering the implementation, the proposed CAGAT contains much fewer parameters to be learned in the

multi-relational attention layer, compared with the ordinary relational graph convolutional network (R-GCN) [27].
The latter needs 𝑂 (𝑅 × 𝐷2) parameters for the weighting matrices where 𝑅 is the number of relationships and 𝐷
is the dimension of the embeddings. CAGAT consists of only 𝑂 (𝑅 × 𝐷) parameters, and thus is less prone to
over-fitting.

4.3 Learning Embeddings by Co-occurrence Statistics
We can also learn the medical concept embeddings based on the EHR data. Given a hospital admission A𝑡 that
contains a set of 𝑙 medical concepts {𝑐1, 𝑐2...𝑐𝑙 } ∈ C, we first calculate the average of their embeddings as the
“context” of the admission, i.e., a𝑡 = (

∑𝑙
𝑘=1w𝑘 )/𝑙 . The key idea of learning embedding from the co-occurrence

statistics is that the “context” should be able to predict the medical concepts which may exist in the hospital
admission A𝑡 . That can be implemented by minimizing the negative log-probability of the concepts existed in
the admission conditioned on the “context”, i.e.,

Lco-occur
𝑡 = − 1

𝑙

𝑙∑︁
𝑘=1

log𝑝 (𝑐𝑘 |a𝑡 ) = −
1
𝑙

𝑙∑︁
𝑘=1

log
exp(w′𝑇

𝑘
a𝑡 )∑𝑙

𝑖=1 exp(w′𝑇𝑖 a𝑡 )
, (9)

where w′ are learnable parameters. And the conditional probability is provided by the output of the softmax
function.

4.4 Interpretability-Enhanced Predictive Analytics
Finally, we added the predictive task in the framework, which offers supervised information to the ontological
representations. Specifically, we use the embeddings learned from the ontologies and the EHR data to predict
the next-admission diagnosis, mortality, or re-admission risk. At the same time, the attention mechanism is
exploited to further enhance the interpretability and the prediction. The representation matricesW and V are first
concatenated row-wise as the final representations of medical concepts, i.e., U = [W;V]. For a hospital admission
A𝑡 denoted as a binary vector x𝑡 , we first compute the intermediate embedding for the hospital admission by
retrieving the representations from U and summing them up, i.e. a𝑡 = Ux𝑡 . Then we calculate the attention-based
admission representation ã𝑡 as follows:

ã =

|A |∑︁
𝑖=1

𝛽𝑖 ∗ u𝑖 ,
|A |∑︁
𝑖=1

𝛽𝑖 = 1, 𝛽𝑖 ≥ 0, (10)

where we ignore the subscript 𝑡 denoting the 𝑡𝑡ℎ hospital admission for simplification of the notations, 𝛽 is the
attention weighting for the predictive task, and 𝑖 indicate the index of the medical concept presented in the
admission A. The attention weighting is calculated by the softmax function:

𝛽𝑖 =
exp(𝑔(a, u𝑖 ))∑ |A |
𝑘=1 exp(𝑔(a, u𝑘 ))

, (11)

where we approximate the function 𝑔(·, ·) by a single layer perceptron with the same form as Eq. (2).
After we derive the attention-based admission embedding ã𝑡 , it is used as input to the prediction model:

ŷ𝑡 = softmax (tanh (Qã𝑡 + k)) , (12)

whereQ ∈ R𝑑×|𝑁 | and k ∈ R |𝑁 | are the learnable parameters, 𝑑 is the dimension of the final admission embedding
and |𝑁 | is the number of classes of output labels. We formulate the cross-entropy loss as the objective function
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as follows:

Lpred
𝑝 = − 1

𝑇 − 1

𝑇−1∑︁
𝑡=1

[
y⊺𝑡 log(ŷ𝑡 ) + (1 − y𝑡 )⊺ log(1 − ŷ𝑡 )

]
, (13)

where 𝑇 is the number of hospital admissions of the 𝑝𝑡ℎ patient, and y𝑡 is the ground truth label.
By combining the objective functions of the predictive task and that of the EHR co-occurrence (Eq. 9), and

taking average over all the patients, we can derive the overall objective function as follows:

L =
1
𝑁𝑝

𝑁𝑝∑︁
𝑝=1

©­«Lpred
𝑝 + 1

𝑇𝑝

𝑇𝑝∑︁
𝑡=1
Lco-occur
𝑡

ª®¬ (14)

where 𝑇𝑝 is the number of admissions of the 𝑝𝑡ℎ patient, and 𝑁𝑝 is the total number of patients.

5 EXPERIMENTS
To evaluate the proposed ADORE2, we carry out quantitative and qualitative evaluation using real-world large-
scale datasets MIMIC-III and eICU. For the prediction performance, we conduct the next-admission diagnosis 
prediction, mortality prediction, and re-admission prediction. In addition, we demonstrate the interpretability of 
the embeddings learned through case studies. Besides, we present some particular attention weightings derived 
by ADORE with discussions on their quality.

5.1 Data and Ontology Pre-processing
We use MIMIC-III (Medical Information Mart for Intensive Care) [15] and eICU [26] datasets for evaluation. The 
former is a public dataset containing data of over 46,000 patients admitted to intensive care units (ICU) of the 
Beth Israel Deaconess Medical Center between 2001 and 2012. The latter is a multi-center database, containing 
over 200,000 ICU admissions across the United States between 2014-2015.
For the categorical medical ontology, we adopt CCS3. For the multi-relational medical ontology, we adopt 

SNOMED–CT4 which consists of diagnoses, medications and additional entities such as body-site (e.g., “head”, 
“face”, and so on). Relationships include due-to, following, finding-site, etc. The relationships link entities 
together to form a multi-relational graph.

5.1.1 Data Pre-processing. We filter out the patients with less than two hospital visits for the next diagnosis task 
and we exclude hospital admissions that have no diagnosis and medication records. We also remove the base 
type medications for MIMIC-III, e.g., D5W.
For MIMIC-III, we finally extract 6, 453 patients with 2 .7 hospital admissions per patient on average. The 

average numbers of diagnoses and medications in each admission are 12.0 and 38.9, respectively. For the eICU, 
we extract 8, 565 patients which contains 27, 635 hospital admissions. The average numbers of diagnoses and 
medications in each admission are 14.65 and 21.47, respectively.

5.1.2 SNOMED–CT Pre-processing. Relationships such as Has presentation strength denominator value and Count 
of base of active ingredient are removed as ADORE only makes use of discrete labels. In addition, is-a relationship 
is removed as it is repeated with the CCS ontology. After the pre-processing, there remain 23 different types 
of relationships. They include Has definitional manifestation, Direct morphology, Access instrument, Has focus, 
Following, Specimen substance, Has precise active ingredient, Interprets, Subject relationship context, Approach, Using 
substance, Associated procedure, Has active ingredient, Has measured component, Associated finding, Finding method,
2The code is available on Github at https://github.com/KenCheong/Adaptive-Integration-of-Categorical-and-Multi-relational-Ontologies-
with-EHR-Data-for-Medical-Concep.git
3https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
4http://www.snomed.org/
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Table 2. Statistics of categories with different numbers of embedding splits at each CCS level for CCS.

CCS Level # of categories Average # of basic embeddings

1 20 2.75
2 136 1.97
3 367 1.59
4 209 1.44

Temporally follows, Has BoSS, Access,Method, Direct substance, Using access device, Due to. Note that SNOMED–CT
provides an official mapping5 between ICD–9 codes and the concepts in SNOMED–CT, we use this mapping to
ensure that the annotations of the overlapping concepts are consistent.

5.2 Baseline Models
We compare the performance of ADORE against the following models proposed for medical concept embedding:
• Med2Vec [5] which exploits sequential and co-occurrence relationships of medical concepts.
• GRAM [6] which exploits the categorical ontology with an attention mechanism and was applied to
diagnosis prediction.
• HAP [38] which propagates attention across the entire ontology so that the medical concept embeddings are
learned from all concepts in the hierarchy instead of only ancestors. As it is designed for the next-admission
diagnosis prediction, we only show the results of the method for the task.
• MMORE [31] which combines the categorical ontology and the EHR data by allowing two basic embeddings
for each non-leaf node to improve the flexibility.
• ADORE-cat, which is a variant of ADORE that removes the multi-relational ontology component.
• ADORE, which is a full version of ADORE that includes both the categorical ontology and themulti-relational
ontology components.

5.3 Experiment Setup
We determine the hyperparameters by the grid search. We set the dimension of the ontological embedding
(both categorical and multi-relational) and the co-occurrence embedding to be 400 in our model. The embedding
dimension is set as 800 for all the baselines. The dimension of the hidden layer for the attention mechanism is set
as 100. The model is optimized using Adadelta [36] with the batch size of 100. And the maximum number of
basic embeddings for the entities in the categorical ontology is set as 3.

5.4 Predictive Evaluation Tasks
We evaluate the predictive performance using several important clinical prediction tasks, including the next-
admission diagnosis prediction [18, 24], mortality prediction [28], and hospital re-admission prediction[2]. We
randomly split the data into the training set, test set, and validation set. We fix the size of the validation set to be
10% of the dataset. To evaluate the robustness against different settings of insufficient data, we vary the size of
the training set from 20% to 80% of the dataset and use the remaining part as the test set.

For the next-admission diagnosis prediction, we follow a similar approach as in [6, 31] and derive the ground-
truth labels y𝑡 for diagnoses prediction by grouping the diagnoses in the next admissions into 712 groups based
on the first three digits of their ICD-9 codes and conduct multi-label classification. We measure the performance

5https://www.nlm.nih.gov/research/umls/mapping_projects/icd9cm_to_snomedct.html
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Table 3. Performance comparison on MIMIC-III in terms of Accuracy@20 for next-admission diagnosis prediction, and AUC
for mortality prediction and re-admission prediction. The result is averaged over 5 runs and the comparison is carried out
over training sets of different sizes. The entries with significant improvement based on significant test (𝑃 ≤ 0.05) are marked
with ∗.

Model 10% 20% 40% 80%
Re-admission prediction

Med2Vec 0.5564±0.0035 0.5796±0.0022 0.5868±0.0023 0.6248±0.0014
GRAM 0.6515±0.0039 0.6491±0.0036 0.6753±0.0032 0.6996±0.0013
MMORE 0.6588±0.0042 0.6632±0.0033 0.6818±0.0025 0.6972±0.0019
ADORE-cat 0.6523±0.0042 0.6693±0.0034 0.6840±0.0032 0.6988±0.0025
ADORE 0.6635±0.0045 0.6667±0.0035 0.6914±0.0021∗ 0.7176±0.0023∗

Next-admission diagnosis prediction
Med2Vec 0.4912±0.0027 0.4963±0.0031 0.5187±0.0019 0.5290±0.0015
GRAM 0.4974±0.0029 0.5058±0.0025 0.5315 ±0.0025 0.5550±0.0011
HAP 0.5021±0.0032 0.5214±0.0031 0.5318 ±0.0023 0.5510±0.0018
MMORE 0.4958±0.0030 0.5176±0.0029 0.5383±0.0028 0.5621±0.0012
ADORE-cat 0.4985±0.0035 0.5168±0.0026 0.5398±0.0022 0.5668±0.0009
ADORE 0.5023±0.0033 0.5229±0.0025∗ 0.5466±0.0011∗ 0.5695±0.0019∗

Mortality prediction
Med2Vec 0.8213±0.0017 0.8632±0.0013 0.9078±0.0011 0.9341±0.0008
GRAM 0.8833±0.0016 0.9010±0.0017 0.9132±0.0014 0.9421±0.0015
MMORE 0.8820±0.0019 0.9148±0.0017 0.9241±0.0018 0.9460±0.0011
ADORE-cat 0.8822±0.0020 0.9237±0.0022 0.9269±0.0017 0.9525±0.0014
ADORE 0.8882±0.0021 0.9322±0.0016∗ 0.9273±0.0013∗ 0.9529±0.0015∗

of next-admission diagnosis prediction using Accuracy@k, which is defined as:

Accuracy@k =
# of true positives in the top 𝑘 predictions

# of positives
.

For mortality prediction and hospital re-admission prediction, we use the area under the ROC curve (AUC) as 
the evaluation metric as both are binary classification tasks. Due to highly imbalanced labels for the mortality 
prediction task, we retain all patients with positive labels (patients deceased in hospital) and randomly sample 
the same number of patients with negative labels for the mortality prediction task. For the hospital re-admission 
prediction task, we predict whether each patient will be admitted to hospitals in the future given the current visit.

5.5 Predictive Performance
The results of the predictive tasks are summarized in Tables 3 and 4 for MIMIC–III and eICU datasets, respectively. 
The results show that ADORE consistently achieve the best predictive performance in all the tasks conducted on 
both datasets, demonstrating the effectiveness of ADORE. Compared with Med2Vec, all other methods achieve 
significant improvement in predictive performance, especially when the training size is small. This indicates 
that integrating medical ontologies for learning the medical concept embedding could help alleviate the issue of 
insufficient data. Although the same categorical ontology is being used, MMORE outperforms GRAM for most of 
the training sizes and datasets. Take the next-admission diagnosis prediction task as an example. Using only 20%
data for training, MMORE can improve the Accuracy@20 from 0.5058 to 0.5176 and from 0.6229 to 0.6423 for 
MIMIC–III and eICU respectively. This is because GRAM does not attempt to resolve the inconsistency between
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Table 4. Performance comparison on eICU in terms of Accuracy@20 for next-admission diagnosis prediction, AUC for
mortality prediction, and Re-admission prediction based on training sets of different sizes.

Model 10% 20% 40% 80%
Re-admission prediction

Med2Vec 0.5232±0.0026 0.5286±0.0025 0.5324±0.0022 0.5466±0.0019
GRAM 0.5361±0.0030 0.5431±0.0026 0.5562±0.0023 0.5527±0.0022
MMORE 0.5376±0.0033 0.5445±0.0031 0.5585±0.0030 0.5563±0.0025
ADORE-cat 0.5300±0.0035 0.5453±0.0029 0.5580±0.0032 0.5607±0.0024
ADORE 0.5501±0.0033∗ 0.5471±0.0027 0.5634±0.0028∗ 0.5662±0.0025∗

Next-admission diagnosis prediction
Med2Vec 0.5064±0.0027 0.5747±0.0028 0.6540±0.0022 0.7053±0.0011
GRAM 0.6065±0.0029 0.6229±0.0019 0.6749±0.0018 0.7161±0.0010
HAP 0.5523±0.0024 0.6456±0.0025 0.6792±0.0037 0.7208±0.0012
MMORE 0.6057±0.0023 0.6423±0.0021 0.6716±0.0019 0.7108±0.0011
ADORE-cat 0.5985±0.0024 0.6439±0.0026 0.6784±0.0022 0.7192±0.0014
ADORE 0.6112±0.0029∗ 0.6457±0.0026 0.6796±0.0015 0.7226±0.0010∗

Mortality prediction
Med2Vec 0.5812±0.0029 0.6344 ±0.0021 0.6512±0.0016 0.6569±0.0012
GRAM 0.5916±0.0031 0.6529±0.0029 0.6614±0.0021 0.6644±0.0013
MMORE 0.6237±0.0032 0.6455±0.0030 0.6777±0.0022 0.6882±0.0015
ADORE-cat 0.6397±0.0035 0.6429±0.0027 0.6826±0.0023 0.6931±0.0019
ADORE 0.6363±0.0035 0.6815±0.0029∗ 0.7016±0.0025∗ 0.7160±0.0018∗

the EHR data and the medical ontology. MMORE, on the other hand, learns two basic representations for each
category in the ontology to provide the flexibility for better alignment. The performance of HAP in the next
diagnosis prediction is comparable to MMORE as it tries to improve the limitation of GRAM by propagating
information to more ancestors for diseases. ADORE-cat which estimates the number of basic embeddings needed
for each category can further improve the predictive performance. ADORE with all components included gives
the best prediction performance. It achieves significant improvement in terms of predictive performance over
GRAM, especially when the training size is small. For instance, when the training size is as small as 10%, ADORE
outperforms GRAM by 7.6% and 2.6% for mortality and re-admission prediction tasks, respectively, based on the
eICU dataset. This implies that ADORE is effective in achieving adaptive integration of the two different types of
medical ontologies and the EHR data within a unified representation learning framework.

5.6 Evaluating the quality of the ontological embeddings
To quantitatively evaluate the organization of similar concepts in the learned ontological embedding space, we
employ the evaluation method proposed in [1]. In particular, we calculate the intrinsic measures of the quality of
the embedding space by calculating the average distance in the latent space between nodes that are close in the
ontologies. As the ontologies we are considering include both categorical and multi-relational, we propose two
different scores, namely categorical score and relational score as follows.
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Table 5. Performance comparison on ontological embedding quality based on intrinsic measures.

Model Categorical Categorical-Single Relational Joint
Med2Vec 0.2624 0.2563 0.4872 0.4168
GRAM 0.9517 0.9378 0.5512 0.7322
MMORE 0.9476 0.9145 0.6033 0.7622
ADORE-cat 0.8522 0.9114 0.5912 0.8129
ADORE 0.6689 0.9273 0.9274 0.8403

Categorical score =
1
|C|

| C |∑︁
𝑖=1

1
|path(𝑖) |

∑︁
𝑗∈path(𝑖 )

S ©­«ℎ𝑖 , 1
| ch( 𝑗) |

∑︁
𝑘∈ch( 𝑗 )

ℎ𝑘
ª®¬ (15)

Relational score =
1
|C|

| C |∑︁
𝑖=1

∑︁
( 𝑗,𝑟 ) ∈𝑁𝑖

1
|𝑁 ′𝑟 | × 𝑅

S ©­«ℎ𝑖 , 1
|𝑁 𝑗 |

∑︁
(𝑘,𝑟 ′ ) ∈𝑁 𝑗

ℎ𝑘
ª®¬ (16)

where S(·, ·) denotes the cosine similarity between two embedding vectors in the latent space, ch(·) denotes 
the set of children nodes of the 𝑗𝑡ℎ node, 𝑁𝑖 denotes the set of node-relationship pairs associated with the 𝑖𝑡ℎ 

node, |𝑁𝑟′ | is the number of nodes that connects to at least one other node with the 𝑟 𝑡ℎ relationship, and 𝑅 is the 
number of types of relationships.
Also, to measure the overall performance with both categorical and multi-relational information considered 

at the same time, we also compute a joint score using Eq. (16) with the parent-children relationship in the CCS 
ontology being considered as one of the relationships.
The results of comparison are summarized in Table 5. When we consider only the categorical score, ADORE 

has a lower value than the other methods like GRAM as expected. This is because ADORE allows each non-leaf 
node to carry multiple semantic meanings. Intuitively, the increased number of splits for each non-leaf node will 
encourage more diverse medical concept embeddings if supported by the EHR data, even if they belong to the 
same category in the ontology. To verify this, we further compare only the non-leaf nodes that were not split 
during the training (i.e., ADORE infers that such nodes require only one basic embedding for its representation) 
and report the categorical score for those nodes in the column “Categorical-Single”. ADORE obtains a similar 
performance to that obtained by the others. The result implies that for the medical concepts which are similar as 
revealed in the EHR data and described in the CCS ontology, the embeddings learned by ADORE in fact can align 
well with the ontology.

With respect to the relational and joint scores, ADORE significantly outperforms the other models, indicating 
that the embeddings learned by ADORE not only addresses the inconsistency between the EHR data and the CCS 
ontology, but also properly respect the relational SNOMED-CT ontology.

5.7 Interpretability of Embeddings Learned
To compare the interpretability of ADORE with other methods, we show an overview of final representations 
of diagnosis codes learned by different models using t-SNE [20] in Fig. 4. The different colors indicate the CCS 
categories of the diagnosis code. We randomly select 50 categories from the third level counting from the bottom 
in the ontology (excluding the leaf level). Fig. 4(a) is obtained by Med2Vec, which learns the embedding using 
the EHR data alone. By incorporating the CCS ontology, GRAM and HAP, as visualized in Fig. 4(b) and (c), 
could learn the embeddings with some clustering structure. Yet, the middle part of the visualization shows that 
medical codes under different categories cannot be well disentangled. The inconsistency between the EHR and
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Fig. 4. Scatter diagrams of the embeddings learned by different methods. Nodes from 50 randomly selected lowest level
categories in the CCS ontology are visualized. And the colors refer to different CCS categories.

medical ontologies not being addressed is believed to be the reason. MMORE and ADORE-cat, as shown in
Fig. 4(d) and (e), respectively, could give embeddings with clustering structures much more prominent than
GRAM and HAP. This implies that allowing multiple basic embeddings to be learned could allow a more adaptive
integration to help better alleviate the inconsistency issue, and thus lead to medical embeddings that could better
capture the semantic meanings of the medical codes. Fig. 4(f) shows the medical concept embeddings learned by
ADORE. It is evident that ADORE gives more distinct clustering structure for the representations learned than all
other methods, implying that properly integrating the multi-relational ontology as proposed could further help
capture the latent semantic relationships between different medical codes, and thus improve both the predictive
performance and the interpretability.

5.7.1 Case Study. To further demonstrate the effectiveness of ADORE by incorporating both categorical and
multi-relational ontologies, we conduct a case study to examine the embeddings learned for several diagnoses.
The results are summarized in Fig. 6 and the relationship between the diagnoses examined are shown in Fig. 5.

We extract diagnosis codes under four CCS categories: Viral pneumonia, Other bacterial pneumonia, Pulmonary
tuberculosis and Regional enteritis. In the SNOMET–CT ontology, the categories Viral pneumonia and Other
bacterial pneumonia link to the entity Lung structure with the relationship of finding site. The category Regional
enteritis links to Granulomatous inflammation with the relationship of associated morphology. The category
Pulmonary tuberculosis links to both SNOMED–CT entities at the same time.
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Fig. 5. A sub-graph with entities and relationships extracted from CCS and SNOMED–CT for case study.

As shown in Fig. 6(a), GRAM groups diagnosis codes under Viral pneumonia and Other bacterial pneumonia 
together because they share the same ancestor Pneumonia and influenza in the CCS ontology. MMORE, as shown 
in Figure 6(b), introduces additional embedding representation for the classes and thus two classes are separated 
in the latent space. However, as the number of embeddings allowed for each category in MMORE is fixed to two, 
the setting may not be optimal for all categories. For example, the diagnosis codes under Regional enteritis are 
separated into two groups in the space where 5550 belongs to one group, and the remaining ones belong to the 
other one. This separation does not align with the existing medical knowledge, and thus is not desirable. On the 
other hand, ADORE-cat in the Figure 6(c) can discover the subgroups of Pneumonia and influenza while grouping 
the diagnosis codes under Regional enteritis together. The reason is that we allow the number of additional 
embeddings to be adaptive to each category during training. Table 2 shows the statistics of the number of splits 
learned for the categories at different levels of the ontology based on MIMIC-III. We can observe that categories 
in higher levels tend to split more than the lower ones.

Figure 6(d) shows the embeddings learned by ADORE, which further incorporates the multi-relational ontology 
SNOMED–CT. Compared to other models, ADORE learns a well-organized embedding space that forms a clear 
hierarchy of medical concepts. For diagnosis codes under Regional enteritis, 5559 is organized to be far away from 
the other three diagnosis codes as it is an unspecified site code. Besides, Viral pneumonia and Other bacterial 
pneumonia are clearly separated into two distinct groups in the space but still closer than the other diagnosis 
codes due to the use of the category-aware relational bias. For the Viral pneumonia, 4809 is distant from 4801 
and 4802 as 4809 is an unspecified subtype of viral pneumonia. When zooming in the Other bacterial pneumonia, 
we can observe two subgroups. One group consists of three five-digit codes (48230, 48241, and 48242) which 
are related to streptococcus. For the other group consisting of three four-digit codes (4821, 4822, 4829), it can 
be further divided into two: 4829, which is an unspecified code, and 4821, 4822. Meanwhile, the embeddings of 
diagnosis codes under Pulmonary tuberculosis, via the learning, is organized in the middle region of diseases that 
link to either Lung structure or Granulomatous inflammation because they share both connections.

5.7.2 Interpretation of the Multi-relational Attention Patterns. One additional advantage of  using the multi-
relational ontology is that we can relate the medical concepts in the EHR data to some auxiliary medical entities,
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Fig. 6. Learned ontological embeddings for entities in Figure 5.

Table 6. Case studies of diagnoses with their associated relationships which are sorted by the attention learned from the
model including “Abrasion or friction burn of face, neck, and scalp except eye, without mention of infection” (CCS code:
910.0), “Hypertensive heart and chronic kidney disease, unspecified, with heart failure and with chronic kidney disease stage
I through stage IV, or unspecified” (CCS code: 404.91), “Anemia in chronic kidney disease” (CCS code: 258.21).

CCS Relationship Incident entity Attn
910.0 Morphology Abrasion 0.7521

Finding site Skin of part of head and neck 0.1569
Finding site Skin structure of face 0.0911

404.91 Associated finding Hypertensive disorder, systemic arterial 0.9965
Has definitional manifestation Blood pressure elevation 0.0032
Finding site Systemic arterial structure 0.0001
Finding site Cardiac structure 0.0001

258.21 Interprets Hypertensive chronic kidney disease, unspecified, concentration 0.4684
Clinical course Chronic course-prolonged, duration 0.4056
Finding site Renal structure 0.1260
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which may give rise to new insights into the data. Compared to the graph convolution neural networks, the
proposed multi-relational attention layer in ADORE is able to identify the medical concepts which are crucial for
specific prediction tasks as attributed by the corresponding relationships. Table 6 shows three case studies where
the attention patterns derived using ADORE w.r.t the next-admission diagnosis prediction task are presented.
For example, for the diagnosis Abrasion or friction burn of face, neck, and scalp except for eye, without mention of
infection (CCS code: 910.0), three types of associated relationships are sorted by the attention values in the table.
The Morphology relationship that links to Abrasion is found to be more important than the other two Finding
site relationships. For the second case, the diagnosis Hypertensive heart and chronic kidney disease, unspecified,
with heart failure and with chronic kidney disease stage I through stage IV, or unspecified (CCS code: 404.91) follows
a similar pattern. The Associated finding relationship with “Hypertensive disorder, systemic arterial” gains
a higher attention value. Similarly, for the diagnosis Anemia in chronic kidney disease (CCS code: 258.21), the
measurement of total hemoglobin (Interprets relationship) procedure describes the diagnosis better than the
chronic course and renal structure relationships. These attention patterns present the types of features (expressed
as associated relationships) of medical concepts which have more significant contribution to the prediction tasks.

6 CONCLUSION
In this paper, we propose ADOREwhich is a novel representation learning framework that can adaptively integrate
both categorical and multi-relational medical ontologies with EHR data for medical concept embedding. First, it
learns multiple basic embeddings for each category to avoid the potential inconsistency to be encountered between
medical ontologies and EHR data, with the number of basic embeddings of each category automatically estimated.
In addition, ADORE makes use of a category-aware attention network to allow more adaptive integration of the
multi-relational ontology and the categorical ontology to preserve their distinct semantic relationships as far as
possible. Empirical evaluation on real-world datasets demonstrates that ADORE can lead to improved predictive
performance. Also, the learned medical concept representations are interpretable and can better align with the
existing medical knowledge. For future work, we will explore methods to incorporate temporal information for
the ontological embedding learning.
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