
The VLDB Journal (2014) 23:653–676
DOI 10.1007/s00778-013-0344-8

REGULAR PAPER

Correlated network data publication via differential privacy

Rui Chen · Benjamin C. M. Fung ·
Philip S. Yu · Bipin C. Desai

Received: 29 November 2012 / Revised: 22 October 2013 / Accepted: 24 October 2013 / Published online: 15 November 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract With the increasing prevalence of information
networks, research on privacy-preserving network data pub-
lishing has received substantial attention recently. There are
two streams of relevant research, targeting different privacy
requirements. A large body of existing works focus on pre-
venting node re-identification against adversaries with struc-
tural background knowledge, while some other studies aim
to thwart edge disclosure. In general, the line of research on
preventing edge disclosure is less fruitful, largely due to lack
of a formal privacy model. The recent emergence of differen-
tial privacy has shown great promise for rigorous prevention
of edge disclosure. Yet recent research indicates that differen-
tial privacy is vulnerable to data correlation, which hinders
its application to network data that may be inherently corre-
lated. In this paper, we show that differential privacy could
be tuned to provide provable privacy guarantees even in the
correlated setting by introducing an extra parameter, which
measures the extent of correlation. We subsequently provide
a holistic solution for non-interactive network data publica-
tion. First, we generate a private vertex labeling for a given
network dataset to make the corresponding adjacency matrix

R. Chen (B)
Hong Kong Baptist University, Kowloon, Hong Kong
e-mail: ruichen@comp.hkbu.edu.hk

B. C. M. Fung
McGill University, Montreal, Canada
e-mail: ben.fung@mcgill.ca

P. S. Yu
University of Illinois at Chicago, Chicago, IL, USA
e-mail: psyu@cs.uic.edu

B. C. Desai
Concordia University, Montreal, Canada
e-mail: BipinC.Desai@concordia.ca

form dense clusters. Next, we adaptively identify dense
regions of the adjacency matrix by a data-dependent parti-
tioning process. Finally, we reconstruct a noisy adjacency
matrix by a novel use of the exponential mechanism. To
our best knowledge, this is the first work providing a practi-
cal solution for publishing real-life network data via differ-
ential privacy. Extensive experiments demonstrate that our
approach performs well on different types of real-life net-
work datasets.

Keywords Network data · Differential privacy · Data
correlation · Non-interactive publication

1 Introduction

In the last few years, information networks in various applica-
tion domains, such as social networks, communication net-
works and transportation networks, have experienced vig-
orous developments. In particular, online social networks,
such as Facebook, LinkedIn and Twitter, have become very
prevalent. With the growth of information networks, a large
volume of network data has been generated, which enables
a wide spectrum of data analysis tasks. Network data is typ-
ically represented as graphs, where nodes represent a set of
individuals with their attributes, and edges represent connec-
tions between them. In this paper, we use the terms network
data and graph interchangeably.

It has been shown that, with naively sanitized network
data (i.e., merely replacing explicit identifiers by pseudo-
identifiers), an adversary is able to launch different types of
privacy attacks that re-identify nodes, reveal edges between
nodes or expose node attributes [20]. Therefore, network data
needs to be sanitized with formal, provable privacy guaran-
tees before it can be released to the public.

123

654 R. Chen et al.

In addressing privacy issues in network data publication,
there has been a series of research [4,6,8,16,17,26,27,34,
37–40] based on different privacy models targeting different
privacy requirements. Most of these works [6,17,26,38–40]
focus on preventing node re-identification and/or associated
attribute disclosure against adversaries with structural back-
ground knowledge. Some other papers [4,6,8,27,34,37] con-
sider privacy threats due to edge disclosure, which lets an
adversary learn the sensitive relationships between individ-
uals (e.g., sexual relationships in a population [2]). How-
ever, these works on preventing edge disclosure lack a for-
mal privacy definition for edge anonymity. Among all pri-
vacy models for network data, k-isomorphism [6] provides
relatively strong privacy protection for edge disclosure (i.e.,
an adversary cannot determine if two individuals are con-
nected via a path with probability ≥ 1

k). However, we show
that, with moderate background knowledge, an adversary is
able to ascertain a direct link between two individuals on a
k-isomorphic graph, as illustrated in Example 1.

Example 1 Consider the 3-isomorphic graph in Fig. 1. Sup-
pose that the adversary has successfully identified Bob as
one of {v1, v2, v3} and Ann as one of {v4, v5, v6} and seeks
to learn if there is a direct link between Bob and Ann, which
is considered sensitive. With the background knowledge that
Bob and Ann are connected via a common friend, the adver-
sary can ascertain that Bob and Ann are in the same subgraph,
and therefore learn that there is a direct link between them.

The vulnerability of k-isomorphism is largely due to its
deterministic nature. In contrast, ε-differential privacy [11], a
well-acknowledged privacy notion emerged recently,
demands inherent randomness of a sanitization algorithm.
It requires that the outcome of any analysis should be insen-
sitive to the change of a single data record. It follows that
even if a user had opted in a database, there would not be a
significant change in any computation based on the database.
Hence it assures every record owner that any privacy breach
will not be a result of participating in the database.

ε-differential privacy provides rigorous privacy guaran-
tees on a database whose records are generated indepen-
dently; however, its application to network data is hindered
by the fact that network data may be inherently correlated.

1

4

2

5

3

6

Fig. 1 k-isomorphism is insufficient for preventing edge disclosure

In the context of network data, the evidence of participa-
tion [24] of a record (e.g., an edge) may be reflected by sev-
eral other records. For example, the presence of an edge in a
network database can be inferred by the existence of several
other edges. The deletion of a single edge will not be able
to fully mask its presence in the database. Consequently,
ε-differential privacy fails to provide the claimed privacy
guarantee in the correlated setting.

In this paper, we analyze the property of differential pri-
vacy under correlation and show that ε-differential privacy
could be tuned to provide provable privacy guarantees even
in the correlated setting by introducing an extra parameter,
which measures the extent of correlation. Based on this para-
meter, we interpret differential privacy in the correlated set-
ting in terms of group differential privacy [11] and demon-
strate that differential privacy exhibits a monotonic property
with respect to correlation. Analogous to the notion of edge
differential privacy [16,18,22,31,32] that defines neighbor-
ing graphs as graphs differing in at most one edge, we con-
sider its counterpart in the correlated setting. This notion
prevents an adversary from learning the existence of any
single edge in the correlated setting while allowing to pre-
serve essential network structural properties for important
data analysis tasks, such as degree distribution, cut query
and shortest path length.

In addition to correlation, other major challenges of apply-
ing differential privacy to network data include scalability
and utility. This is confirmed by the recent paper [16] that
studies network data publication in the non-interactive set-
ting under differential privacy. It requires the input graph
to be dense, which is unlikely to be satisfiable on real-
life network datasets, and leaves finding an efficient algo-
rithm as an open problem. In this paper, we follow the
line of data-dependent solutions [5,30], which adaptively
make use of noisy information from the underlying data-
base to improve efficiency and effectiveness. We first iden-
tify a good vertex labeling to make the adjacency matrix of
an input graph form clustered dense regions, then explore
these dense regions using an adapted quadtree, which avoids
the high complexity of graph operations and leads to oper-
ations with smaller sensitivities, and finally design an effi-
cient use of the exponential mechanism to reconstruct the
quadtree’s leaf nodes while satisfying ε-differential pri-
vacy.
Contributions In this paper, we consider the problem of
publishing useful network structures while preventing an
attacker from learning the existence of any single edge
even when the underlying edges are correlated. Our major
contributions are summarized as follows.

– We analyze the privacy guarantee of ε-differential privacy
in the correlated setting (Sect. 4). We indicate that differ-
ential privacy could still provide provable guarantees by

123

Correlated network data publication via differential privacy 655

introducing an extra correlation parameter to measure the
extent of correlation. We unravel the privacy guarantee
of differential privacy under correlation in terms of group
differential privacy [11].

– We propose a practical non-interactive solution for net-
work data publication, which prevents an adversary from
learning the existence of a direct link between any
two individuals (Sect. 5). Compared with the previous
work [16], our improvements are significant: (1) we
achieve ε-differential privacy in the correlated setting,
whereas Gupta et al. [16] achieve (ε, δ)-differential pri-
vacy, a weaker variant of ε-differential privacy; (2) we
lift the impractical assumption that the input graph has
to be dense. We show that theoretically our approach
obtains high utility as long as sufficient edge informa-
tion is contained in some dense subgraphs and that exper-
imentally our approach performs well on many differ-
ent types of real-life network datasets; (3) most impor-
tantly, our approach is efficient to handle large real-life
datasets.

– We conduct an extensive experimental study over various
types of real-life network datasets, including social net-
work, collaboration network and transportation network
(Sect. 6). We examine the utility of sanitized network data
for three different data analysis tasks, namely degree dis-
tribution, cut query and shortest path length. We demon-
strate that our approach maintains high utility and scales
to large real-life network data.

– We perform an experimental comparison between the k-
isomorphic algorithm [6] and our approach from a utility-
driven perspective (Sect. 6). The experimental results pro-
vide important insights for a data publisher to select a
proper privacy model in different data publishing scenar-
ios.

The rest of the paper is organized as follows. Section 2
reviews the related works under both partition-based privacy
models and differential privacy. Section 3 presents the pre-
liminaries of our approach and our utility requirements. Sec-
tion 4 discusses the privacy guarantee of ε-differential pri-
vacy in the correlated setting. Section 5 gives the main saniti-
zation algorithm. Comprehensive experimental results and an
experimental comparison with k-isomorphism are reported
in Sect. 6. Section 7 concludes the paper.

2 Related work

Since Backstrom et al.’s [1] pioneering study of pri-
vacy attacks on social networks, the problem of privacy-
preserving network data publishing has received increasing
attention.

2.1 Network data sanitization under partition-based privacy
models

A large line of research studies how to prevent a node from re-
identification against an adversary with background knowl-
edge on the network structure (and node attributes). Liu and
Terzi [26] propose the notion of k-degree anonymity, which
requires that, for every node v, there exist at least k − 1
other nodes with the same degree as v. They achieve k-degree
anonymity by a two-step approach, which first generates a
k-anonymous degree sequence with the minimum number
of edge modifications and then constructs a graph satisfying
this degree sequence while making sure that the anonymized
graph is a supergraph of the original graph.

Zhou and Pei [39] demand that any vertex cannot be re-
identified in an anonymized graph with probability greater
than 1

k by an adversary equipped with 1-neighborhood back-
ground knowledge. They propose a neighborhood compo-
nent coding technique to compare the neighborhoods of
all vertices and organize vertices with similar neighbor-
hoods into the same group. Anonymization is then conducted
within each group by generalizing vertex labels and adding
edges.

Hay et al. [17] study privacy risks in network data by
modeling adversarial knowledge as three types of knowledge
queries, namely vertex refinement queries, subgraph queries
and hub fingerprint queries. They propose an anonymization
technique based on generalization. They generalize a graph
by grouping nodes into partitions with size at least k, and
only release information in the generalized level (e.g., the
size of each partition and the density of edges within and
across partitions).

Zou et al. [40] propose k-automorphism, which resists any
structural attack by enforcing k − 1 automorphic functions
in the published data. This notion ensures that an adversary
with any structural background knowledge cannot identify
a node from the anonymized data with probability higher
than 1

k . They achieve k-automorphism by graph partitioning,
graph alignment and edge copy.

Cheng et al. [6] present the notion of k-security based on
k-isomorphism. It requires an input graph to be transformed
into k disjoint isomorphic subgraphs. The strong point of k-
isomorphism is that it prevents not only node re-identification
but also edge disclosure. However, as shown in Sect. 1, k-
isomorphism’s ability in preventing edge disclosure is lim-
ited.

Yuan et al. [38] introduce a framework that provides per-
sonalized privacy protection for labeled social networks.
They define three levels of privacy protection requirements
by modeling gradually increasing adversarial background
knowledge. The framework combines label generalization
and other structure protection techniques (e.g., adding nodes
or edges) in order to achieve improved utility.

123

656 R. Chen et al.

Another line of research aims at obfuscating an adver-
sary’s certainty of the presence of a link between two target
nodes. Cormode et al. [8] consider the problem of anonymiz-
ing bipartite graph data based on a privacy model called
(k, l)-grouping. They propose to preserve the entire graph
structure by perturbing the mapping from entities to nodes.

Bhagat et al. [4] model a rich interaction graph as a bipar-
tite graph over the set of entities and interactions. Their
privacy requirement is to limit an attacker’s confidence on
an entity’s participation in an interaction. They anonymize
graphs using label lists based on a critical safety condition
and then release only the number of edges among different
node classes. Their idea is similar to that of Hay et al. [17],
but differs in more rigorous privacy protection in the presence
of node attributes.

Ying and Wu [37] study how random edge perturba-
tion strategies affect both real and spectral characteristics of
graphs and consequently develop two spectrum-preserving
randomization mechanisms, Spctr Add/Del and Spctr Switch,
which can better preserve graph spectral characteristics. They
conduct privacy analysis on random edge perturbation strate-
gies; however, it is not clear what privacy guarantees the two
spectrum-preserving randomization mechanisms provide.

Liu et al. [27] consider a special situation where edges
are weighted. They propose two privacy-preserving strate-
gies, one based on a Gaussian randomization multiplication
and the other based on a greedy perturbation algorithm, in
order to preserve shortest paths between pairs of nodes. Wu
et al. [34] present a low-rank-approximation-based recon-
struction algorithm, which recovers spectral properties of a
randomized graph. In general, all these works lack a formal
privacy definition and are only resistant to certain types of
privacy attacks.

2.2 Network data sanitization under differential privacy

With the recent wide acknowledgment of differential privacy,
some papers [16,18,22,31,32] have started to apply differen-
tial privacy to network data from different perspectives. Hay
et al. [18] propose two alternative formulations of differential
privacy for network data, namely edge differential privacy
and node differential privacy (see Sect. 3.3 for more discus-
sion). They point out that node differential privacy may be
too strong to provide desirable utility, and therefore, in real-
ity, edge differential privacy is a more meaningful privacy
notion. Based on edge differential privacy, they provide an
efficient implementation of the constrained inference tech-
nique in [19] to release a private estimate of a network’s
degree distribution.

Similarly, other works [16,22,31,32] are also based on
edge differential privacy. Karwa et al. [22] consider to out-
put approximate answers to subgraph counting queries (e.g.,
triangles, k-triangles and k-stars). Their approaches rely on

local sensitivity and smooth sensitivity, instead of global sen-
sitivity, to add instance-dependent noise and, therefore, only
satisfy the weaker (ε, δ)-differential privacy.

Sala et al. [32] propose to generate synthetic graphs by
feeding differentially private degree correlation statistics
(i.e., d K -2-series) into known graph generators. Due to the
large sensitivity of d K -2-series, a partitioning approach is
employed, which divides the d K -2-series into subseries and,
for each subseries, adds Laplace noise of magnitude pro-
portional to its local maximum degree. The resulting syn-
thetic graphs are shown to be useful for degree-based metrics
and node separation metrics; however, it is not clear whether
this approach supports cut queries, which is the main utility
metric considered in our paper. Though this paper opens an
interesting direction for achieving differential privacy over
network data, it is not clear how well it performs under
stringent privacy parameter settings (e.g., ε ≤ 1.0) as it is
only validated under relatively large privacy parameters (e.g.,
ε ∈ [5, 100]).

Following the idea of adding non-uniform noise pro-
posed in [32], Proserpio et al. [31] present a new workflow
for differentially private graph synthesis. They develop the
weighted PINQ language to produce private graph statis-
tics and search for synthetic graphs whose accurate mea-
surements fit those private statistics based on Markov chain
Monte Carlo (MCMC). Similarly, the current version of their
approach focuses on degree distribution, edge multiplicity
and joint degree distribution and does not support cut queries.

The work closest to ours is by Gupta et al. [16]. They give
new algorithms for approximately releasing the cut function
of a graph in both interactive and non-interactive settings.
The key idea is to pair an iterative database construction
algorithm with a distinguisher, which returns a cut query
with a significantly different value on an intermediate data-
base, in order to give increasingly accurate approximations
with respect to cut queries. The efficiency of the proposed
approach counts on an efficient, private algorithm for com-
puting accurate rank-1 matrix approximation; however, it is
still unclear how to find such an algorithm. As mentioned in
Sect. 1, there are several limitations that obstruct the applica-
tion of the proposed approach to real-life network datasets.

3 Preliminaries

3.1 Adjacency matrix

In this paper, we follow the convention of modeling an input
network dataset as a simple graph (i.e., an undirected graph
with no loops or multiple edges), G = (V, E), where V is
the set of vertices and E ⊆ V × V is the set of edges. For
a graph G, we use V (G) and E(G) to respectively denote

123

Correlated network data publication via differential privacy 657

the vertex set and the edge set of G. When the graph is clear
from the context, we omit G from the notation.

For the same graph, different vertex labeling schemes (i.e.,
different vertex orders) may lead to different adjacency matri-
ces. For now, we assume that a vertex labeling has been given
in a way that is independent of the underlying edge set (e.g.,
a random vertex labeling). Given a vertex labeling, the adja-
cency matrix of a simple graph G = (V, E), denoted by
A(G), is a square |V | × |V | matrix satisfying:

A(G)i j =
{

1 if(vi , v j) ∈ E(G)

0 otherwise

It is evident that, for any simple graph G, A(G) is a sym-
metric matrix with a zero diagonal. Figure 2 presents two
possible adjacency matrices of a given simple graph under
two different vertex labelings (ignore the bold lines in Fig. 2b
for now). A (0, 1)-matrix is called a graphic matrix if it is an
adjacency matrix of some simple graph. Apparently, a (0, 1)-
matrix is graphic if and only if it is a symmetric matrix with
a zero diagonal.

We define the density of a region R ⊆ A with size
|R| = m×l to be den(R) =∑m

i=1
∑l

j=1 Ri j/ml. It gives the
fraction of elements in R which are equal to 1. The region in A
formed by rows i, i+1, . . . , j and columns m, m+1, . . . , n
is denoted by A[i, j;m, n]. For example, in Fig. 2b the
densities of A and A[1, 3; 6, 8] are 20/64 = 31.25 % and
8/9 = 88.89 %, respectively.

3.2 Differential privacy

ε-differential privacy is defined based on the concept of
neighboring databases. Two databases, D1 and D2, are
neighbors if they differ on at most one record, denoted by
|D1ΔD2| = 1. ε-differential privacy requires that anything
that is learnable from a database D is also learnable from any
of its neighbors. This implies that any computation is insen-

sitive to the removal or addition of a single database record.
Formally, ε-differential privacy [11] is defined below.

Definition 1 (ε-differential privacy) A privacy mechanism
A gives ε-differential privacy if for any databases D1 and
D2 s. t. |D1ΔD2| = 1, and for any possible output O ∈
Range(A),

Pr [A(D1) = O] ≤ eε × Pr [A(D2) = O]

where the probability is taken over the randomness of A.

Two standard techniques, the Laplace mechanism [11] and
the exponential mechanism [29], have been proposed in the
literature for achieving ε-differential privacy. A fundamental
concept of both mechanisms is the global sensitivity [11] of
a function that maps an underlying database to real values.

Definition 2 (Global sensitivity) For any function f : D→
R

d , the global sensitivity of f is

GS(f) = max
D1,D2

|| f (D1)− f (D2)||1
for all D1, D2 s. t. |D1ΔD2| = 1.

Laplace mechanism For the analysis whose outputs are real,
Dwork et al. [11] propose the Laplace mechanism, which
takes as inputs a database D, a function f , and the pri-
vacy parameter ε and returns the true output of f plus some
Laplace noise. The noise is drawn from a Laplace distribution
with the probability density function p(x |λ) = 1

2λ
e−|x |/λ,

where λ is determined by both GS(f) and the desired pri-
vacy level ε.

Theorem 1 For any function f : D→ R
d over an arbitrary

domain D, the mechanism A

A(D) = f (D)+ Laplace(GS(f)/ε)

gives ε-differential privacy.

1 (5)

2 (3) 3 (6)

4 (4)

5 (2)

6 (1)

7 (8)

8 (7)

1 2 3 4 5 6 7 8

1 0 0 0 0 0 1 1 1

2 0 0 0 0 0 1 1 1

3 0 0 0 0 1 0 1 1

4 0 0 0 0 1 0 0 0

5 0 0 1 1 0 0 0 0

6 1 1 0 0 0 0 0 0

7 1 1 1 0 0 0 0 0

8 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

1 0 0 1 0 1 0 0 0

2 0 0 0 1 0 1 0 0

3 1 0 0 0 0 0 1 1

4 0 1 0 0 0 0 0 0

5 1 0 0 0 0 0 1 1

6 0 1 0 0 0 0 1 1

7 0 0 1 0 1 1 0 0

8 0 0 1 0 1 1 0 0

(a) A sample graph G with two vertex
labelings

(b) An adjacency matrix of G (c) Another adjacency matrix of G

Fig. 2 A sample graph and its two adjacency matrices under different vertex labelings

123

658 R. Chen et al.

Exponential mechanism For the analysis whose outputs are
not real or make no sense after adding noise, McSherry and
Talwar [29] propose the exponential mechanism that selects
an output from the output domain, r ∈ R, by taking into
consideration its score of a given utility function q in a
differentially private manner. The exponential mechanism
assigns exponentially greater probabilities of being selected
to outputs of higher scores so that the final output would be
close to the optimum with respect to q. The chosen utility
function q should be insensitive to changes in any particular
record, that is, has a low sensitivity. Let the sensitivity of q
be GS(q) = max∀r,D1,D2 |q(D1, r) − q(D2, r)|. A formal
definition follows.

Definition 3 (Exponential mechanism) Given a utility func-
tion q : (D×R)→ R for a database instance D, the mech-
anism A,

A(D, q) =
{

return r with probability ∝ exp(
εq(D, r)

2GS(q)
)

}

gives ε-differential privacy.

Composition properties ε-differential privacy exhibits desir-
able composition properties for a sequence of computations.
Any sequence of computations that each provides differen-
tial privacy in isolation also provides differential privacy in
sequence, which is known as sequential composition [28].

Theorem 2 Let Ai each provide εi -differential privacy. A
sequence of Ai (D) over the database D provides

∑
εi -

differential privacy.

In some special cases, in which a sequence of computa-
tions is conducted on disjoint databases, the privacy cost does
not accumulate, but depends only on the worst guarantee of
all computations. This is known as parallel composition [28].

Theorem 3 Let Ai each provide εi -differential privacy. A
sequence of Ai (Di) over a set of disjoint databases Di pro-
vides max(εi)-differential privacy.

3.3 Edge differential privacy

The privacy protection provided by ε-differential privacy
rests on the interpretation of neighboring databases. Since ε-
differential privacy guarantees that an attacker is not able to
distinguish neighboring databases, what is being protected
is precisely the difference between two neighboring data-
bases [18]. For relational data, the definition of a neighbor-
ing database is based on a single record difference, which
entirely encapsulates an individual’s private information. For
network data, an analogous definition could be obtained by
defining two neighboring graphs as two differing in at most
one node and all its incident edges. In this case, a node’s par-
ticipation in a graph could be totally hidden from an attacker.

Hay et al. [18] call the privacy model based on this notion
of neighboring graphs node differential privacy. While node
differential privacy provides desirable privacy protection, it
is, in general, infeasible to provide guaranteed utility due
to the huge sensitivity (consider the extreme case that the
additional node connects to all other nodes).

Another formulation of neighboring databases for net-
work data is defined as graphs differing in at most an edge (or
one isolated node). This definition leads to edge differential
privacy [18]. Intuitively, edge differential privacy protects
any single edge from being unveiled. Though weaker than
node differential privacy, this adaptation still provides mean-
ingful privacy protection for many applications. An exam-
ple was given in [18] based on the study of Kossinets and
Watts [25], where direct e-mail communication between stu-
dents and faculty in a large university is considered sensi-
tive. For this reason, edge differential privacy has been con-
sidered a reasonable adaptation of differential privacy for
network data and has been consequently employed in subse-
quent works [16,22,31,32]. In this paper, we also consider
an analogous notion of edge differential privacy in the cor-
related setting.

A natural extension to edge differential privacy is also
introduced in [18], known as k-edge differential privacy. It
allows neighboring graphs to differ by at most k edges and
therefore prevents leakage of aggregate information of any
subset of k edges. We stress that the purpose of k-edge dif-
ferential privacy is to protect k edges’ collective information
and is not to hide the presence of any single edge in the
correlated setting, which is the privacy goal of this paper.

3.4 Utility metrics

Our general goal is to generate a sanitized graph G̃, whose
adjacency matrix Ã minimizes

∑|V |
i=1

∑|V |
j=1 |Ai j − Ãi j | (i.e.,

Ã is as close to A as possible). When Ã is identical to
A,
∑|V |

i=1

∑|V |
j=1 |Ai j − Ãi j | = 0; when Ã is totally different

from A,
∑|V |

i=1

∑|V |
j=1 |Ai j − Ãi j | = |V |2 − |V |.

Minimizing
∑|V |

i=1

∑|V |
j=1 |Ai j − Ãi j | naturally makes the

published network data useful for many analysis tasks,
including degree distribution, cut query and shortest path
length.

3.4.1 Degree distribution

Given a graph G, we use a vector F(G) of size |V (G)| to
denote the degree frequency sequence of G. The i-th value
in F(G) is

| {v ∈ V : deg(v) = i} |
|V | ,

123

Correlated network data publication via differential privacy 659

where deg(v) is the degree of v. For example, the degree
frequency sequence of the graph in Fig. 2 is {0, 0.125, 0.25,
0.625, 0, 0, 0, 0}.

Given the degree frequency sequences of the original
graph and the sanitized graph, F(G) and F(G̃), we mea-
sure their difference by Kullback–Leibler divergence (KL-
divergence) [23]:

DK L(F(G)||F(G̃)) =
|V |−1∑
i=0

F(G)[i]log F(G)[i]
F(G̃)[i] .

If F(G) = F(G̃), DK L(F(G)||F(G̃)) = 0. We follow
the standard convention that 0log0 = 0.

3.4.2 Cut query

In this paper, a cut of a graph G is defined by any two sub-
sets of vertices S, T ⊆ V (G) [16]. A cut query returns the
number of edges in the cut-set of a cut, that is, QS,T (G) =
|{(u, v) ∈ E(G) : u ∈ S, v ∈ T }|. For example, given the
graph in Fig. 2, S = {v1, v2} and T = {v6, v7, v8}, we have
QS,T (G) = 6.

We measure the utility loss of a cut query over a sanitized
graph G̃ by its relative error, with respect to the true count
over the original graph G, which is computed as:

error(QS,T (G̃)) = |QS,T (G̃)− QS,T (G)|
max

{
QS,T (G), s

} ,

where s is a sanity bound that mitigates the effect of the
queries with extremely small selectivities [5,35,36].

3.4.3 Shortest path length

In a simple graph G = (V, E), a path between two ver-
tices v1 and vn is defined to be a sequence of vertices
P = (v1, v2, . . . , vn) ∈ V × V × · · · × V such that
(vi , vi+1) ∈ E(G) for 1 ≤ i < n. The length of a path
is the number of edges involved in its sequence of vertices.
For example, the path between vertices v1 and v4 in Fig. 2,
(v1, v7, v3, v5, v4), is of length 4.

The shortest path length between two vertices vi and v j is
the minimum length of all paths between them. For example,
the shortest path length between vertices v1 and v4 in Fig. 2 is
4. If there is no path between two vertices, the shortest path
length is defined to be ∞. The shortest path between two
vertices can be efficiently computed by breadth-first search
(BFS) [7].

4 Differential privacy under correlation

ε-differential privacy is built on the assumption that all under-
lying records are independent of each other. In the context of

network data, this assumption does not always hold. Kifer and
Machanavajjhala [24] indicate that, in the correlated setting,
ε-differential privacy cannot provide the claimed privacy pro-
tection because the removal of a single record cannot hide its
evidence of participation (e.g., its presence in the database
could still be inferred by the existence of some other records
to which it is correlated). We first revisit the example provided
in [24] to see how correlation could enhance an adversary’s
ability in differentiating two neighboring databases.

Example 2 1Bob or one of his 9 immediate family members
may have contracted a highly infectious disease, in which
case the entire family would have been infected. An attacker
asks the query “how many in Bob’s family have this disease?”
to infer if Bob has been infected. The true answer is of high
probability to be either 0 or 10. Suppose the noisy answer
returned is 12. If this answer is obtained by adding Laplace
noise calibrated by the specified privacy parameter ε, the
attacker learns that the probability of 10 being the true answer
is e10ε times larger than the probability of 0 being the true
answer, violating the expected privacy guarantee.

Example 2 suggests that the attacker’s ability of distin-
guishing two neighboring databases (with and without Bob’s
record) is augmented ten times due to the presence of cor-
relation. A natural question to ask is that if the extent of
correlation could be measured or upper bounded, can dif-
ferential privacy provide guaranteed privacy under correla-
tion? Below we give a positive answer to this question, which
provides a promise for publishing correlated network data
under differential privacy. To this end, we introduce a new
correlation parameter k to measure the extent of a record’s
correlation to other records.

A database D with a correlation parameter k means that
any record in D is correlated to at most k − 1 other records.
We assume that the database size is greater than k. The intro-
duction of the correlation parameter k allows us to generalize
ε-differential privacy [11], where k = 1, and free-lunch pri-
vacy [24], where k equals the database size, into the same
framework. The k value may vary from application to appli-
cation. Typically, the k value is domain specific and does not
depend on a specific database. In Sect. 6, we experimentally
show that our solution can preserve useful information even
when k is relatively large (e.g., k = 25), demonstrating its
usefulness in many real-life applications.

Given a privacy parameter ε and a correlation parameter k,
our goal is to provide a similar differential privacy guarantee
in the correlated setting, leading to the following definition.

1 The strong attacker mentioned in [24] cannot be prevented as his
prior knowledge (without accessing any database) has allowed him to
succeed in a privacy attack. Such a privacy attack is not caused by data
sharing and therefore beyond the scope of this paper.

123

660 R. Chen et al.

Definition 4 (ε-differential privacy under correlation) A
privacy mechanism A satisfies ε-differential privacy if for
any two databases D1 and D2 with a correlation para-
meter k and |D1ΔD2| = 1, and for any possible output
O ∈ Range(A),

Pr [A(D1) = O] ≤ eε × Pr [A(D2) = O]

where the probability is taken over the randomness of A.

As illustrated in Example 2, adding noise calibrated by the
global sensitivity and the privacy parameter ε cannot guar-
antee ε-differential privacy under correlation any more. The
correlation in a database makes a function more “sensitive”
to the change of a single record because its output is affected
by not only this record but also all of its correlated records.
Here we make the key observation that, no matter how records
are correlated, it is sufficient to cancel out the effect of data
correlation on any computation by considering all correlated
records (at most k records) as if they were totally removed
from the underlying database. This observation allows differ-
ential privacy under correlation to be interpreted in terms of
group differential privacy [11]: any ε

k -differentially private
mechanism also guarantees ε-differential privacy for data-
bases that differ in k records. This implies that a privacy
mechanism that achieves ε

k -differential privacy in the non-
correlated setting is sufficient to give ε-differential privacy
over a database with a correlation parameter k.

Following this idea, we now show how calibrating noise
by taking into consideration the correlation parameter k (i.e.,
decreasing ε proportional to k) helps thwart the privacy risk
due to data correlation.

Example 3 Continue with Example 2. Consider a privacy
mechanism that achieves ε

k -differential privacy (in this case,
k ≥ 10). We have

Pr [c = 10|̃c = 12]
Pr [c = 0|̃c = 12] ≤

exp(− ε|10−12|
10)

exp(− ε|0−12|
10)

≤ exp(ε).

That is, it enjoys ε-differential privacy over a database with
a correlation parameter k.

Differential privacy exhibits a nice monotonic property
with respect to correlation.

Theorem 4 An ε-differentially private mechanism A over
a database with a correlation parameter k also gives ε-
differential privacy for all databases with a correlation para-
meter k′, where 1 ≤ k′ ≤ k.

This is true because Pr [A(D1)=O]
Pr [A(D2)=O] ≤ e

ε
k ≤ e

ε
k′ . Theorem 4

indicates that if k is specified as the upper bound of corre-
lation in a series of computation, the sequential composition
property of differential privacy still holds in the correlated
setting.

Algorithm 1 DER Algorithm
Input: Raw graph G
Input: Privacy budget ε

Input: Correlation parameter k
Output: Sanitized graph G̃
1: ε

k = εI + εE + εA;
2: Vertex labeling L← IdentifyVertexLabeling(G, εI);
3: Generate the adjacency matrix A from G based on L;
4: Noisy quadtree QT ← ExploreDenseRegion(A, εE);
5: Sanitized matrix Ã← ArrangeEdge(QT , A, εA);
6: Generate G̃ from Ã;
7: return G̃;

Edge differential privacy under correlation In the rest of this
paper, we consider the counterpart of edge differential pri-
vacy (explained in Sect. 3.3) in the correlated setting. Recall
that in this case two neighboring databases are defined as two
databases that differ on at most one edge. This instantiation
of differential privacy prevents an adversary from learning
the presence of any single edge (i.e., if two individuals are
directly connected) even when its existence can be inferred
by k − 1 other edges. This notion hence provides “equal”
privacy protection to every vertex, regardless of its degree.
That is, every edge of every vertex is protected. Again we
stress that the privacy requirement of edge differential pri-
vacy under correlation is different from k-edge differential
privacy. To protect k edges’ collective information in the cor-
related setting, extra noise needs to be injected.

5 Private network publication

5.1 Overview

We first provide an overview of our solution, called density-
based exploration and reconstruction (DER), in Algorithm
1. It takes as inputs a graph G, a privacy budget ε and a cor-
relation parameter k and returns a sanitized graph G̃ satis-
fying ε-differential privacy over databases with a correlation
parameter ≤ k. Our solution consists of three main steps.
As explained in Sect. 4, we adjust the real privacy budget
to ε

k to cancel out the effect of correlation and then divide
ε
k into three portions, εI , εE and εA, each being used in a
step.

In the first step IdentifyVertexLabeling, we aim to identify
a good vertex labeling that makes the corresponding adja-
cency matrix form dense clusters of 1s. Existing approaches
that can serve this purpose are highly sensitive to the pres-
ence of an edge and therefore are difficult to achieve dif-
ferential privacy with acceptable utility. We develop an
effective greedy algorithm that iteratively permutes pairs of
vertices from a random vertex labeling for better density
contrast.

123

Correlated network data publication via differential privacy 661

In the second step ExploreDenseRegion, we design a dif-
ferentially private and data-dependent partitioning process
by adapting a standard quadtree to explore dense regions of
the adjacency matrix A of G, which can be reconstructed later
with high accuracy. This process results in a noisy quadtree
QT whose nodes represent a region of A and are associated
with a noisy count. The major technical challenges in this
step include the design of stop conditions based on an accu-
rate estimation of the height of QT , the selection of splitting
points based on the exponential mechanism, an adaptive pri-
vacy budget allocation scheme and an efficient implementa-
tion, each of which is key to the success of the entire algo-
rithm.

In the third step ArrangeEdge, we propose an efficient
edge arrangement algorithm to reconstruct a noisy, graphic
matrix Ã that minimizes

∑|V |
i=1

∑|V |
j=1 |Ai j − Ãi j |. Our

method is based on a novel use of the exponential mechanism,
which provides an efficient solution for an extremely large
output domain. It successfully reduces the run-time com-
plexity to O(|V |2), in contrast to the factorial complexity of
a naive implementation.

We illustrate the general idea of Algorithm 1 in the exam-
ple below.

Example 4 Consider the graph given in Fig. 2. Our approach
starts by generating a random vertex labeling L. Algorithm 1
iteratively swaps pairs of vertices in L to form dense regions
in the adjacency matrix. Suppose the final vertex labeling
is the one given in Fig. 2a (outside the brackets). Algo-
rithm 1 generates the corresponding adjacency matrix, as
illustrated in Fig. 2b. It then employs a quadtree structure
to explore the dense regions and calculate the number of
1s in them. This process is illustrated by the bold lines in
Fig. 2b. Finally, Algorithm 1 makes use of the exponential
mechanism to reconstruct the regions. A possible sanitized
adjacency matrix and the corresponding graph are given in
Fig. 3. The effect of correlation is diminished in this process
by adding extra Laplace noise that always hides the presence
of any k correlated edges.

5.2 Vertex labeling identification

Real-life graphs often have dense clusters, that is, they satisfy
the assumption of our approach that sufficient edge infor-
mation is contained in some dense subgraphs. However, the
reflection of these dense clusters in the corresponding adja-
cency matrix relies on a good vertex labeling. As an illus-
tration, in Fig. 2b, c, we give two adjacency matrices of the
same graph based on two different vertex labelings. We can
observe that the elements of value 1 (i.e., the edges) in Fig. 2b
cluster better than those in Fig. 2c. Since our approach needs
to explore the dense regions of an adjacency matrix, our first
objective is to identify a vertex labeling that makes the adja-
cency matrix exhibit high density contrast.

Without the privacy requirement, this task could be
achieved by, for example, the Cuthill–McKee algorithm [10]
and many other methods proposed for graph clustering [33]
and community detection [14]. However, most of these
approaches face a major challenge when adapted to a differ-
entially private version: They are overly sensitive to the pres-
ence/absence of an edge. For example, the Cuthill–McKee
algorithm relies on BFS, whose result could be substantially
different under the change of an edge. Hence their differen-
tially private variants are difficult to achieve desirable utility
under small privacy parameters. In this paper, we propose a
simple greedy algorithm that performs well under differential
privacy.

Given a vertex labeling, we need to quantify how well its
corresponding adjacency matrix forms dense clusters. Note
that this quality metric is of purpose different from that of
either graph clustering or community detection. It suffices if
Algorithm 1 as a whole achieves good utility for the analysis
tasks introduced in Sect. 3.4. For this reason, we aim to sim-
ply find a vertex labeling that places all 1s in the adjacency
matrix as close as possible to a designated area (e.g., the cen-
tral point or the main diagonal). The designated area could
be arbitrary, but its resultant global sensitivity is an important
factor to consider.

Fig. 3 A possible sanitized
graph and its adjacency matrix

1

2 3

4

5

6

7

8

1 2 3 4 5 6 7 8

1 0 0 0 0 0 1 1 1

2 0 0 0 0 0 1 1 1

3 0 0 0 1 0 1 1 1

4 0 0 1 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 1 1 1 0 0 0 0 0

7 1 1 1 0 0 0 0 0

8 1 1 1 0 0 0 0 0

(a) The sanitized graph G (b) The adjacency matrix A (G)

123

662 R. Chen et al.

Procedure 1 IdentifyVertexLabeling Procedure
Input: Raw graph G
Input: Privacy budget εI
Output: Vertex labeling L

1: i = 0;
2: Generate a random vertex labeling L;
3: while i < t do
4: Generate a candidate set C of swaps;
5: for each χ(vm , vl) ∈ C do
6: if NoisyCount(q(χ(vm , vl)),

εI
t) ≥ 0 do

7: Perform χ(vm , vl) over L;
8: i ++;
9: return L;

In this paper, we choose to use the central point(⌈ |V |
2

⌉
,
⌈ |V |

2

⌉)
of the adjacency matrix, which leads to

a smaller sensitivity (half of that of the main diagonal).
Formally, the quality of a vertex labeling L for the graph
G = (V, E) is measured by:

q(L) =
∑
i, j

Ai j

|V | − 2
·
(∣∣∣∣i −

⌈ |V |
2

⌉∣∣∣∣+
∣∣∣∣ j −

⌈ |V |
2

⌉∣∣∣∣
)

where
∣∣∣i − ⌈ |V |2

⌉∣∣∣+ ∣∣∣ j − ⌈ |V |2

⌉∣∣∣ is the Manhattan distance

of Ai j to the center (
⌈ |V |

2

⌉
,
⌈ |V |

2

⌉
), and |V | − 2 is a nor-

malization constant. We choose Manhattan distance, instead
of Euclidean distance, for the reason of simplicity. Slightly
abusing the term, we call this quality metric centrality. A
smaller centrality q(L) indicates better quality, that is, the 1s
in the adjacency matrix are closer to the center.

For a graph G = (V, E), there are a total of |V |! possible
vertex labelings. It is computationally infeasible to exhaus-
tively search for the best labeling. Here we propose a swap-
based greedy algorithm that finds a reasonably good labeling
from a random vertex labeling.2 The idea is to iteratively
swap pairs of vertices in order to achieve a smaller central-
ity. We denote the swap operation between two vertices vi

and v j by χ(vi , v j). Note that for a simple graph χ(vi , v j) is
essentially the same as χ(v j , vi). The IdentifyVertexLabeling
procedure is detailed in Procedure 1.

The number of iterations t (Line 3) involves a trade-off
between the number of swaps to execute and the magnitude
of Laplace noise added to each iteration. A larger t value
allows more swaps to be performed, but makes each swap
less accurate. Since here Laplace noise dominates the quality
of the resultant labeling, we prefer to select a small t value
(e.g., 5–10). In the following, we set t = 5.

In each iteration, ideally, we should consider all pairwise
swaps (of number |V |(|V |−1)

2) and perform those improving
centrality. However, this method introduces a huge sensitiv-

2 A random vertex labeling satisfies 0-differential privacy because it
can be viewed as an application of the exponential mechanism with
privacy parameter 0.

ity because a single edge could impact 2(|V | − 1) swaps.
To reduce the sensitivity, we only consider a restricted set
of swaps C such that every vertex is only involved in one
swap in C (Line 4). We randomly select pairs of vertices
to form C. Essentially, this could be considered as a sam-
pling process over all possible pairwise swaps. It makes sure
that a single edge can influence at most two swaps in C. For
each swap χ(vm, vl) ∈ C, we calculate the centrality change
between the labelings before and after the swap, denoted by
q(χ(vm, vl)). To satisfy differential privacy, Laplace noise is
added to q(χ(vm, vl)) (Line 6). We quantify the sensitivity
of q(χ(vm, vl)) below.

Theorem 5 Let Q be the set of q(χ(vm, vl)) queries for
allχ(vm, vl) ∈ C. GS(Q) = 2.

Proof Let two neighboring graphs G1 and G2 differ in edge
(vi , v j). Without loss of generality, let E(G1) = E(G2) ∪
(vi , v j). Due to the construction of C, at most two queries
involving either vi or v j in Q will be affected by edge
(vi , v j).3 We denote these two queries by qi and q j , respec-
tively. Therefore, the global sensitivity of Q is:

GS(Q) = max
G1,G2

∑
q∈Q

|q(G1)− q(G2)|

= max
G1,G2

(|qi (G1)− qi (G2)| + |q j (G1)− q j (G2)|
)

Let χ(vi , vx) ∈ C and χ(v j , vy) ∈ C. For ease of exposition,

let
⌈ |V |

2

⌉
be denoted by c. We have:

max
G1,G2

(|qi (G1)− qi (G2)| + |q j (G1)− q j (G2)|
)

= 2

|V | − 2
max

G1,G2
(|(|i − c|+|x − c|)−(|i − c| + | j − c|)|

+|(| j − c| + |y − c|)− (|i − c| + | j − c|)|)
= 2

|V | − 2
max

G1,G2
(||x − c| − | j − c||+||y − c| − |i − c||)

The multiple 2 comes from the fact that each of χ(vi , vx)

and χ(v j , vy) affects two rows and two columns. Since
{x, y, i, j} ∈ [1, |V |] and vi = v j = vx = vy ,

2

|V | − 2
max

G1,G2
(||x − c| − | j − c|| + ||y − c| − |i − c||)

≤ 2

|V | − 2

(|V |
2
+ |V |

2
− 2

)
= 2

This completes the proof. ��
In Line 7, we perform the swaps that improve the cen-

trality of the vertex labeling L. We illustrate the efficacy of

3 If vi and v j are selected to swap with each other, only one query will
be affected. This leads to a lower global sensitivity.

123

Correlated network data publication via differential privacy 663

Fig. 4 The adjacency matrices
over a random vertex labeling
and the permuted vertex
labeling, where each blue dot
represents an element with value
1. ε = 1.0 is used

IdentifyVertexLabeling over a real-life dataset wiki-Vote (see
Sect. 6 for a description of wiki-Vote) in Fig. 4.

It is interesting to point out that, in spite of the noise added,
IdentifyVertexLabeling itself does not incur any utility loss
with respect to the three data analysis tasks introduced in
Sect. 3.4. This is because no matter what the vertex label-
ing is, the corresponding adjacency matrix still represents
the same graph. All the purpose of IdentifyVertexLabeling
is to help improve the utility resulted from the subsequent
procedures.
Run-time complexity The run-time complexity of Procedure 1
is O(|V |2). This is because, for each iteration, we generate
|V |
2 candidate swaps, and for each swap, the calculation of its

centrality change involves exactly two rows and two columns,
which is of complexity O(|V |).

5.3 Dense region exploration

After constructing the adjacency matrix A based on the ver-
tex labeling identified, we perform a recursively partition-
ing process guided by density in order to identify dense
regions (and, implicitly, sparse regions) of A, which can be
reconstructed accurately. This process could be supported by
many popular space-partitioning data structures, such as kd-
tree [3], quadtree [13] and Hilbert R-tree [21]. In this paper,
we employ quadtree as the basic data structure for the explo-
ration because it achieves the best trade-off between utility
and efficiency.

A standard quadtree decomposes a given two-dimensional
region into four equal quadrants, subquadrants, and so on
until each leaf node meets certain stop condition. The split-
ting point of a standard quadtree is independent of the input
data. It always selects the midpoint of each dimension to split.
Each node in a quadtree represents a region of A. For our
task, we adapt a quadtree in a data-dependent, differentially

Procedure 2 ExploreDenseRegion Procedure
Input: Raw adjacency matrix A
Input: Privacy budget εE
Output: Noisy quadtree QT

1: i = 0;
2: QT ← ∅;
3: Calculate the height h of QT ;
4: while i < h do
5: if i = 0 then
6: Insert a node representing A to QT ;
7: for each non-leaf node u ∈ level(i, QT) do
8: Calculate privacy budget portion εc

u and ε
p
u ;

9: Subregions R← partition(u, ε
p
u);

10: for each R ∈ R do
11: c̃ = NoisyCount(R, εc

u);
12: Insert a node v representing R to QT ;
13: if v meets stop condition then
14: Mark v as leaf;
15: i ++;
16: return QT ;

private manner. Each node (except the root) in a quadtree
records not only the region it represents, but also the noisy
count of the number of 1s in its region. We slightly abuse the
term count to mean the number of 1s in a region. Procedure
2 presents the details of ExploreDenseRegion.

Stop condition One key problem in the partitioning process
is to determine the height of the quadtree. Previous works [9,
30] normally require a data publisher to specify the height. In
our paper, we calculate a good estimate of the height based
on other inputs (Line 3). It is very difficult to calculate a
very precise height of a data-dependent quadtree under our
adaptive privacy budget allocation scheme. Instead, we use
a standard quadtree with the geometric budget scheme [9]
to derive a reasonably good estimate. A geometric budget
scheme assigns all nodes on the same level i the same privacy
budget εi and increases the budget by a factor of 21/3 with
the increase of nodes’ depth.

123

664 R. Chen et al.

Theorem 6 [9]Given the privacy budget εcnt , the geometric

budget scheme, assigning 2i/3(
3√2−1)εcnt

2(h+1)/3−1
to nodes with depth

i in a quadtree of height h, achieves maximum accuracy for
range queries.

According to Theorem 6, the privacy budget allocated to

leaf regions is εh = 2h/3(
3√2−1)εcnt

2(h+1)/3−1
. Observing that the size

of a leaf region in a standard quadtree is |V |
2

4h , we calculate
h by requiring the size of a leaf region to be greater than μ

times the noise’s standard deviation because we cannot get
useful noisy counts on overly small regions, that is:

|V |2
4h
≥ μ
√

2GS(f)

εh

= μ
√

2(2(h+1)/3 − 1)GS(f)

2h/3(
3
√

2− 1)εcnt

where f is a count query. For a count query over a region R
of A, in the worst case, the global sensitivity GS(f) = 2.4

From the above equation, we get:

3
√

2(2h)2 − (2h)5/3 ≤ (
3
√

2− 1)|V |2εcnt

μ
√

2GS(f)
(1)

Thus, our goal is to calculate the maximal h value, hmax,
that satisfies Eq. 1. Theorem 7 implies that there is a unique
solution for hmax.

Theorem 7 f (h) = 3
√

2(2h)2 − (2h)5/3 monotonically
increases on [0,+∞).

Proof Let t = 2h . ∀h ≥ 0, t ≥ 1. Plugging t to the equation,
we get:

f ′(t) = 2 3
√

2t − 5

3
t

2
3 ≥ 5

3
t

2
3 (t

1
3 − 1) > 0

on (1,+∞). This completes the proof. ��
Since the left-hand side (LHS) of Eq. 1 increases monoton-

ically, we can always find hmax by attempting increasing h
values. Then, hmax is used as the height of the quadtree. In our
experiments, setting μ = 5 gives good estimates for different
types of real-life datasets.

In addition to the major stop condition, we propose another
two heuristic stop conditions to improve the efficiency and
utility of our approach. First, if a region is dense enough (the
density is calculated based on noisy counts), then there is no
need to further partition it because we can already reconstruct
its noisy version with high accuracy. In practice, we consider
a region R with den(R) ≥ 80 % to be dense (experiments
show that there is no significant utility difference among the
density thresholds in the range [75 %, 90 %]).
4 For a region R not containing elements on the diagonal, GS(f) = 1
because a single edge difference cannot change two elements in this
region.

Second, we can stop partitioning a region R if the number
of elements with value 1 in R is small enough. Note that the
determination of a sparse region is based on its noisy count,
not its density. Specifically, we set the threshold for deter-

mining a sparse region to be 80 % × |V |2
4h , the number of 1s

needed to form at least one dense region. Any region with

number of 1s < 80 % × |V |2
4h is not worth further partition-

ing as it will only lead to excessive noise. As a result, only
regions that are neither dense nor sparse will be iteratively
partitioned; otherwise, they are marked as leaf (Lines 13–14).
Partitioning For a non-leaf region R, we employ the expo-
nential mechanism to find the best splitting point that divides
R into four subregions with the maximal density contrast
among all possible splitting points (Line 9). Intuitively, such
a split best distinguishes the dense and sparse subregions.
Recall that a splitting point is composed of two coordinates,
each from a dimension. For example, a possible splitting
point in Fig. 2b is (3, 5), which means to split by the 3rd
row and the 5th column. The corresponding split operation
is illustrated by the two boldest lines in Fig. 2b.

For a non-leaf region R of size m × l, there could be at
most (m − 1)(l − 1) possible splitting points. We denote the
set of all possible splitting points by P . The utility function of
selecting a splitting point p ∈ P over a region R is designed
to be

q(R, p) = max
∀R′∈R

(den(R′))− min
∀R′∈R

(den(R′)),

where R is the set of subregions of R resulted by p. Intu-
itively, this utility function finds the point that results in the
maximal density contrast.

Since q(R, p) is defined by density, to obtain a reasonably
low sensitivity, we constrain the minimum size of a region

in level i (except the root and leaves) of QT to be |V |
2

4i+1 . This
guarantees that, depending on the location of the region R in

A, GS(q) = 2·4i+1

|V |2 (if R contains elements on the main diag-

onal) or GS(q) = 4i+1

|V |2 (otherwise). Due to this constraint,
we can apply the exponential mechanism on a smaller set of
possible splitting points P , because there is no need to con-
sider the splitting points on level i resulting in a subregion

of size <
|V |2
4i+1 . Then, the exponential mechanism is used to

select a splitting point pi on R with the following probability,

exp(
εpar

2hGS(q)
q(R, pi))

∑
p j∈P exp(

εpar

2hGS(q)
q(R, p j))

where εpar
h is the privacy budget assigned to the mechanism,

as explained below.

Example 5 Consider the graph and its adjacency matrix in
Fig. 2a, b. Suppose the height of QT is calculated to be 2. The

123

Correlated network data publication via differential privacy 665

Fig. 5 A sample quadtree
structure for density-based
partitioning

Region
A[1,8;1,8]

Noisy Count
-

A[1,3;1,5] 2 A[1,3;6,8] 9 A[4,8;1,5] 16 A[4,8;6,8] 2

A[4,5;1,3] 0 A[4,5;4,5] 1 A[6,8;1,3] 8 A[6,8;4,5] 1

first possible partition operation is illustrated by the boldest
lines, resulting in four subregions: R1 = A[1, 3; 1, 5], R2 =
A[1, 3; 6, 8], R3 = A[4, 8; 1, 5] and R4 = A[4, 8; 6, 8].
Assume that the noisy counts of R1 and R4 indicate that
they are sparse and the noisy count of R2 indicates that it is
dense. DER only needs to further partition R3. After that, the
height has been reached and QT ends with seven leaf nodes.
The corresponding quadtree is illustrated in Fig. 5.

Privacy budget allocation Broadly, the adjusted total privacy
budget ε

k is divided into three portions: εI , εE and εA, each
being used in a step. εE is further divided for two tasks, εcnt

for calculating noisy counts of all (sub)regions and εpar for
selecting splitting points on all internal nodes of QT .

The first problem is to determine the values of εI , εcnt ,

εpar and εA. In general, we assign larger budgets to εcnt

and εA because: (1) IdentifyVertexLabeling does not directly
incur any utility loss; (2) as shown later in Theorem 15, as
long as we can obtain relatively accurate noisy counts, we
can always find denser (or sparser) subregions, which can
be reconstructed with better accuracy. Between εcnt and εA,
more budget is given to εcnt because a sufficiently dense (or
sparse) leaf region can be recovered with reasonable accu-
racy regardless of the privacy budget (see Theorem 14). Since
it is difficult to theoretically quantify the values, we experi-
mentally choose proper portions for each of them, complying
with the analysis above.

Once εI , εcnt , εpar and εA are fixed, we employ the fol-
lowing allocation scheme to distribute them to each node of
QT (Line 8). To obtain noisy counts, we employ an adap-
tive privacy budget allocation scheme based on the geometric
budget scheme [9]. Initially, we assume that each root-to-leaf
path in QT will be of the same length h (e.g., QT is perfect)

and assign 2i/3(
3√2−1)εcnt

2(h+1)/3−1
to each node with depth 1 ≤ i < h.

Since an input dataset is always non-empty, there is no need
to assign any budget to get the noisy count of the root. Hence

we add the portion of the root level, (
3√2−1)εcnt

2(h+1)/3−1
, to the leaves,

that is, a node with depth h receives (2h/3+1)(
3√2−1)εcnt

2(h+1)/3−1
. After

that, we adaptively adjust privacy budgets during the parti-
tioning process.

Due to the stop conditions, QT may not be perfect (i.e.,
some root-to-leaf paths may have a length < h) and, there-
fore, we want to reallocate the remaining privacy budget on

these paths to fully make use of the total budget. For a leaf
node v whose depth i < h, let c̃1 be the noisy count obtained

by privacy parameter ε1 = 2i/3(
3√2−1)εcnt

2(h+1)/3−1
(the initial privacy

parameter assigned to v). We can calculate another noisy

count c̃2 of v with ε2 = (2h/3+1)(
3√2−1)εcnt

2(h+1)/3−1
(the privacy budget

initially reserved for level h). Obviously, c̃2 has a better accu-
racy than c̃1 because V ar(c̃2) < V ar(c̃1). We can replace
c̃1 by c̃2 as a more precise estimate of the true count, but
this simple strategy essentially wastes the privacy parameter
used for generating c̃1. We propose a strategy that combines
both c̃1 and c̃2 to calculate a more accurate estimate c̃ than
both c̃1 and c̃2 without extra privacy budget.

Theorem 8 Let c̃ = ε2
1

ε2
1+(γ ε2)2 c̃1 + (γ ε2)

2

ε2
1+(γ ε2)2 c̃2, where γ =

ε2
ε1
= 2

h−i
3 . Then, V ar (̃c) < V ar(c̃2) < V ar(c̃1).

Proof Since V ar(c̃1) = 2
ε1

2 and V ar(c̃2) = 2
ε2

2 ,

V ar (̃c) = ε4
1 V ar(c̃1)

(ε2
1 + (γ ε2)2)2

+ (γ ε2)
4V ar(c̃2)

(ε2
1 + (γ ε2)2)2

= 2
(ε2

1+(γ ε2)2)2

ε1
2+γ 4ε2

2

Hence we need to prove that

(ε2
1 + (γ ε2)

2)2

ε1
2 + γ 4ε2

2 > ε2
2 > ε1

2.

This is equivalent to prove that

γ 4ε2
2 + 2γ 2ε1

2 + ε1
4

ε2
2

γ 4ε2
2 + ε1

2 > 1.

Sinceγ = 2
h−i

3 > 1, we have 2γ 2ε2
2+ ε1

4

ε2
2 > ε1

2. Therefore,

V ar (̃c) < 2
ε2

2 = V ar(c̃2). Since ε1 < ε2, we get

V ar (̃c) < V ar (c̃2) < V ar (c̃1) . ��

For a leaf node v whose depth i < h − 1, the portion
of privacy budget left from partitioning (that is the sum of
the privacy parameters initially assigned to levels i + 1, i +
2, . . . , h−1), (2h/3−2(i+1)/3)εcnt

2(h+1)/3−1
, is added to εA so that we can

make full use of the privacy budget.

123

666 R. Chen et al.

For selecting splitting points by the exponential mecha-
nism, we use a uniform budget allocation scheme that equally
distributes εpar

h to each internal node in QT . For reconstruct-
ing leaf regions, each leaf node in QT receives εA plus the
privacy budget left from partitioning.
Efficient implementation In order to apply the exponential
mechanism, for every internal node of QT , we need to com-
pute the densities of the four subregions resulted from every
possible splitting point. A naive implementation takes run-
time O(|V |4) to calculate the densities for all possible split-
ting points for all nodes on the same level of QT . We pro-
pose a data structure, called count summary matrix, which
improves the run-time complexity of calculating all densities
for a level of QT from O(|V |4) to O(|V |2).
Definition 5 (Count summary matrix) Given an adjacency
matrix A of a simple graph G = (V, E), the count sum-
mary matrix C of A is a |V | × |V | matrix, where ∀1 ≤
i, j ≤ |V |, C[i, j] equals the number of 1s in the region
A[1, i; 1, j], that is, C[i, j] =∑i

m=1
∑ j

l=1 Aml .

A count summary matrix C can be constructed with run-
time complexity O(|V |2) based on the following theorem.

Theorem 9 C[i, j] = C[i − 1, j] + C[i, j − 1] − C[i −
1, j − 1] + Ai j , where C[i, j] = 0 if i < 1 or j < 1.

Proof By the definition of a count summary matrix, we have
the following:

C[i − 1, j] + C[i, j − 1] − C[i − 1, j − 1] + Ai j

=
i−1∑
m=1

j∑
l=1

Aml +
i∑

m=1

j−1∑
l=1

Aml −
i−1∑
m=1

j−1∑
l=1

Aml + Ai j

=
i−1∑
m=1

Amj +
i∑

m=1

j−1∑
l=1

Aml + Ai j

=
i∑

m=1

Amj +
i∑

m=1

j−1∑
l=1

Aml

=
i∑

m=1

j∑
l=1

Aml

= C[i, j]
This establishes the theorem. ��

Note that the count summary matrix C just needs to be
computed once for the entire sanitization process. Once C is
constructed, the density of any region can be computed by
Theorem 10 in O(1).

Theorem 10 The density of a region A[k, l;m, n] is
C[l, n] − C[l, m − 1] − C[k − 1, n] + C[k − 1, m − 1]

(n − m + 1)(l − k + 1)
.

1 2 3 4 5 6 7 8

1 0 0 0 0 0 1 2 3

2 0 0 0 0 0 2 4 6

3 0 0 0 0 1 3 6 9

4 0 0 0 0 2 4 7 10

5 0 0 1 2 4 6 9 12

6 1 2 3 4 6 8 11 14

7 2 4 6 7 9 11 14 17

8 3 6 9 10 12 14 17 20

Fig. 6 The count summary matrix of the adjacency matrix in Fig. 2b

Proof Similarly, from the definition of a count summary
matrix, we have

C[l, n] − C[l, m − 1] − C[k − 1, n] + C[k − 1, m − 1]

=
l∑

p=1

n∑
q=1

Apq−
l∑

p=1

m−1∑
q=1

Apq−
k−1∑
p=1

n∑
q=1

Apq+
k−1∑
p=1

m−1∑
q=1

Apq

=
l∑

p=1

n∑
q=m

Apq −
k−1∑
p=1

n∑
q=m

Apq

=
l∑

p=k

n∑
q=m

Apq

Since den(A[k, l;m, n]) =
∑l

p=k
∑n

q=m Apq

(n−m+1)(l−k+1)
, this completes

the proof. ��
Example 6 The count summary matrix of the adjacency
matrix in Fig. 2b is illustrated in Fig. 6. The density of the
region den(A[4, 6; 4, 7]) = (C[6, 7] − C[6, 3] − C[3, 7] +
C[3, 3])/12 = (11− 3− 6+ 0)/12 = 1/6.

In addition, when the input dataset is extremely large, sam-
pling (i.e., checking the splitting points with a step larger
than 1) could be used at the cost of slightly worse utility. We
experimentally study the effect of sampling on data utility
and scalability in Sect. 6.
Run-time complexity The run-time complexity of Explore-
DenseRegion is given in Theorem 11.

Theorem 11 The run-time complexity of Procedure 2 is
O(|V |2).
Proof The complexity of Procedure 2 is dominated by the
application of the exponential mechanism to select the split-
ting points. Suppose the size of a node vi in level j of QT
is mi × li . A single application of the exponential mech-
anism needs to consider at most (mi − 1)(li − 1) possi-
ble splitting positions. Due to the count summary matrix,
each position can be checked in constant time. Since mili >

123

Correlated network data publication via differential privacy 667

(mi − 1)(li − 1) is the area of the region represented by vi ,
we have

∑
vi∈level(j,QT) mili ≤ |V |2 because the sum of the

areas represented by all nodes on level j cannot be greater
than the total area |V |2. So the complexity of building level j
is O(|V |2). Therefore, the total complexity of building QT
of height h must be bounded by O(h|V |2). Since h � |V |2,
the run-time complexity of Procedure 2 can be further con-
sidered as O(|V |2).

Finally, in the exploration process, we can conduct a sim-
ple post-processing step by rounding the noisy count c̃ of a
region R with size m × l into the range of [0, ml] because
the number of 1s in a region cannot be larger than its size.

5.4 Edge arrangement

In this section, we denote an original region in A by R
and its reconstructed counterpart in Ã by R̃. Since our
utility requirement is to build a differentially private Ã
such that

∑|V |
i=1

∑|V |
j=1 |Ai j − Ãi j | is minimized, it naturally

requires to reconstruct each leaf region R̃ of size m × l with∑m
i=1
∑l

j=1 |Ri j − R̃i j | minimized.
A simple method to reconstruct R is to randomly place 1s

in R̃. Unfortunately, our experiments suggest that the perfor-
mance of this scheme is highly sensitive to the quality of ver-
tex labeling (see Sect. 6). In addressing this drawback, given
a leaf region R̃ of size m × l with a noisy count c̃ ≤ ml, we
design an exponential mechanism to select an edge arrange-
ment r by the following utility function:

q(R̃, r) = ml −
m∑

i=1

l∑
j=1

|Ri j − R̃i j |. (2)

Intuitively, the utility function measures how many elements
of R̃ are correctly assigned with respect to R. The global sen-
sitivity of q(R, r) is GS(q) = 2 or GS(q) = 1, depending
on the location of R in A.

However, there is a major technical challenge: A naive
implementation of the exponential mechanism needs to
explicitly consider a total of

(ml
c̃

)
possible arrangements,

which is of factorial complexity. Instead, we propose an effi-
cient implementation, which takes run-time complexity of
only O(ml) for assigning edges in a single leaf region. We
first implicitly group all arrangements with the same score
into a group. At first glance, for any region with size m × l,
there can be at most ml + 1 groups because there are at most
ml + 1 possible score values (from 0 to ml as defined in
Eq. 2). Now we show that the actual number of groups to
consider is ≤ ⌈ml+1

2

⌉
by giving the sufficient and necessary

condition of a possible score below.

Theorem 12 For a leaf region R̃ of size m × l with a noisy
count c̃ and the true count c, a score s is possible if and only if
s ∈ [max{̃c+c−ml, ml−c−c̃}, min{ml+c−c̃, ml+c̃−c}]

and s+c+c̃−ml
2 is an integer. The total number of possible

scores is less than or equal to⌈
min{ml + c − c̃, ml + c̃ − c} −max{̃c + c − ml, ml − c − c̃}

2

⌉

≤ ml+1
2 .

Proof We first calculate the lower and upper bounds of a
possible score by considering all possible cases. (1) c̃ ≥ c
and c̃ ≤ ml − c: the maximum score is achieved when c 1s
are assigned to the elements where Ri j = 1 and the rest c̃−c
1s are assigned to the elements with Ri j = 0, which gives
the score ml + c − c̃; the minimal score is achieved when c̃
1s are assigned to the elements with Ri j = 0, which gives
the score ml − c − c̃. (2) c̃ ≥ c and c̃ > ml − c: Similarly,
the maximum score is ml + c − c̃, while the minimum is
c̃ + c − ml. (3) c̃ < c and c̃ ≤ ml − c: The maximum is
ml + c̃− c, while the minimum is ml − c− c̃. (4) c̃ < c and
c̃ > ml−c: The maximum is ml+ c̃−c, and the minimum is
c̃− (ml− c). Combining these four cases, we get the bounds
of s.

Next, we prove that s+c+c̃−ml
2 must be an integer in order

to make s possible. Consider the allocation of c̃ 1s in R̃.
Suppose the numbers of elements where Ri j = 0 ∧ R̃i j =
0, Ri j = 0∧ R̃i j = 1, Ri j = 1∧ R̃i j = 0, Ri j = 1∧ R̃i j =
1, are, respectively, x, y, z and w. For an arrangement with
a score s, we have:

x + y + z + w = ml

x + w = s

y + w = c̃

z + w = c

Solving these equations, we get w = s+c+c̃−ml
2 . Apparently,

only if x, y, z and w are non-negative integers, s is possible.
Since s ∈ [max{̃c + c − ml, ml − c − c̃}, min{ml + c −
c̃, ml + c̃− c}], x, y, z and w must be non-negative. So we
just need to require s+c+c̃−ml

2 to be an integer, which con-
sequently guarantees that x, y, z are also integers. Finally,
since s+c+c̃−ml

2 has to be an integer, all possible scores have
to be either all even or all odd. We complete the proof. ��

We call a group of arrangements with a possible score a
valid group. We can calculate the size of each valid group by
Theorem 13.

Theorem 13 Given a leaf region R̃ of size m×l with a noisy
count c̃ and the true count c, the size of a valid group Gs with
score s is

|Gs | =
(

c
s+c+c̃−ml

2

)(
ml − c

ml+c̃−s−c
2

)
,

where
(0

0

)
is defined to be 1.

123

668 R. Chen et al.

Proof Following the proof of Theorem 12, we have w =
s+c+c̃−ml

2 , which means that we need to assign s+c+c̃−ml
2 1s

to the elements where Ri j = 1 and c̃− s+c+c̃−ml
2 1s to the ele-

ments where Ri j = 0. For the former case, there are a total of(c
s+c+c̃−ml

2

)
possible combinations; for the latter case, there are

a total of
(ml−c

ml+c̃−s−c
2

)
possible combinations. Therefore, com-

bining these two cases, we get |Gs | =
(c

s+c+c̃−ml
2

)(ml−c
ml+c̃−s−c

2

)
.
��

Then, the exponential mechanism can be used to select a
group Gi with the following probability,

exp
(

i ε̄
2GS(q)

)
× |Gi |∑ml

j=0

(
exp(

j ε̄
2GS(q)

)× |G j |
) ,

where ε̄ equals εA plus the privacy budget left from the explo-
ration process, GS(q) = 2 or GS(q) = 1, and the size of an
invalid group is 0.

Finally, conditional on that the group Gi is selected, we
can uniformly generate a random arrangement within Gi by
randomly assigning i+c+c̃−ml

2 1s to the elements Ri j with
Ri j = 1 and ml+c̃−i−c

2 1s to the elements Ri j with Ri j = 0.
Obviously, generating such an arrangement could be done
with run-time complexity O(1). In particular, if a generated
arrangement makes Ãii = 1 for any 1 ≤ i ≤ |V |, an alterna-
tive arrangement could be generated because a graphic matrix
contains a zero diagonal.

We give the utility guarantee of our edge arrangement
method below.

Theorem 14 Given a leaf region R̃ of size m×l with a noisy
count c̃ and the true count c, with probability 1− β,

∀̃c < c,

q(R̃, r∗) ≥ max{̃c + c − ml, ml − c − c̃,

ml − c + c̃ − 2GS(q)

ε̄
(log

(
ml

c̃

)
− log

(
c

c̃

)
− lnβ)}

and

∀̃c ≥ c,

q(R̃, r∗) ≥ max{̃c + c − ml, ml − c − c̃,

ml + c − c̃ − 2GS(q)

ε̄
(log

(
ml

c

)
− log

(
c̃

c

)
− lnβ)}

where r∗ is the arrangement selected by our approach.

Proof Let OPTq(R̃) = maxr∈R q(R̃, r), ROPT = {r ∈ R :
q(R̃, r) = OPTq(R̃)} and r∗ = Exponential(R̃,R, q, ε̄).
In [15,29], it has been proven that

Pr

[
q(R̃, r∗)≤ OPTq(R̃)− 2GS(q)

ε̄
(log

|R|
|ROPT| +t)

]
≤ e−t

when c̃ < c, OPTq(R̃) is achieved when all c̃ 1s are assigned
to the elements with Ri j = 1, and OPTq(R̃) = ml−c+c̃. The

total number of possible arrangements is
(ml

c̃

)
, and the number

of arrangements achieving OPTq(R̃) is
(c

c̃

)
. Therefore, setting

t = ln(1/β), we obtain

q(R̃, r∗) ≥ ml − c + c̃ − 2GS(q)

ε̄
(log

(
ml

c̃

)
− log

(
c

c̃

)
− lnβ).

Combining the lower bound of a score given in Theorem 12,
we get the lower bound of q(R̃, r∗).

When c̃ ≥ c, OPTq(R̃) is achieved when all the ele-
ments with Ri j = 1 are assigned 1s and the rest c̃ − c
1s are assigned to the elements with Ri j = 0. We get
OPTq(R̃) = c+ (ml− c)− (̃c− c) = ml+ c− c̃. The num-
ber of arrangements achieving OPTq(R̃) is

(ml−c
c̃−c

)
. Hence we

have, with probability 1− β,

q(R̃, r∗) ≥ ml + c − c̃ − 2GS(q)

ε̄

(
log

(ml
c̃

)
(ml−c

c̃−c

) − lnβ

)

= ml + c − c̃ − 2GS(q)

ε̄

⎛
⎜⎜⎝log

(ml
c̃

)
(ml

c̃)(c̃
c)

(ml
c)

− lnβ

⎞
⎟⎟⎠

= ml + c − c̃ − 2GS(q)

ε̄
(log

(
ml

c

)
− log

(
c̃

c

)
−lnβ)

Similarly, the lower bound in Theorem 12 also applies. This
completes the proof. ��

Specifically, when c̃ = c, we have

q(R̃, r∗) ≥ max

{
2c−ml, ml−2c, ml− 2GS(q)

ε̄
(log

(
ml

c

)
−lnβ)

}
.

We can observe that when c is either relatively large or rela-
tively small with respect to ml (that is, either den(R) is large
enough or small enough), the reconstructed R̃ could be very
close to R. The worst utility occurs when c = ml

2 . However,
this case can always be avoided by further partitioning, as
confirmed by Theorem 15.

Theorem 15 Given a region R, any partitioning of R results
in subregions R′ satisfying either den(R′) ≤ den(R) or
den(R′) ≥ den(R), with equality attained if and only if 1s
are uniformly distributed in R.

The proof is straightforward and is therefore omitted here.
According to the power law distribution [12], R is very
unlikely to have a uniform distribution. Therefore, Theo-
rem 15 suggests that keeping partitioning a region leads to
a more precise reconstruction. This observation is based on
the assumption that c̃ is accurate. However, when subregions
become smaller, the accuracy of c̃ decreases, which causes
extra utility lost in edge assignment. Therefore, it justifies
our design of the stop condition that takes into consideration
both the accuracy of noisy counts and the size of a leaf region.

123

Correlated network data publication via differential privacy 669

After reconstructing each leaf region, we perform a simple
step to make Ã graphic: ∀1 ≤ i ≤ j ≤ |V |, set Ã ji = Ãi j .
We can see that the complexity of reconstructing all leaf
regions is O(|V |2) because

∑
i

mi li+1
2 < |V |2. Therefore,

the total complexity of DER is O(|V |2).

5.5 Privacy analysis

In this section, we prove that Algorithm 1 satisfies ε-
differential privacy over correlated network data.

Theorem 16 DER is ε-differentially private over network
databases with a correlation parameter k.

Proof (Sketch) By definition, any subset of a dataset with
a correlation parameter k can be of a correlation parameter
at most k. Then, according to Theorem 4, proving this theo-
rem is equivalent to proving that DER satisfies ε

k -differential
privacy over non-correlated network databases.

Recall that DER is composed of three procedures. Identi-
fyVertexLabeling iteratively permutes pairs of vertices based
on the noisy centralities. In each iteration, we employ the
Laplace mechanism to obtain the noisy centralities with pri-
vacy budget εI

t . By Theorem 5, each iteration preserves εI
t -

differential privacy. Since there are t iterations, IdentifyVer-
texLabeling is εI -differentially private due to the sequential
composition property (Theorem 2).

For ExploreDenseRegion, all regions in the same level of
QT are disjoint to each other, and hence the parallel com-
position property (Theorem 3) applies. That is, the privacy
budget used in each root-to-leaf path of QT is independent of
each other. We focus on analyzing the privacy budget used for
each path. For any path, in each level (except the leaf level),
we perform two differentially private operations: using the
Laplace mechanism to calculate noisy counts and employ-
ing the exponential mechanism to select a splitting point; in
the leaf level, only the Laplace mechanism is applied. The
privacy budget within a path follows the sequential composi-
tion property. Under our adaptive privacy budget allocation
scheme, the privacy budget used in a single path is at most

h∑
i=0

2i/3(
3
√

2− 1)εcnt

2(h+1)/3 − 1
+

h−1∑
i=0

εpar

h
= εE .

Thus, ExploreDenseRegion guarantees εE -differential pri-
vacy.

For ArrangeEdge, it selects an edge arrangement to
recover a leaf region. The algorithm first uses the exponential
mechanism to select a group of arrangements. It guarantees
εA-differential privacy. For a selected group, we then ran-
domly select an arrangement within it. Randomly selecting
an arrangement is 0-differentially private because this is a
special application of the exponential mechanism with pri-
vacy budget 0. Hence ArrangeEdge enjoys εA-differential
privacy.

Table 1 Experimental dataset statistics

Datasets |V | |E | Edge density

ca-GrQc 5,242 14,484 0.00106

ca-HepTh 5,000 17,120 0.00137

wiki-Vote 7,115 100,762 0.00398

STM 1,012 7,860 0.01536

Applying the sequential composition property again, we
can conclude that DER is ε

k -differentially private because
ε
k = εI + εE + εA. This establishes the proof. ��

6 Experimental evaluation

In this section, we experimentally evaluate the performance
of our sanitization algorithm (DER) in terms of both data
utility and efficiency. As a reference point, we compare the
utility of DER with a random graph of the same numbers
of nodes and edges [6,17] (referred to as Random) and a
sanitized graph generated by a simple Laplace mechanism-
based approach proposed in [16] (referred to as Laplace). In
addition, we consider a variant of DER in which we replace
the ArrangeEdge procedure by randomly placing edges in
each leaf region based on its noisy count. We refer to this
variant as DE. In DE, the privacy budget for ArrangeEdge
is allocated to the rest procedures. In all figures, the results
reported are the average of 10 runs. Our implementation was
done in C++, and all experiments were performed on an Intel
Core 2 Quad 2.40 GHz PC with 16 GB RAM.

Four real-life datasets from three different types of net-
works are used in our experiments.5 ca-GrQc is a subset of
the collaboration network of Arxiv general relativity cate-
gory. Two authors are connected if they coauthored at least
one paper. ca-HepTh is extracted from the collaboration net-
work of Arxiv high energy physics theory category. Simi-
larly, there is an edge if two authors coauthored at least one
paper. The wiki-Vote dataset contains social network infor-
mation about Wikipedia voting on promotion to administra-
torship. An edge is created between two persons if one voted
on or was voted by the other. STM provides the transportation
network information of the Montreal transportation system.
Two stations are considered connected if there are more than
500 passengers commuting between them within one week.
The detailed characteristics of the datasets are summarized
in Table 1. All loops are removed from the datasets.

5 ca-GrQc, ca-HepTh and wiki-Vote are publicly available in the Stan-
ford large network dataset collection (http://snap.stanford.edu/data/
index.html). STM is provided by the Société de transport de Montréal
(http://www.stm.info).

123

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://www.stm.info

670 R. Chen et al.

0.0

0.2

0.4

0.6

0.8

1.0

3 5 20 100 200 500

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Query Size

DER

DE

Laplace

Random

0.0

0.2

0.4

0.6

0.8

1.0

3 5 20 100 200 500

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Query Size

DER

DE

Laplace

Random

0.0

0.2

0.4

0.6

0.8

1.0

3 5 20 100 200 500 3 5 20 100 200 500

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Query Size

DER

DE

Laplace

Random

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Query Size

DER

DE
Laplace

Random

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 7 Average relative error versus query size

6.1 Data utility

We examine the utility of sanitized network data for three
common data analysis tasks introduced in Sect. 3.4, namely
cut query, degree distribution and shortest path length.
Cut query In the first set of experiments, we examine the
utility for cut queries in terms of average relative error. We
examine different query sizes (i.e., the number of vertices
in a cut query) and report the results of 11 representative
query sets with sizes spanning over the full spectrum in Fig. 7
and Table 2. Each query set consists of queries with sizes
that are uniformly randomly distributed between 1 and the
specified maximal size. For each query set, we randomly
generate 20,000 queries. The sanity bound is set to 0.1 % of
|E |, the same as [5,35].

Figure 7 presents the average relative errors of cut queries
of relatively small query sizes while fixing ε = 1.0 and
k = 1. Six query sets (with maximal query sizes 3, 5, 20, 100,
200 and 500, respectively) are used to represent the general
trends of the four approaches. As one can observe, the average
relative errors of DER are consistently small under all query
sizes. It is worth mentioning that the relative errors of DER do
not monotonically increase with the increase of query sizes.
DE also achieves small average relative errors on all datasets.
This suggests that exploring dense regions is critical for cut
queries. However, though not directly visible from Fig. 7,
DE is more sensitive to different vertex labelings. Moreover,
later we will see that, without the ArrangEdge procedure,
DE cannot obtain desirable utility for degree distribution and
shortest path length.

It is surprising to see that Laplace performs much worse
than Random. This is because Laplace noise generated under
a small privacy budget can easily make the original value of
an element (either 0 or 1) indistinguishable. With the increase
in query sizes, both Laplace and Random provide very poor
utility. Another interesting observation is that the utility of
Random is subtly related to the edge density: Its performance
deteriorates quickly with the increase in edge density.

Table 2 inspects the performance of DE R under large
query sizes with ε = 1.0 and k = 1, where the query sets
have the maximal sizes 0.2 · |V |, 0.4 · |V |, 0.6 · |V |, 0.8 · |V |

Table 2 Average relative error of large query sizes

Datasets 0.2|V | 0.4|V | 0.6|V | 0.8|V | |V |
ca-GrQc 0.056 0.064 0.072 0.062 0.075

ca-HepTh 0.056 0.055 0.054 0.059 0.068

wiki-Vote 0.059 0.047 0.055 0.058 0.084

STM 0.084 0.07 0.057 0.053 0.033

and |V |, respectively. We can observe that DER also performs
stably well under all large query sizes.

In Fig. 8, we present relative errors of DER, DE and Ran-
dom under varying privacy budgets from 0.6 to 1.0 while
fixing the maximal query size to be 0.4 · |V | and k = 1
(Laplace’s relative errors are too large to fit into the figures).
As expected, the relative error increases when the privacy
budget decreases. Nevertheless, DER achieves relative errors
less than 13 % on all datasets even when ε = 0.6.

Next we study how average relative errors vary under dif-
ferent correlation parameters while fixing ε = 1.0 and the
maximal query size to 0.4 · |V | in Fig. 9. In general, the rel-
ative error increases with the increment of k because larger
noise has to be injected to hide stronger correlation. We can
observe that DER can still provide some useful information
even when k is relatively large. In practice, many types of
networks (e.g., transportation networks) have relatively small
correlation, and thus, our approach can provide meaningful
data utility without sacrificing privacy.

In Sect. 5.3, we point out that sampling (i.e., checking
the splitting points using a step greater than 1) could be an
effective means to speed up our approach at slight cost of
data utility. In Fig. 10, we experimentally study the utility
loss due to sampling while fixing k = 1 and the maxi-
mal query size to 0.4 · |V |. We show the average relative
errors of different sampling steps (1, 2, 4 and 6). Gener-
ally, the increase in average relative error due to sampling is
relatively small for all datasets under different privacy bud-
gets. We can observe two interesting trends in Fig. 10. First,
the influence of sampling is smaller when the privacy bud-
get is larger. Second, the influence of sampling is smaller
when the underlying network dataset is sparser. These two

123

Correlated network data publication via differential privacy 671

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Privacy Budget

DER
DE
Random

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Privacy Budget

DER
DE
Random

0.0

1.0

2.0

3.0

4.0

0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Privacy Budget

DER
DE
Random

0.0

0.5

1.0

1.5

2.0

2.5

0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Privacy Budget

DER
DE
Random

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 8 Average relative error versus privacy budget ε

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Correlation

DER

DE

Random

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Correlation

DER

DE

Random

0

1

2

3

4

5 10 15 20 25
A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
Correlation

DER

DE

Random

0

0.5

1

1.5

2

2.5

5 10 15 20 25

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Correlation

DER

DE

Random

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 9 Average relative error versus correlation parameter k

0.0

0.1

0.2

0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Privacy Budget

Step 1

Step 2

Step 4

Step 6

0.0

0.1

0.2

0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Privacy Budget

Step 1

Step 2

Step 4

Step 6

0.0

0.1

0.2

0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Privacy Budget

Step 1

Step 2

Step 4

Step 6

0.0

0.1

0.2

0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Privacy Budget

Step 1

Step 2

Step 4

Step 6

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 10 Average relative error versus sampling step

trends could provide a data publisher useful guidance for
selecting a reasonable sampling step to trade for better effi-
ciency.
Degree distribution In the second set of experiments, we
demonstrate the utility of sanitized data for degree distribu-
tion, measured by KL-divergence. Figure 11 presents the KL-
divergences for all datasets under different privacy budgets
with k = 1. Due to the large KL-divergence resulted from
Laplace,6 it is excluded from the figures for better visibility.
We can observe that our approach is suitable for preserving
degree distributions. The KL-divergences of DER are small

6 Laplace can barely provide any useful information in terms of degree
distribution because its KL-divergence is almost the same as an empty
graph (i.e., |E | = 0).

in all settings. Without the ArrangeEdge procedure, DE is not
able to accurately reconstruct the leaf regions and, therefore,
leads to less accurate degree distributions.

Figure 12 examines the KL-divergence for varying corre-
lation parameters with ε = 1.0. Though the KL-divergence
of DER grows quickly with the increase in correlation, it is
still able to preserve the general degree distributions on some
datasets (e.g., ca-GrQC and ca-HepTh) even when k = 25.

In Fig. 13, we present the KL-divergence of the four
datasets under different sampling steps while fixing ε = 1.0
and k = 1. We can observe again that the impact of sam-
pling on degree distribution is low. Moreover, similar trends
to those of count queries can also be observed. Given a not
too small privacy budget, if the underlying dataset is sparse,
it is usually beneficial to employ the sampling technique.

123

672 R. Chen et al.

0

0.2

0.4

0.6

0.8

0.6 0.7 0.8 0.9 1

K
L-

D
iv

er
ge

nc
e

Privacy Budget

DER

DE

Random

0

0.2

0.4

0.6

0.8

0.6 0.7 0.8 0.9 1

K
L-

D
iv

er
ge

nc
e

Privacy Budget

DER

DE

Random

0

1

2

3

0.6 0.7 0.8 0.9 1

K
L-

D
iv

er
ge

nc
e

Privacy Budget

DER

DE

Random

0

0.5

1

1.5

2

2.5

0.6 0.7 0.8 0.9 1

K
L-

D
iv

er
ge

nc
e

Privacy Budget

DER

DE

Random

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 11 Degree distribution versus privacy budget ε

0

0.2

0.4

0.6

0.8

5 10 15 20 25

K
L-

D
iv

er
ge

nc
e

Correlation

DER

DE

Random

0

0.2

0.4

0.6

0.8

5 10 15 20 25

K
L-

D
iv

er
ge

nc
e

Correlation

DER

DE

Random

0

1

2

3

5 10 15 20 25
K

L-
D

iv
er

ge
nc

e

Correlation

DER

DE

Random

0

0.5

1

1.5

2

2.5

5 10 15 20 25

K
L-

D
iv

er
ge

nc
e

Correlation

DER

DE

Random

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 12 Degree distribution versus correlation parameter k

0.00

0.01

0.02

0.03

0.6 0.7 0.8 0.9 1

K
L-

D
iv

er
ge

nc
e

Privacy Budget

Step 1

Step 2

Step 4

Step 6

0.00

0.01

0.02

0.03

0.6 0.7 0.8 0.9 1

K
L-

D
iv

er
ge

nc
e

Privacy Budget

Step 1

Step 2

Step 4

Step 6

0.00

0.10

0.20

0.30

0.6 0.7 0.8 0.9 1

K
L-

D
iv

er
ge

nc
e

Privacy Budget

Step 1

Step 2

Step 4

Step 6

0.00

0.05

0.10

0.15

0.20

0.25

0.6 0.7 0.8 0.9 1

K
L-

D
iv

er
ge

nc
e

Privacy Budget

Step 1

Step 2

Step 4

Step 6

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 13 Degree distribution versus sampling step

Shortest path length Shortest path length is one of the most
robust measures of network topology. Our next set of exper-
iments demonstrate that DER is also effective for preserving
shortest path lengths. Identical to the experimental setting
of [6], we randomly select 500 pairs of vertices and compare
the distributions of their shortest path lengths between the
sanitized dataset and the original dataset.

Figure 14 shows the distributions of shortest path lengths
of different approaches, where ε = 1.0 and k = 1. “−1”
on X-axis means that the pairs of vertices are not con-
nected (i.e, the length is ∞). As can be observed, DER
obtains close distributions on all sanitized datasets. Simi-
lar to the previous observations, neither Laplace nor Ran-
dom can preserve useful shortest path length distributions.

Laplace gives similar distributions over all datasets. Without
the ArrangeEdge procedure, DE cannot preserve the shortest
path length distributions either. Its performance is similar to
Random on all datasets. Our experimental results conclude
that ArrangeEdge is critical to achieving desirable utility on
different data analysis tasks.

We also study the performance of DER on shortest path
length with respect to other parameters. Figure 15 presents
the shortest path length distributions under different privacy
budgets, from which we can observe that a larger privacy
budget gives a more similar distribution. Figure 16 gives the
distributions under varying correlation parameters, where we
can observe that larger correlation leads to worse utility. Fig-
ure 17 shows the distributions under various sampling steps.

123

Correlated network data publication via differential privacy 673

0

100

200

300

400
F

re
qu

en
cy

Path Lengths

Original
DER
DE
Random
Laplace

0

100

200

300

400

F
re

qu
en

cy

Path Lengths

Original
DER
DE
Random
Laplace

0

100

200

300

400

F
re

qu
en

cy

Path Lengths

Original
DER
DE
Random
Laplace

0

100

200

300

400

-1 1 2 3 4 5 6 7 8 9 10 -1 1 2 3 4 5 6 7 8 9 10 -1 1 2 3 4 5 6 7 8 9 10 -1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original
DER
DE
Random
Laplace

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 14 Distributions of shortest path lengths of different approaches

0

100

200

F
re

qu
en

cy

Path Lengths

Original

eps=1.0

eps=0.8

eps=0.6

0

100

200

300

F
re

qu
en

cy

Path Lengths

Original

eps=1.0

eps=0.8

eps=0.6

0

100

200

300

F
re

qu
en

cy

Path Lengths

Original

eps=1.0

eps=0.8

eps=0.6

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10 -1 1 2 3 4 5 6 7 8 9 10 -1 1 2 3 4 5 6 7 8 9 10 -1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

eps=1.0

eps=0.8

eps=0.6

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 15 Distribution of shortest path lengths versus privacy budget ε

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

k=5

k=15

k=25

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

k=5

k=15

k=25

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

k=5

k=15

k=25

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

k=5

k=15

k=25

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 16 Distribution of shortest path lengths versus correlation parameter k

0

100

200

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

Step 1
Step 2

Step 4

Step 6

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

Step 1
Step 2

Step 4

Step 6

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

Step 1
Step 2

Step 4

Step 6

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

Step 1
Step 2

Step 4

Step 6

(a) ca-GrQc (b) ca-HepTh (c) wiki-Vote (d) STM

Fig. 17 Distribution of shortest path lengths versus sampling step

123

674 R. Chen et al.

0

50

100

150

200

0.2 0.4 0.6 0.8 1

R
un

tim
e

(s
ec

)

|V|

ca-GrQc

ca-HepTh

wiki-Vote

STM

0

50

100

150

200

1 3 5 7 9

R
un

tim
e

(s
ec

)

Step

ca-GrQc

ca-HepTh

wiki-Vote

STM

(a) Number of vertice (b) Sampling step

Fig. 18 Run-time versus different parameters

In general, DER performs stably well under different para-
meter settings.

6.2 Efficiency

According to the complexity analysis of DER, its run-time
is dominated by |V |. Thus, we present the run-time of DER
under different |V | values in Fig. 18a. The test sets are gen-
erated by randomly extracting a subset from the original
datasets. The X-axis represents the percentage of the test
sets’ |V | values with respect to the original datasets. It can be
observed that roughly the run-time grows quadratically with
|V |, which confirms our theoretical analysis.

Since our approach is used in the non-interactive setting,
it meets the scalability requirement of most real-life appli-
cations. In the few extreme cases, we note that DER can
substantially speed up by sampling (see Sect. 5.3) at the cost
of slight utility degradation. In Fig. 18b, we report the run-
time of DER for processing the four datasets using different
sampling steps.7 The run-time decreases quickly with the
increase of the sampling step. Using the step of 3 makes
DER approximately 3 times faster. When we increase the
step to 6, DER becomes roughly 7 times faster. When the
sampling step becomes larger than 5, the speedup becomes
less obvious because in these cases I/O costs (i.e., the costs
of loading the datasets from hard drive into main memory)
dominate the run-time.

6.3 An experimental comparison with k-isomorphism

The core in privacy-preserving data publishing is the trade-
off between privacy and data utility. A data publisher typ-
ically chooses a solution that results in the best trade-off.
k-isomorphism and edge differential privacy are not directly
comparable in terms of privacy because they aim at different
types of privacy guarantee: k-isomorphism provides strong
privacy protection for node re-identification while edge dif-
ferential privacy prevents edge disclosure. However, it is ben-

7 Step 1 means that sampling is not employed.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Query Size

GrQc-DER

GrQc-k-iso

HepTh-DER

HepTh-k-iso

STM-DER

STM-k-iso

0.00

0.05

0.10

0.15

ca-GrQc ca-HepTh STM

K
L-

D
iv

er
ge

nc
e

Datasets

DER
k-iso

(a) Cut query (b) Degree distribution

Fig. 19 Comparisons on cut query and degree distribution

eficial to conduct a comparison from a utility-driven perspec-
tive. There are scenarios where the data publisher has pre-
determined utility requirements. In this section, we aim to
experimentally answer the question “given a utility require-
ment, which privacy model, k-isomorphism or edge differen-
tial privacy, should be used.”

In the following experiments, we set k = 5 for k-
isomorphism and ε = 1.0 for edge differential privacy. Both
parameters roughly correspond to medium privacy protection
under their privacy models. In Fig. 19a, we show the average
relative errors of DE R and the k-isomorphic algorithm [6]
(referred to as k-iso) for cut queries. Since k-iso was not able
to process wiki-Vote, we only report the experimental results
of the other three datasets. It can be observed that k-iso is not
ideal for answering cut queries. The average relative errors
are high in all cases.

Figure 19b suggests that both methods perform well for
preserving degree distribution. DE R is slightly better than
k-iso. We present the comparisons on shortest path length dis-
tributions in Fig. 20. Again both methods can preserve essen-
tial information of shortest path length distribution. DER per-
forms better on ca-GrQc and ca-HepTh, while k-iso works
better on STM.

In addition to utility concerns, scalability is also an impor-
tant factor for selecting a proper sanitization solution. Fig-
ure 21 gives the run-time of both DER and k-iso. Note that the
Y-axis is in log scale. In general, DER is significantly faster
than k-iso. In particular, it takes 17,155 seconds for k-iso to
process STM, whereas it takes only 4 seconds for DER.

In summary, for cut queries, DER is a better choice; for
degree distribution and shortest path length, the data pub-
lisher could select a solution based on his privacy require-
ment (either node re-identification or edge disclosure). If the
run-time requirement is critical, then DER is a better choice.

7 Conclusions

In this paper, we analyze the properties of differential pri-
vacy in the correlated setting and indicate that if the extent of

123

Correlated network data publication via differential privacy 675

0

100

200

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

DER

k-iso

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

DER

k-iso

0

100

200

300

-1 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Path Lengths

Original

DER

k-iso

(a) ca-GrQc (b) ca-HepTh (c) STM

Fig. 20 Comparison on shortest path length distributions

1

10

100

1000

10000

ca-GrQc ca-HepTh STM

R
un

tim
e

(s
ec

)

Datasets

DER

k-iso

Fig. 21 Comparison on scalability

correlation can be measured, differential privacy can still pro-
vide provable privacy guarantees. Consequently, we present
an efficient non-interactive approach for publishing corre-
lated network data. Our approach first identifies a good vertex
labeling to make the corresponding adjacency matrix form
dense clusters, then conducts a data-dependent exploration
for the dense regions in the adjacency matrix and finally
reconstructs these regions based on a novel use of the expo-
nential mechanism. This is the first work that gives a prac-
tical solution for network data publication via differential
privacy. Extensive experiments demonstrate that our solu-
tion performs well for various data analysis tasks on dif-
ferent types of real-life network datasets. In addition, we
conduct a utility-driven comparison between k-isomorphism
and edge differential privacy, which guides a data publisher
to select a proper privacy model for a given utility require-
ment.

Acknowledgments We sincerely thank the reviewers for their insight-
ful comments. We thank James Cheng, Ada Wai-Chee Fu and Jia Liu for
providing the source code of k-isomorphism. The research is supported
in part by NSERC through Discovery Grants (356065-2013), US NSF
through grants CNS-1115234, DBI-0960443 and OISE-1129076 and
US Department of Army through grant W911NF-12-1-0066.

References

1. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou
r3579x? anonymized social networks, hidden patterns, and struc-
tural steganography. In: Proceedings of the 16th International Con-
ference on World Wide Web (WWW), pp. 181–190 (2007)

2. Bearman, P.S., Moody, J., Stovel, K.: Chains of affection: the struc-
ture of adolescent romantic and sexual networks. Am. J. Sociol.
110(1), 44–91 (2004)

3. Bentley, J.L.: Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM 18(9), 509–517 (1975)

4. Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-
based graph anonymization for social network data. Proc. VLDB
Endow. 2(1), 766–777 (2009)

5. Chen, R., Mohammed, N., Fung, B.C.M., Desai, B.C., Xiong, L.:
Publishing set-valued data via differential privacy. Proc. VLDB
Endow. 4(11), 1087–1098 (2011)

6. Cheng, J., Fu, A.W.C., Liu, J.: K-isomorphism: privacy preserving
network publication against structural attacks. In: Proceedings of
the 36th ACM SIGMOD International Conference on Management
of Data (SIGMOD), pp. 459–470 (2010)

7. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction
to Algorithms, 3rd edn. McGraw-Hill Higher Education, New York
(2009)

8. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing
bipartite graph data using safe groupings. Proc. VLDB Endow.
1(1), 833–844 (2008)

9. Cormode, G., Procopiuc, M., Shen, E., Srivastava, D., Yu, T.: Dif-
ferentially private spatial decompositions. In: Proceedings of the
27th IEEE International Conference on Data Engineering (ICDE),
pp. 20–31 (2012)

10. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmet-
ric matrices. In: Proceedings of the 1969 24th National Conference,
pp. 157–172 (1969)

11. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise
to sensitivity in private data analysis. In: Proceedings of the 3rd
Theory of Cryptography Conference (TCC), pp. 265–284 (2006)

12. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relation-
ships of the internet topology. In: Proceedings of the 23rd ACM
SIGCOMM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM),
pp. 251–262 (1999)

13. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval
on composite keys. Acta Informatica 4(1), 1–9 (1974)

14. Fortunato, S.: Community Detection in Graphs. CoRR
abs/0906.0612 (2009)

15. Gupta, A., Ligett, K., McSherry, F., Roth, A., Talwar, K.: Differ-
entially private combinatorial optimization. In: Proceedings of the

123

676 R. Chen et al.

21st ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1106–1125 (2010)

16. Gupta, A., Roth, A., Ullman, J.: Iterative constructions and private
data release. In: Proceedings of the 9th Theory of Cryptography
Conference (TCC), pp. 339–356 (2012)

17. Hay, M., Miklau, G., Jensen, D., Towsley, D.F., Weis, P.: Resisting
structural re-identification in anonymized social networks. Proc.
VLDB Endow. 1(1), 102–114 (2008)

18. Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of
the degree distribution of private networks. In: Proceedings of the
9th IEEE International Conference on Data Mining (ICDM), pp.
169–178 (2009)

19. Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accu-
racy of differentially private histograms through consistency. Proc.
VLDB Endow. 3(1), 1021–1032 (2010)

20. Hay, M., Liu, K., Miklau, G., Pei, J., Terzi, E.: Privacy-aware data
management in information networks. In: Proceedings of the 37th
ACM SIGMOD International Conference on Management of Data
(SIGMOD), pp. 1201–1204 (2011)

21. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved R-tree using
fractals. In: Proceedings of the 20th International Conference on
Very Large Data Bases (VLDB), pp. 500–509 (1994)

22. Karwa, V., Raskhodnikova, S., Smith, A., Yaroslavtsev, G.: Private
analysis of graph structure. Proc VLDB Endow. 4(11), 1146–1157
(2011)

23. Kifer, D., Gehrke, J.: Injecting utility into anonymized datasets. In:
Proceedings of the 32nd ACM SIGMOD International Conference
on Management of Data (SIGMOD), pp. 217–228 (2006)

24. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In:
Proceedings of the 37th ACM SIGMOD International Conference
on Management of Data (SIGMOD), pp. 193–204 (2011)

25. Kossinets, G., Watts, D.: Empirical analysis of an evolving social
networks. Science 311(5757), 88–90 (2006)

26. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In:
Proceedings of the 34th ACM SIGMOD International Conference
on Management of Data (SIGMOD), pp. 93–106 (2008)

27. Liu, L., Wang, J., Liu, J., Zhang, J.: Privacy preservation in social
networks with sensitive edge weights. In: Proceedings of the 9th
SIAM International Conference on Data Mining (SDM), pp. 954–
965 (2009)

28. McSherry, F.: Privacy integrated queries: an extensible platform
for privacy-preserving data analysis. In: Proceedings of the 35th
ACM SIGMOD International Conference on Management of Data
(SIGMOD), pp. 19–30 (2009)

29. McSherry, F., Talwar, K.: Mechanism design via differential pri-
vacy. In: Proceedings of the 48th IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 94–103 (2007)

30. Mohammed, N., Chen, R., Fung, B.C.M., Yu, P.S.: Differentially
private data release for data mining. In: Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (SIGKDD), pp. 493–501 (2011)

31. Proserpio, D., Goldberg, S., McSherry, F.: A workflow for
differentially-private graph synthesis. In: Proceedings of the 2012
ACM Workshop on Online Social Networks (WOSN), pp. 13–18
(2012)

32. Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing
graphs using differentially private graph models. In: Proceedings
of the 11th ACM SIGCOMM Conference on Internet Measurement
(IMC), pp. 81–98 (2011)

33. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64
(2007)

34. Wu, L., Ying, X., Wu, X.: Reconstruction from randomized graph
via low rank approximation. In: Proceedings of the 10th SIAM
International Conference on Data Mining (SDM), pp. 60–71 (2010)

35. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet
transforms. In: Proceedings of the 26th IEEE International Confer-
ence on Data Engineering (ICDE), pp. 225–236 (2010)

36. Xiao, X., Bender, G., Hay, M., Gehrke, J.: iReduct: differential
privacy with reduced relative errors. In: Proceedings of the 37th
ACM SIGMOD International Conference on Management of Data
(SIGMOD), pp. 229–240 (2011)

37. Ying, X., Wu, X.: Randomizing social networks: a spectrum pre-
serving approach. In: Proceedings of the 8th SIAM International
Conference on Data Mining (SDM), pp. 739–750 (2008)

38. Yuan, M., Chen, L., Yu, P.S.: Personalized privacy protection in
social networks. Proc. VLDB Endow. 4(2), 141–150 (2011)

39. Zhou, B., Pei, J.: Preserving privacy in social networks against
neighborhood attacks. In: Proceedings of the 24th IEEE Inter-
national Conference on Data Engineering (ICDE), pp. 506–515
(2008)

40. Zou, L., Chen, L., Ozsu, M.T.: K-automorphism: a general frame-
work for privacy preserving network publication. Proc. VLDB
Endow. 2(1), 946–957 (2009)

123

	Correlated network data publication via differential privacy
	Abstract
	1 Introduction
	2 Related work
	2.1 Network data sanitization under partition-based privacy models
	2.2 Network data sanitization under differential privacy

	3 Preliminaries
	3.1 Adjacency matrix
	3.2 Differential privacy
	3.3 Edge differential privacy
	3.4 Utility metrics
	3.4.1 Degree distribution
	3.4.2 Cut query
	3.4.3 Shortest path length

	4 Differential privacy under correlation
	5 Private network publication
	5.1 Overview
	5.2 Vertex labeling identification
	5.3 Dense region exploration
	5.4 Edge arrangement
	5.5 Privacy analysis

	6 Experimental evaluation
	6.1 Data utility
	6.2 Efficiency
	6.3 An experimental comparison with k-isomorphism

	7 Conclusions
	Acknowledgments
	References

