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a b s t r a c t

The pervasiveness of location-aware devices has spawned extensive research in trajectory
data mining, resulting in many important real-life applications. Yet, the privacy issue in
sharing trajectory data among different parties often creates an obstacle for effective data
mining. In this paper, we study the challenges of anonymizing trajectory data: high dimen-
sionality, sparseness, and sequentiality. Employing traditional privacy models and anony-
mization methods often leads to low data utility in the resulting data and ineffective data
mining. In addressing these challenges, this is the first paper to introduce local suppression
to achieve a tailored privacy model for trajectory data anonymization. The framework
allows the adoption of various data utility metrics for different data mining tasks. As an
illustration, we aim at preserving both instances of location-time doublets and frequent
sequences in a trajectory database, both being the foundation of many trajectory data min-
ing tasks. Our experiments on both synthetic and real-life data sets suggest that the frame-
work is effective and efficient to overcome the challenges in trajectory data anonymization.
In particular, compared with the previous works in the literature, our proposed local sup-
pression method can significantly improve the data utility in anonymous trajectory data.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Recently, the prevalence of various location-aware devices, such as RFID tags, cell phones, GPS navigation systems, and
point of sale terminals, has made trajectory data ubiquitous in various domains. The fact has stimulated extensive trajectory
data mining research [11,14,15], resulting in many important real-life applications, such as city traffic management [20],
homeland security [19], and location-based advertising [35].

Having access to high-quality trajectory data is the prerequisite for effective data mining. However, trajectory data often
contain detailed information about individuals, and disclosing such information may reveal their lifestyles, preferences, and
sensitive personal information. Moreover, for many applications, trajectory data need to be published with other attributes,
including sensitive ones, thus incurring the privacy concern of inferring individuals’ sensitive information via trajectory data.
This emerging data publishing scenario, however, has not been well studied in existing works. Such privacy concerns often
limit trajectory data holders’ enthusiasm in providing data for further research and applications. Example 1.1 illustrates the
potential privacy threats due to trajectory data publishing.

Example 1.1. A hospital has employed a RFID patient tagging system in which patients’ trajectory data, personal data, and
medical data are stored in a central database [27]. The hospital intends to release such data (Table 1) to data miners for
research purposes. A trajectory is a sequence of spatio-temporal doublets in the form of (lociti). For example, Record#3
. All rights reserved.
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Table 1
Raw trajectory database T.

Rec. # Path Diagnosis � � �

1 a1 ? d2 ? b3 ? e4 ? f6 ? e8 HIV � � �
2 d2 ? c5 ? f6 ? c7 ? e9 Fever � � �
3 b3 ? c7 ? e8 Hepatitis � � �
4 b3 ? e4 ? f6 ? e8 Flu � � �
5 a1 ? d2 ? c5 ? f6 ? c7 HIV � � �
6 c5 ? f6 ? e9 Hepatitis � � �
7 f6 ? c7 ? e8 Fever � � �
8 a1 ? d2 ? f6 ? c7 ? e9 Flu � � �
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indicates that the tagged patient visited locations b, c, and e at timestamps 3, 7, and 8, respectively, and has hepatitis (other
information is omitted for the purpose of illustration). With adequate background knowledge, an adversary can perform two
kinds of privacy attacks on the trajectory database.

Identity linkage attack: If a trajectory in the database is so specific that not many patients can match it, there is a chance
that with the help of background knowledge an adversary could uniquely identify the victim’s record and, therefore, his
sensitive information. Suppose an adversary knows that the record of the target victim, Claude, is in Table 1, and that Claude
visited locations d and e at timestamps 2 and 4, respectively. The adversary can associate Record#1 with Claude and in turn
identify Claude as an HIV patient because Record#1 is the only record containing both d2 and e4.

Attribute linkage attack: If a sensitive value occurs frequently with some sequences of doublets, it is possible to infer the
sensitive value from these sequences even though the record of the victim cannot be uniquely identified. Suppose the
adversary knows that another victim, Bill, visited a1 and f6. The adversary can infer that Bill has HIV with 2/3 = 67%
confidence because two of the three records (Records#1, 5, 8) containing a1 and f6 have the sensitive value HIV. h

A trajectory database (e.g., Table 1) may contain other attributes, such as gender, age, and nationality. Although they are
not explicit identifiers, an adversary may utilize combinations of these attributes, called quasi-identifiers (QIDs), to identify
the records and sensitive information of target victims. To thwart privacy threats due to QIDs, many privacy models, such as
k-anonymity [30], ‘-diversity [22], and confidence bounding [34], have been proposed in the context of relational data. These
privacy models are effective for relational data anonymization; however, they fail to address the new challenges of trajectory
data anonymization, as described below.

High dimensionality: Trajectory data are usually high-dimensional and cannot be effectively handled by traditional k-ano-
nymity and its extensions due to the curse of high dimensionality [2]. Consider a transit system with 300 stations operating
24 hours a day. The corresponding trajectory database would have 300 � 24 = 7200 dimensions, because a trajectory could
be represented in a tabular format with 7200 attributes filled with 0/1 values. Since k-anonymity and its extensions require
every trajectory to be shared by at least k records and/or impose the diversity of sensitive values in every trajectory group,
most data have to be suppressed in order to meet these kinds of restrictive privacy requirements.

Sparseness: Trajectory data are usually sparse. Consider passengers in transit systems. Among all available locations, they
may visit only a few, making the trajectory of each individual relatively short. Anonymizing such short trajectories in a high-
dimensional space poses great challenges for traditional anonymization techniques because the trajectories may have little
overlap. Enforcing k-anonymity could lower the data utility significantly.

Sequentiality: Time contains important information for trajectory data mining, but it also brings new privacy threats. Con-
sider two trajectories b3 ? e6 and e3 ? b6. They have the same locations and timestamps but in a different order and, thus,
are different from each other. An adversary could exploit such difference in order to increase the chance of a successful link-
age attack. Therefore, traditional k-anonymity is not applicable to trajectory data, and anonymizing trajectory data requires
additional efforts.

1.1. Trade-off between privacy and utility

One common assumption of k-anonymity and its extensions is that an adversary may use any or even all attributes in QIDs
to perform linkage attacks. Yet this common assumption may be overly restrictive in the context of trajectory data. In a real-
life attack, it is very unlikely that an adversary can identify all the visited locations along with the timestamps of a victim be-
cause it requires significant efforts to collect every piece of such background information. If the adversary is able to learn all
such information, it is also possible that he can learn the victim’s sensitive information. Thus, in the context of trajectory data,
it is reasonable to derive a practical privacy model based on the assumption that an adversary’s background knowledge on a
target victim is bounded by at most L location-time doublets. We call such bounded background knowledge L-knowledge.

Based on this observation, we adopt a new privacy model called (K,C)L-privacy that requires any subsequence q of any adver-
sary’s L-knowledge to be shared by either 0 or at least K records in a trajectory database T and the confidence of inferring any
sensitive value in S from q to be at most C, where L and K are positive integer thresholds, C is a real number threshold in the range
of [0,1], and S is a set of sensitive values specified by the data holder. (K,C)L-privacy guarantees that the probability of succeed-



Table 2
(2,50%)2-privacy preserved database T0 .

Rec. # Path Diagnosis � � �

1 b3 ? e4 ? f6 ? e8 HIV � � �
2 d2 ? c5 ? f6 ? c7 ? e9 Fever � � �
3 c7 ? e8 Hepatitis � � �
4 b3 ? e4 ? f6 ? e8 Flu � � �
5 d2 ? c5 ? f6 ? c7 HIV � � �
6 c5 ? f6 ? e9 Hepatitis � � �
7 f6 ? c7 ? e8 Fever � � �
8 d2 ? f6 ? c7 ? e9 Flu � � �
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ing in an identity linkage attack is61/K and the probability of succeeding in an attribute linkage attack is6C. Table 2 presents an
example of an anonymous database satisfying (2,50%)2-privacy from Table 1, in which every sequence q with maximum length
2 is shared by at least 2 records and the confidence of inferring any sensitive value in S = {HIV,Hepatitis} from q is 650%.

Protecting privacy is one aspect of anonymizing trajectory data. Another aspect is preserving data utility in the anon-
ymous data for data mining. The anonymized data may be used for different data mining tasks; therefore, we propose a
generic framework to accommodate different utility requirements. As an illustration, in this paper we aim to preserve
both instances of location-time doublets and frequent sequences in a trajectory database. The ratio of suppressed in-
stances is a general measure of anonymized data quality for a wide range of trajectory data mining tasks [14,15]; the
ratio of suppressed frequent sequences is a direct indication of anonymized data quality for trajectory pattern mining
[11].

Generalization, bucketization, and suppression are the most widely used anonymization mechanisms. Generalization re-
quires the use of taxonomy trees, which are highly specific to a particular application [3]. In many trajectory data appli-
cations, such domain specific taxonomy trees are not available. This fact largely hinders generalization’s applicability on
trajectory data anonymization. Bucketization merely breaks the correlation between trajectory data and sensitive attri-
butes, and publishes trajectory data without any modification, which fails to protect identity linkage attacks on trajec-
tory data. In addition, a condensation approach [3] is proposed for multi-dimensional data publishing. However, it does
not prevent from attribute linkage attacks in general. Specifically, for trajectory data, its complexity grows exponentially
due to the high dimensionality. Furthermore, there lacks a way of measuring the similarity of trajectories, which is
essential to the condensation approach. Therefore, in this paper, we employ suppression, both local and global suppres-
sions, to eliminate privacy threats from a trajectory database. The introduction of local suppression results in significant
data utility improvements for trajectory data anonymization. In global suppression, if a location-time doublet p is se-
lected to be suppressed from a trajectory database T, then all instances of p are removed from T, whereas in local sup-
pression, some instances of p may remain intact in T while other instances are removed. Global suppression punishes all
records containing p even if the privacy leakage is caused by only one instance of p in one record. In contrast, local sup-
pression eliminates the exact instances that cause privacy breaches without penalizing others. Thus, local suppression
preserves much better data utility compared to global suppression.

1.2. Contributions

In this paper, we acknowledge the emerging data publishing scenario, in which trajectory data need to be published with
sensitive attributes. This naturally requires to prevent from both identity linkage attacks and attribute linkage attacks, which
has not been studied in existing works. Based on the practical assumption that an adversary has only limited background
knowledge on a target victim, we adopt (K,C)L-privacy model for trajectory data anonymization, which takes into consideration
not only identity linkage attacks on trajectory data, but also attribute linkage attacks via trajectory data. We present an anon-
ymization framework that supports both local suppression and global suppression with the goal of preserving data utility for
data mining. This is the first study introducing local suppression to trajectory data anonymization. In this paper, we tailor our
anonymization framework to preserve both instances of location-time doublets and frequent sequences in trajectory data. The
framework itself is open to different data mining workloads by incorporating different data utility metrics. We provide com-
prehensive experimental evaluations on both synthetic and real-life trajectory data sets. The experimental results demonstrate
that our proposed algorithm is both effective and efficient to address the special challenges in trajectory data anonymization. In
particular, local suppression is shown to be essential to enhance the resulting data utility when combined with (K,C)L-privacy.
2. Related work

2.1. Anonymizing relational & statistical data

k-anonymity [30] prevents identity linkage attacks by requiring every qid group (a.k.a. equivalent class) in a relational data
table T to contain at least k records. ‘-diversity [22] and confidence bounding [34] aim at preventing attribute linkage attacks.
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‘-diversity requires every qid group to contain at least ‘ ‘‘well-represented’’ sensitive values, while confidence bounding limits
an adversary’s confidence of inferring a sensitive value in any qid group to a certain threshold. (a,k)-anonymity [36]
incorporates both k-anonymity and confidence bounding into a single privacy model. Li and Li [17] model an adversary’s back-
ground knowledge by mining negative association rules from the data and then use them in the anonymization process. Kisile-
vich et al. [13] make use of the decision tree built on an original data set to perform multi-dimensional suppression for achieving
k-anonymity. Matatov et al. [23] partition a data set into several k-anonymous projections, train a classifier on each of them, and
then conduct classification tasks by combining the classifications of all such classifiers. Traditional privacy models for relational
data suffer from the curse of high dimensionality [2] and, therefore, may render high-dimensional data totally useless for fur-
ther data mining tasks. Recently, Mohammed et al. [26] propose the LKC-privacy model for high-dimensional relational data,
which assumes that the adversary’s prior knowledge is limited to at most L attributes in QID. They achieve the LKC-privacy mod-
el based on global generalization. In contrast, this paper focuses on trajectory data anonymization by local suppression.

Dwork [5] proposes an insightful privacy notion based on the principle that the risk to a record owner’s privacy should
not substantially increase as a result of participating in a statistical database. Consequently, Dwork [5] introduces a privacy
model called �-differential privacy to ensure that the removal or addition of a single record does not have a significant effect
on the outcome of any analysis. Differential privacy does not prevent identity and attribute linkages studied in this paper,
but assures record owners that nothing can be discovered by comparing the databases with and without their records. Most
works on differential privacy focus on relational data and are still limited to a very few primitive data mining tasks. Macha-
nava et al. [21] further indicate that differential privacy can only be achieved by randomized mechanisms, for example, add-
ing noise. Therefore, it cannot preserve data truthfulness, which is important if the data will be examined by human users for
the purposes of auditing, data interpretation, or visual data mining.

2.2. Anonymizing transaction data

Recently, there is more focus on anonymizing high-dimensional transaction data [10,12,32,38,39], in which sequentiality is
not a concern. Ghinita et al. [10] propose a permutation method that groups transactions with close proximity and then
associates each group to a set of diversified sensitive values. Terrovitis et al. [32] propose an algorithm to k-anonymize
transactions by generalization according to some given taxonomy trees. He and Naughton [12] extend [32] by introducing local
generalization, which gains better utility. Neither [12] nor [32] addresses attribute linkage attacks. In real-life trajectory
databases, however, taxonomy trees may not be available or a logical one for locations may not exist. Moreover, Fung et al.
[8] point out that if the taxonomy tree tends to be flat and fans out, which is the case of trajectory data, employing generalization
loses more information than employing suppression because generalization has to merge all siblings of a selected node to their
parent node, whereas suppression only removes the selected child node. Xu et al. [38,39] extend the k-anonymity model by
assuming that an adversary knows at most a certain number of transaction items of a target victim, which is similar to our
assumption of limited background knowledge of an adversary. Though their method addresses the high dimensionality
concern, it does not consider the sequential property of trajectory data and, therefore, is not applicable to trajectory data anon-
ymization. Furthermore, Xu et al. [38,39] achieve their privacy model by global suppression, which significantly hinders data
utility on trajectory data.

2.3. Anonymizing trajectory data

Some recent works [1,6,7,24,29,31,40] study anonymization of trajectory data from different perspectives. Abul et al. [1]
propose (k,d)-anonymity based on the imprecision of sampling and positioning systems, where d represents the possible
location imprecision. Based on space translation, the general idea is to modify the paths of trajectories so that k different
trajectories co-exist in a cylinder of the radius d. However, the imprecision assumption may not hold in some sources of
trajectory data, such as transit data, RFID data, and purchase records.

Due to the high dimensionality of trajectory data, [29,31] study the anonymization problem on a simplified form of tra-
jectory data, in which only temporal sequentiality is considered, known as sequential data. Pensa et al. [29] propose a variant
of k-anonymity model for sequential data, with the goal of preserving frequent sequential patterns. Similar to the space
translation method in [1], Pensa et al. [29] transform a sequence into another form by inserting, deleting, or substituting
some items. Terrovitis et al. [31] further assume that different adversaries may possess different background knowledge
and that the data holder has to be aware of all such adversarial knowledge. The objective is to prevent adversaries from gain-
ing further information from the published sequential data. The assumption of knowing all adversarial knowledge before
publishing the data is possible in the specific scenario described in their paper, but it is not applicable in the context of tra-
jectory data in general. The simplification from trajectory data to sequential data does help overcome the high dimension-
ality of trajectory data. However, for many trajectory data mining tasks, the time information is indispensable. Therefore,
these approaches fail to satisfy the information requirements of the data mining tasks. Yarovoy et al. [40] present a novel
notion of k-anonymity in the context of moving object databases (MOD) based on the assumption that different moving ob-
jects may have different QIDs. Specifically, they consider timestamps as the QIDs, with moving objects’ locations forming
their values. Adversaries are assumed to conduct privacy attacks based on an attack graph. An underlying assumption of
[40] is that the data holder must be aware of the QIDs of all moving objects. However, the paper leaves the problem of
the acquisition of QIDs for a data holder unsolved.
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All these works [1,29,31,40] are limited to privacy protection on only identity linkage attacks over trajectory data,
whereas our method prevents not only identity linkage attacks, but also attribute linkage attacks via trajectory data in order
to accommodate the emerging trajectory data publishing scenario. A line of very recent papers [6,7,24] have launched stud-
ies on protecting both identity and attribute linkages. However, such papers are limited to global suppression, which results
in less desirable utility. To enhance the resulting data utility, local suppression is utilized for the first time in the context of
trajectory data. In addition, all these works are effective in some specific scenarios, while our proposed framework has fewer
constraints, and therefore, is applicable for different trajectory data sources and different data mining workloads.

3. Problem definition

3.1. Trajectory database

A typical trajectory system generates a sequence of sensory data records of the general form hID, loc, ti, where each record
indicates that the record owner (or the object) having the unique identifier ID was detected in location loc at time t. For
example, in transportation systems, a record represents that a passenger was present in station loc at time t, where ID could
be the passenger’s transportation card number. Different types of trajectory data can be easily converted into the general
form by pre-processing steps. For example, GPS data, a typical type of trajectory data, is of the form hID, (X coordinate,Y coor-
dinate), timestampi, which can be converted by substituting the grid ID/name containing a point for (X coordinate,Y coordi-
nate). By selecting proper granularity of such grids, this general form is suitable to represent various kinds of trajectory
data for different data mining tasks.

The trajectory of a specific record owner, representing the owner’s movement history, is composed of a sequence of (loc, t)
doublets. A trajectory, denoted by (loc1t1) ? � � �? (locntn), can be constructed by grouping the sensory data records hID, loc, ti
by ID and sorting them by the timestamps. The timestamps in a trajectory are always increasing.

In addition to trajectory data, a trajectory database may also contain other attributes that are associated with the record
owners. Formally, a trajectory database contains a collection of data records in the form of
ðloc1t1Þ ! � � � ! ðlocntnÞ : s1; . . . ; sp : d1; . . . ; dm
where (loc1t1) ? � � �? (locntn) is a trajectory, si 2 Si are the sensitive attributes with values from the domain Si, and di 2 Di are the
quasi-identifiers (QIDs) of the record owner with the values from the domain Di. Given a trajectory database, an adversary can
perform privacy attacks via either trajectories or QID attributes. Anonymization on relational QID attributes has been exten-
sively studied in previous works [9,16,22,30,37]. This paper focuses on addressing the privacy threats posed by trajectories.

3.2. Privacy threats

Suppose a data holder wants to publish a trajectory database T to some recipients for data mining. Explicit identifiers, e.g.,
name, SSN, and ID, have been removed. One recipient, the adversary, seeks to identify the record or sensitive values of some
target victim V in T. As explained in Section 1, we assume that the adversary knows at most L spatio-temporal doublets that
the victim V has previously visited. Such background knowledge about the victim V is denoted by jV = (loc1t1) ? � � �? (locztz),
where z 6 L. Using the background knowledge jV, the adversary could identify a group of records in T, denoted by T(jV), that
‘‘matches’’ jV. A record matches jV if jV is a subsequence of the trajectory in the record. For example, in Table 1, if jV = d2 ? e4,
then Record#1 matches jV, but Record#2 does not. Given the background knowledge jV, an adversary could identify and uti-
lize T(jV) to perform two types of privacy attacks:

1. Identity linkage attack: T(jV) is a set of candidate records that contains the victim V’s record. If the group size of T(jV),
denoted by jT(jV)j, is small, then the adversary may identify V’s record from T(jV) and, therefore, V’s sensitive value.

2. Attribute linkage attack: Given T(jV), the adversary may infer that V has sensitive value s with confidence

Conf ðsjTðjV ÞÞ ¼
jTðjV

S
sÞj

jTðjV Þj
, where T(jV

S
s) denotes the set of records containing both jV and s. Conf(sjT(jV)) is the percent-

age of the records in T(jV) containing s. The privacy of V is at risk if Conf(sjT(jV)) is high.

Example 1.1 illustrates these two types of attacks.

3.3. Privacy requirement

An adversary’s background knowledge j could be any non-empty subsequence q with jqj 6 L of any trajectory in the
trajectory database T. Intuitively, (K,C)L-privacy requires that every subsequence q with jqj 6 L in T is shared by at least a
certain number of records, and that the confidence of inferring any sensitive value via q cannot be too high.

Definition 3.1 ((K,C)L-privacy)). Let L be the maximum length of the background knowledge. Let S be a set of sensitive
values of the sensitive attributes of a trajectory database T selected by the data holder. T satisfies (K,C)L-privacy if and only if
for any subsequence q in T with 0 < jqj 6 L,
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1. jT(q)jP K, where K is a positive integer specifying the anonymity threshold, and
2. Conf(sjT(q)) 6 C for any s 2 S, where 0 6 C 6 1 is a real number specifying the confidence threshold. h
The (K,C)L-privacy model has several desirable properties. First, it is a generalized version of several existing privacy mod-
els: k-anonymity [30] is a special case of the (K,C)L-privacy model with L = jdj and C = 100%, where jdj is the number of
dimensions in a given database. ‘-diversity [22] is a special case of (K,C)L-privacy model with L = jdj, and ‘ = 1/C. Confidence
bounding [34] is a special case of the (K,C)L-privacy model with L = jdj and K = 1. (a,k)-anonymity [36] is also a special case of
(K,C)L-privacy with L = jdj, K = k, and C = a. Second, it is intuitive for a data holder to impose different types and levels of pri-
vacy protection by specifying different L, K, and C thresholds.

It is worth noting that (K,C)L-privacy is a stronger privacy notion than other existing privacy models for trajectory data
[1,29,31,40] in the sense that (K,C)L-privacy thwarts both identity linkages on trajectory data and attribute linkages via tra-
jectory data. It is vital to thwart attribute linkage attacks in trajectory data publishing because more and more trajectory data
mining tasks will resort to both trajectory data and other personal information. For example, Utsunomiya et al. [33] con-
ducted an interesting passenger classification analysis using both passengers’ trajectory data and personal information. A
recent investigation [28] further indicates that there is a need to enrich trajectory data by incorporating sociodemographic
data for data mining tasks.

3.4. Utility requirement

Since we aim at presenting a framework that allows the adoption of various data utility metrics for different data mining
tasks, we illustrate the preservation of two different kinds of utility metrics, both instances of location-time doublets and fre-
quent sequences in a trajectory database. The ratio of suppressed instances is a general measure of the usefulness of anony-
mized data for a wide range of trajectory data mining tasks [14,15]. In addition, previous works [9,18] suggest that
anonymization algorithms can be tailored to better preserve utility if the utility requirement is known in advance. We also
preserve frequent sequences specifically for trajectory pattern mining [11]. However, extracting all possible frequent se-
quences in a trajectory database is computationally expensive. It is even exacerbated when dealing with large data sets with
long frequent sequences because all subsequences of a frequent sequence are also frequent. A more feasible solution is to
preserve maximal frequent sequences (MFS).

Definition 3.2 (Maximal frequent sequence). For a given minimum support threshold K0 > 0, a sequence q is maximal frequent
in a trajectory database T if q is frequent and no super sequence of q is frequent in T. h

The set of MFS in T, denoted by U(T), is much smaller than the set of frequent sequences (FS) in T given the same K0, but
still contains the essential information of FS. Any subsequence of an MFS is also an FS. Once all the MFS have been deter-
mined, the support count of any particular FS can be computed by scanning U(T) once.

We emphasize that although in this paper we aim at preserving instances and MFS, the (K,C)L-privacy model and the
anonymization framework presented in Section 4 are independent of the underlying utility metric and are flexible enough
to serve other utility requirements. The only change is to replace the greedy function guiding the anonymization process,
which will be further explained in Section 4.2.

3.5. Problem statement

To achieve (K,C)L-privacy for a given trajectory database T, our proposed framework conducts a sequence of local and glo-
bal suppressions to remove all privacy threats from T while preserving as much data utility as possible. Global suppression
eliminates all instances of a doublet p from T if some instances of p cause privacy breaches, while local suppression eliminates
only the instances of p that cause privacy breaches and leaves others intact. Finding an optimal solution based on suppres-
sion for (K,C)L-privacy, however, is NP-hard (see Section 4.2 for proof). Thus, we propose a greedy algorithm to efficiently
identify a reasonably ‘‘good’’ sub-optimal solution.

Definition 3.3 (Trajectory data anonymization). Given a trajectory database T, a (K,C)L-privacy requirement, a utility metric,
and a set of sensitive values S, the task of trajectory data anonymization is to generate a transformed version of T that satisfies
(K,C)L-privacy while maintaining the maximum utility with respect to the utility metric by a sequence of local and global
suppressions. h
4. The anonymization algorithm

The proposed anonymization algorithm consists of two phases. First, identify all violating sequences that breach a given
(K,C)L-privacy requirement in a trajectory database. Second, perform a sequence of local and global suppressions to anony-
mize the trajectory database while maintaining as much data utility as possible.
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4.1. Identifying violating sequences

An adversary may use any non-empty sequence with length not greater than L as background knowledge to launch a link-
age attack. Thus, given a (K,C)L-privacy requirement, any subsequence q with 0 < jqj 6 L in a trajectory database T is a vio-
lating sequence if its group T(q) does not satisfy Condition 1, Condition 2, or both in (K,C)L-privacy in Definition 3.1.

Definition 4.1 (Violating sequence). Let q be a subsequence of a trajectory in T with 0 < jqj 6 L. q is a violating sequence with
respect to a (K,C)L-privacy requirement if jT(q)j < K or Conf(sjT(q)) > C for any sensitive value s 2 S. h
Example 4.1. Given L = 2, K = 2, C = 50%, and the sensitive value set S = {HIV,Hepatitis}. In Table 1, the sequence q1 = a1 ? b3
is a violating sequence because jT(q1)j = 1 < K; the sequence q2 = a1 ? d2 is also a violating sequence because Con-
f(HIVjT(q2)) = 2/3 = 67% > C. However, the sequence q3 = b3 ? c7 ? e8 is not a violating sequence even though jT(q3)j = 1 < K
and Conf(HepatitisjT(q3)) = 100% > C because jq3j = 3 > L. h

To satisfy a given (K,C)L-privacy requirement on a trajectory database T, it is sufficient if all violating sequences in T
with respect to the privacy requirement are removed, because all possible channels for identity and attribute linkages
are eliminated. A naive approach is to first enumerate all possible violating sequences and then remove them. This ap-
proach is infeasible because of the huge number of violating sequences. Consider a violating sequence q with jT(q)j < K.
Any super sequence of q, denoted by q00, with jT(q00)j > 0 in T is also a violating sequence because jT(q00)j 6 jT(q)j < K. To
overcome the bottleneck of violating sequence enumeration, our insight is that a few ‘‘minimal’’ violating sequences exist
among the violating sequences, and it is sufficient to achieve (K,C)L-privacy by removing only the minimal violating
sequences.

Definition 4.2 (Minimal violating sequence). A violating sequence q is a minimal violating sequence (MVS) if every proper
subsequence of q is not a violating sequence. h
Example 4.2. Given L = 2, K = 2, C = 50%, and S = {HIV,Hepatitis}. In Table 1, the sequence q1 = d2 ? e4 is an MVS because
jT(q1)j = 1 < K, and none of its proper subsequences, d2 and e4, is a violating sequence. In contrast, the sequence
q2 = a1 ? d2 is a violating sequence, but not an MVS, because one of its proper subsequences, a1, is a violating sequence. h

The set of MVS is much smaller than the set of violating sequences; therefore, we can efficiently identify all privacy
threats by generating all MVS. A trajectory database T satisfies (K,C)L-privacy if and only if T contains no MVS.

Theorem 4.1. A trajectory database T satisfies (K,C)L-privacy if and only if T contains no minimal violating sequence.
Proof. Suppose a database T does not satisfy (K,C)L-privacy even if T contains no MVS. By Definition 3.1, T must contain some
violating sequences. According to Definition 4.2, a violating sequence must be an MVS itself or contain an MVS, which
contradicts the initial assumption. Therefore, T must satisfy (K,C)L-privacy. h

Procedure 1. Identify Minimal Violating Sequences (MVS)

Input: Raw trajectory database T
Input: Thresholds L, K, C, and sensitive values S
Output: Minimal violating sequences V(T)
1: C1 all distinct doublets in T;
2: i = 1;
3: while i 6 L and Ci – ; do
4: Scan T once to compute jT(q)j and Conf(sjT(q)), for "q 2 Ci, "s 2 S;
5: for each sequence q 2 Ci with jT(q)j > 0 do
6: if jT(q)jP K and Conf(sjT(q)) 6 C for all s 2 S then
7: Add q to Ui;
8: else
9: Add q to Vi;
10: i++;
11: Generate candidate set Ci by Ui�1ffl Ui�1;
12: for each sequence q 2 Ci do
13: if q is a super sequence of any v 2 Vi�1 then
14: Remove q from Ci;
15: return V(T) = V1 [ � � � [ Vi�1;



Hence, our first step is to efficiently identify all the MVS, V(T), in the given trajectory database T. Procedure 1 presents
the details of generating V(T). Based on Definition 4.2, we generate all MVS of size i + 1, denoted by V , by incrementally
i+1

extending non-violating sequences of size i, denoted by Ui, with an additional doublet. This needs to take into consideration
the sequentiality of trajectory data. Line 1 loads all distinct doublets in T as the initial candidate set C1. Line 4 scans T once
to compute jT(q)j and Conf(sjT(q)) for every sequence q 2 Ci, and for every sensitive value s 2 S. If a sequence q is not
violating, it is added to the non-violating sequence set Ui for generating the next candidate set Ci+1 (Line 7); otherwise,
q is added to the MVS set (Line 9). The next candidate set Ci+1 is generated in two steps. First, conduct a self-join of Ui

(Line 11). Second, remove all super sequences of the identified MVS from Ci+1 (Lines 12–14). The second step significantly
reduces the minimal violating sequence search space. Two sequences qx ¼ locx

1tx
1

� �
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i tx
i

� �
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qy ¼ ðlocy
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. The definition of join-compatibility makes sure that every potential candidate

sequence would be generated exactly once.

Example 4.3. Given L = 2, K = 2, C = 50%, and the sensitive value set S = {HIV,Hepatitis}, the MVS set generated from Table 1 is
V(T) = {a1,d2 ? b3,d2 ? e4,d2 ? e8,b3 ? c7}. h

4.2. Removing violating sequences

The second step is to remove all identified minimal violating sequences using suppression with the goal of preserving as
much data utility as possible. However, finding an optimal solution is NP-hard.

Theorem 4.2. Given a trajectory database T and a (K,C)L-privacy requirement, it is NP-hard to find the optimal anonymization
solution.
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Proof. The problem of finding the optimal anonymization solution can be converted into the vertex cover problem. The vertex
cover problem is a well-known problem in which, given an undirected graph G = (V,E), it is NP-hard to find the smallest set of
vertices S such that each edge has at least one endpoint in S. To reduce our problem into the vertex cover problem, we only
consider the set of MVS of length 2. Then, the set of candidate doublets represents the set of vertices V and the set of MVS is
analogous to the set of edges E. Hence, the optimal vertex cover, S, means finding the smallest set of candidate doublets that
must be suppressed to obtain the optimal anonymous data set T0. Given that it is NP-hard to determine S, it is also NP-hard to
find the optimal set of candidate doublets for suppression. h

Therefore, we propose a greedy algorithm that employs both local and global suppressions to eliminate all identified MVS,
V(T), with respect to the given (K,C)L-privacy requirement in order to efficiently identify a reasonably ‘‘good’’ solution. Gen-
erally, suppressing a doublet p from V(T) increases privacy and decreases data utility. So our goal is to design a greedy func-
tion, Score(p), that guides us to find the sub-optimal trade-off between privacy and data utility. In this paper, we define our
greedy function as follows:
ScoreðpÞ ¼ PrivGainðpÞ
UtilityLossðpÞ þ 1
where PrivGain(p) is the number of MVS that can be eliminated by suppressing p, and UtilityLoss(p) is the number of either
instances or MFS that are lost due to suppressing p, depending on the given utility metric. Since suppressing p may not cause
utility loss in terms of MFS, we add 1 to the denominator to avoid the division by zero error. The function considers both
privacy and utility simultaneously by selecting the anonymization operation with the maximum privacy gain per unit of util-
ity loss. Considering only privacy gain or utility loss would lead to inferior performances according to our tests. Again, our
anonymization algorithm is independent of the underlying data utility metric. To optimize the data utility for other data
mining workloads, we can simply re-design the meaning of UtilityLoss(p).

A key to an efficient solution is to ensure that no new MVS will be generated in the anonymizing process. Upon satisfying the
requirement, the identified MVS V(T) always decreases monotonically. A suppression-based algorithm is guaranteed to
achieve (K,C)L-privacy within less than jV(T)j iterations. One nice property of global suppression is that it does not generate
any new MVS during the anonymizing process.

Theorem 4.3. A global suppression does not generate any new minimal violating sequence with respect to a (K,C)L-privacy
requirement.
Proof. Suppose a doublet p is globally suppressed from a given trajectory database T. The database after the global suppres-
sion is denoted by T0.
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� For any sequence q in T not containing an instance of p, we have jT0(q)j = jT(q)j and Conf(sjT0(q)) = Conf(sjT(q)). Identically,
for any subsequence q0 of q, which does not contain p either, we have jT0(q0)j = jT(q0)j and Conf(sjT0(q0)) = Conf(sjT(q0)). So q
cannot be a new minimal violating sequence in T0.
� For any sequence q in T that contains an instance of p, q no longer exists in T0, so q cannot be a new minimal violating

sequence.

Therefore, no sequence in T will become a new MVS in T0. h

However, local suppression does not share the same property. For example, locally suppressing c7 from Record#3 in Table
1 will generate a new MVS c7 ? e8 because in the resulting database T0, jT0(c7 ? e8)j = 1 < K. Identifying the values of all
newly generated MVS requires expensive computational cost. Moreover, there is no guarantee that the anonymization algo-
rithm can converge within a bounded number of iterations, jV(T)j. Therefore, it is beneficial to perform local suppressions
only when no new MVS will be generated. Such a local suppression is called a valid local suppression.

Definition 4.3 (Valid local suppression). A local suppression over a trajectory database is valid if it does not generate any new
MVS. h

An intuitive way to check if a local suppression is valid is to re-invoke Procedure 1 and compare V(T) and V(T0). However, it
is extremely costly. Instead, Procedure 2 presents an efficient approach to avoid the computational cost of calculating the
values of all newly generated MVS. It significantly narrows down the checking space to a very small set of sequences that
may be affected by a local suppression by carefully using the properties of MVS.

Procedure 2. Check if a local suppression is valid

Input: Trajectory database T
Input: Thresholds L, K, C, and sensitive values S
Input: A doublet p in an MVS m
Output: A boolean value indicating if locally suppressing p from m is valid
1: P distinct doublet p0 such that p0 2 T(m) ^ p0 2 (T(p) � T(m));
2: V0  all size-one MVS and the MVS containing p, V(p);
3: Remove all doublets, except p, in V0 from P;
4: Q all possible sequences with size 6L generated from P after removing super sequences of the sequences in

V(T) � V(p);
5: Scan T(p) � T(m) once to compute jqj and Conf(sjT(q)) for each sequence q 2 Q and for every sensitive value s 2 S0,

where S0 is the subset of S in T(p) � T(m);
6: for each sequence q with jqj > 0 do
7: if jqj < K or Conf(sjT(q)) > C for any s 2 S0 then
8: return false;
9: return true;
Theorem 4.4. Procedure 2 is sufficient to check if a local suppression is valid.
Proof. Suppose a doublet p in an MVS m is locally suppressed from a given trajectory database T. The resulting database is
denoted by T0. For any sequence q in T not containing an instance of p, we have jT0(q)j = jT(q)j and Conf(sjT0(q)) = Conf(sjT(q)).
Identically, for any subsequence q0 of q, we have jT0(q0)j = jT(q0)j and Conf(sjT0(q0)) = Conf(sjT(q0)). So q cannot be a new MVS in
T0. If there is a new MVS, it must contain p. Since p is eliminated from the records containing m, T(m), we only need to
consider the sequences in T(p) � T(m), where T(p) denotes the records containing p. For a sequence q in T containing an
instance of p, if q R T(m), we have jT0(q)j = jT(q)j and Conf(sjT0(q)) = Conf(sjT(q)) and, therefore, such q cannot be a new MVS. q is
possible to be a new MVS only if q 2 T(m) and q 2 (T(p) � T(m)) (Line 1). Since we only care about new MVS, we could further
filter out all identified MVS and their super sequences. For the remaining sequences, if none of them is a violating sequence,
it is sufficient to ensure that there is no new MVS by Definition 4.2 (Lines 4–9). h
Example 4.4. Consider Table 1 with L = 2, K = 2, C = 50%, and the sensitive value set S = {HIV,Hepatitis}. For the local
suppression of d2 in MVS d2 ? e4, we get P = {d2, f6} and V0 = {a1,d2 ? b3,d2 ? e4,d2 ? e8}. Since all sequences in
Q = {d2, f6,d2 ? f6} are not violating sequences, this local suppression is valid.
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Algorithm 1. Trajectory Database Anonymizer

Input: Raw trajectory database T
Input: Thresholds L, K, C, (K0), and sensitive values S
Output: Anonymous T0 satisfying the given (K,C)L-privacy requirement
1: Generate V(T) by Procedure 1;
2: Generate MFS by MFS algorithm and build MFS-tree;
3: Build Score table by Procedure 2;
4: while Score table – ; do
5: Select a doublet p with the highest score from its MVS m;
6: if p is obtained from local suppression then
7: V0  each MVS m0 such that p 2m0 ^ T(m0) = T(m);
8: Suppress the instances of p from T(m);
9: Delete the MFS containing p if their supports are <K0 after the suppression, otherwise update their supports;
10: else
11: V0  V(p);
12: Suppress all instances of p in T;
13: Delete all MFS containing p from MFS-tree;
14: Update the Score(p0) if both p and p0 are in V0 (or in the same MFS);
15: V(T) = V(T) � V0;
16: return the suppressed T as T0;
Algorithm 1 presents the entire anonymization algorithm. Line 1 calls Procedure 1 to generate the MVS set V(T). For pre-
serving MFS, Line 2 is needed, which calls the MFS mining algorithm to build a MFS-tree with a UL table that keeps track of
the occurrences of all candidate doublets in the MFS-tree. We adapt MAFIA [4], originally designed for mining maximal fre-
quent itemsets, to mine MFS. For all instances of all doublets in V(T), their scores for local and global suppressions are cal-
culated and stored in Score table based on Procedure 2 (Line 3). Different instances of a doublet in V(T) have different entries
in Score table. Only valid local suppressions are assigned scores. The global suppression scores of all instances of a doublet are
the same. Lines 4–15 iteratively select a doublet p with the highest score in Score table to suppress. According to whether the
highest score is obtained from local suppression or global suppression, our algorithm performs different strategies. For local
suppression, the algorithm identifies the set of MVS, denoted by V0, that will be eliminated due to locally suppressing p,
and removes the instances of p from the records T(m). One extra step is performed for MFS to update the supports of
MFS in the MFS-tree (Line 9). For global suppression, the algorithm removes all the MVS containing p, and suppresses all
instances of p from T. For preserving MFS, the MFS containing p are removed from the MFS tree (Line 13). Line 14 updates
the Score table, which requires two tasks: (1) checking if the doublets affected by the current suppression are valid for future
local suppressions; and (2) calculating the scores for such doublets. Specifically, for preserving MFS, a special data structure,
MFS-tree, is created to facilitate the anonymization.
Fig. 1. MFS-tree for efficient Score updates.



R. Chen et al. / Information Sciences 231 (2013) 83–97 93
Definition 4.4 (MFS-tree). MFS-tree is a tree structure that represents each MFS as a tree path from root to leaf. The
support of each MFS is stored at its leaf node. Each node keeps track of a count of MFS sharing the same prefix. The
count at the root is the total number of MFS. MFS-tree has a UL table that keeps the total occurrences of every candidate
doublet p. Each candidate doublet p in the UL table has a link, denoted by Linkp, that links up all the nodes in MFS-tree
containing p. h
Example 4.5. Fig. 1 presents the MFS-tree generated from Table 1 with K0 = 2. To find all the MFS containing f6, simply follow
Linkf6, starting from the f6 entry in the UL table. h
4.3. Complexity analysis

Our anonymization algorithm consists of two steps. In the first step, we identify all MVS. The most expensive operation is
scanning the raw trajectory database T once for all sequences in each candidate set Ci. The cost is

PL
i¼1jCiji, where jCij is the

size of candidate set Ci. The size of C1 is the number of distinct doublets in T whose upper limit is jdj, the number of
dimensions. Since C2 is generated by self-joining all doublets in U1, whose size is less than or equal to jC1j, its upper bound
is jdj(jdj � 1)/2. However, when i P 3, the sizes of the candidate sets do not increase significantly for two reasons: (1) all
candidates are generated by self-joining, which requires that only if two sequences share the same prefix, their resulting se-
quence can be considered a future candidate. When i is relatively large, the chance of finding two such sequences decreases
significantly. (2) The pruning process in Procedure 1 also greatly reduces the candidate search space. Therefore, a good
approximation is C � jdj2. However, in the worst case, the computational cost of the first step is bounded by O(jdjLjTj), where
jTj is the number of records in T. In the second step, we construct the Score table, and then remove all MVS iteratively. The
most costly operation is to check if the instances of the doublets in V(T) are valid to be locally suppressed. The number of

instances of doublets in V(T) is less than
PL

i¼1jCiji, and thus also bounded by jdjL. For every instance in V(T), we need to invoke
Procedure 2 at most twice. For each invocation, in the worst case, it has to go through all records in T. So the cost of the
second step is still bounded by O(jdjLjTj). By incorporating both steps, the complexity of the entire algorithm is O(jdjLjTj).
The scalability of our algorithm is further demonstrated in Section 5.2.

5. Experimental evaluation

In this section, we examine the performance of our anonymization framework in terms of utility loss due to the anony-

mization and scalability for handling large data sets. For preserving instances, the utility loss is defined as NðTÞ�NðT 0 Þ
NðTÞ , where N(T)

and N(T0) are the numbers of instances of doublets in the original data set T and the anonymous data set T0 respectively; for

preserving MFS, the utility loss is defined as jUðTÞj�jUðT
0 Þj

jUðTÞj , where jU(T)j and jU(T0)j are the numbers of MFS in T and T0 respectively.

The formulas respectively measure the percentage of instances and MFS that are lost due to suppressions. Lower utility loss
implies better resulting data quality. We cannot directly compare our algorithm with previous works [1,29,31,40] on trajec-
tory data anonymization because none of them can prevent from both identity and attribute linkage attacks. Instead, we
compare our local suppression method with the global suppression method described in our technical report [25]. In the fol-
lowing experiments, we show that applying local suppression along with (K,C)L-privacy would significantly lower utility loss
in the context of trajectory data.

Two data sets, City80K and STM460K, are used in the experiments. City80K is a synthetic data set simulating the routes of
80,000 pedestrians roaming in a metropolitan area of 26 blocks in 24 hours. The sensitive attribute of City80K contains a total
of five possible values, one of which is considered as sensitive. STM460K is a real-life data set provided by Société de transport
de Montréal (STM), the public transit agency in Montréal. It contains the transit data of 462,483 passengers among 68 subway
stations within 48 hours, where the time granularity is set to hour level. The passengers’ fare types are currently considered
as the sensitive attribute. It contains 24 distinct values and 6 of them are considered as sensitive. The properties of the two
experimental data sets are summarized in Table 3.

5.1. Utility loss

To fully study the effectiveness of our anonymization algorithm, we evaluate the utility loss in terms of varying K, C, L
values. Specifically, for preserving MFS, we also study the effect of varying K0 values. Instead of examining the effect of
Table 3
Experimental data set statistics.

Data sets Records jTj Dimensions jdj Data size (K bytes) Sensitive set cardinality Data type

City80K 80,000 624 2297 1/5 Synthetic
STM460K 462,483 3264 9810 6/24 Real-life
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Fig. 2. Utility loss vs. K (L = 3,C = 60%,K0 = 800).

KCl-Local KCl-Global Trad-Local Trad-Global

Fig. 3. Utility loss vs. C (L = 3,K = 30,K0 = 800).
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L separately, we show the benefit of a reasonable L value over the traditional k-anonymity (confidence bounding) in combi-
nation with other parameters. In Figs. 2–4, the following legends are used: KCL-Local uses local suppression for (K,C)L-pri-
vacy;KCL-Global uses global suppression for (K,C)L-privacy [25]; Trad-Local uses local suppression for traditional k-
anonymity (confidence bounding); Trad-Global uses global suppression for traditional k-anonymity (confidence bounding).

5.1.1. Effect of K
We vary the parameter K from 10 to 50 while fixing L = 3, C = 60%, and K0 = 800, on both City80K and STM460K to study the

effect of K on (K,C)L-privacy model under the two different utility metrics, the results of which are demonstrated in Fig. 2.
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Fig. 4. Utility loss vs. K0 (L = 3,K = 30,C = 60%).
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Recall that k-anonymity is achieved in our framework by setting L = jdj and C = 100%, where jdj is the number of dimensions
in the given data set. Comparing the utility loss of the schemes based on (K,C)L-privacy to the ones based on k-anonymity
unveils the utility improvement due to the assumption of L-knowledge; comparing the schemes using local suppression
to those using only global suppression unveils the utility enhancement due to the employment of local suppression. Overall,
KCL-Local performs significantly better than KCL-Global. In particular, it achieves 75% improvement for instance and 68%
improvement for MFS on the real data set STM460K. However, local suppression itself is not sufficient to guarantee good data
utility. When local suppression is applied to k-anonymity, the resulting utility loss is still relatively high on City80K. It is
interesting to see that on STM460K the utility loss under (K,C)L-privacy and k-anonymity is very close. This is due to the fact
that most MVS of STM460K are of size-3 or less. Nevertheless, Fig. 2 suggests that when combined with local suppression,
(K,C)L-privacy can significantly lower the utility loss than can k-anonymity, in the context of trajectory data.

5.1.2. Effect of C
Fig. 3 shows the impact of C on the utility loss while fixing L = 3, K = 30, and K0 = 800, which allows us to examine the

effect of attribute linkages. Since k-anonymity is unable to prevent attribute linkages, confidence bounding [34] is used to
compare with (K,C)L-privacy. Recall that confidence bounding is achieved under (K,C)L-privacy by setting L = jdj. When C
is small, the utility loss is high for all anonymization schemes because approximately 20% of the records of City80K and
25% of the records of STM460K contain a sensitive value. However, as C increases, the utility loss becomes less sensitive
to C. The result also suggests that applying local suppression under (K,C)L-privacy results in substantially lower utility loss.

5.1.3. Effect of K0

For preserving MFS, we study the relationship between K0 and the utility loss by fixing L = 3, K = 30, and C = 60% in Fig. 4.
Generally, as K0 increases, the utility loss decreases. When K0 gets larger, the size of MFS becomes smaller, which, in turn,
makes the MFS set and MVS set have less overlap. Hence, suppressions have less influence on MFS. We also observe that local
suppression is less sensitive to varying K0 values due to the fact that local suppression allows decreasing the support of an
MFS rather than always totally eliminating an MFS.

5.2. Scalability

Since the computational complexity of our algorithm is dominated by jdj, the number of dimensions, and jTj, the number
of records, we study the scalability of our anonymization framework in terms of jdj and jTj on relatively large trajectory data
sets generated with similar settings as City80K. Since using local suppression results in better data utility, we only evaluate
Fig. 5. Scalability.
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the scalability of applying local suppression for preserving MFS (using only global suppression requires less computing re-
sources), where the following parameters are used: L = 3, K = 30, C = 60%, and K0 = 800.

5.2.1. Effect of jTj
Fig. 5(a) presents the run time of processing data sets with 4000 dimensions and sizes ranging from 400,000 to 1,200,000.

We can observe that the time spent on reading raw data sets and writing the anonymized data sets is proportional to the
data set sizes. The time of identifying MVS sets also increases linearly, which confirms our analysis in Section 4.3. With
the increase of the data size, the time spent on suppressions, however, drops substantially. When the number of records in-
creases, there is a much greater chance for a sequence q to satisfy jT(q)jP K; therefore, the size of MVS decreases signifi-
cantly, so it takes much less time to perform all suppressions.

5.2.2. Effect of jdj
In Fig. 5(b), we increase the dimensions on data sets of 1 million records. The time spent reading raw data and writing

anonymized data is insensitive to the number of dimensions of the given data set. However, as the number of dimensions
increases, it takes more time to generate the MVS set because the size of each candidate set increases. The size of the result-
ing MVS set also increases due to the increased sparseness. Thus, the time spent on suppressing all identified MVS also
increases.

Overall, our anonymization framework is able to efficiently process large trajectory data sets. The total run time of anon-
ymizing 1 million records with 8000 dimensions is still less than 300 seconds.

6. Conclusions

In this paper, we summarize the special challenges of trajectory data anonymization and show that traditional k-anonym-
ity and its extensions are not effective in the context of trajectory data. Based on the practical assumption of L-knowledge,
we achieve a (K,C)L-privacy model on trajectory data without paying extra utility and computation costs due to over-sani-
tization. This is the first paper that introduces local suppression to trajectory data anonymization to enhance the resulting
data utility. Consequently, we propose an anonymization framework that is able to remove all privacy threats from a trajec-
tory database by both local and global suppressions. This framework is independent of the underlying data utility metrics
and, therefore, is suitable for different trajectory data mining workloads. Our experimental results on both synthetic and
real-life data sets demonstrate that combining (K,C)L-privacy and local suppression is able to significantly improve the anon-
ymized data quality.

Though we adopt a stronger privacy notion than other existing works, in the context of trajectory data, by taking into
consideration the possibility of inferring record owners’ sensitive information via trajectory data, the specificity of trajectory
data enables adversaries to perform other kinds of privacy attacks, especially when they are equipped with different types of
background knowledge. These are interesting and open research problems, which are considered as our future research
directions.
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