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Abstract—Recovering function names from stripped binaries
is a crucial and time-consuming task for software reverse engi-
neering, particularly in enhancing network reliability, resilience,
and security. This paper tackles the challenge of recovering
function names in stripped binaries, a fundamental step in
reverse engineering. The absence of syntactic information and
the possibility of different code producing identical behavior
complicate this task. To overcome these challenges, we introduce
a novel model, the Bidirectional Encoder Transformer for Assem-
bly Code (BETAC), leveraging a transformer-based architecture
known for effectively processing sequential data. BETAC utilizes
self-attention mechanisms and feed-forward networks to discern
complex relationships within assembly code for precise function
name prediction. We evaluated BETAC against various existing
encoder and decoder models in diverse binary datasets, including
benign and malicious codes in multiple formats. Our model
demonstrated superior performance over previous techniques in
certain metrics and showed resilience against code obfuscation.

Index Terms—Reverse engineering automation, binaries, as-
sembly code, CodeBERT, Transformers, summarization

I. INTRODUCTION

Reverse engineering of executables has numerous practi-
cal applications, including improving and debugging legacy
programs, understanding unknown binaries, filtering malware,
and detecting illegally cloned proprietary code. However,
due to the limited information that can be extracted from
stripped binaries, the reverse engineering process can be time-
consuming, expensive, and requires intensive training.

Despite significant progress in the development of disassem-
blers such as IDA Pro1, and Ghidra2, static analysis frame-
works [1], [2], and similarity detectors [3], [4], the reverse
engineering process remains predominantly manual. In recent
years, notable advancements have been made in the prediction
of variable and function names for high-level language source
code. Various techniques, including code summarizing [5],
[6], code retrieval [7], [8], code generation [9], [10], and
name generation or suggestion [11], [12], have been proposed.
Most of these approaches are based on simple models that are
generated from a syntactic static analysis of the source code.
These models are then fed into machine learning algorithms
to provide some form of understanding of the source code.
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However, the traditional techniques for predicting variable
and function names in high-level languages rely on syntactic
analysis, which does not translate well to assembly code
because of its lack of high-level syntactic information and
variable types. The BETAC model, designed specifically for
assembly code, overcomes these limitations by employing a
transformer-based architecture that can understand complex
relationships within assembly code without relying on high-
level syntax, making it more suitable for this task.

Our research seeks to automate the renaming process of
assembly functions to more informative names that describe
the function’s behavior or role. Unlike predicting variable
names, predicting function names is a more feasible task as
functions provide more significant insights into the code’s
purpose. Additionally, predicting variable names is even more
challenging, due to the limited information available in the
assembly code and the disassembler’s limitations in predicting
variable types. While disassemblers can efficiently separate
the code into functions, they often struggle to predict the
type of a variable. This is primarily because most high-level
language types do not exist at the assembly level and only a
limited number of types exist, similar to those found in the C
language. Additionally, the disassembler may confuse between
these types, such as representing an array of integers of length
3 as three pointers to integers, requiring the reverse engineer
to identify the corresponding addresses as consecutive.

This paper makes the following contributions.
• The approach proposed in this study is a new representa-

tion model called Bidirectional Encoder Transformer for
Assembly Code (BETAC). BETAC is the first model de-
signed to produce generic features that are independent of
the binary format or coding style. It employs transformers
instead of Seq2Seq models, which is the first instance of
this approach in this context. BETAC is also explicitly
trained to predict generic features, a unique feature that
sets it apart from previous approaches that use less diverse
datasets to avoid the problem. Our experimental results
reveal that BETAC achieves better BLEU scores than the
state-of-the-art on all tested datasets [3], [13], including
uncommon samples, such as obfuscated malware, and
consistent accuracy, precision, and recall on all datasets.
Given the nature of the task, BLEU scores are more rel-
evant than accuracy, precision, and recall in this context.



Unlike previous research that focused on closed datasets
of specific libraries in a specific binary format [3], [13],
BETAC is trained on a diverse collection of assembly
files and yields good and consistent results on diverse
input data. BETAC represents a promising solution for
automating the function name recovery process in reverse
engineering, as it produces generic features and achieves
superior performance across diverse input data.

• We address prior research limitations by not only devel-
oping and training our proposed model but also by using
the largest and most diverse collection of assembly files to
date. Our dataset consists of samples from four publicly
accessible sources, including two existing datasets that
were previously used for similar problems, a large dataset
of ELF files from open-source libraries, and a small
dataset of malware compiled with various obfuscations.
Unlike prior research that focused on a single binary
format, we train and test our model on both ELF and
PE formats, enabling it to perform well on diverse input
data. Our approach demonstrates the model’s ability to
predict function names accurately, even in the presence
of obfuscation, and achieve promising results on diverse
input data. This approach is a significant step towards
automating the function name recovery process in reverse
engineering, enabling practitioners to better understand
and analyze complex codebases.

II. RELATED WORK

A. Machine learning for source code

Machine learning approaches for predicting names in high-
level programming languages have been studied extensively
in previous work. Some works rely solely on syntax [14],
while others employ semantic analysis [15], or a combination
of both [16]. Syntax-based methods are advantageous for
languages such as Java and JavaScript, which have a rich
syntax but may not be applicable in the case of binary
reverse engineering, where syntax information is lacking.
Brockschmidt et al. [10] incorporated semantic analysis using
Gated Graph Neural Networks, where the graph edges were
relations discovered via semantic analysis. However, graph
neural networks are not directly applicable to our approach, as
our work focuses on instruction sequences rather than complex
graph structures. In a recent study, distributed representations
of C functions were learned based on control flow graphs
(CFG) [17]. We also use CFGs, but operate on the more
challenging domain of stripped binaries, instead of C code.

B. Static analysis frameworks for reverse engineering

Some initial approaches [1] used statistical methods to infer
subclass and superclass relationships and fill in any missing
structural information in stripped binaries using behavioral in-
formation. Reps et al. [18] proposed a binary executable frame-
work specifically designed for analyzing x86 executables.
Their work focused on detecting and manipulating variables
in the assembly code to obtain information about unknown
variables and recover concealed data structures and patterns in

the code that could indicate a hierarchy in the functions. While
this framework provides valuable structural information, it
lacks the semantics of each function, which reverse engineers
must devote significant time to deciphering. Therefore, we
concentrate on semantics in our research, specifically function
names rather than the binary’s structure.

C. Relating source code to assembly instructions

The first approaches in reverse engineering attempted to
decompile assembly instructions to source code, then perform
a complete software analysis of the result [19]. This method
is now being replaced by machine learning and artificial
intelligence methods [20]. Therefore, it is often used as a
baseline in more recent research.

Recent research has explored novel approaches to improve
the accuracy and efficiency of reverse engineering. For in-
stance, Qiu et al. [20] used a machine learning approach
to create a weighted prefix tree of start bytes of instruction
sequences for functions. Their approach yielded better results
than previously tested methods, including popular disassembly
tools. Additionally, Li et al. [21] proposed a Recurrent Neural
Network architecture that takes the binary code as input and
decides whether there is a function boundary or not. Their
model outperforms previous approaches, in particular in terms
of computation time. This research utilizes an architecture
inspired by successful natural language processing solutions.

Another notable study by Hu et al. [22] proposed a model
for aligning the source code and the binary code in order to
fully relate the two. This approach uses two LSTM encoders
to create representations of both codes, followed by a CNN
that produces alignment scores when given the code pairs as
input. While this study could be extended to summarize the
assembly code, as well as the information already identified
through the alignment process, it would be a harder problem
than what we are trying to achieve in this study. Recently,
Mikolov et al. [23] proposed an LSTM-based encoder-decoder
model that translates the binary code into source code. Our
work takes a similar direction, but we output natural language
tokens instead of source code.

D. Encoder-decoder for function name recovery

Several recent papers have made significant progress in the
field of binary function name recovery. In 2018, He et al. [24]
proposed a decision tree-based model that performed well on
a closed dataset, but had limited scalability and showed a drop
in performance when tested on a diverse dataset. This model
did not leverage the sequential nature of the input or extract
structural features from the CFG or call graph.

Lacomis et al. [13] incorporated both lexical and structural
information by training a bidirectional LSTM on decompiled
source code and a gated-graph encoder-decoder on the Ab-
stract Syntax Tree. They achieved promising results for the
prediction of function and variable names in a large data set.
David et al. [3] proposed a new approach that produces a
call-site graph by enriching the list of calls to external library
functions, with the nature of the passed arguments. They used



Fig. 1. Code instructions

this enriched list as input to an encoder-decoder paradigm and
achieved good results, though this method is only suitable for
functions that call multiple external library functions. Artuso
et al. [25] emphasized the effectiveness of natural language
processing techniques for tasks such as naming functions in
stripped binaries and used Seq2Seq and Transformer models
to achieve good results when fine-tuned for a specific domain
with a single binary format and a set of given libraries. Our
research aims to provide a tool that gives useful results on
diverse binaries, and we chose an encoder-decoder paradigm
for this purpose. In Section V, we compare our solution with
three of the four aforementioned models.

III. THE PROBLEM OF FUNCTION NAME RECOVERY

In this section, we formally present our problem and discuss
the three primary challenges that we encountered, along with
our solutions to address them.

A. Problem definition

Let V be a vocabulary of tokens (tokenized words and the
NULL token) with a distance s representing the similarity
of tokens in V . If v, v′ are tokens of V , s(v, v′) is close
to 0 if v and v′ are related tokens, or tokens with a close
meaning. In particular, s(v, v′) = 0 means v = v′. Let f
be a function obtained from a disassembled stripped binary
file. f has a name composed of up to k words that we can
tokenize and describe as (t1, . . . , tk). We consider the last
tokens to be NULL if the function f ’s name includes less
than k tokens. We suppose that (t1, . . . , tk) are in V . Let A
be a model that takes f , V and (t1, ..., tk) as input, and outputs
k tokens (t′1, . . . , t

′
k) taken from V . The problem of function

name recovery is to find the optimal model A such that for any
function f , (t1, . . . , tk) = (t′1, . . . , t

′
k), i.e., produce a model

A that gives a minimal distance s(ti, t
′
i) for 1 ≤ i ≤ k.

B. Challenge 1: extracting syntactic information is hard

The use of binary format as input for machine learning
models poses significant challenges. Therefore, we limit our
input to assembly code, as illustrated in Figure 1, which is
obtained through a decompiler, such as Ghidra or IDA Pro.
Assembly code is a human-readable format of binary code
that facilitates pre-processing and feeding to machine learning
models. However, we cannot directly apply natural language
or source code models to assembly code. This is due to the
assembly code’s limited vocabulary of tokens, each of which
has little meaning outside its context. The context in this case
is the current instruction of the token and any instructions
that were executed before or after the current instruction.
However, since jumps occur in the assembly code during
function execution, the instructions executed before or after
the current instruction may not be immediately adjacent.

Fig. 2. Partial CFG

To address the vocabulary limitation, we treat the instruction
as the basic input unit instead of the word. Typically, an
instruction comprises at most three words, a mnemonic, and
zero to two operands. We tokenize the words and represent
the instruction as a list of three tokens.

To capture the instruction’s context, we create the CFG of
the function, where each node is a list of instructions executed
sequentially, regardless of the input. The edges of the graph
are directed and represent the loops and conditions of the
function, with an example in Figure 2. The different paths in
the graph represent the possible instruction sequences executed
by the function, depending on the input. Instead of having
one instruction sequence as input, we have several sequences,
based on the number of paths in the CFG.

C. Challenge 2: navigating structural information variability

Two functions with different structures can have the ex-
act same behavior. Therefore, multiple CFGs can represent
functions that have the same role. The structural information
provided by the analysis of the CFG depends on the coding
style, the libraries used, etc. Moreover, the CFG of a function
can be profoundly modified by obfuscation. We want to get rid
of this kind of phenotypical information that is not interesting
for a reverse engineering process because we only care about
the role and the behavior of the function.

We use some simple deobfuscation techniques to clean our
Control Flow Graph before the input is fed to the machine
learning model. We remove dead or useless branches in the
graph: some obfuscation techniques add useless pieces in the



code to make it bigger and harder to reverse engineer. We also
simplify data structures. To obfuscate the code, data structures
that are easy to understand, such as arrays, can be replaced
by individual pointers to addresses in memory.

D. Challenge 3: obtaining consistent labelled data is hard

To produce a list of tokens for a function’s name, labelled
data is required. However, obtaining such data is challenging,
even if the corresponding source code is available, as it
requires manual matching of each assembly function with
its corresponding source code function. Additionally, due to
variations in naming styles, the same function may have
different names that describe different aspects of its behavior,
leading to inconsistent labelling in the dataset. Furthermore,
we assume that each function performs a single task described
by its name, but a function may perform multiple tasks
sequentially or have behavior conditioned by its input.

To automate the process of matching source code names
with assembly functions, we added a debug symbol at the
beginning of each function that remains after compilation, if
it was not already present.

IV. THE SOLUTION

Our proposed model, BETAC, follows an encoder-decoder
paradigm, as illustrated in Figure 3. After preprocessing the
words and instructions, multiple sequences of assembly in-
structions are created for each function, where each sequence
represents a possible path of execution for that function. These
sequences are used as inputs and fed into the BETAC encoder.
As demonstrated in Figure 4, multiple possible sequences of
code execution exist for each assembly function, and for each
sequence, the encoder-decoder model generates a list of five
tokens. These lists are then combined using a simple set of
rules, resulting in one final list of five tokens that describe the
generated name of the assembly function.

A. Data representation

a) Tokenizing the function names.: The process has four
steps. First, we split function names into words. It can be
automated, since all the function names in our datasets follow
either the camel case, e.g., getElementsByTagName, or
snake notations, e.g., convert_to_int. Second, we use
stemming to make tokens out of the words, which reduces
the vocabulary. Different forms of the token are mapped into
the same base form. For example, the tokens “shared” and
“sharing” are both mapped to “share”. Third, we build the
vocabulary by removing useless and meaningless tokens. We
first assign a score to each token and then retain only tokens
whose score is above a certain threshold τ . The score for each
token t is the project frequency, i.e. the number of different
packages in which a token appears. This allows us to exclude
tokens that appear only in a few packages, even if they appear
with a high frequency in these packages. This way, we avoid
assigning a large score to tokens that are not semantically
relevant. Finally, we exclude from the vocabulary all tokens
that have no meaning ending up with a vocabulary of 2,088

tokens. Fourth, we rename the functions with only the tokens
taken from their name and present in the vocabulary. Some
functions have no name after this last step. We remove them
from the data.

b) Tokenizing the assembly words.: The operands of
each instruction refer to registers and addresses in memory.
We use one token per type of register, which gives us 8
tokens: AX (used for RAX, EAX, and AX), BX, CX, DX,
SP, BP, SI, BI. All other registers are tokenized into REG.
We also use GLOBAL and CONST tokens for global and
constant variables respectively. As an example, the instruction
mov edx, [ebp+0C] is tokenized into MOV, DX, BP.
To these tokens, we add all the mnemonics as such. Then we
apply the same method of scoring and keeping tokens above
a chosen threshold as used for tokenizing the function names.
All tokens that have been removed from the vocabulary are
replaced by UNK.

c) Producing the CFGs.: We use the CFGs generated by
Ghidra. We remove the branches going upwards in the graph
to avoid infinite loops and create a tree. We consider that each
instruction will be read at most one time during execution. In
other words, loops run at most one time. We then perform a
breadth-first exploration of the tree and create a new file for
each execution path.

d) Preparing the assembly instructions.: For each assem-
bly instruction, we keep four tokens: one for the mnemonic,
two for the operands that are filled by the NULL token if the
instruction has less than two operands, and one COMA token
that signals the end of the instruction. We put a BEGIN token
at the beginning of the sequence of instructions and an END
token at the end.

B. Encoding the Assembly Instruction Sequence

Although the basic process is the same, different neural
network models can be used as the encoder. Before coming
up with BETAC as the solution for our encoder, we tried
other simpler models. The encoder outputs a context vector,
which is used as the input for the decoder. We compared our
transformer-based model BETAC with LSTM, GRU, the two
best-performing Seq2Seq models, as well as their bimodal ver-
sions, Bi-LSTM and Bi-GRU. The advantage of LSTM neural
networks is that they prevent the loss of important information
through the training process, by preserving information from
past inputs in its hidden state on the long term. GRU neural
networks also work this way, but they reduce the number of
gates used and remove the cell state.

Our proposed model, BETAC, is a Transformer-based archi-
tecture, which is renowned for its effectiveness in processing
sequential data. It is designed with layers of self-attention
mechanisms and feed-forward networks, allowing it to learn
complex relationships within assembly code for function name
prediction. Similar to CodeBERT [26], it is trained with a
hybrid objective function that incorporates the pre-training
task of replaced token detection, which is to detect plausi-
ble alternatives sampled from generators. We train BETAC
by Masked Language Modeling (MLM) and Replaced Token



Fig. 3. Pipeline of the model for single sequence. Each sequence of instructions is fed into an encoder-decoder that produces a list of tokens as outputs.

Fig. 4. Overall pipeline of the model. Each function contains multiple sequences. Each sequence produces a list of 5 tokens. We use a set of rules to combine
them into a list of 5 tokens.

Detection (RTD), which both have been proven effective in the
literature. We follow the procedures described in the original
CodeBERT [26] publication, adapted to assembly code. We
apply MLM on bimodal data of Source Code - Assembly Code
(SC-AC) pairs. We mask 15% of the tokens from the input and
ask the model to predict the original tokens, which are masked
out, using a discriminator that predicts a token from a large
vocabulary set, while we train RTD on unimodal data, i.e.,
assembly without source code. The original objective of RTD
is to efficiently learn a pre-trained model for natural language.
We adapt it for our scenario. We use two data generators, a
source code generator and an assembly code generator, both
for generating plausible alternatives for the set of randomly
masked positives. The discriminator is trained to determine
whether a word is the original one or not, which is a binary
classification problem.

C. Decoding to Natural Language

The decoding process takes the context vector produced by
the encoder as its input and outputs natural language tokens
taken from the previously built token vocabulary. We first used
Seq2Seq (STM/GRU)-based Context Representation. Since the
internal states and the context vector depend on the encoder
model used, we can only use an LSTM decoder with an LSTM
decoder, the same applies for GRU. We then changed to an
Attention-based Context Representation, where an attention
mechanism is added to the model, with the perspective of
improving the results and determining the leading factors
behind predicting the output. After generating a list of output
tokens for each path in the CFG, we extract the top 5 tokens
based on their frequency in the outputs. In cases where two
tokens have equal frequency, we choose the one with the
highest score in the vocabulary, which corresponds to the token
that appears most frequently in the dataset.

D. Optimization

Our models are trained using gradient descent algorithms.
We specifically use the Root Mean Squared Propagation

(RMSprop) algorithm, due to its adaptive learning ability [29]
and use of mini-batches. The adaptive learning rate means that
each parameter is updated at its own rate in order to optimize
its individual loss.

a) Objective function.: In this study, we adopt cross-
entropy as the objective function for our models. Due to
the sparse nature of our data, we utilize sparse categorical
cross-entropy. Specifically, this function measures the distance
between the probabilities obtained from the softmax function
and the true values. For instance, assuming that the first output
tokens have been produced, if the next target token is ”data”
and based on the softmax function results, ”data” has a 80%
probability, there would be a 20% loss if the model were to
predict the wrong token.

V. EXPERIMENTS

In this study, we train and evaluate BETAC on two pri-
mary tasks: masked language modeling and replaced token
detection. These evaluations are conducted on three distinct
datasets, which include two standard datasets for function
name recovery and an additional dataset composed of public
libraries. To assess the performance of BETAC on uncommon
code, we also conduct tests on a publicly available malware
dataset.

A. Evaluation metrics

Evaluation metrics play a crucial role in quantifying the
performance of the model’s predictions. While various evalu-
ation metrics exist, it is essential to select those that are most
relevant to the specific research conducted. In this study, we
focus on four primary evaluation metrics: Bilingual Evaluation
Understudy (BLEU), accuracy, recall, and precision.

a) Bilingual Evaluation Understudy Score (BLEU).:
When evaluating the quality of machine translation on natural
language data, it is crucial to assess the readability and fidelity
of the translated output in comparison to the original text.
One widely adopted metric for this purpose is the BLEU
Score. This score serves as a quantitative measure to assess the



TABLE I
SUMMARY OF DATASETS

Dataset File Type Collected Samples After Preprocessing Train Size Test Size
Juliet [27] Source & Assembly 272,431 83,326 62,494 20,832

NDSS18 [28] PE & ELF 62,563 15,102 11,102 4,000
Ubuntu ELF 50,055 25,340 20,210 5,230

MALWARE PE 3,710 3,710 - 3,710

translation performance by comparing the generated sentence
with a reference sentence. It is scaled between 0 and 1. A
BLEU score of 1 indicates a perfect match, while a score of 0
represents a complete mismatch. Higher BLEU scores signify
better alignment with professional human translations.

The BLEU score operates on a per-token basis, disregarding
the specific token positions within the sequence. To ensure
fairness in evaluating repeating tokens within a reference se-
quence, the comparison is adjusted. For instance, if a ground-
truth sequence contains the word ”create” one time, and the
predicted sequence contains the word ”create” two times,
only one instance of ”create” can be considered as correctly
matching token.

The BLEU score also takes into account the word dis-
tribution in the reference sentence. Consequently, the score
naturally decreases when the predicted sequence is longer than
any of the reference sentences. It should be noted that the
BLEU score can be influenced by the number of reference
sentences used during the evaluation. Having more reference
sequences per translation increases the likelihood of achieving
a higher BLEU score, as there are more opportunities for the
prediction to align correctly. This aspect makes it difficult to
compare the BLEU scores between different research studies,
due to variations in the number of reference sentences used
for evaluation.

b) Accuracy.: In evaluating the model’s performance, the
accuracy metric is used. An output token is classified as a true
positive if it is present in the ground truth, while it is classified
as a true negative if it is absent in the ground truth. On the
contrary, false positives and false negatives represent tokens
that are incorrectly identified as present or absent, respectively.

To measure accuracy, the true natural language description
extracted from the source code is compared with the corre-
sponding predicted outputs of the model. Accuracy increases
as the number of pairs of matching truth predictions increases.
It is worth noting that accurate predictions do not need
to exactly replicate the true description. Various phrasings
and expressions can convey the same message. For instance,
“a number greater than zero” is synonymous with “a non-
negative number” and “a positive number”. A prediction that
preserves the underlying meaning of the original description is
considered equally accurate, if not more so, as it demonstrates
the model’s learning capability rather than a mere replication
of the training data.

The accuracy of the model is computed using two sets
of results. Adjusted accuracy assesses the model’s ability to
predict the correct output when provided with the correct input.

In this case, the decoder inputs are adjusted to consistently
supply the expected input for the target sequence. Decoder
outputs that do not match the expected result are excluded
from subsequent word predictions. Overall accuracy gauges
the independent performance of the model, where the output
of the decoder is the input for the subsequent decoding step.

c) Recall: Recall, defined as the proportion of token
inputs that yield accurate outputs, serves as a valuable measure
for evaluating the coherence of predicted tokens. This involves
the assessment of the grammatical correctness of the predicted
outputs. The methodology used deems an output token as
correct if it is proximate to the ground truth, even when it is
not an exact match. Consequently, a high recall is indicative of
a model that outputs a logically consistent sequence of tokens.

d) Precision: In contrast, precision represents the ratio of
correctly identified outputs to total outputs, evaluated against
the true output. This metric appraises the degree of match be-
tween the current token output and the corresponding ground
truth target. Given the diverse functions’ behaviors and roles
incorporated into the dataset, function names predominantly
exhibit uniqueness. Therefore, a high precision rate for initial
output tokens in a sequence tends to suggest an overall high
precision for the complete output.

B. Datasets and pre-processing

We train our data on three datasets and test it on four
datasets (Table I). The datasets utilized encompass a range
of software types, from benign to malicious, offering a broad
spectrum for training and testing the feature encoder. The
Juliet [27] and NDSS18 datasets [28], comprising source
and assembly code pairs, are pivotal for training on diverse
code samples and architectures. The Ubuntu dataset3, with its
extensive collection of ELF files from various releases, and the
MALWARE dataset, specifically for testing against malicious
code samples, underscore the comprehensive approach to
enhancing model robustness and applicability in real-world
scenarios.

We use the following set of hyperparameters: batch size of
1,024 and learning rate of 5e-4. We use Adam to update the
parameters and set the number of warm-up steps as 10K. In
the fine-tuning step, we set the learning rate as 1e-5, the batch
size as 64, and the fine-tuning epoch as 8. As the same for
pre-training, we use Adam to update the parameters.

3https://old-releases.ubuntu.com/



TABLE II
BLEU SCORES OF BETAC AND OTHER METHODS

Model Juliet NDSS18 Ubuntu Malware
LSTM 0.523 0.512 0.129 0.221

Bi-LSTM 0.506 0.492 0.210 0.231
GRU 0.513 0.481 0.189 0.229

Bi-GRU 0.534 0.516 0.401 0.301
Bi-GRU + Att 0.537 0.880 0.612 0.321
NERO-GNN 0.278 0.331 0.650 0.321

DIRE 0.228 0.387 0.310 0.249
BETAC 0.538 0.882 0.651 0.351

TABLE III
ACCURACY OF BETAC AND OTHER METHODS

Model Juliet NDSS18 Ubuntu Malware
LSTM 77.7 65.9 38.7 41.6

Bi-LSTM 74.9 59.6 42.2 49.3
GRU 76.3 57.7 45.1 52.7

Bi-GRU 79.2 69.2 49.9 55.4
Bi-GRU + Att 79.6 84.1 64.5 55.3
NERO-GNN 66.7 65.3 51.6 39.2

DIRE 59.1 59.2 53.6 41.4
BETAC 78.0 79.0 63.4 60.0

C. Results

The objective of this experiment is to evaluate the perfor-
mance of our proposed model, BETAC, with other potential
solutions on benignware datasets, as well as on some uncom-
mon datasets, such as obfuscated malware files.

a) BLEU score of the model.: Table II shows the results
we obtained on the three main datasets: the Juliet Test Suite,
NDSS18, and Ubuntu. We compare the results of our model,
BETAC, with the results obtained by previous research and
Seq2Seq models on our testing datasets. We obtain better
BLEU scores than the other methods, which we interpret as
having trained our model well and giving really good natural
language names to our functions.

b) Accuracy of the model.: Although our model yields
accuracy marginally lower than the top-performing Bi-GRU
model supplemented with an attention mechanism, it demon-
strates the second-highest performance among all evaluated
models. The consistent superior performance of the mod-
els incorporating an attention mechanism suggests that this
component contributes significantly to enhancing the model
efficiency. Results are shown in Table III.

Our model, with a depth four times greater than the Bi-
GRU model, may not have reached its full potential due to
limitations related to the dataset size and the extent of fine-
tuning applied. For comparison, models similar in scale to
ours, such as CodeBERT, are typically trained on a substan-
tially larger number of samples, ranging from 100,000 to
several million. In contrast, our training dataset was limited
from 10,000 to 100,000 samples. This discrepancy suggests
that the comparatively lower accuracy of our model could be
attributed to dataset size and the model fine-tuning constraints.

c) Precision and recall of the model.: In terms of preci-
sion and recall, our model excels in one of three datasets and
closely approaches top performance in the remaining datasets.
Results are shown in Table IV for precision and Table V
respectively. Occasional losses in precision and recall across
these datasets can be attributed to the existence of samples

TABLE IV
PRECISION OF BETAC AND OTHER METHODS

Model Juliet NDSS18 Ubuntu Malware
LSTM 76.3 37.0 21.0 39.0

Bi-LSTM 73.8 40.0 22.1 41.4
GRU 76.9 31.0 23.8 38.1

Bi-GRU 79.2 38.6 26.3 40.2
Bi-GRU + Att 77.9 68.6 39.4 40.9
NERO-GNN 79.6 39.0 23.14 35.6

DIRE 80.1 32.3 40.53 42.1
BETAC 79.0 68.3 25.10 40.9

TABLE V
RECALL OF BETAC AND OTHER METHODS

Model Juliet NDSS18 Ubuntu Malware
LSTM 66.9 32.9 21.2 29.2

Bi-LSTM 64.2 31.8 23.9 23.1
GRU 65.8 26.8 23.0 21.0

Bi-GRU 69.0 32.7 26.9 24.6
Bi-GRU + Att 68.6 60.0 39.9 32.5
NERO-GNN 58.5 62.3 37.26 25.2

DIRE 60.1 67.2 25.88 28.7
BETAC 68.7 29.23 29.23 29.5

featuring translations that, while not entirely precise, are not
incorrect. For instance, a predicted output of ”non-negative”
versus a ground truth of ”greater than zero” might decrease
precision and recall scores, although the semantic interpreta-
tion of these outputs is equivalent. This scenario underscores
the limitation of these metrics in accurately capturing semantic
correctness.

Our model consistently delivers the most stable performance
across all datasets, establishing it as an optimal choice for
real-world applications. Notably, reverse engineers seldom
need to handle well-known open-source files, as these are
usually identified by a clone search engine prior to any
manual work. Instead, reverse engineers are more likely to
encounter malicious files. Accordingly, the results for our
malware dataset demonstrate that our model provides superior
results on diverse and uncommon data. We assume that the
application of a large, deep neural network is the most effective
approach for creating a robust model capable of consistently
delivering high-quality results in real-world scenarios.

d) Qualitative analysis.: The findings of our metrics
analysis were supplemented with a manual review, comparing
the predicted outputs with their respective true descriptions.
We exhibit select intriguing examples in Table VI for elemen-
tary function names and Table VII for their more advanced
counterparts. Certain output instances closely align with, or are
identical to, the ground truth. The model generation process
prioritizes the output of the most pertinent words first, while
subsequent words depend not only on the input, but also
on the preceding output words. This implies that the initial
words in each list are more relevant than those appearing
later. Consequently, the sequence in which words are output
provides an indirect measure of their relative significance in
the context of the model’s predictions.

VI. CONCLUSION

In this paper, we have presented a large bimodal pre-
trained neural network model called BETAC to tackle th



TABLE VI
SAMPLES OF PREDICTED SHORT FUNCTION NAMES

Prediction Ground Truth
allocate array sizeof allocate memory sizeof

copy array copy array
add value increment index
array sort check index validity

create connect create socket

TABLE VII
SAMPLES OF PREDICTED LONG FUNCTION NAMES

Prediction Ground Truth
get elements by tag name read input tag value start loop

create new document create new document file input
delete last entry from table delete element table input previous
try connection with socket connect array by file

problem of assembly function name recovery. BETAC en-
codes the assembly language and is the first model to use
transformers in function name recovery. We demonstrate that
fine-tuning BETAC achieves state-of-the-art performance for
function name recovery on typical benignware datasets and
outperforms state-of-the-art models on atypical data such as
malware. BETAC is a promising model for real-life use cases,
as reverse engineering often focuses on legacy software written
in different styles and on obfuscated malware.
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