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Abstract—Cookie synchronization enables multiple adver-
tising networks to share user browsing data, thus refining
ad targeting without explicit user consent. Although exist-
ing mitigation strategies, such as cookie blockers, reduce
privacy risks, they can also decrease website revenue or re-
strict certain online services. To address this limitation, we
introduce a differentially private cookie synchronization
proxy, CSyncProxy, that leverages the exponential mech-
anism to grant users granular control over the amount
of data shared during cookie synchronization. By obfus-
cating user identities across websites, the proxy maintains
sufficient personalization for advertisements while safe-
guarding user privacy. Experimental web crawls of the
top 100 websites per visit and analysis of the likelihood
of successful anonymization indicate that our approach
reduces the number of instances of cookie synchronization
by over 40% compared to standard browsing and 11%
compared to Chrome’s cookie-blocking feature, without
blocking or barring the user from any website.

1. Introduction

As users browse the Internet, their history influences
targeted ads, making ad space rental a major revenue
source for websites [22]. Ad networks earn revenue
from clicks on ads, which drives them to precisely
tailor these ads. They commonly track user behavior
through third-party cookies—set by external domains—
often without user awareness. Third-party cookies are
set by external domains (e.g., ad networks) through
embedded content such as ads, scripts, or tracking
pixels [1]. When a website includes a script from an
advertising network, the browser requests content from
that third-party domain, which then sets a cookie. On
subsequent visits to other websites using the same ad
network, the cookie is sent back, allowing the network
to track browsing behavior across multiple sites.

Given the privacy concerns associated with exten-
sive data collection, various regulatory measures have
been introduced. The General Data Protection Reg-
ulation (GDPR) [24] imposes strict requirements on
how organizations must implement cookies and obtain
user consent. Consequently, websites are now required
to secure explicit consent from users before setting
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optional cookies and are restricted to collecting only the
minimum necessary data. In addition, the Same-Origin
Policy (SOP) [25] prevents third-party domains from
accessing or modifying resources belonging to other
domains on the same webpage, effectively denying two
third-party advertisements from directly sharing data
with each other.

To circumvent these restrictions, many advertising
networks participate in cookie synchronization, a pro-
cess that allows them to share cookie values and thus ac-
cumulate a more comprehensive profile of the browsing
history of a user. This approach not only maintains cur-
rent datasets but also enhances their overall knowledge
base for 97% of Internet users [16], leading to increased
profitability in online behavioral advertising. Figure 1
illustrates cookie synchronization. When a user visits
a website, their browser loads JavaScript from third-
party trackers, which then set cookies. Ad Network 1
assigns a cookie ID (adlid), stores it, and then redirects
the browser to Ad Network 2, transmitting adlid. Ad
Network 2 stores this ID, sets its own cookie (ad2id),
and links both IDs to the same user, allowing data
aggregation between sites. As a result, cookie synchro-
nization raises privacy concerns, as it typically occurs
without explicit user consent. Therefore, mitigating the
negative effects of cookie synchronization is crucial to
ensure meaningful online anonymity.

In this paper, we propose a proxy-based solution,
called CSyncProxy, that incorporates differential privacy
to anonymize third-party cookies, reducing the impact
of cookie synchronization while allowing users to adjust
their level of privacy via a controllable privacy metric.
The proxy dynamically tunes the degree of anonymiza-
tion to balance privacy and utility. Finally, we present
a study that evaluates the effectiveness of the proxy.

The method presented in this paper uses a secure
browser architecture alongside the widespread deploy-
ment of HTTPS to mitigate cookie synchronization.
Specifically, we propose a cookie anonymization proxy
that employs local differential privacy techniques.

As this proxy intercepts user HTTPS traffic, it may
initially appear similar to a Man-in-the-Middle (MITM)
attack, potentially raising concerns about data monitor-
ing and tracking. However, our design explicitly avoids
prolonged data retention by not storing user information
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Figure 1: Client-ad platform HTTPS flow showing cookie synchronization

in the long term. In addition, we envision deploying the
Cookie Proxy within a Trusted Execution Environment
(TEE), which is attested to the end user. Through this
combination of TEE and attestation, users can verify
that the open-source audited code that executes within
the TEE is precisely the one intended, thus preventing
unverified or malicious code from running. The primary
contributions of our work are as follows.

e Local Differential Private Cookie Synchronization:
We introduce a local differential privacy method to
mitigate the effects of cookie synchronization, lever-
aging the exponential mechanism to allow users to
select their desired level of privacy. To our knowl-
edge, this is the first application of local differential
privacy to address cookie synchronization.

e Novel Anonymization Proxy: We present an
anonymization proxy that acts as an intermediary
between end users and cookie collection systems.
By obfuscating the data that is shared cookie syn-
chronization and employing the exponential mecha-
nism, the proxy prevents third parties from exchang-
ing user information.

e Privacy-Usability Trade-off Control: We demon-
strate how users can tune privacy by adjusting the
privacy budget in the exponential mechanism. We
show experimentally how these user choices affect
the probability of a successful cookie anonymiza-
tion, enabling fine-grained control over user privacy.

2. Related Work

Cookie Synchronization: Several studies have been
performed on cookie synchronization. Papadopoulos et
al. [16] presented a comprehensive study of cookie
synchronization in the wild and have found that 97%
of Internet users have been exposed to cookie synchro-
nization. They have proposed an approach consisting
of blocking all cookies, but this can be problematic as
more and more websites will refuse service to anyone

using cookies or adblockers. Papadopoulos et al. [17]
have shown that if even one unencrypted HTTP request
is present in the browsing history, this could potentially
compromise the user’s full browsing history, even the
parts that were sent over HTTPS.

Acar et al. [1] have conducted a study on the collab-
oration between persistent long-lasting cookies, known
as EverCookies, and cookie synchronization. In their
study, they have found that several advertising networks
on the Internet will respawn previously deleted cookies.
This indicates that user awareness is not enough and that
any proposed method must work under the assumption
that cookies cannot be deleted.

Adobe, in collaboration with PageFair [15], has
done an ad blocking report and has found that in 2015,
with 16 % of American Internet users using blocking
software and a growing percentage of American and
European users using ad blocking software, this can
cost upwards of 21 billion dollars globally. Since then,
the GDPR has come into effect in 2018, and with it a
fear from websites that compliance with the GDPR may
affect their ad revenue. Therefore, there is an incentive
for websites to bypass GPDR compliance [9].

Local Differential Privacy: Differential privacy [5]
is a privacy model that provides a rigorous framework
for sharing datasets without revealing specific informa-
tion on any individual in the dataset. Differential privacy
guarantees that any computed result from the dataset
remains similar regardless of whether the data of a
single person is included. Formally, for two databases
D, and D- differing by one data record, a differentially
private method creates a database D5 such that

PrM(D,) € 8]

PrM(Dy) €8] = ¢ M

where M represents the mechanism that takes a dataset
as input and produces a differentially private result. €
is a user-specified privacy budget, thus giving the user
control over how much privacy is required. The lower



the value of e, the more similar the information in the
database will be if new values are added.

An approach to achieving this is through local dif-
ferential privacy, where users anonymize their personal
data before they are incorporated into the dataset. This
makes it significantly more difficult for an attacker to
infer specific individual’s information in the dataset [3].
Dwork [5] presented an early analysis of the feasibility
of applying differential privacy in a database. McSherry
and Talwar [11] were the first to introduce the concept
of the exponential mechanism that allows one to mod-
ify a value in a database based on a discrete set of
results and the utility of each outcome. Niu et al. [13]
presented an algorithm called personalized exponential
mechanism, which allows users to set their own privacy
guarantees on the known exponential mechanism.

3. Problem Formulation

The goal of this paper is to mitigate the negative
effects of cookie synchronization while continuing to
deliver relevant advertisements to users. This challenge
can be broken down into two main requirements:

Privacy requirement: This requirement is to limit
the privacy risks introduced by cookie synchronization.
We considered several syntactic privacy models, such
as k-anonymity [23], LK C-privacy [12], etc. However,
these models rely on assumptions about the prior knowl-
edge of an adversary and may fail if their respective
assumptions are violated. Thus, we decide to enforce
local differential privacy [5], which focuses on the
semantic impact of the data on the output. A naive
way to address this privacy risk would be to prevent
all cookies from being stored on the users’ browser,
but that approach results in websites losing their main
source of revenue. Hence, maintaining adequate accu-
racy in cookie matching is also important, leading us
to the second requirement.

Internet usability requirement: Users should be em-
powered to control their privacy and prevent websites
from aggregating data and potentially manipulating
their behavior with targeted ads. Users must retain the
ability to decide how much information is shared while
having unrestricted access to websites across the inter-
net. Third-party ad networks should still have access to
user cookies to prevent website restrictions.

We refer to this general challenge as the problem
of privacy-preserving cookie synchronization, which in-
volves implementing a proxy that satisfies both privacy
and internet usability requirements.

4. Cookie Synchronization Proxy

We propose a cookie anonymization proxy, which
increases user privacy without disrupting normal web
browsing. Specifically, our design integrates a proxy

into the HTTPS client-server interaction to act as a man-
in-the-middle, intercepting, and modifying third-party
cookies in transit.

4.1. Hardware Trust and Attested TLS

When a user utilizes a Cookie Synchronization
Proxy, the proxy intercepts a significant portion of the
user’s traffic, thereby gaining potential insight into the
user’s web activity, including the websites being visited
and the content being accessed and retrieved from each
of these sites. Web browsers are prevalent applications
through which users inadvertently disclose all these
details. Nevertheless, the fundamental assumption held
by end users is that browsers do not exploit this in-
formation, as web browsers are publicly available and
scrutinized; if such practices were to be revealed, users
would likely abandon and change their browser. In other
words, the associated risk is deemed not worth taking.
A similar model could be applied to locally installed
proxies. However, the maintenance of such services,
along with the necessary dynamic adjustments, renders
this model challenging to sustain over the long term.
Instead, it is anticipated that a third party may offer
such services. The primary distinction from the previous
deployment model is that the software is managed by
a third party, yet the user possesses virtually no insight
into which software is actually in use or what actions
the operator is undertaking. In essence, with traditional
software deployment, the end user would likely place
their trust in the service provider, but we believe that
this model imposes an excessive level of trust that is
untenable. In reality, users can scarcely trust a company
that may later be acquired by another entity, subject to
various legal and political pressures.

To establish trust in a single company, we examine
the Trust Execution Environment (TEE). In this model,
the Root of Trust is the hardware (i.e., CPU), which as-
serts the software that is effectively operational through
attestation [20]. Various architectures exist; ultimately,
the hardware measures the software being loaded and
signs that measurement within a quote. The process
of attestation involves verifying the quote, ensuring
that the measurement is issued by a trusted entity,
specifically the hardware manufacturer, and validating
the measurement itself. This measurement characterizes
the software. Consequently, attestation guarantees to
the user that a specific software is running. In our
deployment, we anticipate integrating attestation with
the establishment of a TLS session with the Proxy, a
process referred to as attested TLS [21]. This ensures
that the user can confirm that they are communicating
with the Proxy during every TLS session. Maintaining
a connection to a particular software is only valuable
when there is assurance that the software is performing
as anticipated. A viable model for this could involve
the open-source release of the software, allowing for
the verification of the associated measurements. In our



scenario, the publication of the software could guaran-
tee that user information remains within the enclave,
is protected from leakage, and is utilized solely for its
intended purpose.

4.2. Man-in-the-middle Proxy

When a user visits a website, an algorithm within
the proxy determines the odds of the users’ cookies
for that website being anonymized. Figure 2 illustrates
the multistep procedure for two advertising networks,
although the concept is generalized to any number of
networks and can be applied to multiple users simulta-
neously. The end result is that Ad Network 2 will have a
cookie matching table that indicates that for the website
www.website.com, and a cookie of ID ad2id set by Ad
Network 2, the equivalent cookie set by Ad Network 1
will have an ID of value anonymizedadlid — not adlid,
the real ID. This means that each Ad Network will
maintain different data on each other, and the networks
will not be able to synchronize properly.

The purpose of the anonymizing proxy is not to
completely prevent synchronization of cookies. Rather,
it is meant to add noise to the advertising network’s
database, so that cookie synchronization is less effective
and seen less often as the user browses the Internet.
If a user has a long-term identifying cookie placed
on their browser, this may identify them during future
visits if this cookie is not anonymized, potentially even
leading to the ad network going back and syncing an
anonymized cookie with the real cookie. However, this
risk is mitigated by the fact that the proxy continuously
anonymizes cookies, meaning that any third party ad
network will not be guaranteed to have a complete
picture of the user’s data. This successfully manages
to mitigate the effects of cookie synchronization.

4.3. Applying Differential Privacy

In one of the first examples of local differential
privacy, Warner [26] presented a method to ensure
user privacy when answering surveys with potentially
sensitive information. Suppose a survey wants to collect
some sensitive information in a binary set of answers,
for example, whether a person belongs to group A or
B. They will ask a user if they belong to group A
or B, and collect statistics on the total-the potential
outcomes are the set O = {A,B}. However, if this
is a sensitive question, users may not want to answer
truthfully. Thus, a technique was suggested that was
proven to preserve the same statistical results: individual
privacy could be preserved if that person answered
honestly with probability p, or picked an answer in O
at random with probability 1 — p.

Although this technique predates formal differential
privacy, it does satisfy differential privacy when dealing
with binary values of sensitive information [6]. We

applied this method to our proxy. The proxy gives the
users two choices when faced with a tracking cookie:
keep the cookie as is and potentially lose privacy, or
give the ad network a false cookie value that does
not match the user. By adjusting the privacy budget in
local differential privacy, the user may achieve a balance
between the requirements for privacy and data utility.
Formally, the set of possible outcomes on cookies would
be O = {Keep, Anonymize}, each outcome represent-
ing the decision to perform on the value of a cookie.
Although this technique is powerful, a coin flip does
not give users much control over the desired level of
privacy. This is the reason for a modern differential
privacy framework: we wish to allow users to choose the
level of privacy they want. In this paper, we have chosen
the exponential mechanism [11] as the mechanism M
that will guarantee differential privacy. The exponential
mechanism has been used before to anonymize discrete
sets of outcomes and uses the user-controlled privacy
budget parameter e to guarantee that the probability
ratio of observing a particular O’ € O is at most e*.
This allows the user direct control over their level of
privacy. The exponential mechanism is as follows. The
probability of outcome O’ € O is given by [6]:

eu(x,0
exp ( 2(Au ))

Z ex eu(x,0’)
0'e0 P | 244

P(z,0") = ) 2

where O is an outcome € O, x is a data point, €
is the privacy budget, Awu is the sensitivity function
and u(z,0’) is the utility function. The utility func-
tion u(z,O’) quantifies the desirability of outputting
outcome O’ with data point x.

To determine the utility of keeping or anonymizing,
we use a variation of the Heaviside function, giving
each cookie a score € {0, 1} based on whether or not it
is desirable for the ad network to keep it. To determine
whether a cookie is desired to keep, a heuristic-based
filtering system was implemented to identify whether
the value of a cookie is an identifier for tracking.
Specifically, the system considers that a cookie is useful
to the advertising network if any of the following three
conditions are satisfied: (1) the terms UUID, ID, or user
identification are embedded in the value of the cookie,
(2) the cookie name is a variation of UUID, ID, or
userid, or (3) the cookie value is an alphanumeric string
longer than 10 characters [2].

HTTPS transactions typically use a set of multiple
cookies in one HTTPS transaction. Let C' be the set
of cookies in each HTTPS transaction, and |C| be the
number of cookies in C. Normally, the exponential
mechanism assumes that all data points are independent.
However, each cookie in C' was set by the same domain
in the same user’s browser, so they cannot be considered
truly independent of each other. For anonymization to
be effective, the decision O’ must apply to the entire set
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Figure 2: Client-ad platform HTTPS flow with CSyncProxy

C, or else the advertising network can simply link the
cookies based on a common user and resume tracking.

Applying the exponential mechanism to the entire
set C has a limitation [10] [14]: the privacy parameter is
increased by a magnitude of |C|, significantly reducing
the mathematical privacy guarantee. However, we get
around this limitation by treating the set C' as a single
independent data point, where both «(C,Anon) and
u(C, Keep) have values between 0 and |C|. In this case,
the utility function u(C,O’), is calculated as follows,
with ¢; is cookie in C' and O’ € O:

0, if ¢; is a tracking ID;
A =
w(C’ Anon) Z ({1, otherwise ) ®)

c, eC
1, if ¢; is a tracking ID;
K = 4
u(C, Keep) CZE:C ({O, otherwise ) @

Aw is the sensitivity of the score and measures the
maximum change that occurs if one data entry changes.
Since we treat set C as one independent data point, the
maximum and minimum possible values of u(C, O’) are
|C| and 0, respectively. We use the formal definition of
the sensitivity function Au as the maximum difference
in utility when one data point is changed, in our case
the set of cookies C. Therefore, the value of Au would
be ||C| — 0|, which would lead to a final value of |C|.
This value of Au would apply to both P(C, Keep) and
P(C, Anonymize). This is useful because it deals with
the concern about decreasing the privacy guarantee by
a factor of |C|. By dividing u(C, O’) by |C|, we ensure
this algorithm remains e-differentially private.

The anonymization algorithm has the goal of being
as close to a real ID as possible. The reason for this
is to make it less obvious to a third-party tracker that
the cookie value has not been assigned by the tracker
but by a proxy. Therefore, we need to take a closer
look at the structure of an ID at the character level. If
it is a special character, such as a period, a dash, or
a slash, we leave it as is. If it is a lowercase letter,
an uppercase letter, or a number, we randomly choose

another lowercase letter, uppercase letter, or number,
respectively, in order to mimic the ID structure of
the third-party advertising cookie. For example, if the
original value was UUID=A65tyyk776f-09y, then the
anonymized value could be UUID=R44tyub453g-12f.

5. Experimental Results

5.1. Dataset and Setting

We have created two different CSyncProxy sys-
tems' to analyze all cookie values exchanged during
all HTTPS transactions on the top 100 websites: one
that collects cookies without modifying any cookies and
another that collects cookies and uses the anonymiza-
tion process. The former was used to evaluate the
effectiveness of the privacy budget e, and then was
used as a baseline to compare the performance with
the anonymization proxy.

The data used to evaluate the proxy is the list of the
Top Sites of Tranco [18]. This is a compiled list of the
top 10,000 websites per number of visits. This data set
is publicly available on the Internet. Crawling the top
100 websites is sufficient because only using the top
100 websites can we still have an accurate view of the
synchronization mechanism in nature [8]. The domain,
referrer, and cookie value of each HTTPS request and
response were collected. In both experiments, 9,000
cookies were collected and analyzed.

This web crawl reflects a lower bound on potential
anonymization. In reality, users revisit websites in a
Zipf-like distribution [4], frequently returning to top
sites. Therefore, the proxy must recognize and re-
anonymize cookies from previously visited sites with
100% certainty, without persistently storing user data.
This re-anonymization, through methods like tagging
cookies, can further improve user privacy in practice.

The environment was a new Google Chrome
browser, without plugins, no ad blocking extensions,

1. https://github.com/McGill-DMaS/CSyncProxy



all cookie blocking settings disabled, and all previous
cookies erased. Then a list of potential privacy bud-
get ¢ = {0.01,0.025,0.05,0.1,0.25,0.5,0.75,1} was
tested. These values were chosen to represent a variety
of reasonable privacy levels between 0 and 1.

5.2. Performance Metrics

In evaluating proxy performance, we focus on the
impact that the proxy has on cookie synchroniza-
tion. Therefore, we measure the effectiveness of the
proxy using probability of successful anonymization.
The proxy manages to prevent a successful cookie syn-
chronization if the cookies included in both the HTTPS
request and response are anonymized. This means that
there will be a disconnect between the cookies that
the user receives and sends, ensuring a disconnect in
the advertising network’s cookie matching table. The
probability is defined as follows:

P(Success) = P(O’ = Anon | u(C, Keep) > u(C, Anon))
&)
If a cookie value is an ID and is thus useful for ad
networks, then u(C, Keep) > u(C, Anonymize). Thus,
the value of P(Success) represents the probability that
we anonymize all cookie IDs in an HTTPS transaction,
despite the fact that they are useful for the ad network.

There are two types of HTTPS transaction: a request
and a response. All that is needed to guarantee success-
ful anonymization is the anonymization of all cookies
in either in the request or in the response because
anonymizing one transaction disrupts the cookie match-
ing process for advertising networks at that moment,
and with each subsequent transaction there is still a
chance of anonymization. The proxy will have pre-
vented one possible instance of cookie synchronization
from happening if either a request or a response has
been anonymized.

In the first experiment, different values of the pri-
vacy budget e were tested to determine the effect of each
on P(Success). Then, once the value of € was chosen
that ensures the highest value of P(Success), the cook-
ies were anonymized using Equation 2 and the chosen
value of e. The number of recorded instances of cookie
synchronization was compared between using Chrome
with default settings, using Chrome with the block
third-party cookies setting enabled, and CSyncProxy.

5.3. Analysis

Data collected while anonymizing were analyzed
and an average of P(Success) was calculated for each
parameter. Figure 3 shows the impact of the privacy
budget € on P(Success). In general, P(Success) de-
creases as € increases. As € approaches 1, the choice to
anonymize or not becomes increasingly deterministic,
dependent on the value of u(C,O’). This means that
the proxy will make decisions based on whether the

0.48
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Probability of successful anonymization
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Figure 3: Probability of successful anonymization

cookie ID is useful to advertising networks. Thus, there
is a trend showing that a lower value of € increases the
user’s privacy. This shows the advantage of multiple
values of €, notably by giving users control over their
level of privacy.

Privacy requirements will vary depending on each
users behavior. A user who mainly visits low-stakes
websites with a lot of tracking cookies—examples being
social media or shopping websites—might set a higher
value of e (between 0.6 and 1). While privacy isn’t
their top priority, this still helps them feel less exposed.
Someone who visits a combination of low-stakes and
high-stakes websites, or who uses the internet more
extensively, privacy may be more of a priority and
thus € would take a value between 0.4 and 0.6. A user
who wants to avoid tracking as much as possible, for
example, a user who visits a government website, will
prefer a value of € closer to 0. This gives the user much
more granular control over their privacy than the simple
binary on-off options provided by many adblockers.

We then evaluate the performance of the anonymiza-
tion proxy in a privacy budget of ¢ = 0.01, which repre-
sents the strongest privacy guarantee among the values
tested. We ran both the baseline and anonymizing proxy
10 times over the Top 100 websites and took the mean
of the recorded instances of cookie synchronization. In
the baseline scenario, where cookies are recorded with-
out anonymization, there were 69 instances of cookie
synchronization observed on 100 websites. In contrast,
with CSyncProxy configured as described above, only
39 instances were recorded, representing a reduction of
43%. This outcome matches the theoretical probability
of successful anonymization illustrated in Figure 3 for
€ = 0.01. A third test was performed with Block third-
party cookies enabled in the Chrome setting, which
yielded an average number of instances of 44, a 11%
increase from CSyncProxy. The block cookies option
also was more likely to block users from accessing
websites. These findings demonstrate that the proxy can
reduce the prevalence of cookie synchronization in real-
world browsing scenarios by more than 40%.



6. Conclusion and Future Works

A proxy based on differential privacy has been
developed to anonymize cookie IDs, reducing the ef-
fects of cookie synchronization and limiting large-scale
tracking by third-party advertisers. As the first method
to apply differential privacy to this problem, it pre-
serves user anonymity while maintaining web usability.
It also supports a more balanced approach to cookie
data management, aligning the interests of both users
and advertising networks.

One limitation of CSyncProxy is added latency:
it slows full page loads by 250-300ms on average.
However, similar delays occur with just the baseline
proxy, while the cookie anonymization logic adds only
65ms. This overhead stems from the proof-of-concept
being implemented in Python, which is slower than
compiled languages like C++, C# or Rust for network
proxy tasks [19] [7]. Future work could explore imple-
menting CSyncProxy at the network level in a compiled
language like C++, which would maintain the same
privacy guarantees and results, while improving perfor-
mance, as the anonymization algorithm contributes little
to latency.

Further studies could look at applications of the
problem of data brokerage, which sells large amounts
of user data to third parties. The proposed CSyncProxy
could be used to counteract the effects of data broker-
age on user privacy. Further studies could also look
at the integration of machine learning concepts into
CSyncProxy, specifically with user ID identification,
providing a more robust method of catching and iden-
tifying potential tracking cookies.

Acknowledgments

This research is supported by MITACS (IT33175),
Ericsson, NSERC Discovery Grants (RGPIN-2024-
04087), NSERC CREATE Grants (CREATE-554764-
2021), and Canada Research Chairs Program (CRC-
2019-00041). The authors also acknowledge Hyame
Alameddine and Taous Madi, with Ericsson Research
Security in Montreal, for reviewing the article.

References

[1] ACAR, G. The web never forgets: Persistent tracking mecha-
nisms in the wild. In ACM SIGSAC Conference on Computer
and Communications Security (2014), pp. 674-689.

[2] BANGAR, R. Catch me if you can: achieving complete internet

anonymity using open source technologie. In Proceedings of

the 7th International Conference on Computing in Engineering
Technology (ICCET) (2022), IET, pp. 1-3.
[3] BEBENSEE, B. Local differential privacy: a tutorial. CoRR
abs/1907.11908 (2019).

[4]

[5]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]
[25]
[26]

BresLau, L., Cao, P., FaN, L., PHILLIPS, G., AND
SHENKER, S. Web caching and zipf-like distributions: evi-
dence and implications. In IEEE INFOCOM ’99. Conference
on Computer Communications. Proceedings. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No.99CH36320) (1999),
vol. 1, pp. 126-134 vol.1.

DWORK, C. Differential privacy. In Automata, Languages and
Programming (Berlin, Germany, 2006), ICALP 2006, pp. 1-12.
DWORK, C., AND ROTH, A. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theoretical
Computer Science 9, 3—4 (2014), 211-407.

FLuxzy. 30x to 70x faster than mitmproxy/mitmdump, 4x
faster than squid, 2022.

GHOSH, A., AND ROTH, A. Selling privacy at auction. CoRR
abs/1011.1375 (2010).

JOHNSON, G. A. Economic research on privacy regulation:
Lessons from the gdpr and beyond. In The Economics of Privacy
(Online, 2022), University of Chicago, pp. 1-40.

MAIJEED, A., KHAN, S., AND HWANG, S. Group privacy: An
underrated but worth studying research problem in the era of
artificial intelligence and big data. Electronics 11 (04 2022),
1449.

MCSHERRY, F., AND TALWAR, K. Mechanism design via
differential privacy. In 48th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’07) (Providence, Rhode
Island, 2007), IEEE, pp. 1-10.

MOHAMMED, N., FUNG, B. C. M., HUNG, P. C. K., AND
LEE, C. Centralized and distributed anonymization for high-
dimensional healthcare data. ACM Transactions on Knowledge
Discovery from Data (TKDD) 4, 4 (October 2010), 18:1-18:33.

N1u, B. Utility-aware exponential mechanism for personalized
differential privacy. In IEEE Wireless Communications and
Networking Conference (WCNC) (2020), pp. 1-6.

OH, S., AND VISWANATH, P. The composition theorem for
differential privacy. CoRR abs/1311.0776 (2013).

PAGEFAIR, A. The cost of ad blocking, 2015.
PAPADOPOULOS, P. Cookie synchronization: Everything you
always wanted to know but were afraid to ask. In Proceedings
of the 2018 World Wide Web Conference (2018), pp. 1432-1442.
PAPADOPOULOS, P. Exclusive: How the (synced) cookie mon-
ster breached my encrypted vpn session. In Proceedings of the
11th European Workshop on Systems Security (2018), EuroSec,
pp. 1-6.

PocCHAT, V. L., GOETHEM, T. V., TAJALIZADEHKHOOB, S.,
KORCZYNSKI, M., AND JOOSEN, W. Tranco: A research-
oriented top sites ranking hardened against manipulation), 2024.
RETUNSKY, E. Benchmarking low-level i/o: C, c++, rust,
golang, java, python, 2021.

SARDAR, M. U., FossaATi, T., FROST, S., AND XIONG, S.
Formal Specification and Verification of Architecturally-defined
Attestation Mechanisms in Arm CCA and Intel TDX. IEEE
Access 12 (2024), 361-381.

SARDAR, M. U., NIEMI, A., TSCHOFENIG, H., AND FOSSATI,
T. Towards validation of tls 1.3 formal model and vulnerabilities
in intel’s ra-tls protocol. IEEE Access 12 (2024), 173670—
173685.

STATISTA. Global internet advertising revenue, 2024.
SWEENEY, L. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 10, 05 (2002), 557-570.

UNION, E. General data protection regulation (GDPR), 2018.
W3C. Same origin policy, 2008.

WARNER, S. L. Randomized response: A survey technique

for eliminating evasive answer bias. Journal of the American
Statistical Association 60, 309 (1965), 63—69. PMID: 12261830.



