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AugmenToxic: Leveraging Reinforcement Learning to Optimize LLM Instruction
Fine-Tuning for Data Augmentation to Enhance Toxicity Detection

AREZO BODAGHI∗, Concordia Institute for Information Systems Engineering, Concordia University, Canada
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KETRA A. SCHMITT, Centre for Engineering in Society, Concordia University, Canada

Addressing the challenge of toxic language in online discussions is crucial for the development of effective toxicity detection models.
This pioneering work focuses on addressing imbalanced datasets in toxicity detection by introducing a novel approach to augment
toxic language data. We create a balanced dataset by instructing fine-tuning of Large Language Models (LLMs) using Reinforcement
Learning with Human Feedback (RLHF). Recognizing the challenges in collecting sufficient toxic samples from social media platforms
for building a balanced dataset, our methodology involves sentence-level text data augmentation through paraphrasing existing
samples using optimized generative LLMs. Leveraging generative LLM, we utilize the Proximal Policy Optimizer (PPO) as the RL
algorithm to fine-tune the model further and align it with human feedback. In other words, we start by fine-tuning a LLM using an
instruction dataset, specifically tailored for the task of paraphrasing while maintaining semantic consistency. Next, we apply PPO and
a reward function, to further fine-tune (optimize) the instruction-tuned LLM. This RL process guides the model in generating toxic
responses. We utilize the Google Perspective API as a toxicity evaluator to assess generated responses and assign rewards/penalties
accordingly. This approach guides LLMs through PPO and the reward function, transforming minority class samples into augmented
versions. The primary goal of our methodology is to create a balanced and diverse dataset to enhance the accuracy and performance
of classifiers in identifying instances from the minority class. Utilizing two publicly available toxic datasets, we compared various
techniques with our proposed method for generating toxic samples, demonstrating that our approach outperforms all others in
producing a higher number of toxic samples. Starting with an initial 16,225 toxic prompts, our method successfully generated 122,951
toxic samples with a toxicity score exceeding 30%. Subsequently, we developed various classifiers using the generated balanced datasets
and applied a cost-sensitive learning approach to the original imbalanced dataset. The findings highlight the superior performance
of classifiers trained on data generated using our proposed method. These results highlight the importance of employing RL and a
data-agnostic model as a reward mechanism for augmenting toxic data, thereby enhancing the robustness of toxicity detection models.
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1 INTRODUCTION

The rapid development of communication technology and the internet has transformed virtual communities, making
social media platforms more accessible and user-friendly, yet also presenting significant challenges [3]. Toxic language,
a prevalent issue within online discussions, is frequently characterized by disrespectful responses that can deter
participants from engaging in meaningful conversations [93, 116]. To ensure the safety of online civil discussions and
mitigate the potential harm caused by toxic language, the vast amount of user-generated content (UGC) necessitates the
implementation of data-driven techniques, including Machine Learning (ML) algorithms, for the automatic classification
of UGC within modern content moderation systems [23, 74, 118]. Developing efficient detection systems for toxic
content is heavily dependent on the availability of appropriate training datasets. This is in line with the fundamental
principle in data-driven research, which states that the quality of outputs is directly influenced by the quality of inputs
[140].

Imbalanced datasets and lack of annotated samples pose significant challenges in various classification tasks, such as
toxicity detection [100, 118]. In these datasets, one class is often much more numerous than the others, typically known
as the majority class, which can result in the development of biased models that yield unsatisfactory results when
dealing with the underrepresented minority class [54, 100]. The problem is particularly acute in toxicity detection, as the
frequency of toxic samples is often low compared to nontoxic ones. In other words, it is difficult to collect roughly the
same number of samples for both toxic and nontoxic classes. For instance, Madukwe et al. [90] highlighted a pronounced
class imbalance problem in hate speech detection, with the hate class constituting less than 12% in multi-class datasets
and less than half in binary datasets. Additionally, a systematic review of datasets for automatic hate speech detection
revealed that 41% of the datasets are small (0-5k posts), with 37% containing less than 20% offensive content [63]. This
confirms the challenges associated with obtaining extensive labeled data and underscores the potential pitfalls of class
imbalance in training datasets. The imbalance in data distribution can lead to overfitting and hinder generalizability,
especially for Deep Learning (DL) models. This imbalance may result in models that excel in detecting nontoxic language
but perform poorly on toxic content.

To address imbalanced classification challenges, a diverse set of techniques is utilized at both the data and algorithmic
levels [22]. At the data level, these techniques encompass various re-sampling approaches, including oversampling of
minority classes and undersampling of the majority class [100, 135]. Undersampling techniques consist of methods
such as random undersampling [109], Inverse random undersampling [136], and directed undersampling (informed
undersampling) [35]. On the contrary, oversampling techniques [45] include random oversampling with replacement,
directed oversampling (which entails informed choices for replacing samples, rather than random selection), and
oversampling methods with informed generation of new samples. Moreover, an alternative strategy involves a hybrid
method [25] that combines both undersampling and oversampling techniques. In addition to data-level strategies, at the
algorithmic level, methods such as cost-sensitive learning (which entails adjusting costs associated with different classes),
asymmetric classification, dimension reduction, expert systems, and ensemble techniques such as bagging, boosting,
and stacking all assume crucial roles [42, 50, 55, 115, 129, 132]. Although these techniques have shown promising
results in improving the performance of models on imbalanced datasets, they also have limitations. Oversampling
and undersampling can lead to overfitting and underfitting, respectively, and may not work well when the dataset is
extremely imbalanced [49, 143]. Cost-sensitive learning requires an accurate estimation of the misclassification costs,
which may be difficult in practice [156]. In the case of ensemble methods, as sampling techniques are used to balance
the data in each iteration, they can potentially eliminate valuable information and be prone to overfitting [133]. To

Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156
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mitigate overfitting, an alternative method is automatic data augmentation (DA), involving the creation of synthetic
data based on an existing dataset [104]. This can contribute to improving the generalizability of text classification
models, making them more adept at performing well with unseen data [85]. The methods for augmenting text data
depend on the specific task and the type of text data under consideration [104]. Text data augmentations (TDA) can be
classified into several categories, including the injection of textual noise or spelling errors, word replacement using a
thesaurus, and the generation of paraphrases through syntactic tree transformations, back-translation, and pre-trained
transformer networks [27, 128]. However, these techniques are not yet ideal, and their effectiveness is hindered because
the structure and meaning of the text are closely connected, making it challenging to manipulate one aspect without
affecting the other satisfactorily [85].

Therefore, to address the challenge of balancing datasets and enhancing the detection of toxic language through a
data augmentation approach, there is a pressing need to develop effective techniques for generating toxic text. While
some solutions have been proposed to generate toxic text [52], and general text generation techniques have been tested
for toxic language detection [34, 68, 152], they all exhibit limitations. For instance, certain methods necessitate precise
and well-written prompts, potentially performing inadequately with original samples. Others rely on zero-shot learning,
only fine-tuning models for toxic/nontoxic samples, neglecting the importance of instruction fine-tuned language
models for specific tasks. Another issue arises from assigning the same label to generated samples as the prompt sample,
even if the generated content may not be toxic.

As we address these challenges, our objective is to introduce a novel technique for sentence-level TDA, specifically
targeting toxic language. This approach aims to overcome the limitations observed in previous works by making a
substantial contribution to the development of techniques for creating a balanced and diverse toxic dataset, ultimately
enhancing classifier accuracy and performance.

We present a TDA framework guided by Reinforcement Learning from Human Feedback (RLHF) [39], specifically
employing the Proximal Policy Optimization (PPO) algorithm [124]. This framework operates on an Instruction Fine-
Tuned (IFT) Large Language Model (LLM) [163] and focuses on refining the model’s ability to paraphrase text. The
process begins by fine-tuning the LLM using an instruction dataset derived from the PAWS dataset (Paraphrase
Adversaries from Word Scrambling) [155].PAWS is specifically chosen because it is human-labeled, enabling it to
distinguish between paraphrases with equivalent semantic meaning and those with high lexical overlap but different
meanings. This helps ensure that the paraphrasing task maintains semantic accuracy. Throughout our experiment,
we exclusively concentrate on paraphrase pairs exhibiting identical semantic meaning. After this initial fine-tuning,
the model is further optimized using PPO, in conjunction with a reward model that guides the paraphrasing and
augmentation process. PPO operates within a hybrid architecture that combines value-based and policy-based methods,
enhancing training stability by iteratively updating the model’s policy in a proximal manner, preventing drastic changes
that could disrupt training.

To encourage paraphrasing while maximizing toxicity, we utilize the Google Perspective API to evaluate the toxicity
level of each generated text. This API assigns toxicity scores ranging from 0 to 1, indicating the likelihood of a text being
toxic. This incentivizes the model to produce toxic samples as it seeks to maximize rewards. Additionally, to prevent the
LLM from generating peculiar and non-human-like responses solely to maximize rewards, we employ Kullback-Leibler
(KL) Divergence as a penalty. This divergence is calculated between the active policy, influenced by reinforcement
signals for toxicity, and the reference policy derived from the initial instruction-tuned LLM. This measure ensures that
when the model is hallucinated, it aligns closer to the reference model, striking a balance between maximizing rewards
and maintaining human-like response characteristics. By imposing this penalty, the model is motivated to generate
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4 A. Bodaghi et al.

paraphrases that closely align with the reference model, thus achieving a balance between maximizing rewards and
preserving human-like response characteristics.

It is important to clarify why we refer to this approach as RLHF. Although we use automated tools such as the Google
Perspective API for toxicity scoring, the human-labeled PAWS dataset plays a central role in training PPO, and the
Perspective API itself is built upon data that was labeled by humans. As a result, our approach is grounded in human
feedback, with the PPO optimization process benefiting from this foundational human-labeled data. Therefore, despite
the involvement of automated components, the essence of our framework lies in leveraging human-labeled datasets to
guide the reinforcement learning process.

We evaluated the proposed method and compared it with other techniques using the Jigsaw toxic dataset [? ] and
the ToxiGen dataset [52]. In summary, our contributions can be outlined as:

• A novel method for enhancing toxic text data through Instruction Fine-tuning on the pretrained FLAN-T5
model, precisely crafted for paraphrasing with semantic equivalence using PAWS.

• Applying Proximal Policy Optimization (PPO) to further fine-tune (optimize) the instruction-tuned FLAN-T5;
our approach incorporates a reward model within the PPO framework to ensure the generated responses
maintain the specified level of toxicity.

• Utilizing the Google Perspective API to score toxicity and assign rewards accordingly, while implementing
KL-Divergence as a penalty in the reward function to ensure the generated text maintains human-like responses.

• Expanded the imbalanced Jigsaw dataset, which originally included 143,346 nontoxic samples and 16,225 toxic
samples, into a balanced dataset comprising over 278,000 samples.

• Outperforming other data augmentation techniques, such as zero-shot learning, back-translation, and instruction-
tuned LLMs, which lack RLHF optimization.

This is the first work to employ an optimized instruction-fine-tuned language model (LLM) to paraphrase existing
unstructured data, thereby augmenting toxic textual samples in the minority class. Furthermore, our dataset is one of
the largest and most balanced available. Additionally, we applied zero-shot learning, and back-translation techniques
to benchmark our developed model against other methods, resulting in the creation of the largest balanced dataset
for toxicity detection, generated through back-translation from nine different languages into English. This dataset
cannot be made publicly available as it is proprietary and owned by a third-party company. Although we have obtained
permission to use the dataset for research purposes, we do not have the rights to share or distribute it publicly.

The paper is organized as follows: After the introduction, Section 2 presents an in-depth analysis of the techniques
proposed to address the problem of class imbalance. Section 3 covers the preliminaries, followed by Section 4, which
delineates our proposed method. Section 5 details the experimental setup, and the results are presented in Section 6.
Section 7 concludes the paper with remarks and discussions.

2 RELATEDWORK

In the literature, various solutions have been proposed to the class imbalance problem. These techniques can be
categorized into Data Level, Algorithmic Level, Ensemble Learning, and Data Augmentation, each of which is briefly
discussed in this section. Furthermore, we examine methodologies employed in toxicity detection.
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2.1 Data-level approaches

In managing the class imbalance at the data level, the goal is to adjust the distribution of classes by resampling the data
space. This involves increasing instances of the underrepresented class through oversampling and reducing instances of
the overrepresented class through undersampling, with the possibility of employing a combination of both techniques
[21, 38, 75, 132]. Each of these techniques will be explored individually in the following subsections.

2.1.1 Undersampling. In the undersampling method, the primary focus is on the majority class within the dataset,
from which instances are extracted either randomly or through specific techniques to achieve class balance [53, 125].
Undersampling, while incurring the main drawback of information loss through the deletion of examples from the
training data, nonetheless, offers the benefit of reducing the time required to train models by diminishing the size of the
training dataset [125]. The most straightforward method of undersampling involves randomly choosing a portion of
samples from the majority class [100]. The random undersampling (RUS) strategy poses a significant risk of eliminating
potentially valuable data from the majority class [82, 133]. In response to this limitation, specific methodologies, such
as informative undersampling techniques, selectively eliminate insignificant patterns from the majority class, thereby
aiming to maintain performance levels and overcome this drawback [139]. One suggested informative undersampling
method, the Condensed Nearest Neighbour (CNN) discussed in [51], serves as a data reduction approach to create a
representative subset of the original training set, proficient in accurately classifying all instances [139]. Similarly, the
Edited Nearest Neighbors (ENN) uses a K-nearest neighbors (K-NN) approach to identify atypical examples within their
neighborhood and subsequently removes them [148]. Furthermore, one-sided selection [76] serves as an alternative
approach utilizing Tomek links [138] to detect and eliminate such atypical instances. These approaches are not very
useful for text data; they are more applicable to numerical data. In the case of toxic language detection, this technique
proves ineffective because we still need a sufficient number of samples from the nontoxic class to successfully train
classifiers for distinguishing toxic from nontoxic content. Therefore, our proposed method is specifically developed for
textual data and can effortlessly handle unstructured sentences while increasing toxicity scores. There is no need to
remove samples from the nontoxic class.

An alternate approach proposed to tackle the RUS limitation involves replacing the strategy with a clustering
technique as discussed by [82]. Employing cluster-based techniques aims to group similar objects, or data samples, into
the same clusters, with objects in distinct clusters differing in their feature representations. In 2017, imbalanced-learn,
an open-source Python toolbox, aimed to address imbalanced dataset challenges in ML and pattern recognition by
incorporating state-of-the-art techniques grouped into four categories: (i) under-sampling, (ii) over-sampling, (iii)
combined over- and under-sampling, and (iv) ensemble learning methods [80]. Imbalanced-learn 1 offers tools such as
ClusterCentroids and RandomUnderSampler. ClusterCentroids reduces the majority class by substituting a cluster with
the centroid from a KMeans algorithm. RandomUnderSampler swiftly balances data by selecting a subset randomly.
Mediratta and Oswal [94] employed RandomUnderSampler to tackle the imbalance issue in a toxic content classification
model. In their comparison of various machine learning models (Support Vector Machine (SVM), Naïve Bayes, Gated
Recurrent Unit (GRU), Long Short-term Memory (LSTM), they observed that SVM and Naïve Bayes achieved high
accuracy even without addressing the imbalance, effectively learning from imbalanced datasets. The most promising
outcomes occurred with GRU when handling imbalance with a random sampler and employing GloVe (Global Vectors
for Word Representation) word embedding. Rupapara et al., [119] introduced an ensemble technique for toxic comment
detection, comparing its performance with other ML classifiers on both imbalanced and balanced datasets. They
1https://imbalanced-learn.org/stable/

Manuscript submitted to ACM

 https://imbalanced-learn.org/stable/


261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 A. Bodaghi et al.

employed various resampling methods, including RUS and oversampling, highlighting that machine learning models
achieved superior performance when using oversampling for dataset balance.

2.1.2 Oversampling. Undersampling techniques work well for datasets with a lower class imbalance ratio, while
oversampling methods effectively manage high-class imbalance [31]. Yet, oversampling tends to expand the training
set size by replicating patterns, leading to extended learning times and potential overfitting [22, 82, 132]. Similar to
random undersampling, oversampling can occur randomly but involves replicating instances from the minority class to
achieve dataset balance [41]. An alternative oversampling approach, referred to as informative oversampling, focuses
on amplifying the smaller class. In contrast to generating new samples, this method selectively chooses samples from
the minority class for resampling instead of employing a random approach [132]. Another technique for oversampling
is synthetic oversampling, where artificial samples are generated for the minority class [127]. These additional samples
supplement vital information to the minority class, preventing misclassification of its instances. The Synthetic Minority
Oversampling Technique (SMOTE), introduced by [21], operates as an oversampling approach that aims to generate
additional instances for the minority class by interpolating between various neighboring instances within that class [41].
Continuing the exploration of oversampling techniques for the minority class, additional methods include the Modified
Synthetic Minority Oversampling Technique (MSMOTE) [60], and the Selective Preprocessing of Imbalanced Data
(SPIDER) [131]. MSMOTE modifies SMOTE by categorizing minority class instances into safe, border, and latent noise
groups, adjusting the neighbor selection strategy accordingly, and SPIDER combines local minority class oversampling
with identifying noisy majority class instances, implementing different preprocessing methods to enhance the minority
class and eliminate remaining noisy majority class examples [41]. In the case of toxic language, where the number of
samples in the nontoxic class significantly surpasses the number of samples in the toxic class, oversampling can be a
beneficial strategy. However, it must be executed with caution. The nature of language, particularly sentences, implies
that the combination of various words together can be quite intricate. Some words may not be toxic when considered
individually, but they can become toxic when used in combination. In our proposed method, we leverage pretrained
large language models that have been trained on extensive datasets and exposed to numerous sample sentences. This
approach helps us in generating new samples in the minority class, thereby increasing the diversity of samples.

2.1.3 Hybrid Sampling. Both undersampling and oversampling techniques present challenges by respectively risking
the removal of vital majority class examples, potentially causing underfitting, and inducing overfitting through an
increased number of specific but potentially misleading minority class samples affecting the model’s decision boundaries
[21, 99]. A sought-after approach involves integrating the benefits of both techniques to manage imbalanced medical
diagnostic data.

2.2 Algorithmic-level

This approach involves developing new algorithms or adapting existing ones to be more responsive to class imbalance
issues [12, 89]. In this approach, the focus is on addressing the minority class, preventing the learner from exhibiting bias
toward the majority class to mitigate the overall cost associated with misclassification [8, 65]. Usually, these methods
include the utilization of cost-sensitive and ensemble approaches [36, 40, 137]. Resampling techniques and algorithmic
methods alone may prove insufficient in addressing class imbalance challenges in high-dimensional scenarios [88, 144].

2.2.1 Cost-sensitive Learning. The cost-sensitive learning framework integrates strategies at both the data and algo-
rithmic levels, considering the increased costs associated with misclassifying samples from the positive class compared
Manuscript submitted to ACM
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AugmenToxic: Data Augmentation to Enhance Toxicity Detection 7

to the negative ones [11, 12, 41]. This approach has been applied to address imbalanced labels in toxic content detection
by incorporating it into machine learning and deep learning models to enhance overall performance. However, it is
crucial to note that accurate estimation of misclassification costs is necessary, and it can be challenging to achieve in
practical applications [156].

2.3 Ensemble Learning

The limitation of traditional approaches (sampling, algorithm level, and cost-sensitive) lies in the requirement to
define misclassification costs, often unavailable in datasets, leading to the introduction of ensemble-based methods
that combine ensemble learning algorithms with data-level and cost-sensitive techniques to address class imbalance,
although the challenge of defining costs persists [41]. Boosting, bagging, and stacking stand out as the most frequently
employed techniques within this category [129]. According to a survey on the application of ensemble learning methods
for class imbalance problems, Random Forest (RF) and XGBoost have emerged as the most commonly utilized methods in
the literature, with both demonstrating reliable performance [96]. Another review paper focusing on ensemble learning
and data augmentation models for class imbalance issues demonstrated that various combinations of ensemble learning
and oversampling techniques, including SMOTE-LightGBM and random oversampling-LightGBM (ROS-LightGBM),
are effective approaches for addressing this challenge [70].

Addressing data imbalance is a crucial aspect in ML, and various techniques have been proposed to tackle this issue
across different domains. However, when it comes to textual data, especially in the context of toxic language detection,
existing methods face challenges. Traditional data imbalance techniques, such as oversampling or undersampling, may
not be directly applicable to textual data due to its unique characteristics. Moreover, the nature of toxic language data
often involves intricate linguistic nuances, making it difficult to apply standard resampling methods effectively. In light
of these challenges, there is a growing need for specialized techniques in data augmentation tailored for textual data,
which can help alleviate data imbalances and enhance the performance of toxic language detection models. Hence, we
further explore text data augmentation techniques, particularly those designed for balancing datasets to improve online
toxicity detection.

2.4 Text Data Augmentation

Text data augmentation (TDA) involves generating additional training data from existing data, thereby expanding the
dataset available for training classifiers or classification models [104]. Unlike image data augmentation, where simple
transformations such as rotation and translation easily preserve the original label, these methods for TDA present a
greater challenge in maintaining the original label after perturbations [2]. In recent years, researchers have proposed
both unsupervised and supervised TDA methods, generating synthetic data through advanced techniques, where
unsupervised methods do not rely on labeled data and supervised methods utilize labeled data for augmentation [104].
The taxonomy of TDA techniques is illustrated in Figure 1, accompanied by a summary of citations included in Table 1.
Comprehensive reviews of TDA methodologies can be found in survey papers, such as [2, 15, 27]. These surveys provide
an in-depth synthesis of the field. TDA encompasses diverse strategies applied at different levels, including character,
word, sentence, and document levels. At the character level, techniques involve Textual Noise Injection and Spelling
Error Injection. Moving to the word level, augmentation includes the introduction of spelling errors, random deletion,
replacement using the thesaurus, swapping word order, and embedding replacement. In the realm of toxic language, a
specific instance involved replacing words with their synonyms [117] using word embeddings such as Word2Vec [97],
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Fig. 1. Taxonomy of Text Data Augmentation Techniques

Table 1. Summary of Text Data Augmentation Techniques with Citations

TDA Level Method Reference

Character Level Textual Noise Injection [27]
Spelling Error Injection [27]

Word Level

Spelling Error Injection [111]
Replacement Using Thesaurus [67]

Swapping Word Order [103]
Embedding Replacement [162]

Sentence Level

Interpolation [162]
Structure [165]

Grammar Error Injection [71]
Back-Translation [2]

Syntactic Trees Transformations [27]
Generation- Language Model (LM) [77]

Generative Adversarial Network (GAN) [48]
Paraphrasing - Language Model (LM) [149]

GloVe [108], Fattest [18]. Word replacement can also be performed using features obtained from ConceptNet relations
and their descriptions extracted from Wikidata [126].

Expanding to larger units, such as phrases or sentences, TDA incorporates transformation, paraphrasing, and sentence
generation. These techniques can be further segmented into specialized methods. For instance, back-translation involves
Manuscript submitted to ACM
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translating a sentence from one language to another and then translating it back into the original language. The back-
translation method was employed for data augmentation in the context of hate speech and cyberbullying, involving the
initial translation of English text to German and then translating it back to English [16]. Syntactic tree transformations
[164] are additional techniques applied at this level. Moreover, the generation of new sentences is achieved through
advanced approaches, includingGenerative Adversarial Networks (GANs) and generative languagemodels. Thesemodels
contribute to the creation of diverse and contextually relevant text during the augmentation process. As an illustration,
generative language models such as Generative Pretrained Transformer 2 (GPT-2) [112] were employed to generate
extra-textual samples for the minority class by fine-tuning on existing minority class samples [34, 152]. TOXIGEN,
a large-scale dataset of toxic and benign statements about minority groups, generated using a demonstration-based
prompting framework and an adversarial classifier-in-the-loop decoding method [52]. They demonstrate that TOXIGEN
improves the performance of toxicity classifiers on human-written data and can also help fight machine-generated
toxicity. Leveraging the extensive ToxiGen dataset, ConPrompt introduces an innovative pre-training strategy tailored
for implicit hate speech detection. Through contrastive learning and prompt-based positive sampling, ConPrompt,
embodied by ToxiGen-ConPrompt, emerges as a leading solution. Experimental findings undeniably demonstrate
ToxiGen-ConPrompt’s superiority over established models like HateBERT and fBERT, showcasing its exceptional
generalization and bias mitigation [73].

In certain studies, researchers assigned the minority class label to each newly generated sample [68]. Alternatively,
in other studies, the classifiers were fine-tuned for toxicity detection, and only the samples identified as toxic by
the classifier were retained after analysis [151]. To ensure that augmentation samples capture target class features,
using off-the-shelf language models is limited due to their undirected and random generation, as noted by Liu et al.
[86]. In response, they presented Data Boost, a text data augmentation framework guided by reinforcement learning
and based on an off-the-shelf language model (GPT-2). The approach involves computing a Salience Score for each
word and selecting the top-N highest-scoring words as the salient lexicon for the target class label. Lee et al. [79]
explore alignment algorithms, particularly Direct Preference Optimization (DPO), and their role in reducing toxicity in
pre-trained language models like GPT2-medium. Their research delves into toxicity representation and elicitation in
these models, showcasing how DPO can curb toxic outputs while preserving learned abilities. Furthermore, they present
a method to revert models to toxic behavior, underscoring the significance of understanding alignment algorithms in
natural language processing.

Comprehensive utilization of these techniques not only aids in overcoming overfitting but also enriches the input
feature range, enhancing the overall robustness of classification models [123, 150]. However, current methodologies for
data augmentation exhibit significant limitations and remain imperfect. For example, labeling all generated samples
with the minority class label [68] is flawed because it does not guarantee the preservation of the intended target class
label or ensure that the generated samples adhere to the characteristics of their supposed label. Furthermore, analyzing
the toxicity of generated samples using a classifier trained on the same data used for fine-tuning generative language
models may introduce bias, given its lack of data agnosticism and potential inefficacy on diverse datasets [95]. In
addition, there is a common deficiency in instruction fine-tuning of large language models (LLMs) for specific tasks.
In the context of conditional generation, the proposed reward function, which employs Salience Gain [86], tends to
prioritize token similarity over toxicity level and may exhibit limited improvement in tasks involving challenging class
modeling. Moreover, it faces challenges in extracting explicit lexical features for metaphor, sarcasm, and formality.
These techniques may struggle to effectively implement data augmentation, particularly on a large scale, especially
for unstructured sample sentences from social media. Additionally, generated samples may deviate from the intended
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scope of the work, possibly leading to hallucinatory outcomes [61, 83, 110]. To address these limitations, we propose
a sentence-level data augmentation technique based on paraphrasing. In this approach, we employ fine-tuning a
pretrained Large language model (LLM) through instruction specifically for the task of text paraphrasing. We optimize
the model by using reinforcement learning to generate toxic samples. Additionally, data-agnostic models are used
to assess the toxicity of generated samples, enabling the assignment of toxic rewards accordingly. This approach is
suitable for generating samples at a large scale and has demonstrated superior performance compared to other data
augmentation techniques, such as back-translation.

2.5 Toxicity Detection Approaches

In recent years, there has been a notable adoption of machine learning (ML) approaches, encompassing both classical ML
and deep learning (DL) algorithms for identifying toxicity in online conversations [9]. Various classical ML techniques,
such as logistic regression (LR), decision trees, random forest (RF), and support vector machine (SVM), have been
effectively utilized in numerous studies to address online toxicity by identifying toxic content [92, 114, 121]. Commonly
employed in feature extraction are methods such as bag-of-words (BOW), Term-frequency-inverse document frequency
(TF-IDF), and word embeddings [7]. Moreover, word embeddings have emerged as a widely adopted approach for word
representation, proving highly effective in capturing semantic relationships and contextual information. Word2Vec [97],
GloVe (Global Vectors) [108], and FastText [66] are among the commonly employedword embeddings extensively utilized
in toxicity detection tasks. Extensively utilized for detecting toxic content are various models based on Deep Neural
Networks (DNN), including Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Long Short-term
Memory (LSTM), Bidirectional LSTM (BiLSTM), and Bidirectional GRU (BiGRU) [1, 62, 93]. DL models autonomously
extract complex features from raw data without the requirement for manually crafted features, showcasing their ability
to learn representations directly from the input datasets [30]. Word embeddings are utilized as input features for DNN
classifiers, as demonstrated in Mohammed et al.’s study [98], which compared various models in two scenarios: one
with a standard embedding layer and the other integrating pre-trained embedding corpora like GloVe, Word2Vec, and
FastText. Recent advancements in text classification tasks have witnessed a shift towards utilizing pre-trained word
embeddings and language models trained on extensive unlabeled corpora. Examples include Bidirectional Encoder
Representations from Transformers (BERT) [32] and its variants such as DistilBERT [122], RoBERTa [87], and AlBERT
[78]. Ashwin Geet D’Sa et al. explored binary and multi-class classification on a Twitter corpus. They compared two
techniques: one involved extracting word embeddings followed by a DNN classifier, while the other fine-tuned a
pre-trained BERT model, ultimately demonstrating the superior performance of fine-tuning BERT [33]. In another study,
the performance of various pre-trained language models was evaluated across three distinct architectures for toxic
language classification: BERT, RoBERTa, XLM, a bi-LSTM + BERT/RoBERTa/XLM, and a CNN + BERT/RoBERTa/XLM
[161].

Existing methods predominantly rely on supervised learning approaches, which are heavily dependent on labeled
datasets. This becomes particularly challenging due to the inherent imbalance in toxic language datasets [19]. In most
online conversations, the vast majority of content is nontoxic, while only a small fraction contains toxic language [160].
Madukwe et al. [90] highlighted this significant class imbalance in hate speech detection, noting that the hate class
accounted for less than 12% of multi-class datasets and less than half of the data in binary classification tasks. Similarly,
a systematic review of hate speech detection datasets revealed that 41% were small (containing 0-5k posts), and 37%
included less than 20% offensive content [63]. This imbalance results in skewed label distributions, where the nontoxic
class dominates, causing standard classifiers to become biased toward predicting the majority class (nontoxic) [28].
Manuscript submitted to ACM
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Consequently, these models often struggle to accurately detect the minority class (toxic). To address this issue, our
proposed technique seeks to mitigate the imbalance in toxic datasets and improve the performance of toxicity detection
classifiers.

3 PRELIMINARIES

3.1 Text Generation

Imagine a language model, denoted as𝑀 , which responds to a consistent prompt 𝑃 by generating a response 𝑦. The
process involves the model sampling from its distribution𝑀 (𝑃) through decoding, represented as 𝑦 ∼ 𝑀 (𝑃). In typical
text generation scenarios,𝑀 calculates the probability distribution for the next token 𝑡𝑘 based on the prior context𝐶<𝑡𝑘 ,
expressed as 𝑝𝜔 (𝑡𝑘 |𝐶<𝑡𝑘 ) [84]. The model learns parameters 𝜔 in training by maximizing the likelihood of observed
data. This learned probability distribution (𝑝𝜔 (𝑡𝑘 |𝐶<𝑡𝑘 )) is crucial in guiding the model as it decodes the next token,
shaping the coherence of the generated text. By leveraging its learned parameters 𝜔 , the model captures relationships
between tokens, enabling the creation of coherent and contextually relevant sequences. Various decoding algorithms,
including greedy decoding, beam search, temperature sampling, and top-𝑝 sampling [56], play a pivotal role in how the
model selects and arranges tokens, contributing to the overall coherence and relevance of the generated output.

In the context of text paraphrasing, for two sentences 𝑙 and 𝑙 ′ that serve as paraphrases of each other, we express this
relationship as 𝑙 ≡ 𝑙 ′, indicating their equivalent meanings (Semantic Meaning(𝑙) = Semantic Meaning(𝑙 ′) where 𝑙 ∈ 𝐿

and 𝑙 ′ ∈ 𝐿′). Consequently, when using a prompt to generate a paraphrase for 𝑙 , we denote the paraphrased version as
𝑙 ′, where𝑀 (𝑙 |𝑃) = 𝑙 ′. Please note that a prompt is composed of an instruction 𝐼 and an input 𝑥 ∈ 𝑋 so that 𝑃 = 𝐼 (𝑥).
Therefore, (𝑀 (𝑃) = 𝑦) → (𝐼 (𝑥)) = 𝑦). In the case of paraphrasing, where the instruction is a request for paraphrasing
and the input is 𝑙 ∈ 𝐿, then𝑀 (𝐼 (𝑙)) = 𝑙 ′ where 𝑙 ≡ 𝑙 ′.

Response generation employs various methodologies, including zero-shot learning, one-shot learning, few-shot
learning, and fine-tuning language models on datasets with instructional annotations [47, 153]. Zero-shot learning
enables a model to generate responses for categories or prompts it hasn’t been explicitly trained on by leveraging its
understanding of underlying concepts or patterns from the training data [130]. Conversely, few-shot learning involves
training the model with minimal examples of a specific category or prompt, yet it still learns to generalize and produce
responses for similar, previously unseen categories or prompts, showcasing its adaptability and generalization prowess
[113]. Research has shown that instruction tuning substantially enhances zero-shot performance on unseen tasks [145].
In the following section, we will delve deeper into the details of Instruction Fine-tuning.

3.2 Instruction Fine-tuning (ITune)

Generative LLMs are initially pre-trained on an extremely large and diverse public dataset, and their weights can
be fine-tuned for each task of interest using a much smaller task-specific dataset. Instruction fine-tuning (ITune) is
a process in which a pre-trained model, represented by parameters 𝜔 , undergoes refinement based on a specialized
instruction dataset 𝐷I. This dataset includes input-output pairs that serve as explicit instructions or prompts for the
model. Therefore, 𝐷I = {(𝐼𝑖 , 𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1 represents an instruction dataset with each sample consisting of an instruction
(𝐼𝑖 ), an input sequence (𝑥𝑖 ∈ 𝑋 ), and its corresponding response (𝑦𝑖 ∈ 𝑌 ), with 𝑛 total samples in the dataset.

The objective is to adapt a𝑀 to better understand and generate responses aligned with the provided instructions.
The updated parameters after fine-tuning are denoted as 𝜔 ′, and the fine-tuning process can be expressed as 𝜔 ′ =
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Fig. 2. PPO Model Architecture Overview

ITune(𝜔, 𝐷I). This notation captures the transformation of the model’s parameters to enhance its performance in
generating contextually relevant outputs in response to specific instructions provided in the training dataset.

3.3 Parameter-efficient Fine-tuning (PEFT)

In the conventional fine-tuning process, model weights are usually copied from a pre-trained language model and
adapted for a specific downstream task, requiring the generation of new weights for each task. However, full fine-tuning
of parameters becomes impractical due to the rapidly growing size of models, making it infeasible to fine-tune the entire
model and store separate copies of parameters for numerous downstream tasks [134]. Parameter-efficient techniques
have been introduced to address concerns related to storage and computational costs associated with full fine-tuning
[57, 91, 154]. As a noteworthy contribution to parameter-efficient fine-tuning (PEFT) techniques, one approach is
Low-Rank Adaptation (LoRA) [58]. In the LoRA methodology, the pre-trained model weights remain frozen, and
trainable rank decomposition matrices are introduced into each layer of the Transformer architecture. For each𝑀 , the
hyperparameters 𝑟 (representing the rank of the update matrices) and 𝛼LoRA (a scaling factor crucial for stabilizing
training) are fine-tuned [147]. This innovative technique effectively reduces the number of trainable parameters for
downstream tasks, lowering GPU memory requirements and demonstrating a commitment to parameter efficiency in
the adaptation process.
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3.4 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a ML paradigm where an agent learns to make sequential decisions by interacting
with an environment. The agent takes actions (𝑎 ∈ 𝐴), receives a reward (𝑟 ∈ 𝑅) or penalties in return, and adjusts its
strategy to maximize the cumulative reward over time. Trajectories in RL, denoted as 𝜏 , refer to sequences of states
(𝑠 ∈ 𝑆), actions (𝑎 ∈ 𝐴), and rewards (𝑟 ∈ 𝑅) that an agent experiences during its interactions with the environment. In
RL, the agent’s goal is to learn a policy 𝜋𝜃 , parameterized by 𝜃 , that maps states to actions in a way that maximizes the
expected cumulative reward over time. The performance of RL algorithms is evaluated based on their ability to learn
effective policies in diverse and complex environments.

The pre-trained LM can be customized according to the user’s preferences through Reinforcement Learning from
Human Feedback (RLHF). It is achieved by defining a reward model and then fine-tuning the LM using RL. Incorporating
human feedback aims to capture sentiments in the LLM’s responses, with the reward model mapping the model’s
output to a scalar reward that represents human preferences [17].

3.5 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO), introduced by Schulman et al. [124], stands out as a robust and widely used deep
reinforcement learning algorithm. PPO is known for its stability and efficiency in optimizing policies against specified
reward functions. It consistently achieves state-of-the-art performance across a wide range of challenging tasks.

The core idea behind PPO involves iteratively updating the policy 𝜋𝜃 to improve its performance while ensuring
stability during training. It aims to balance exploration and exploitation effectively. In PPO, exploration refers to the
agent’s ability to try out different actions to learn about the environment, while exploitation involves exploiting the
knowledge gained to select actions that maximize expected rewards. However, achieving a balance between exploration
and exploitation presents a challenge [13]. Figure 2 provides an overview of the architecture of a PPO model. PPO
employs a reward model 𝑅 that considers step-level rewards (𝑟𝑡 ) and handles the terminal state (𝑠𝑇+1) with special
attention. The step-level reward is a combination of the step-level reward of the last step (𝑟𝑇 ) and a penalization
term incorporating the Kullback–Leibler (KL) divergence between the current policy and a reference policy 𝜋𝜃0 . The
parameter 𝜃0 typically represents the initialized policy of PPO.

The step-level reward (𝑟𝑡 ) is defined as follows [84]:

𝑟𝑡 =


−𝛽 log 𝑝𝜃 (𝑎𝑡 |𝑠𝑡 )

𝑝𝜃0 (𝑎𝑡 |𝑠𝑡 )
+ 𝑟 (𝑠𝑇+1), if 𝑡 = 𝑇

−𝛽 log 𝑝𝜃 (𝑎𝑡 |𝑠𝑡 )
𝑝𝜃0 (𝑎𝑡 |𝑠𝑡 )

, if 1 ≤ 𝑡 < 𝑇

Here, 𝑝𝜃 (𝑎𝑡 |𝑠𝑡 ) denotes the probability of taking action 𝑎𝑡 in state 𝑠𝑡 under the policy 𝜋𝜃 , and 𝛽 is a hyperparameter
controlling the impact of the penalization term. The formulation balances the desire to increase expected rewards with
the need to stay close to the reference policy.

This comprehensive framework allows PPO to effectively learn policies in complex environments, making it a popular
choice in the field of deep reinforcement learning.

4 METHODOLOGY

In this section, we outline the structure of our proposed approach. Initially, we conduct fine-tuning on the generative
LM by utilizing an instruction dataset to paraphrase samples while preserving their semantic meaning (subsection 4.1).
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Fig. 3. Illustration of the process to convert the dataset into an instruction format.

Subsequently, to optimize the process, we employ PPO and reward function to guide themodel toward toxic paraphrasing,
aiming to generate more toxic responses (subsection 4.2).

4.1 Supervised Instruction Fine-tuning

Our primary goal is to increase the number of minority class samples through paraphrasing techniques using gen-
erative Language Models (LMs). While models like zero-shot learning may offer simplicity, they prove less effective
in paraphrasing toxic samples from online conversations. The subtle and context-dependent nature of toxicity in
online discussions poses challenges beyond the capabilities of general language understanding methods, including
zero-shot, one-shot, or few-shot learning [101, 106]. Limited exposure to samples can hinder the model’s paraphrasing
accuracy, making it challenging to maintain meaningful output [26]. To address this, instruction fine-tuning emerges as
a promising alternative. This approach involves training an LM on a specific task with explicit instructions, enhancing
its ability to paraphrase toxic content while preserving semantic meaning. Instruction fine-tuning offers a focused and
tailored training process, enabling the model to adapt more effectively to the nuances of paraphrasing toxic language in
unstructured online comments, ultimately improving the quality of generated samples.

4.1.1 Instruction Dataset. An instruction dataset 𝐷I typically refers to a specific dataset designed to provide explicit
instructions for training a model on a particular task. It contains examples paired with clear instructions on how the
model should interpret or respond to those examples. The purpose of an instruction dataset is to guide the model’s
learning process and help it acquire specific skills or behaviors.

To construct 𝐷I, we utilize a structured format containing examples, making it more intuitive for the generative
model 𝑀 to learn in accordance with our requirements. The dataset includes pairs 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆 ′ representing
paraphrases of each other (𝑠 ∼ 𝑠′) while maintaining semantic equivalence.

To convert the dataset into an instruction format, each sample 𝑠 undergoes a wrapping process with an instruction,
as illustrated in Figure 3. The provided instruction is formulated as follows: “Paraphrase the following text while
maintaining its semantic meaning: {text}.” This instruction serves as a directive for the model, guiding it to generate
paraphrases that retain the same semantic meaning as the original text. Additionally, all samples, both input prompt
(instruction + 𝑠) and output (𝑠′), undergo tokenization using the LM’s tokenizer. Padding is also applied to the tokenized
sequences, ensuring they have the same maximum length.
Manuscript submitted to ACM
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Fig. 4. Instruction fine-tuning of pre-trained Large Language Models (LLMs) for paraphrasing

4.1.2 Instruction Fine-tuning. With the constructed instruction dataset 𝐷I (refer to subsubsection 4.1.1), the pre-trained
model 𝑀 undergoes fine-tuning in a fully supervised manner. This process entails training 𝑀 to predict each token
in the output sequentially, guided by the instruction dataset [158]. The fine-tuning adapts𝑀’s parameters based on
the task-specific information embedded in the instruction dataset, thereby enhancing its performance in generating
paraphrases while preserving semantic meaning.

Recognizing the advantages of Parameter-Efficient Fine-Tuning (PEFT) techniques, such as reducing computational
costs, minimizing memory usage during training, streamlining the storage and deployment of task-specific fine-tuned
parameters [72], directed us to utilize PEFT as a substitute for the full fine-tuning process in our instruction fine-tuning
approach. Furthermore, its demonstrated superiority over full fine-tuning across a diverse array of tasks [147] further
supported our decision.

PEFT methods (refer to subsection 3.3) involve freezing the majority of parameters in pre-trained models while still
demonstrating comparable capabilities in downstream tasks [157]. Specifically, we considered fine-tuning through
Low-Rank Adaptation (LoRA) [58] as an additive fine-tuning scheme, as defined in subsection 3.3. The instruction
fine-tuning of the LM for the specific task of paraphrasing is illustrated in Figure 4.

While the fine-tuned model𝑀LoRA excels at paraphrasing existing samples in the minority class and generating new
samples, it may encounter challenges when faced with unstructured input from online conversations. Particularly, its
performance might diminish when dealing with less well-written or unstructured prompts, even after pre-processing.
This challenge is exacerbated when the model is tasked with generating multiple responses for each prompt. Moreover,
we anticipate scenarios where the model may generate toxic samples, and there is a need for the LM to rephrase the
input while retaining or even increasing its toxicity. Therefore, following the fine-tuning process via LoRA (𝑀LoRA), an
additional optimization step using Reinforcement Learning from Human Feedback (RLHF) becomes essential. RLHF
aims to guide the LM in rephrasing while preserving toxicity or potentially intensifying it, based on human feedback
expressed through a reward function. The subsequent section will delve into the specifics of the optimization process
using RLHF.

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 A. Bodaghi et al.

4.2 Optimization using Reward Function

In this study, we employ Reinforcement Learning from Human Feedback (RLHF) subsection 3.4, specifically utilizing
Proximal Policy Optimization (PPO) as described in subsection 3.5. Our objective is to optimize the fine-tuned model
𝑀LoRA to generate toxic responses, acknowledging that not all augmented sentences may exhibit toxicity. The devel-
opment of efficient optimization algorithms is crucial across various scientific disciplines, as researchers seek faster
and stronger algorithms capable of optimizing a wide range of functions [5, 6, 43, 59]. After the initial fine-tuning
with LoRA, where only a portion of parameters was trained, we seek further refinement by updating these trainable
parameters to obtain an optimized fine-tuned model. To achieve this, we incorporate a data-agnostic classifier to assess
the toxicity of generated responses and assign rewards or penalties accordingly. It is important to note that 𝐷I used
for instruction fine-tuning is nontoxic, but our aim is to increase toxicity using the reward model, directing𝑀LoRA to
generate toxic tokens.

As a reward model, we leverage the Google Perspective API (API) 2, a machine learning-based tool designed to detect
abusive comments. This API furnishes toxicity scores ranging from 0 to 1, serving as a probability indicator without
delineating severity. Higher scores indicate a greater likelihood of resembling patterns observed in toxic comments. We
employ PPO to fine-tune 𝑀LoRA with respect to the reward model, resulting in 𝑀PPO-API. While 𝑀LoRA has initially
been trained using the instruction dataset, our aim is to optimize its performance leveraging the reward model.

In the proposed PPO framework,𝑀LoRA serves as an active model (𝑀act) during training and as a reference model
(𝑀ref) when not trainable. The generative model functions as an agent, selecting tokens during language generation.
The agent initializes its policy with𝑀LoRA and, at each time step 𝑡 , observes the current state 𝑠𝑡 (previously generated
tokens), takes action 𝑎𝑡 according to the policy 𝜙 , and transitions to the next state. The agent receives a reward 𝑟 from
the reward model, aiming to maximize the expected reward during PPO training. The framework is visually depicted in
Figure 5.

A prompt 𝑥𝑡 from 𝐷I is simultaneously inputted into both the active model𝑀act and the reference model𝑀ref. Active
policy 𝜋𝜃act and reference policy 𝜋𝜃ref are initialized. The active model𝑀act generates a response (paraphrased input),
such that 𝜋𝜃act (𝑎𝑡 | 𝑠𝑡 ) −→ 𝑀act (𝑥𝑡 ) = 𝑦act𝑡 . Similarly, the reference model𝑀ref generates a response 𝜋𝜃ref (𝑎𝑡 | 𝑠𝑡 ) −→
𝑀ref (𝑥𝑡 ) = 𝑦ref𝑡 ). Subsequently, the response generated by the active model 𝑦act𝑡 is decoded and passed to the Google
Perspective API, which assigns a toxicity score. A reward of 1 is given to samples with toxicity scores exceeding 0.7,
while those below this threshold receive a penalty of -10. The Google Perspective API assigns scores on a scale from 0
to 1, with higher values indicating greater toxicity. To ensure that the generated responses are sufficiently toxic, we
set the threshold at 0.7. While a lower threshold, such as 0.5, could be considered, setting it at 0.7 ensures that only
responses with a higher degree of toxicity are classified as toxic, thereby encouraging the generation of distinctly toxic
samples. This reward scheme is formalized as follows:

𝑟toxic =


+1 if API(𝑦act𝑡 ) ≥ 0.7

−10 if API(𝑦act𝑡 ) < 0.7

We assigned greater value to punishment compared to reward because if both were given equal values, such as +1
and -1, the agent might learn to generate only nontoxic responses. In such a scenario, the penalty for producing a
nontoxic response would be only 1, which would not sufficiently differentiate between the reward and the penalty.
Additionally, to discourage𝑀act from producing unnatural responses solely for increased rewards, a reference model

2https://perspectiveapi.com/
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Fig. 5. The proposed solution for paraphrasing toxic samples

with frozen weights serves as a fixed point of reference. The Kullback-Leibler (KL) Divergence is calculated between
the two policies 𝜋𝜃ref𝑡 and 𝜋𝜃act𝑡 as follows:

𝑟kl = 𝛽𝐷KL (𝜋𝜃act𝑡 ∥ 𝜋𝜃ref𝑡 ) = −𝛽 log
(
𝜋𝜃act𝑡

𝜋𝜃ref𝑡

)
𝑟kl serves as a penalty, ensuring that when 𝑀act generates hallucinations, it aligns closer to 𝑀ref. This penalty is

added to the toxicity reward, constraining the update within a trust region defined by the distance between the two
policies. The total reward is computed as:

𝑟𝑡 = 𝑟𝑡𝑜𝑥𝑖𝑐 + 𝑟𝑘𝑙 (1)

This cumulative reward guides PPO through multiple prompt-response experiments, facilitating ranking averages
and employing backpropagation to optimize the response of𝑀act. The proposed framework is illustrated in Figure 5.

5 EXPERIMENTAL SETUP

5.1 Instruction Dataset

To fine-tune the LLM for text paraphrasing, we employed the Paraphrase Adversaries from Word Scrambling (PAWS)
dataset [155], introduced by Google AI Language in 2019. This openly accessible dataset comprises 108,463 thoughtfully
crafted pairs, encompassing both paraphrases and non-paraphrases with significant lexical overlap. Specifically, we
utilized the PAWS-Wiki Labeled “Final” version, which includes 65,401 pairs generated through both word swapping
and back translation methods. All pairs have undergone human assessments for both paraphrasing fidelity and fluency.
The dataset is divided into Train, Validation, and Test sets containing 49,401, 8,000, and 8,000 respectively with no
overlap of source sentences across sets. Maintaining high quality, the dataset is structured with three columns—sentence
1 (𝐿1), sentence 2 (𝐿2), and a label (0 or 1). In this organization, sentence 1 (𝑙1 ∈ 𝐿1) represents the primary text, and
sentence 2 (𝑙2 ∈ 𝐿2) serves as its counterpart. A label of 1 signifies that sentence 2 is a paraphrase of sentence 1, while a
label of 0 indicates a distinct semantic meaning between the two. Combining all sets (train, validation, and test) into one
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dataset, comprising “65,401” samples, we exclusively consider the “28,904” samples with label (1), denoting paraphrasing,
and discarding samples with label (0). Subsequently, an 80-20 split was performed, allocating “23,123” samples to the
training set and “5,781” samples to the test set. Within the training set, a further subdivision was implemented for
hyperparameter tuning, with “2,312” samples, constituting 10% of the training data, reserved for validation purposes.

5.2 Toxic Data sets

5.2.1 Jigsaw-dataset. We employed a publicly available dataset provided by Google Jigsaw and Kaggle [4], which
comprises 159,571 Wikipedia comments human-rated for toxicity across six categories: toxic (15,294), severe toxic
(1,595), insult (7,877), obscene (8,449), threat (478), and identity hate (1,405). The remaining data (143,346), which is
not included in any type of toxicity, is considered nontoxic. Notably, this dataset exhibits a significant imbalance, with
the majority class consisting of nontoxic samples. Within this dataset, aside from nontoxic samples, others may bear
multiple labels. For instance, a sample could be labeled as both insult and obscene without carrying the toxic label, while
another might solely be labeled as insult, and yet another could have labels for both insult and toxic. Unfortunately,
precise descriptions or definitions for the various types are not published. Consequently, we classify all samples with at
least one form of toxicity as toxic and convert the dataset into binary labels (toxic, nontoxic). It is crucial to emphasize
that, in this paper, we use the term ’toxic’ to encompass any type of toxicity. As a result, the final dataset includes
143,346 nontoxic samples and 16,225 toxic samples. This implies that, for every toxic sample, approximately eight
nontoxic examples exist in the dataset. To ensure an adequately balanced dataset, we decided to generate nine samples
per toxic sample, resulting in a total of 146,025 samples. Since not all generated samples are necessarily toxic, we opted
for generating additional samples to maintain a sufficient number even if nontoxic ones are removed, thereby achieving
an equal balance of toxic and nontoxic samples in the final dataset.f

5.2.2 ToxiGen-dataset. ToxiGen is a machine-generated dataset comprising 274,000 statements, encompassing both
toxic and benign content associated with 13 distinct minority groups [52]. They gathered human-written sentences
showcasing implicit toxicity directed at the 13 minority groups, resulting in 26 sets of prompts. Each set includes two
variations (benign and toxic) for every target group. From these sets, we specifically chose 2000 prompts displaying
hateful content. To achieve our objective, we aim to rephrase toxic prompts and generate additional toxic samples.
Subsequently, to ensure a balanced dataset, we randomly select benign samples from the dataset equal to the number of
augmented toxic samples.

5.3 Instruction Fine-tuning

In our study, we employed FLAN-T5 [26] for the data augmentation task by paraphrasing existing samples in the
minority class. FLAN-T5 is a Fine-tuned Language Network (FLAN) built on the T5 (Text-To-Text Transfer Transformer)
architecture [69] and pre-trained on an extensive text corpus. It demonstrates robust generalization across multiple tasks
[10]. We specifically employed flan-t5-base, which features 250 million parameters, an encoder-decoder architecture,
and span corruption [26].

To fine-tune the flan-t5-base model through instruction, we employed the PAWS dataset subsection 5.1 for the
targeted paraphrasing task. Following the methodology explained in subsubsection 4.1.1, we first constructed the
instruction dataset. The PAWS dataset was adapted into the instruction dataset, where the prompt is generated by
wrapping inputs (∀𝑠1 ∈ 𝑆1) with paraphrasing instructions, and the response is provided by 𝑆2. The minimum and
maximum lengths of the input data are set to 10 and 300, respectively. As mentioned earlier in subsection 3.3, we utilized
Manuscript submitted to ACM
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LoRA to efficiently fine-tune the flan-t5-base model with limited computational resources. The training consisted of
15 epochs with a learning rate of 1 × 10−5, where loRA-rank (r) was set to 70, 𝛼 to 70, and dropout to 0.05. The total
number of trainable parameters for the original model is 255,319,296. With the use of PEFT, this figure is reduced to
7,741,440, signifying that only 3.03% of the model parameters are now trainable.

To assess the performance of the model for paraphrase generation before and after instruction fine-tuning, there is a
lack of consensus on the metrics appropriate for these task-specific models, resulting in variations in measurements
across different studies. One commonly utilized metric in the assessment of summarization tasks is ROUGE which
is Recall-Oriented Understudy for Gisting Evaluation [81]. This metric, which predominantly emphasizes recall, is
widely employed and extends its applicability to paraphrase evaluation [24, 107]. ROUGE captures the n-gram overlap
between responses generated by LM and reference responses provided by humans. The reference responses come
from the PAWS dataset, which has been manually generated by humans. It is diversified into several types, including
ROUGE-1, ROUGE-2, ROUGE-N, and ROUGE-L, ROUGE-W, ROUGE-S, each tailored to specific features. As an example,
ROUGE-N emphasizes gram count and calculates recall by examining matching unigrams in the context of unigram
analysis (ROUGE-1). Conversely, ROUGE-L evaluates the Longest Common Subsequence (LCS), ROUGE-W focuses on
Weighted LCS, ROUGE-S delves into skip-bigram co-occurrence statistics, and ROUGE-LSUM shows the Length of
LCS normalized by the total words in the reference. Additionally, we incorporated other metrics to assess the quality
of generated responses, includingMETEOR (Metric for Evaluation of Translation with Explicit Ordering) [14], and
BERTScore[159]. METEOR integrates semantic understanding into its translation evaluation process by assessing
matches in terms of exactness, stemming, or synonymy [120]. BERTScore leverages pre-trained contextual embeddings
from BERT-based models to compare words between the source and generated texts, employing cosine similarity for
matching [44]. We utilized METEOR 1.5 [29] and the “bert-base-uncased" model for BERTScore.

Table 2 presents the assessment outcomes using ROUGE, METEOR, and BERTScore metrics, comparing the initial
model pre-finetuning using Zero-shot learning (𝑓 𝑙𝑎𝑛𝑡5Zero-shot) with the instruct-tuned flan-t5-base (𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴).

The findings indicate that the 𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴 exhibits absolute percentage enhancements compared to the 𝑓 𝑙𝑎𝑛𝑡5Zero-sho),
with improvements in all metrics. Please note that PAWS does not include any toxic samples, and, so far, flan-t5-base is
only instruct-tuned for the paraphrasing task while preserving semantic meaning. It may not perform well in countering
toxic content or may unintentionally remove toxic words to avoid generating harmful samples. Therefore, further
optimization is needed using a reward function to perform paraphrasing while preserving semantic meaning and
addressing or potentially increasing the toxicity level.

In the following section, we explain our experimental setup for optimizing instruction fine-tuning of flan-t5-base
using a reward function.

5.4 Optimization

While the instruct-tuned flan-t5-base (𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴) has demonstrated improvements over the flan-t5-base using zero-
shot learning (𝑓 𝑙𝑎𝑛𝑡5initial), further optimization is possible through the integration of a reward function and PPO. Due
to the unstructured nature of toxic samples, characterized by online comments deviating from ordinary grammar and
vocabulary, the task of paraphrasing becomes notably challenging. To address this challenge, optimization involves
leveraging a reward function capable of evaluating text toxicity. By rewarding or penalizing the model accordingly, the
objective is to encourage the generation of toxic samples compared to nontoxic ones.
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Table 2. Comparing Model Performance in Paraphrasing Tasks Pre and Post Instruct-Finetuning

Model Metric Value

𝑓 𝑙𝑎𝑛𝑡5Zero-shot

ROUGE-1 0.324
ROUGE-2 0.289
ROUGE-L 0.318

ROUGE-LSUM 0.321
METEOR 0.317

BERTScore-Precision 0.332
BERTScore-Recall 0.323
BERTScore-F1 0.326

𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴

ROUGE-1 0.416
ROUGE-2 0.392
ROUGE-L 0.412

ROUGE-LSUM 0.413
METEOR 0.526

BERTScore-Precision 0.547
BERTScore-Recall 0.531
BERTScore-F1 0.539

For optimization, we follow the method explained by subsection 4.2 and use 𝑓 𝑙𝑎𝑛𝑡5LoRA as a reference model
(𝑓 𝑙𝑎𝑛𝑡5RF), where its adaptors are not trainable, and all weights are frozen, and an active model (𝑓 𝑙𝑎𝑛𝑡5ACT) with
trainable adaptors.

We also employ the Google Perspective API 3 as the toxicity detector in the reward model to evaluate the toxicity of
generated samples. The Perspective API utilizes machine learning to identify abusive comments, providing toxicity
scores between 0 and 1 as a probability indicator, not a severity measure. Higher scores indicate a greater likelihood of
resembling patterns in toxic comments, and developers can set thresholds based on these scores without quantifying
the degree of toxicity [64].

Additionally, we utilize another toxicity detector to score the toxicity of generated paraphrased samples and gain a
toxicity reward. The facebook/roberta-hate-speech4, which we refer to as 𝐻𝑎𝑡𝑒𝑅𝑜𝐵𝐸𝑅𝑇𝑎 in this paper, is a RoBERTa
model fine-tuned on a hate/toxic speech dataset [141], available on Hugging Face5, specifically designed for detecting
hate/toxic speech.

The goal is to compare the performance of 𝑓 𝑙𝑎𝑛𝑡5LoRA when optimized by PPO, and the toxicity detector in the
reward function is Perspective API (𝑓 𝑙𝑎𝑛𝑡5PPO-API), and when the optimization is done using 𝐻𝑎𝑡𝑒𝑅𝑜𝐵𝐸𝑅𝑇𝑎 as the
toxicity detector (𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa). Perspective API is more data-agnostic than 𝐻𝑎𝑡𝑒𝑅𝑜𝐵𝐸𝑅𝑇𝑎, and we expect to see
superior performance.

The toxicity reward is then added to the penalty. The reference model (𝑓 𝑙𝑎𝑛𝑡5RF) also acts as a fixed point of reference,
ensuring that when the active model hallucinates, it aligns closer to the reference model, providing positive responses
that are not bizarre. KL-Divergence is then calculated and used as a penalty. This penalty is added to the toxicity reward,
and the total reward is passed to the value function (PPO) to update the policy accordingly.

3https://perspectiveapi.com/
4https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
5https://huggingface.co/
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Table 3. Examining Paraphrasing Model Performance Enhanced by PPO Using Diverse Toxicity Reward Mechanisms

Model Metric Value

𝑓 𝑙𝑎𝑛𝑡5PPO-API

ROUGE-1 0.798
ROUGE-2 0.793
ROUGE-L 0.797

ROUGE-LSUM 0.798
METEOR 0.831

BERTScore-Precision 0.924
BERTScore-Recall 0.916
BERTScore-F1 0.920

𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa

ROUGE-1 0.788
ROUGE-2 0.784
ROUGE-L 0.789

ROUGE-LSUM 0.789
METEOR 0.803

BERTScore-Precision 0.893
BERTScore-Recall 0.889
BERTScore-F1 0.892

Table 4. Percentage Enhancement in Toxicity Scores for Paraphrasing Post-Optimization with PPO

Model Improvement in Toxicity Score (%)
Average Standard Deviation

𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa 12.35 27.44

𝑓 𝑙𝑎𝑛𝑡5PPO-API 28.42 25.18

To optimize both optimization techniques utilizing various toxicity reward functions, we utilized the trl package [142].
This involved setting generation parameters to Top-k=0.0, Top-p=1.0, output-min-length=50, output-max-length=512,
and implementing a maximum of 20 PPO steps.It is important to note that the Top-k sampler restricts sampling to
the k most probable tokens, while the Top-p (nucleus) sampler constrains sampling to the smallest set of tokens
[37, 56, 146]. Additionally, we conducted iterative tests using a validation set and experimented with random values for
hyperparameters to determine the optimal settings.

To assess the quality of paraphrased responses generated by 𝑓 𝑙𝑎𝑛𝑡5PPO-API and 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa, we utilized
ROUGE, METEOR, and BERTScore metrics to analyze the impact of PPO optimization on paraphrasing quality. Table 3
presents the results for these two models across various metrics. The findings indicate that their performance is quite
comparable, with optimization via PPO leading to noticeable improvements in paraphrasing quality. Furthermore, a
comparison between the results presented in Table 3 and those in Table 2, which includes all four models (includ-
ing 𝑓 𝑙𝑎𝑛𝑡5Zero-shot, 𝑓 𝑙𝑎𝑛𝑡5LoRA, 𝑓 𝑙𝑎𝑛𝑡5PPO-API, and 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa), underscores the significant enhancement in
generated response quality achieved through PPO optimization compared to Zero-shot learning or instruct-finetuning.

Furthermore, to assess the ability of the developed models to generate toxic samples, we employed a test set for
sentence paraphrasing tasks. We assessed the toxicity of the test set, calculated the average and standard deviation
of toxic scores for paraphrasing samples generated by the reference model (𝑓 𝑙𝑎𝑛𝑡5RF), and compared it with the
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Fig. 6. Illustration of the Back-Translation Technique, where English toxic samples are translated into multiple languages and then
back into English for data augmentation.

toxicity of samples generated by 𝑓 𝑙𝑎𝑛𝑡5PPO-API and 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa. Table 4 outlines the results, demonstrating the
enhancement in the toxicity of generated samples through the optimization task. Specifically, 𝑓 𝑙𝑎𝑛𝑡5PPO-API could
generate more toxic samples compared to 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa on average by 21.68% and 7.57%, respectively.

Please note that the toxicity of generated responces for samples in the test set was evaluated by HateBERT [20].
In other words, for samples generated by 𝑓 𝑙𝑎𝑛𝑡5PPO-API, and 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa, 𝐻𝑎𝑡𝑒𝐵𝐸𝑅𝑇 was employed to score
toxicity and facilitate comparison between the reference model and the optimized model.

After constructing the models for sentence-level augmentation through paraphrasing, we utilized the toxic datasets
detailed in subsection 5.2 to evaluate our proposed model.

5.4.1 Jigsaw. As previously mentioned, the jigsaw toxic dataset comprises 143,346 nontoxic samples and 16,225
toxic samples. The objective is to generate additional toxic samples to achieve a balanced dataset with an almost
equal number of toxic and nontoxic samples. To accomplish this, we aimed to augment toxic samples approximately
9 × 16, 225 = 146, 025, considering that not all augmented samples are necessarily toxic, and some may be removed later.

Tomeet this objective, we chose to generate nine different paraphrases per toxic sample using all instruct-tunedmodels
𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴 , 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa, 𝑓 𝑙𝑎𝑛𝑡5PPO-API. Subsequently, we transformed the toxic dataset into an instruction
dataset by encapsulating all 16,255 toxic samples with instructions to form prompts. These prompts were then fed
into the models with the following generation parameters: minimum length, top-k, top-p, and the number of returned
sequences set to (5, 0.0, 1.0, 9). The results will be presented in the results section subsection 6.1.

5.4.2 ToxiGen. We followed a similar approach as with the ToxiGen dataset, starting with 2,000 toxic samples. Utilizing
all models including 𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴 , 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa, and 𝑓 𝑙𝑎𝑛𝑡5PPO-API, we generated an additional 2,000 samples. In
other words, we paraphrased every sample in the ToxiGen dataset, resulting in 2,000 augmented samples. The outcomes
are detailed in the following section.

5.5 Baselines

We evaluate our proposed method for augmenting toxic samples through paraphrasing by comparing it against four
baselines. The first baseline is zero-shot learning technique (𝑓 𝑙𝑎𝑛𝑡5Zero-shot) , the second one is the instruct-tuned
Manuscript submitted to ACM
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FLAN-T5 model, represented as 𝑓 𝑙𝑎𝑛𝑡5LoRA. These baseline allows us to observe how the incorporation of RLHF can
enhance model performance, especially in the context of toxic paraphrasing.

The third baseline is the optimized model, 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa, utilizing 𝐻𝑎𝑡𝑒𝑅𝑜𝐵𝐸𝑅𝑇𝑎 as the toxicity detector in the
reward model. A comparison between our proposed technique and this baseline enables us to assess the impact of
different reward models on performance.

Additionally, we aim to broaden our comparison to include other data augmentation techniques, specifically, back-
translation. We have already detailed the setup for the first three baselines. In the following subsection, we will guide
you through the setup for data augmentation using back-translation.

5.5.1 Zero-shot Learning. In our approach to generating toxic text via paraphrasing, we leveraged zero-shot learning,
which involves training a model without explicit examples of the task it is meant to perform. We employed "flan-t5-base"
or this purpose.

First, we transformed our toxic dataset (subsection 5.2) into an instruction dataset. This involved encoding each
toxic sample along with a prompt requesting its paraphrasing while maintaining the same semantic meaning. This
method allowed us to generate toxic text without explicitly providing examples of such text. Instead, the model learned
to generate toxic text by understanding the underlying semantics of the provided prompts and applying paraphrasing
techniques accordingly.

5.5.2 Back Translation. To evaluate our proposed approach against existing text augmentation techniques, we utilized
back-translation to generate additional toxic samples. For Jigsaw dataset, our objective was to expand the dataset by
creating nine additional samples for each original toxic sample while maintaining a balanced distribution. We employed
the flan-t5-base model, known for its multilingual capabilities, for this task. However, we encountered a challenge when
translating English toxic samples into nine different versions of a single language, such as French. To overcome this
challenge, we opted to translate each English toxic sample into nine different languages and subsequently back into
English. Notably, we employed the Zero-shot learning technique for this process. In zero-shot learning, the model is
trained to perform a task without explicit examples or training data. In our case, we provided prompts to the flan-t5-base
model, instructing it to translate each English toxic sample into nine different languages. Crucially, we did not provide
any explicit examples for the model to learn from; instead, it generalized its translation capabilities based on the prompt
and input provided. This zero-shot learning technique allowed us to effectively generate diverse translations for each
English toxic sample without the need for specific training data in each target language. By back-translating these
multilingual translations into English, we were able to augment our dataset with additional diverse toxic samples,
enhancing the robustness of our evaluation.

We translate toxic samples into French, Spanish, Romanian, Bulgarian, German, Dutch, Portuguese, Albanian, and
Russian, followed by translating all samples back into English. The selection of these languages was determined through
trial and error, as we experimented with various languages. Flan-t5-base did not consistently respond appropriately
in some instances, generating responses with unintelligible characters, leading us to settle on the aforementioned
languages.

We used all toxic samples as input for the prompt requesting translation from English into different languages and
vice versa. The method is illustrated in Figure 6.

For the ToxiGen dataset, we followed a similar process, but with a slight modification. Instead of utilizing all nine
languages, we restricted our focus to English and French, and their respective translations, due to the limited availability
of toxic prompts (2k).
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Fig. 7. Total Toxic Samples Generated by Each Model: Toxicity Scores ≥ 0.3 (Jigsaw Dataset)

5.6 Computational Resources

We utilized the cloud computing instance ’Paperspace P6000’ equipped with NVIDIA P6000 GPUs. The P6000 features a
GPU with 24 GB memory, 30 GB RAM, 8 vCPUs, and supports multi-GPU instances of 2X and 4X. The cost per hour for
each task on the P6000 is $1.10.

The Google Perspective API is free and processes each query per second. To expedite the process, we employed five
different API keys simultaneously and divided the Test set into five parts, with each part assigned to a separate API key.

6 EXPERIMENTAL RESULTS

6.1 Generating Toxic Samples based on Jigsaw dataset

As detailed in section (section 5), the proposed technique (𝑓 𝑙𝑎𝑛𝑡5PPO-API) and four baselines, including 𝑓 𝑙𝑎𝑛𝑡5𝑍𝑒𝑟𝑜−𝑠ℎ𝑜𝑡 ,
𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴 , 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa, and 𝑓 𝑙𝑎𝑛𝑡5Back-translation, were employed to generate toxic samples.

A total of ’146,025’ samples were generated by each of the models 𝑓 𝑙𝑎𝑛𝑡5PPO-API, 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa, 𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴 ,
𝑓 𝑙𝑎𝑛𝑡5𝑍𝑒𝑟𝑜−𝑠ℎ𝑜𝑡 and 𝑓 𝑙𝑎𝑛𝑡5Back-translation. However, not all samples are deemed acceptable, as some may be repetitive,
nonsensical, or nontoxic, lacking coherence or logical consistency. Consequently, we conducted an analysis of the
generated samples, selecting only those that are readable for both humans and machines.

The 𝑓 𝑙𝑎𝑛𝑡5Zero-shot model struggled to produce multiple responses per request, leading us to limit each request to
one response. Ultimately, it generated 16,225 responses, each corresponding to a single prompt. However, the model
encountered difficulty in generating distinct responses. Specifically, for 458 toxic samples, the paraphrased responses
were identical. To address this issue, we filtered out the redundant responses, resulting in a final count of ’15,763’ unique
responses.

We leveraged Google Perspective API to evaluate the toxicity of our selected samples. Notably, we also incorporated
𝐻𝑎𝑡𝑒𝑅𝑜𝐵𝐸𝑅𝑇𝑎 into our analysis to mitigate potential bias, ensuring a comprehensive assessment of toxicity. Interestingly,
the results from both evaluators were highly consistent. As such, for the sake of clarity and simplicity in reporting, we
focus solely on the findings obtained through Perspective API.
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Table 5. Composition of Balanced Datasets: Model-Generated Toxic Samples and Random Nontoxic Samples-Jigsaw

Model Generated Toxic Samples > 0.3 Total Toxic Samples Nontoxic Toxic + Nontoxic

𝑓 𝑙𝑎𝑛𝑡5Zero-shot 8,691 24,916 24,916 49,832
𝑓 𝑙𝑎𝑛𝑡5Back-translation 29,583 45,808 45,808 91,616
𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴 109,699 125,924 125,924 251,848
𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa 112,704 128,929 128,929 257,858
𝑓 𝑙𝑎𝑛𝑡5PPO-API 122,951 139,176 139,176 278,352

Following evaluation with Perspective API, all samples received toxicity scores ranging from 0 to 1. Subsequent
manual inspection revealed an apparent threshold: samples scoring below 0.3 typically exhibited nontoxic characteristics,
while those surpassing 0.3 were deemed potentially toxic. As a result, we made the decision to discard samples with
scores below 0.3 and focus solely on those with toxicity scores above this threshold. This ensured that only samples
exhibiting a significant level of toxicity were included in our analysis. It is worth noting that during the training phase,
we incentivized the model to generate responses with higher toxicity by rewarding samples with scores above 0.7. After
experimenting with various thresholds, we determined that a threshold of 0.7 or higher yielded the most satisfactory
results during hyperparameter tuning. Consequently, this threshold was chosen as the desired level of toxicity for our
study.

Figure 7 below displays the final number of toxic samples generated by each model. The analysis reveals that the
proposed model (𝑓 𝑙𝑎𝑛𝑡5PPO-API) generates a higher number of toxic samples (122,951) compared to other models. In
contrast, 𝑓 𝑙𝑎𝑛𝑡5Zero-shot exhibits the poorest performance, generating only 8,691 toxic samples out of 15,763 responses
generated. Following this, 𝑓 𝑙𝑎𝑛𝑡5Back-translation generates 29,583 toxic samples out of the total 146,025 generated samples.
Overall, the instruction-tuned models demonstrate exceptional performance in the task of text data augmentation, with
potential for further enhancement through Reinforcement Learning with Human Feedback (RLHF). Back-translation
technique did not work well, because toxic language often contains subtle nuances, sarcasm, or contextual references
that may not translate accurately or be preserved through this process. As a result, paraphrased versions may fail to
capture the original toxicity or convey the intended tone. Moreover, the complexity of toxic language and the need for
contextual understanding pose challenges for back-translation models, which may struggle to accurately reproduce the
nuanced toxicity present in the original text. Additionally, the effectiveness of back-translation relies on the quality and
capabilities of the underlying translation model, which may further limit its suitability for toxic text paraphrasing tasks.

Now, we need to understand how the generated toxic samples (GTS) can impact the performance of classifiers
for toxic language detection. Therefore, we first build balanced datasets and then employ some classifiers to test the
quality and effectiveness of the balanced dataset. Since we have ensured that the original toxic samples (16,225 toxic
samples) are not included in the augmented dataset, we add them to all augmented samples. Subsequently, we randomly
select an equal number of nontoxic samples from the toxic dataset in subsection 5.2 to create a balanced dataset. Note
that different models generated different numbers of toxic samples, as illustrated in Figure 7. Therefore, we will have
balanced datasets with varying numbers of toxic and nontoxic samples, as shown in Table 5.

6.2 Classification of Balanced Datasets Generated from Jigsaw Prompts

After preparing all balanced datasets, our focus shifted to evaluating the quality of the generated samples and determining
which dataset could enhance the accuracy of classifiers for toxicity detection. In this phase, we selected four different
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Table 6. Classification Results-CNN-Jigsaw

Dataset Accuracy Precision Recall F1-Score

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 94.78% 71.39% 81.25% 76%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 89.20% 88.42% 90.85% 89.50%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 90.20% 88.85% 91.95% 90.37%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 93.75% 92.03% 95.79% 93.88%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 94.01% 92.22% 96.12% 94.13%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 95.28% 94.23% 96.46% 95.33%

Table 7. Classification Results-CNN-FastText-Jigsaw

Dataset Accuracy Precision Recall F1-Score

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 89.98% 50.40% 91.52% 65%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 90.49% 89.12% 91.63% 90.62%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 91.32% 92.68% 89.72% 91.18%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 93.35% 90.69% 96.61% 93.56%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 94.00% 91.60% 96.31% 94.17%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 94.23% 92.47% 96.89% 94.35%

classifiers; two of them are CNN-based, and the other two are transformer-based, to be trained/fine-tuned using the
balanced datasets and the original unbalanced toxic dataset. The classifiers include Convolutional Neural Networks
(CNN) [105], CNN with FastText embeddings, where FastText embeddings are a vector representation technique created
and released by Facebook AI research [46]. Furthermore, our selection of transformer-based models encompassed
Bidirectional Encoder Representations from Transformers (BERT) [32], HateBERT [20], a specialized variant of BERT
tailored for detecting abusive language in English, and RoBERTa [87], a robust BERT model that employs dynamic
masking during pre-training to enhance its performance. Additionally, we incorporated BERTweet [102], a pre-trained
language model designed specifically for English Tweets, to further enrich our analysis.

As discussed, we incorporated the primary Jigsaw toxic dataset including 143,346 nontoxic samples, and 16,225 toxic
samples to examine the impact of an imbalanced training set on classifier performance. To mitigate dataset imbalance,
we implemented a weighted loss function during training, prioritizing the minority class. This strategy enhances the
model’s ability to learn from underrepresented data, effectively addressing challenges posed by imbalanced distributions.
Traditional methods like oversampling and undersampling, as tested on the Jigsaw dataset, often fall short compared to
more sophisticated approaches such as ensemble learning [119]. Undersampling risks losing valuable data and features,
potentially degrading model performance, while oversampling may introduce redundancy and overfitting, particularly
if not carefully applied. Additionally, both methods may fail to accurately capture the underlying data distribution,
leading to biased models and suboptimal performance. Details about the experimental setup of classifiers are mentioned
in Appendix A. The performance of classifiers is then evaluated based on Accuracy, Precision, Recall, and F1-score. All
results per classifier are demonstrated in Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11.

The results indicate that the dataset generated by 𝑓 𝑙𝑎𝑛𝑡5PPO-API significantly enhanced the performance of all
classifiers, outperforming alternative versions trained or fine-tuned with different datasets. Classifiers developed using
𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑓 𝑙𝑎𝑛𝑡5PPO-API achieved the highest metrics in accuracy, precision, recall, and F1-score. Despite addressing the
imbalance issue with a weighted loss function, prioritizing F1-score for comparison due to the dataset’s imbalance
Manuscript submitted to ACM
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Table 8. Classification Results-BERT-Jigsaw

Dataset Accuracy Precision Recall F1-Score

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 96.04% 75.75% 89.83% 82.19%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 94.31% 92.74% 96.14% 94.41%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 95.15% 95.61% 94.66% 95.13%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 96.70% 96.11% 97.34% 96.72%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 96.82% 96.28% 97.41% 96.84%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 97.27% 96.91% 97.65% 97.28%

Table 9. Classification Results-RoBERTa-Jigsaw

Dataset Accuracy Precision Recall F1-Score

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 96.68% 82.11% 86.19% 84.10%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 94.27% 93.27% 95.42% 94.33%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 95.68% 95.88% 95.45% 95.67%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 96.65% 95.53% 97.69% 96.59%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 96.65% 95.89% 97.47% 96.67%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 97.01% 96.13% 97.97% 97.04%

Table 10. Classification Results-HateBERT-Jigsaw

Dataset Accuracy Precision Recall F1-Score

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 96.52% 82.9% 86.11% 84.55%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 94.32% 93.24% 95.56% 94.39%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 95.35% 95.51% 95.16% 95.34%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 96.72% 95.88% 97.63% 96.74%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 96.75% 96.07% 97.48% 96.77%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 97.03% 96.20% 97.98% 97.12%

Table 11. Classification Results-BERTweet-Jigsaw

Dataset Accuracy Precision Recall F1-Score

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 96.41% 82.45% 86.03% 84.21%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 94.22% 93.19% 95.44% 94.24%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 95.48% 95.49% 95.12% 95.30%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 96.68% 95.83% 97.60% 96.64%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 96.71% 96.67% 97.41% 96.96%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 97.02% 96.26% 97.95% 97.00%

revealed BERT developed by 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑓 𝑙𝑎𝑛𝑡5PPO-API as the top-performing classifier with an outstanding F1-score of
97.28%. Following closely is HateBERT, fine-tuned by 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑓 𝑙𝑎𝑛𝑡5PPO-API , which achieved a notable F1-score of
97.12%. Conversely, classifiers developed using the 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw dataset did not yield satisfactory results. Fur-
thermore, classifiers developed with the 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa dataset exhibited good performance, closely trailing
𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑓 𝑙𝑎𝑛𝑡5PPO-API , but fell short of surpassing our proposed technique.
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Fig. 8. Total Toxic Samples Generated by Each Model: Toxicity Scores ≥ 0.3 (ToxiGen Dataset)

Table 12. Composition of Balanced Datasets: Model-Generated Toxic Samples and Random Nontoxic Samples-ToxiGen

Model Generated Toxic Samples > 0.3 Total Toxic Samples Nontoxic Toxic + Nontoxic

𝑓 𝑙𝑎𝑛𝑡5Zero-shot 139 2,139 2,139 4,278
𝑓 𝑙𝑎𝑛𝑡5Back-translation 341 2,341 2,341 4,682
𝑓 𝑙𝑎𝑛𝑡5𝐿𝑜𝑅𝐴 804 2,804 2,804 5,608
𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa 1,682 3,682 3,682 7,364
𝑓 𝑙𝑎𝑛𝑡5PPO-API 1,894 3,894 3,894 7,788

6.3 Generating Toxic Samples and Classification with ToxicGen Dataset

We selected 2,000 toxic prompts and utilized various models, including 𝑓 𝑙𝑎𝑛𝑡5Zero-shot, 𝑓 𝑙𝑎𝑛𝑡5LoRA, 𝑓 𝑙𝑎𝑛𝑡5PPO-RoBERTa,
𝑓 𝑙𝑎𝑛𝑡5PPO-API, and 𝑓 𝑙𝑎𝑛𝑡5back-translation, to generate toxic samples. It is important to note that we aimed to generate
a maximum of 2,000 samples, as only one response was requested per prompt. Subsequently, all generated samples
underwent toxicity evaluation using the Perspective API, and only those with a toxicity score of 0.30 or higher were
retained. Figure 8 illustrates the distribution of generated toxic samples across different models.

Then, all augmented samples were added to the initially selected toxic samples used as prompts to create a balanced
dataset. To achieve balance, an equal number of nontoxic (benign) samples were randomly selected from the ToxiGen
dataset. The final results are shown in Table 12. The results indicate that applying reinforcement learning for instruction
tuning surpasses other techniques such as zero-shot learning, back-translation, or even simple instruction fine-tuning.
Moreover, utilizing the Perspective API as a toxicity evaluator for toxicity reward yields better performance compared
to HateRoBERTa. Finally, 1,894 toxic samples were generated by 𝑓 𝑙𝑎𝑛𝑡5PPO-API, which, combined with the initial 2,000
toxic prompts, resulted in a total of 3,894 toxic samples. Subsequently, a balanced dataset comprising 7,788 samples,
both toxic and nontoxic, was created.

After creating balanced datasets from ToxiGen, various classifiers, such as CNN, CNN-FastText, BERT, RoBERTa,
and HateBERT, and BERTweet were trained on the complete datasets. Each dataset was split into training and testing
sets, with an 80% and 20% ratio, respectively. The classification results can be found in Table 13, and Table 14.
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Table 13. CNN-Based Classification Performance-ToxiGen

Model Dataset Accuracy Precision Recall F1-Score

CNN

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 90.18% 89.31% 91.67% 90.24%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 91.34% 89.97% 93.78% 91.42%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 92.40% 91.73% 94.15% 92.61%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 93.36% 91.58% 94.28% 93.71%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 94.30% 93.86% 95.75% 94.62%

CNN-FastText

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 91.20% 90.42% 92.85% 91.50%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 92.31% 91.27% 93.84% 92.69%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 93.75% 91.03% 94.79% 93.88%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 94.01% 94.22% 95.12% 94.24%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 95.28% 94.10% 96.73% 95.47%

Table 14. Transformer-Based Classification Performance-ToxiGen

Model Dataset Accuracy Precision Recall F1-Score

BERT

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 92.46% 91.25% 92.84% 92.39%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 92.71% 91.44% 93.06% 92.68%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 96.88% 95.03% 96.87% 96.75%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 97.52% 97.12% 96.22% 97.43%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 97.98% 96.23% 98.26% 98.05%

RoBERTa

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 92.01% 90.34% 93.59% 92.27%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 92.68% 91.38% 92.91% 92.46%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 95.88% 94.39% 95.97% 95.76%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 96.83% 96.22% 97.12% 96.43%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 97.31% 96.04% 97.59% 97.29%

BERTweet

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 92.27% 93.59% 90.34% 92.16%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 92.23% 93.83% 91.48% 92.57%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 96.05% 94.83% 96.11% 95.98%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 96.94% 96.17% 97.29% 96.88%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 97.36% 96.54% 97.62% 97.34%

HateBERT

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 92.35% 91.22% 92.76% 92.27%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 92.65% 91.39% 93.01% 92.59%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 96.81% 94.98% 96.79% 96.67%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 97.47% 97.02% 96.15% 97.25%
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 97.85% 97.19% 98.13% 97.92%

The classification results for datasets developed using ToxiGen prompts show that classifiers trained on the
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API dataset outperform other models. Overall, transformer-based models outperform CNN-based models.
Specifically, BERT fine-tuned with the 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API dataset achieves the best performance with an accuracy of
97.98% and an F1-score of 98.05%. In contrast, the CNN classifier trained on the 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot dataset performs the
worst, with an accuracy of 90.18% and an F1-score of 90.24%.

To conclude, our proposed approach to text data augmentation for constructing a balanced dataset has not only
demonstrated its effectiveness in generating a larger quantity of high-quality toxic samples but also led to enhanced
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performance across a diverse range of evaluation metrics. This augmentation technique, leveraging state-of-the-art
language models and reinforcement learning, provides a straightforward and effective strategy for addressing imbalances
in toxic datasets, contributing to superior classifier performance in toxicity detection tasks.

However, an important question arises regarding the significance of our improvements. Despite ourmodel consistently
outperforming the baseline methods, the progress might seem modest, especially considering that the baselines were
already quite effective. It is crucial to emphasize that even small improvements in accuracy and performance have
significant implications, particularly in areas such as detecting toxic content in online conversations. Additionally,
the ability of our method to create more toxic samples is extremely useful, especially when there are not many toxic
examples available.

In terms of the computational aspect, we understand the importance of balancing the complexity of our model with
the available resources. Our approach includes methods such as PEFT to reduce computational overhead and make
better use of memory during training. Furthermore, we use RLHF to improve our model’s performance while keeping
computational demands low.

In summary, our proposed model makes a significant contribution to the field of toxicity detection by addressing
data imbalances and strengthening our model’s resilience.

7 CONCLUSION

In conclusion, our paper presents a novel approach to sentence-level text data augmentation, employing reinforcement
learning guided by human feedback to enhance the performance of the fine-tuned FLAN-T5 model. By prioritizing
paraphrasing while maintaining semantic coherence and generating toxic responses, our method effectively tackles
the challenges posed by imbalanced datasets in toxic language detection. Central to our approach is the utilization of
Proximal Policy Optimization as a reinforcement learning technique, coupled with the Google Perspective API as a
toxicity evaluator and the integration of Kullback-Leibler Divergence. These components synergistically produce high-
quality toxic responses, yielding a balanced and diverse dataset that outperforms existing data augmentation methods.
Through a comprehensive exploration of various methodologies for toxic text generation, including Zero-shot learning,
Back-translation, and instruct-tuned FLAN-T5, optimized with Proximal Policy Optimization (PPO) and evaluated
using different toxicity evaluators such as HateRoBERTa and the Google Perspective API, we have demonstrated the
superiority of our proposed framework. Our findings, validated across two distinct toxic datasets, Jigsaw and ToxiGen,
consistently point to the efficacy of instruct-tuned FLAN-T5 with PPO and Perspective API as a superior approach.
Our approach has yielded impressive results, generating 122,951 toxic samples with a toxicity score exceeding 30%,
highlighting its potential to significantly advance toxicity detection models in online conversations. Notably, over
20,000 of the generated samples exhibit toxicity levels exceeding 90%, further emphasizing the impact of our method on
enhancing toxicity detection models. However, it is essential to acknowledge the limitations of our approach, which we
aim to address in future research endeavors. Specifically, the simplification of the Jigsaw toxic dataset into two broad
categories limits the granularity of our analysis. Future work will focus on generating samples for individual toxic labels
to create a more detailed and balanced dataset, enabling a deeper understanding and modeling of various forms of toxic
language. Additionally, exploring the performance of other FLAN-T5 variants or larger models could provide additional
insights and improvements. Moreover, addressing the need for human processing of generated responses remains a
challenge that will be a focus of future iterations of our research. In conclusion, our study represents a significant
advancement in the development of robust toxicity detection models for online conversations. By acknowledging
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current limitations and outlining future research directions, we aim to continue making impactful contributions to the
field of natural language processing and online moderation.
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A APPENDIX A

In this section, we outline the experimental configurations for the classifiers developed in this research. We divided all
datasets, including five balanced datasets generated using TDA and the original imbalanced dataset, into training and
testing sets. The training set consists of 70% of the data, with 10% allocated for the validation set, and the remaining 20%
designated for the test set, applied to both the Jigsaw and ToxiGen datasets. To ensure consistency across classifiers and
datasets, we used a random-state approach for the train-test split, resulting in identical training and testing sets for all
classifiers. All six classifiers received the same training and testing sets to maintain uniformity in the experimental
setup.

A.1 CNN-based: CNN and CNN-fastText for balanced datasets

We started the training process with a data cleaning and preprocessing phase as the initial step. This process includes
the removal of URLs, punctuation, digits, stop-words, and the normalization of cases, acronyms, and abbreviations.
Subsequently, the tokenization process takes place, with text comments either truncated or padded to achieve a fixed
length before being transformed into vector words. The model architecture incorporates four 1D convolutional layers
with multiple window sizes and output channels. A pooling layer is employed to reduce the dimensionality of the
convolutions, followed by a global max pooling step to further diminish the dimension. ReLU activation functions are
used in the hidden layers, while the output layer employs a Sigmoid activation function. During training, the binary
cross-entropy loss function measures the disparity between predicted and actual labels. The Adam optimizer is applied
to update the model’s parameters, facilitating faster convergence and improved accuracy.

To expedite the training process, we integrated pre-trained fastText word embeddings into our CNN model, resulting
in the CNN-fastText variant. Specifically, we utilized the “crawl-300d-2M” embeddings, consisting of 2 million word
vectors trained on Common Crawl using a continuous bag of words (CBOW) with position weights, character n-grams
of length 5, and a window of size 5 and 10 negatives. The CNN model convolves over these embedded vectors, which
then undergo max pooling to reduce dimensionality. The final classification is executed using fully connected layers
with a Sigmoid activation function. Incorporating pre-trained word embeddings significantly reduced the training time
of our CNN model. We systematically tested hyperparameters to optimize results for each dataset. A detailed overview
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Table 15. Experimental Configurations for CNN-based Classifiers based on Jigsaw Dataset

Model Dataset Epoch Batch Learning Dropout Filters Max Max
size rate rate Features Length

CNN

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 35 128 5.00E-05 0.5 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 25 128 5.00E-03 0.3 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 18 512 2.00E-05 0.5 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 28 512 2.00E-05 0.3 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 15 128 2.00E-04 0.5 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 10 512 1.00E-05 0.5 300 100000 400

CNN-fasText

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 19 32 1.00E-03 0.4 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 17 256 5.00E-05 0.5 256 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 33 128 3.00E-04 0.3 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 6 256 2.00E-04 0.4 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 22 256 5.00E-04 0.5 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 25 512 5.00E-05 0.5 128 100000 400

Table 16. Experimental Configurations for CNN-based Classifiers based on ToxiGen Dataset

Model Dataset Epoch Batch Learning Dropout Filters Max Max
size rate rate Features Length

CNN

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑ToxiGen 31 512 5.00E-05 0.5 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 26 256 5.00E-03 0.5 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 20 128 5.00E-05 0.5 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 22 512 5.00E-05 0.4 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 27 256 5.00E-05 0.4 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 17 512 5.00E-05 0.4 128 100000 400

CNN-fasText

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 12 256 2.00E-03 0.5 128 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 15 256 5.00E-05 0.5 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 24 128 4.00E-04 0.5 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 18 64 4.00E-04 0.5 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 15 64 5.00E-05 0.5 300 100000 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 23 64 5.00E-05 0.5 300 100000 400

of the final hyperparameter settings is presented in Table 15 for datasets developed using prompts from the Jigsaw
dataset and in Table 16 for those developed using the ToxiGen dataset.

A.2 Transformer-based: BERT, RoBERTa, HateBERT, and BERTweet

We used the Huggingface transformer library, compatible with Tensorflow 2.14.0, for our work. To identify toxic content,
we employed the bert-base-uncased, roberta-base, GroNLP/hateBERT, and vinai/bertweet-base variants. Text data
preparation involved the use of tokenizers, which convert raw text into tokens compatible with BERT/RoBERTa. For
each model, we explored a distinct set of hyperparameters randomly to identify the configuration yielding the most
accurate results. The optimal hyperparameters for each model developed via Jigsaw-based datasets are detailed via
Table 17 and Table 18 for ToxiGent-based datasets.
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Table 17. Experimental Configurations for Transformer-based Classifiers: Jigsaw-based Datasets

Model Dataset Epoch Batch Learning Dropout Max
size rate rate Length

BERT

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 2 16 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 2 8 3e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 2 8 3e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 1 8 4e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 1 2 2e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 1 4 2e-5 0.5 400

RoBERTa

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 2 16 4e-5 0.3 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 2 8 3e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 3 8 3e-5 0.3 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 1 16 3e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 1 8 3e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 1 2 3e-5 0.4 400

HateBERT

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 2 16 4e-5 0.3 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 2 128 3e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 2 64 2e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 1 16 2e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 1 4 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 1 4 2e-5 0.5 400

BERTweet

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Jigsaw 1 16 4e-5 0.3 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 1 256 3e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 1 64 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 1 8 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 1 4 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 1 4 2e-5 0.5 400

Table 18. Experimental Configurations for Transformer-based Classifiers: ToxiGen-based Datasets

Model Dataset Epoch Batch Learning Dropout Max
size rate rate Length

BERT

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 2 128 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 2 64 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 1 16 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 1 2 2e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 1 2 2e-5 0.5 400

RoBERTa

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 2 128 2e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 1 64 2e-5 0.3 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 1 16 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 1 4 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 1 4 2e-5 0.4 400

HateBERT

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 2 256 2e-5 0.4 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 2 128 2e-5 0.3 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 1 16 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 1 2 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 1 2 2e-5 0.5 400

BERTweet

𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑Zero-shot 2 128 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑Back-translation 2 64 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐿𝑜𝑅𝐴 1 64 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-RoBERTa 1 2 2e-5 0.5 400
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑PPO-API 1 2 2e-5 0.5 400
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