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Addressing the challenge of toxic language in online discussions is crucial for the development of effective
toxicity detection models. This pioneering work focuses on addressing imbalanced datasets in toxicity
detection by introducing a novel approach to augment toxic language data. We create a balanced dataset
by instructing fine-tuning of Large Language Models (LLMs) using Reinforcement Learning with Human
Feedback (RLHF). Recognizing the challenges in collecting sufficient toxic samples from social media
platforms for building a balanced dataset, our methodology involves sentence-level text data augmentation
through paraphrasing existing samples using optimized generative LLMs. Leveraging generative LLM, we
utilize the Proximal Policy Optimizer (PPO) as the RL algorithm to fine-tune the model further and align it
with human feedback. In other words, we start by fine-tuning a LLM using an instruction dataset, specifically
tailored for the task of paraphrasing while maintaining semantic consistency. Next, we apply PPO and a
reward function, to further fine-tune (optimize) the instruction-tuned LLM. This RL process guides the
model in generating toxic responses. We utilize the Google Perspective API as a toxicity evaluator to assess
generated responses and assign rewards/penalties accordingly. This approach guides LLMs through PPO
and the reward function, transforming minority class samples into augmented versions. The primary goal
of our methodology is to create a balanced and diverse dataset to enhance the accuracy and performance
of classifiers in identifying instances from the minority class. Utilizing two publicly available toxic datasets,
we compared various techniques with our proposed method for generating toxic samples, demonstrating
that our approach outperforms all others in producing a higher number of toxic samples. Starting with an
initial 16,225 toxic prompts, our method successfully generated 122,951 toxic samples with a toxicity score
exceeding 30%. Subsequently, we developed various classifiers using the generated balanced datasets and
applied a cost-sensitive learning approach to the original imbalanced dataset. The findings highlight the
superior performance of classifiers trained on data generated using our proposed method. These results
highlight the importance of employing RL and a data-agnostic model as a reward mechanism for augmenting
toxic data, thereby enhancing the robustness of toxicity detection models.
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1 Introduction

The rapid development of communication technology and the Internet has transformed virtual
communities, making social media platforms more accessible and user-friendly, yet also presenting
significant challenges [3]. Toxic language, a prevalent issue within online discussions, is frequently
characterized by disrespectful responses that can deter participants from engaging in meaningful
conversations [93, 116]. To ensure the safety of online civil discussions and mitigate the potential
harm caused by toxic language, the vast amount of user-generated content (UGC) necessitates
the implementation of data-driven techniques, including Machine Learning (ML) algorithms,
for the automatic classification of UGC within modern content moderation systems [22, 74, 118].
Developing efficient detection systems for toxic content is heavily dependent on the availability of
appropriate training datasets. This is in line with the fundamental principle in data-driven research,
which states that the quality of outputs is directly influenced by the quality of inputs [140].

Imbalanced datasets and lack of annotated samples pose significant challenges in various classi-
fication tasks, such as toxicity detection [100, 118]. In these datasets, one class is often much more
numerous than the others, typically known as the majority class, which can result in the develop-
ment of biased models that yield unsatisfactory results when dealing with the underrepresented
minority class [54, 100]. The problem is particularly acute in toxicity detection, as the frequency
of toxic samples is often low compared to nontoxic ones. In other words, it is difficult to collect
roughly the same number of samples for both toxic and nontoxic classes. For instance, Madukwe
et al. [90] highlighted a pronounced class imbalance problem in hate speech detection, with the
hate class constituting less than 12% in multi-class datasets and less than half in binary datasets.
Additionally, a systematic review of datasets for automatic hate speech detection revealed that 41%
of the datasets are small (0-5 k posts), with 37% containing less than 20% offensive content [63].
This confirms the challenges associated with obtaining extensive labeled data and underscores the
potential pitfalls of class imbalance in training datasets. The imbalance in data distribution can
lead to overfitting and hinder generalizability, especially for Deep Learning (DL) models. This
imbalance may result in models that excel in detecting nontoxic language but perform poorly on
toxic content.

To address imbalanced classification challenges, a diverse set of techniques is utilized at both the
data and algorithmic levels [21]. At the data level, these techniques encompass various re-sampling
approaches, including oversampling of minority classes and undersampling of the majority class
[100, 135]. Undersampling techniques consist of methods such as random undersampling [109],
Inverse random undersampling [136], and directed undersampling (informed undersampling) [35].
On the contrary, oversampling techniques [45] include random oversampling with replacement,
directed oversampling (which entails informed choices for replacing samples, rather than random
selection), and oversampling methods with informed generation of new samples. Moreover,
an alternative strategy involves a hybrid method [24] that combines both undersampling and
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oversampling techniques. In addition to data-level strategies, at the algorithmic level, methods
such as cost-sensitive learning (which entails adjusting costs associated with different classes),
asymmetric classification, dimension reduction, expert systems, and ensemble techniques such as
bagging, boosting, and stacking all assume crucial roles [42, 50, 55, 115, 129, 132]. Although these
techniques have shown promising results in improving the performance of models on imbalanced
datasets, they also have limitations. Oversampling and undersampling can lead to overfitting
and underfitting, respectively, and may not work well when the dataset is extremely imbalanced
[49, 143]. Cost-sensitive learning requires an accurate estimation of the misclassification costs,
which may be difficult in practice [156]. In the case of ensemble methods, as sampling techniques
are used to balance the data in each iteration, they can potentially eliminate valuable information
and be prone to overfitting [133]. To mitigate overfitting, an alternative method is automatic
data augmentation (DA), involving the creation of synthetic data based on an existing dataset
[104]. This can contribute to improving the generalizability of text classification models, making
them more adept at performing well with unseen data [85]. The methods for augmenting text
data depend on the specific task and the type of text data under consideration [104]. Text data
augmentations (TDA) can be classified into several categories, including the injection of textual
noise or spelling errors, word replacement using a thesaurus, and the generation of paraphrases
through syntactic tree transformations, back-translation, and pre-trained transformer networks
[27, 128]. However, these techniques are not yet ideal, and their effectiveness is hindered because
the structure and meaning of the text are closely connected, making it challenging to manipulate
one aspect without affecting the other satisfactorily [85].

Therefore, to address the challenge of balancing datasets and enhancing the detection of toxic
language through a data augmentation approach, there is a pressing need to develop effective
techniques for generating toxic text. While some solutions have been proposed to generate toxic
text [52], and general text generation techniques have been tested for toxic language detection
[34, 68, 152], they all exhibit limitations. For instance, certain methods necessitate precise and
well-written prompts, potentially performing inadequately with original samples. Others rely on
zero-shot learning, only fine-tuning models for toxic/nontoxic samples, neglecting the importance
of instruction fine-tuned language models for specific tasks. Another issue arises from assigning
the same label to generated samples as the prompt sample, even if the generated content may not
be toxic.

As we address these challenges, our objective is to introduce a novel technique for sentence-
level TDA, specifically targeting toxic language. This approach aims to overcome the limitations
observed in previous works by making a substantial contribution to the development of techniques
for creating a balanced and diverse toxic dataset, ultimately enhancing classifier accuracy and
performance.

We present a TDA framework guided by Reinforcement Learning from Human Feedback
(RLHF) [39], specifically employing the Proximal Policy Optimization (PPO) algorithm [124].
This framework operates on an Instruction Fine-Tuned (IFT) Large Language Model (LLM)
[163] and focuses on refining the model’s ability to paraphrase text. The process begins by fine-
tuning the LLM using an instruction dataset derived from the PAWS dataset (Paraphrase Adver-
saries from Word Scrambling) [155]. PAWS is specifically chosen because it is human-labeled,
enabling it to distinguish between paraphrases with equivalent semantic meaning and those with
high lexical overlap but different meanings. This helps ensure that the paraphrasing task maintains
semantic accuracy. Throughout our experiment, we exclusively concentrate on paraphrase pairs
exhibiting identical semantic meaning. After this initial fine-tuning, the model is further optimized
using PPO, in conjunction with a reward model that guides the paraphrasing and augmentation
process. PPO operates within a hybrid architecture that combines value-based and policy-based
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methods, enhancing training stability by iteratively updating the model’s policy in a proximal
manner, preventing drastic changes that could disrupt training.

To encourage paraphrasing while maximizing toxicity, we utilize the Google Perspective API
to evaluate the toxicity level of each generated text. This API assigns toxicity scores ranging
from 0 to 1, indicating the likelihood of a text being toxic. This incentivizes the model to
produce toxic samples as it seeks to maximize rewards. Additionally, to prevent the LLM from
generating peculiar and non-human-like responses solely to maximize rewards, we employ
Kullback-Leibler (KL) Divergence as a penalty. This divergence is calculated between the active
policy, influenced by reinforcement signals for toxicity, and the reference policy derived from the
initial instruction-tuned LLM. This measure ensures that when the model is hallucinated, it aligns
closer to the reference model, striking a balance between maximizing rewards and maintaining
human-like response characteristics. By imposing this penalty, the model is motivated to generate
paraphrases that closely align with the reference model, thus achieving a balance between
maximizing rewards and preserving human-like response characteristics.

It is important to clarify why we refer to this approach as RLHF. Although we use automated
tools such as the Google Perspective API for toxicity scoring, the human-labeled PAWS dataset
plays a central role in training PPO, and the Perspective APl itself is built upon data that was labeled
by humans. As a result, our approach is grounded in human feedback, with the PPO optimization
process benefiting from this foundational human-labeled data. Therefore, despite the involvement
of automated components, the essence of our framework lies in leveraging human-labeled datasets
to guide the reinforcement learning process.

We evaluated the proposed method and compared it with other techniques using the Jigsaw
toxic dataset [26] and the ToxiGen dataset [52]. In summary, our contributions can be outlined as:

— A novel method for enhancing toxic text data through Instruction Fine-tuning on the pre-
trained FLAN-T5 model, precisely crafted for paraphrasing with semantic equivalence using
PAWS.

— Applying Proximal Policy Optimization (PPO) to further fine-tune (optimize) the
instruction-tuned FLAN-T5; our approach incorporates a reward model within the PPO
framework to ensure the generated responses maintain the specified level of toxicity.

— Utilizing the Google Perspective API to score toxicity and assign rewards accordingly, while
implementing KL-Divergence as a penalty in the reward function to ensure the generated
text maintains human-like responses.

— Expanded the imbalanced Jigsaw dataset, which originally included 143,346 nontoxic
samples and 16,225 toxic samples, into a balanced dataset comprising over 278,000 samples.

— Outperforming other data augmentation techniques, such as zero-shot learning, back-
translation, and instruction-tuned LLMs, which lack RLHF optimization.

This is the first work to employ an optimized instruction-fine-tuned language model (LLM) to
paraphrase existing unstructured data, thereby augmenting toxic textual samples in the minority
class. Furthermore, our dataset is one of the largest and most balanced available. Additionally, we
applied zero-shot learning, and back-translation techniques to benchmark our developed model
against other methods, resulting in the creation of the largest balanced dataset for toxicity detec-
tion, generated through back-translation from nine different languages into English. This dataset
cannot be made publicly available as it is proprietary and owned by a third-party company. Al-
though we have obtained permission to use the dataset for research purposes, we do not have the
rights to share or distribute it publicly.

This article is organized as follows: After the introduction, Section 2 presents an in-depth anal-
ysis of the techniques proposed to address the problem of class imbalance. Section 3 covers the
preliminaries, followed by Section 4, which delineates our proposed method. Section 5 details the
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experimental setup, and the results are presented in Section 6. Section 7 concludes the paper with
remarks and discussions.

2 Related Work

In the literature, various solutions have been proposed to the class imbalance problem. These
techniques can be categorized into Data Level, Algorithmic Level, Ensemble Learning, and Data
Augmentation, each of which is briefly discussed in this section. Furthermore, we examine method-
ologies employed in toxicity detection.

2.1 Data-Level Approaches

In managing the class imbalance at the data level, the goal is to adjust the distribution of classes
by resampling the data space. This involves increasing instances of the underrepresented class
through oversampling and reducing instances of the overrepresented class through undersampling,
with the possibility of employing a combination of both techniques [20, 38, 75, 132]. Each of these
techniques will be explored individually in the following subsections.

2.1.1 Undersampling. In the undersampling method, the primary focus is on the majority
class within the dataset, from which instances are extracted either randomly or through specific
techniques to achieve class balance [53, 125]. Undersampling, while incurring the main drawback
of information loss through the deletion of examples from the training data, nonetheless, offers
the benefit of reducing the time required to train models by diminishing the size of the training
dataset [125]. The most straightforward method of undersampling involves randomly choosing a
portion of samples from the majority class [100]. The random undersampling (RUS) strategy
poses a significant risk of eliminating potentially valuable data from the majority class [82, 133]. In
response to this limitation, specific methodologies, such as informative undersampling techniques,
selectively eliminate insignificant patterns from the majority class, thereby aiming to maintain
performance levels and overcome this drawback [139]. One suggested informative undersampling
method, the Condensed Nearest Neighbour (CNN) discussed in [51], serves as a data reduction
approach to create a representative subset of the original training set, proficient in accurately
classifying all instances [139]. Similarly, the Edited Nearest Neighbors (ENN) uses a K-nearest
neighbors (K-NN) approach to identify atypical examples within their neighborhood and
subsequently removes them [148]. Furthermore, one-sided selection [76] serves as an alternative
approach utilizing Tomek links [138] to detect and eliminate such atypical instances. These
approaches are not very useful for text data; they are more applicable to numerical data. In the
case of toxic language detection, this technique proves ineffective because we still need a sufficient
number of samples from the nontoxic class to successfully train classifiers for distinguishing toxic
from nontoxic content. Therefore, our proposed method is specifically developed for textual data
and can effortlessly handle unstructured sentences while increasing toxicity scores. There is no
need to remove samples from the nontoxic class.

An alternate approach proposed to tackle the RUS limitation involves replacing the strategy
with a clustering technique as discussed by Lin et al. [82]. Employing cluster-based techniques
aims to group similar objects, or data samples, into the same clusters, with objects in distinct
clusters differing in their feature representations. In 2017, imbalanced-learn, an open-source
Python toolbox, aimed to address imbalanced dataset challenges in ML and pattern recognition
by incorporating state-of-the-art techniques grouped into four categories: (i) under-sampling,
(i) over-sampling, (iii) combined over- and under-sampling, and (iv) ensemble learning meth-
ods [80]. Imbalanced-learn' offers tools such as ClusterCentroids and RandomUnderSampler.

https://imbalanced-learn.org/stable/
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ClusterCentroids reduces the majority class by substituting a cluster with the centroid from a
KMeans algorithm. RandomUnderSampler swiftly balances data by selecting a subset randomly.
Mediratta and Oswal [94] employed RandomUnderSampler to tackle the imbalance issue in a toxic
content classification model. In their comparison of various machine learning models (Support
Vector Machine (SVM), Naive Bayes, Gated Recurrent Unit (GRU), Long Short-term
Memory (LSTM)), they observed that SVM and Naive Bayes achieved high accuracy even
without addressing the imbalance, effectively learning from imbalanced datasets. The most
promising outcomes occurred with GRU when handling imbalance with a random sampler and
employing GloVe (Global Vectors for Word Representation) word embedding. Rupapara et al.
[119] introduced an ensemble technique for toxic comment detection, comparing its performance
with other ML classifiers on both imbalanced and balanced datasets. They employed various
resampling methods, including RUS and oversampling, highlighting that machine learning models
achieved superior performance when using oversampling for dataset balance.

2.1.2  Oversampling. Undersampling techniques work well for datasets with a lower class
imbalance ratio, while oversampling methods effectively manage high-class imbalance [31].
Yet, oversampling tends to expand the training set size by replicating patterns, leading to
extended learning times and potential overfitting [21, 82, 132]. Similar to random undersampling,
oversampling can occur randomly but involves replicating instances from the minority class to
achieve dataset balance [41]. An alternative oversampling approach, referred to as informative
oversampling, focuses on amplifying the smaller class. In contrast to generating new samples, this
method selectively chooses samples from the minority class for resampling instead of employing
a random approach [132]. Another technique for oversampling is synthetic oversampling,
where artificial samples are generated for the minority class [127]. These additional samples
supplement vital information to the minority class, preventing misclassification of its instances.
The Synthetic Minority Oversampling Technique (SMOTE), introduced by Chawla et al.
[20], operates as an oversampling approach that aims to generate additional instances for the
minority class by interpolating between various neighboring instances within that class [41].
Continuing the exploration of oversampling techniques for the minority class, additional methods
include the Modified Synthetic Minority Oversampling Technique (MSMOTE) [60], and
the Selective Preprocessing of Imbalanced Data (SPIDER) [131]. MSMOTE modifies SMOTE
by categorizing minority class instances into safe, border, and latent noise groups, adjusting the
neighbor selection strategy accordingly, and SPIDER combines local minority class oversampling
with identifying noisy majority class instances, implementing different preprocessing methods
to enhance the minority class and eliminate remaining noisy majority class examples [41]. In the
case of toxic language, where the number of samples in the nontoxic class significantly surpasses
the number of samples in the toxic class, oversampling can be a beneficial strategy. However, it
must be executed with caution. The nature of language, particularly sentences, implies that the
combination of various words together can be quite intricate. Some words may not be toxic when
considered individually, but they can become toxic when used in combination. In our proposed
method, we leverage pretrained large language models that have been trained on extensive
datasets and exposed to numerous sample sentences. This approach helps us in generating new
samples in the minority class, thereby increasing the diversity of samples.

2.1.3  Hybrid Sampling. Both undersampling and oversampling techniques present challenges
by respectively risking the removal of vital majority class examples, potentially causing underfit-
ting, and inducing overfitting through an increased number of specific but potentially misleading
minority class samples affecting the model’s decision boundaries [20, 99]. A sought-after approach
involves integrating the benefits of both techniques to manage imbalanced medical diagnostic data.
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2.2 Algorithmic-Level

This approach involves developing new algorithms or adapting existing ones to be more re-
sponsive to class imbalance issues [11, 89]. In this approach, the focus is on addressing the
minority class, preventing the learner from exhibiting bias toward the majority class to mitigate
the overall cost associated with misclassification [7, 65]. Usually, these methods include the
utilization of cost-sensitive and ensemble approaches [36, 40, 137]. Resampling techniques and
algorithmic methods alone may prove insufficient in addressing class imbalance challenges in
high-dimensional scenarios [88, 144].

2.2.1 Cost-sensitive Learning. The cost-sensitive learning framework integrates strategies at
both the data and algorithmic levels, considering the increased costs associated with misclassifying
samples from the positive class compared to the negative ones [10, 11, 41]. This approach has been
applied to address imbalanced labels in toxic content detection by incorporating it into machine
learning and deep learning models to enhance overall performance. However, it is crucial to note
that accurate estimation of misclassification costs is necessary, and it can be challenging to achieve
in practical applications [156].

2.3 Ensemble Learning

The limitation of traditional approaches (sampling, algorithm level, and cost-sensitive) lies in the
requirement to define misclassification costs, often unavailable in datasets, leading to the intro-
duction of ensemble-based methods that combine ensemble learning algorithms with data-level
and cost-sensitive techniques to address class imbalance, although the challenge of defining costs
persists [41]. Boosting, bagging, and stacking stand out as the most frequently employed tech-
niques within this category [129]. According to a survey on the application of ensemble learning
methods for class imbalance problems, Random Forest (RF) and XGBoost have emerged as the
most commonly utilized methods in the literature, with both demonstrating reliable performance
[96]. Another review paper focusing on ensemble learning and data augmentation models for
class imbalance issues demonstrated that various combinations of ensemble learning and over-
sampling techniques, including SMOTE-LightGBM and random oversampling-LightGBM
(ROS-LightGBM), are effective approaches for addressing this challenge [70].

Addressing data imbalance is a crucial aspect in ML, and various techniques have been proposed
to tackle this issue across different domains. However, when it comes to textual data, especially in
the context of toxic language detection, existing methods face challenges. Traditional data imbal-
ance techniques, such as oversampling or undersampling, may not be directly applicable to textual
data due to its unique characteristics. Moreover, the nature of toxic language data often involves in-
tricate linguistic nuances, making it difficult to apply standard resampling methods effectively. In
light of these challenges, there is a growing need for specialized techniques in data augmentation
tailored for textual data, which can help alleviate data imbalances and enhance the performance
of toxic language detection models. Hence, we further explore text data augmentation techniques,
particularly those designed for balancing datasets to improve online toxicity detection.

2.4 Text Data Augmentation

Text data augmentation (TDA) involves generating additional training data from existing data,
thereby expanding the dataset available for training classifiers or classification models [104]. Un-
like image data augmentation, where simple transformations such as rotation and translation eas-
ily preserve the original label, these methods for TDA present a greater challenge in maintaining
the original label after perturbations [2]. In recent years, researchers have proposed both unsu-
pervised and supervised TDA methods, generating synthetic data through advanced techniques,
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Fig. 1. Taxonomy of text data augmentation techniques.

Table 1. Summary of Text Data Augmentation Techniques with Citations

TDA Level Method Reference

Character Level Textl’lal Noise Inj'ecti'on [27]
Spelling Error Injection [27]

Spelling Error Injection [111]

Word Level Replaceme'nt Using Thesaurus [67]

Swapping Word Order [103]

Embedding Replacement [162]

Interpolation [162]

Structure [165]

Grammar Error Injection [71]
Sentence Level .Back-Translation . [2]
Syntactic Trees Transformations [27]

Generation- Language Model (LM) [77]

Generative Adversarial Network (GAN) [48]

Paraphrasing - Language Model (LM) [149]

where unsupervised methods do not rely on labeled data and supervised methods utilize labeled
data for augmentation [104]. The taxonomy of TDA techniques is illustrated in Figure 1, accompa-
nied by a summary of citations included in Table 1. Comprehensive reviews of TDA methodolo-
gies can be found in survey papers, such as [2], [14], and [27]. These surveys provide an in-depth
synthesis of the field. TDA encompasses diverse strategies applied at different levels, including
character, word, sentence, and document levels. At the character level, techniques involve Textual
Noise Injection and Spelling Error Injection. Moving to the word level, augmentation includes the
introduction of spelling errors, random deletion, replacement using the thesaurus, swapping word
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order, and embedding replacement. In the realm of toxic language, a specific instance involved
replacing words with their synonyms [117] using word embeddings such as Word2Vec [97], GloVe
[108], and Fattest [17]. Word replacement can also be performed using features obtained from
ConceptNet relations and their descriptions extracted from Wikidata [126].

Expanding to larger units, such as phrases or sentences, TDA incorporates transformation,
paraphrasing, and sentence generation. These techniques can be further segmented into special-
ized methods. For instance, back-translation involves translating a sentence from one language
to another and then translating it back into the original language. The back-translation method
was employed for data augmentation in the context of hate speech and cyberbullying, involving
the initial translation of English text to German and then translating it back to English [15].
Syntactic tree transformations [164] are additional techniques applied at this level. Moreover, the
generation of new sentences is achieved through advanced approaches, including Generative
Adversarial Networks (GANs) and generative language models. These models contribute
to the creation of diverse and contextually relevant text during the augmentation process. As
an illustration, generative language models such as Generative Pretrained Transformer
2 (GPT-2) [112] were employed to generate extra-textual samples for the minority class by
fine-tuning on existing minority class samples [34, 152]. TOXIGEN, a large-scale dataset of
toxic and benign statements about minority groups, generated using a demonstration-based
prompting framework and an adversarial classifier-in-the-loop decoding method [52]. They
demonstrate that TOXIGEN improves the performance of toxicity classifiers on human-written
data and can also help fight machine-generated toxicity. Leveraging the extensive ToxiGen
dataset, ConPrompt introduces an innovative pre-training strategy tailored for implicit hate
speech detection. Through contrastive learning and prompt-based positive sampling, ConPrompt,
embodied by ToxiGen-ConPrompt, emerges as a leading solution. Experimental findings undeni-
ably demonstrate ToxiGen-ConPrompt’s superiority over established models like HateBERT and
fBERT, showcasing its exceptional generalization and bias mitigation [73].

In certain studies, researchers assigned the minority class label to each newly generated sample
[68]. Alternatively, in other studies, the classifiers were fine-tuned for toxicity detection, and only
the samples identified as toxic by the classifier were retained after analysis [151]. To ensure that
augmentation samples capture target class features, using off-the-shelf language models is limited
due to their undirected and random generation, as noted by Liu et al. [86]. In response, they
presented Data Boost, a text data augmentation framework guided by reinforcement learning and
based on an off-the-shelf language model (GPT-2). The approach involves computing a Salience
Score for each word and selecting the top-N highest-scoring words as the salient lexicon for the
target class label. Lee et al. [79] explore alignment algorithms, particularly Direct Preference
Optimization (DPO), and their role in reducing toxicity in pre-trained language models like
GPT2-medium. Their research delves into toxicity representation and elicitation in these models,
showcasing how DPO can curb toxic outputs while preserving learned abilities. Furthermore,
they present a method to revert models to toxic behavior, underscoring the significance of
understanding alignment algorithms in natural language processing.

Comprehensive utilization of these techniques not only aids in overcoming overfitting but
also enriches the input feature range, enhancing the overall robustness of classification models
[123, 150]. However, current methodologies for data augmentation exhibit significant limitations
and remain imperfect. For example, labeling all generated samples with the minority class label
[68] is flawed because it does not guarantee the preservation of the intended target class label or
ensure that the generated samples adhere to the characteristics of their supposed label. Further-
more, analyzing the toxicity of generated samples using a classifier trained on the same data used
for fine-tuning generative language models may introduce bias, given its lack of data agnosticism
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and potential inefficacy on diverse datasets [95]. In addition, there is a common deficiency in
instruction fine-tuning of large language models (LLMs) for specific tasks. In the context of
conditional generation, the proposed reward function, which employs Salience Gain [86], tends to
prioritize token similarity over toxicity level and may exhibit limited improvement in tasks involv-
ing challenging class modeling. Moreover, it faces challenges in extracting explicit lexical features
for metaphor, sarcasm, and formality. These techniques may struggle to effectively implement data
augmentation, particularly on a large scale, especially for unstructured sample sentences from
social media. Additionally, generated samples may deviate from the intended scope of the work,
possibly leading to hallucinatory outcomes [61, 83, 110]. To address these limitations, we propose
a sentence-level data augmentation technique based on paraphrasing. In this approach, we employ
fine-tuning a pretrained LLM through instruction specifically for the task of text paraphrasing.
We optimize the model by using reinforcement learning to generate toxic samples. Additionally,
data-agnostic models are used to assess the toxicity of generated samples, enabling the assignment
of toxic rewards accordingly. This approach is suitable for generating samples at a large scale
and has demonstrated superior performance compared to other data augmentation techniques,
such as back-translation.

2.5 Toxicity Detection Approaches

In recent years, there has been a notable adoption of ML approaches, encompassing both classical
ML and DL algorithms for identifying toxicity in online conversations [8]. Various classical ML
techniques, such as logistic regression (LR), decision trees, random forest (RF), and SVM,
have been effectively utilized in numerous studies to address online toxicity by identifying
toxic content [92, 114, 121]. Commonly employed in feature extraction are methods such as
bag-of-words (BOW), Term-frequency-inverse document frequency (TF-IDF), and word
embeddings [6]. Moreover, word embeddings have emerged as a widely adopted approach for
word representation, proving highly effective in capturing semantic relationships and contextual
information. Word2Vec [97], GloVe (Global Vectors) [108], and FastText [66] are among the
commonly employed word embeddings extensively utilized in toxicity detection tasks. Extensively
utilized for detecting toxic content are various models based on Deep Neural Networks (DNN),
including Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN),
Long Short-term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Bidirectional GRU
(BiGRU) [1, 62, 93]. DL models autonomously extract complex features from raw data without
the requirement for manually crafted features, showcasing their ability to learn representations
directly from the input datasets [30]. Word embeddings are utilized as input features for DNN clas-
sifiers, as demonstrated in Mohammed et al.’s study [98], which compared various models in two
scenarios: one with a standard embedding layer and the other integrating pre-trained embedding
corpora like GloVe, Word2Vec, and FastText. Recent advancements in text classification tasks have
witnessed a shift towards utilizing pre-trained word embeddings and language models trained on
extensive unlabeled corpora. Examples include Bidirectional Encoder Representations from
Transformers (BERT) [32] and its variants such as DistilBERT [122], RoBERTa [87], and AIBERT
[78]. D’Sa et al. explored binary and multi-class classification on a Twitter corpus. They compared
two techniques: one involved extracting word embeddings followed by a DNN classifier, while the
other fine-tuned a pre-trained BERT model, ultimately demonstrating the superior performance
of fine-tuning BERT [33]. In another study, the performance of various pre-trained language
models was evaluated across three distinct architectures for toxic language classification: BERT,
RoBERTa, XLM, a bi-LSTM + BERT/RoBERTa/XLM, and a CNN + BERT/RoBERTa/XLM [161].
Existing methods predominantly rely on supervised learning approaches, which are heavily
dependent on labeled datasets. This becomes particularly challenging due to the inherent
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imbalance in toxic language datasets [18]. In most online conversations, the vast majority of
content is nontoxic, while only a small fraction contains toxic language [160]. Madukwe et al.
[90] highlighted this significant class imbalance in hate speech detection, noting that the hate
class accounted for less than 12% of multi-class datasets and less than half of the data in binary
classification tasks. Similarly, a systematic review of hate speech detection datasets revealed
that 41% were small (containing 0-5k posts), and 37% included less than 20% offensive content
[63]. This imbalance results in skewed label distributions, where the nontoxic class dominates,
causing standard classifiers to become biased toward predicting the majority class (nontoxic)
[28]. Consequently, these models often struggle to accurately detect the minority class (toxic). To
address this issue, our proposed technique seeks to mitigate the imbalance in toxic datasets and
improve the performance of toxicity detection classifiers.

3 Preliminaries
3.1 Text Generation

Imagine a language model, denoted as M, which responds to a consistent prompt P by generat-
ing a response y. The process involves the model sampling from its distribution M(P) through
decoding, represented as y ~ M(P). In typical text generation scenarios, M calculates the proba-
bility distribution for the next token tk based on the prior context C,, expressed as p,(tk|C<;x)
[84]. The model learns parameters o in training by maximizing the likelihood of observed data.
This learned probability distribution (p,,(tk|C<;)) is crucial in guiding the model as it decodes the
next token, shaping the coherence of the generated text. By leveraging its learned parameters o,
the model captures relationships between tokens, enabling the creation of coherent and contex-
tually relevant sequences. Various decoding algorithms, including greedy decoding, beam search,
temperature sampling, and top-p sampling [56], play a pivotal role in how the model selects and
arranges tokens, contributing to the overall coherence and relevance of the generated output.

In the context of text paraphrasing, for two sentences [ and [’ that serve as paraphrases
of each other, we express this relationship as [ = [’, indicating their equivalent meanings
(Semantic Meaning(/) = Semantic Meaning(l’) where [ € L and I’ € L’). Consequently, when
using a prompt to generate a paraphrase for I, we denote the paraphrased version as I’, where
M(I|P) = I’. Please note that a prompt is composed of an instruction I and an input x € X so that
P = I(x). Therefore, (M(P) = y) — (I(x)) = y). In the case of paraphrasing, where the instruction
is a request for paraphrasing and the input is [ € L, then M(I(])) = I’ where I = I’.

Response generation employs various methodologies, including zero-shot learning, one-shot
learning, few-shot learning, and fine-tuning language models on datasets with instructional an-
notations [47, 153]. Zero-shot learning enables a model to generate responses for categories or
prompts it hasn’t been explicitly trained on by leveraging its understanding of underlying con-
cepts or patterns from the training data [130]. Conversely, few-shot learning involves training the
model with minimal examples of a specific category or prompt, yet it still learns to generalize and
produce responses for similar, previously unseen categories or prompts, showcasing its adaptabil-
ity and generalization prowess [113]. Research has shown that instruction tuning substantially
enhances zero-shot performance on unseen tasks [145]. In the following section, we will delve
deeper into the details of Instruction Fine-tuning.

3.2 Instruction Fine-tuning (ITune)

Generative LLMs are initially pre-trained on an extremely large and diverse public dataset, and
their weights can be fine-tuned for each task of interest using a much smaller task-specific
dataset. Instruction fine-tuning (ITune) is a process in which a pre-trained model, represented
by parameters w, undergoes refinement based on a specialized instruction dataset Dy. This
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dataset includes input-output pairs that serve as explicit instructions or prompts for the model.
Therefore, D = {(I;, x;,y;)}, represents an instruction dataset with each sample consisting of
an instruction ([;), an input sequence (x; € X), and its corresponding response (y; € Y), with n
total samples in the dataset.

The objective is to adapt a M to better understand and generate responses aligned with the
provided instructions. The updated parameters after fine-tuning are denoted as «’, and the fine-
tuning process can be expressed as «’ = ITune(w, Dy). This notation captures the transformation
of the model’s parameters to enhance its performance in generating contextually relevant outputs
in response to specific instructions provided in the training dataset.

3.3 Parameter-Efficient Fine-Tuning (PEFT)

In the conventional fine-tuning process, model weights are usually copied from a pre-trained
language model and adapted for a specific downstream task, requiring the generation of new
weights for each task. However, full fine-tuning of parameters becomes impractical due to
the rapidly growing size of models, making it infeasible to fine-tune the entire model and
store separate copies of parameters for numerous downstream tasks [134]. Parameter-efficient
techniques have been introduced to address concerns related to storage and computational
costs associated with full fine-tuning [57, 91, 154]. As a noteworthy contribution to parameter-
efficient fine-tuning (PEFT) techniques, one approach is Low-Rank Adaptation (LoRA)
[58]. In the LoRA methodology, the pre-trained model weights remain frozen, and trainable rank
decomposition matrices are introduced into each layer of the Transformer architecture. For each
M, the hyperparameters r (representing the rank of the update matrices) and apora (a scaling
factor crucial for stabilizing training) are fine-tuned [147]. This innovative technique effectively
reduces the number of trainable parameters for downstream tasks, lowering GPU memory
requirements and demonstrating a commitment to parameter efficiency in the adaptation process.

3.4 Reinforcement Learning (RL)

Reinforcement Learning (RL) is an ML paradigm where an agent learns to make sequential de-
cisions by interacting with an environment. The agent takes actions (a € A), receives a reward
(r € R) or penalties in return, and adjusts its strategy to maximize the cumulative reward over
time. Trajectories in RL, denoted as 7, refer to sequences of states (s € S), actions (a € A), and
rewards (r € R) that an agent experiences during its interactions with the environment. In RL,
the agent’s goal is to learn a policy g, parameterized by 6, that maps states to actions in a way
that maximizes the expected cumulative reward over time. The performance of RL algorithms is
evaluated based on their ability to learn effective policies in diverse and complex environments.

The pre-trained LM can be customized according to the user’s preferences through Reinforce-
ment Learning from Human Feedback (RLHF). It is achieved by defining a reward model and
then fine-tuning the LM using RL. Incorporating human feedback aims to capture sentiments in
the LLM’s responses, with the reward model mapping the model’s output to a scalar reward that
represents human preferences [16].

3.5 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO), introduced by Schulman et al. [124], stands out as a
robust and widely used deep reinforcement learning algorithm. PPO is known for its stability
and efficiency in optimizing policies against specified reward functions. It consistently achieves
state-of-the-art performance across a wide range of challenging tasks.

The core idea behind PPO involves iteratively updating the policy g to improve its performance
while ensuring stability during training. It aims to balance exploration and exploitation effectively.
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Fig. 2. PPO model architecture overview.

In PPO, exploration refers to the agent’s ability to try out different actions to learn about the
environment, while exploitation involves exploiting the knowledge gained to select actions that
maximize expected rewards. However, achieving a balance between exploration and exploitation
presents a challenge [12]. Figure 2 provides an overview of the architecture of a PPO model. PPO
employs a reward model R that considers step-level rewards (r,) and handles the terminal state
(sT+1) with special attention. The step-level reward is a combination of the step-level reward of
the last step (rr) and a penalization term incorporating the Kullback-Leibler (KL) divergence
between the current policy and a reference policy 7g,. The parameter 6, typically represents the
initialized policy of PPO.
The step-level reward (r;) is defined as follows [84]:

Py (arlst)
~Blog s ifl<t<T

p90(at|5t)’

{ plog LB | (s ), ift =T
re =

Here, pg(a;|s;) denotes the probability of taking action a, in state s; under the policy gy, and
B is a hyperparameter controlling the impact of the penalization term. The formulation balances
the desire to increase expected rewards with the need to stay close to the reference policy.

This comprehensive framework allows PPO to effectively learn policies in complex environ-
ments, making it a popular choice in the field of deep reinforcement learning.

4 Methodology

In this section, we outline the structure of our proposed approach. Initially, we conduct fine-tuning
on the generative LM by utilizing an instruction dataset to paraphrase samples while preserving
their semantic meaning (Section 4.1). Subsequently, to optimize the process, we employ PPO and
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Fig. 3. lllustration of the process to convert the dataset into an instruction format.

reward function to guide the model toward toxic paraphrasing, aiming to generate more toxic
responses (Section 4.2).

4.1 Supervised Instruction Fine-Tuning

Our primary goal is to increase the number of minority class samples through paraphrasing tech-
niques using generative LMs. While models like zero-shot learning may offer simplicity, they prove
less effective in paraphrasing toxic samples from online conversations. The subtle and context-
dependent nature of toxicity in online discussions poses challenges beyond the capabilities of
general language understanding methods, including zero-shot, one-shot, or few-shot learning
[101, 106]. Limited exposure to samples can hinder the model’s paraphrasing accuracy, making it
challenging to maintain meaningful output [25]. To address this, instruction fine-tuning emerges
as a promising alternative. This approach involves training an LM on a specific task with explicit
instructions, enhancing its ability to paraphrase toxic content while preserving semantic meaning.
Instruction fine-tuning offers a focused and tailored training process, enabling the model to adapt
more effectively to the nuances of paraphrasing toxic language in unstructured online comments,
ultimately improving the quality of generated samples.

4.1.1 Instruction Dataset. An instruction dataset D; typically refers to a specific dataset de-
signed to provide explicit instructions for training a model on a particular task. It contains exam-
ples paired with clear instructions on how the model should interpret or respond to those examples.
The purpose of an instruction dataset is to guide the model’s learning process and help it acquire
specific skills or behaviors.

To construct Dy, we utilize a structured format containing examples, making it more intuitive
for the generative model M to learn in accordance with our requirements. The dataset includes
pairs s € Sand s’ € S’ representing paraphrases of each other (s ~ s”) while maintaining semantic
equivalence.

To convert the dataset into an instruction format, each sample s undergoes a wrapping process
with an instruction, as illustrated in Figure 3. The provided instruction is formulated as follows:
“Paraphrase the following text while maintaining its semantic meaning: {text}” This instruction
serves as a directive for the model, guiding it to generate paraphrases that retain the same semantic
meaning as the original text. Additionally, all samples, both input prompt (instruction + s) and
output (s”), undergo tokenization using the LM’s tokenizer. Padding is also applied to the tokenized
sequences, ensuring they have the same maximum length.

4.1.2 Instruction Fine-Tuning. With the constructed instruction dataset Dj (refer to Sec-
tion 4.1.1), the pre-trained model M undergoes fine-tuning in a fully supervised manner. This
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Fig. 4. Instruction fine-tuning of pre-trained Large Language Models (LLMs) for paraphrasing.

process entails training M to predict each token in the output sequentially, guided by the
instruction dataset [158]. The fine-tuning adapts M’s parameters based on the task-specific in-
formation embedded in the instruction dataset, thereby enhancing its performance in generating
paraphrases while preserving semantic meaning.

Recognizing the advantages of Parameter-Efficient Fine-Tuning (PEFT) techniques, such as
reducing computational costs, minimizing memory usage during training, streamlining the stor-
age and deployment of task-specific fine-tuned parameters [72], directed us to utilize PEFT as a
substitute for the full fine-tuning process in our instruction fine-tuning approach. Furthermore,
its demonstrated superiority over full fine-tuning across a diverse array of tasks [147] further sup-
ported our decision.

PEFT methods (refer to Section 3.3) involve freezing the majority of parameters in pre-trained
models while still demonstrating comparable capabilities in downstream tasks [157]. Specifically,
we considered fine-tuning through Low-Rank Adaptation (LoRA) [58] as an additive fine-
tuning scheme, as defined in Section 3.3. The instruction fine-tuning of the LM for the specific
task of paraphrasing is illustrated in Figure 4.

While the fine-tuned model My ra excels at paraphrasing existing samples in the minority class
and generating new samples, it may encounter challenges when faced with unstructured input
from online conversations. Particularly, its performance might diminish when dealing with less
well-written or unstructured prompts, even after pre-processing. This challenge is exacerbated
when the model is tasked with generating multiple responses for each prompt. Moreover, we
anticipate scenarios where the model may generate toxic samples, and there is a need for the
LM to rephrase the input while retaining or even increasing its toxicity. Therefore, following the
fine-tuning process via LoRA (Miora), an additional optimization step using Reinforcement
Learning from Human Feedback (RLHF) becomes essential. RLHF aims to guide the LM in
rephrasing while preserving toxicity or potentially intensifying it, based on human feedback
expressed through a reward function. The subsequent section will delve into the specifics of the
optimization process using RLHF.

4.2 Optimization using Reward Function

In this study, we employ RLHF, as described in Section 3.4, specifically utilizing PPO, as described
in Section 3.5. Our objective is to optimize the fine-tuned model M ,ra to generate toxic responses,
acknowledging that not all augmented sentences may exhibit toxicity. The development of efficient
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Fig. 5. The proposed solution for paraphrasing toxic samples.

optimization algorithms is crucial across various scientific disciplines, as researchers seek faster
and stronger algorithms capable of optimizing a wide range of functions [4, 5, 43, 59]. After the
initial fine-tuning with LoRA, where only a portion of parameters was trained, we seek further
refinement by updating these trainable parameters to obtain an optimized fine-tuned model. To
achieve this, we incorporate a data-agnostic classifier to assess the toxicity of generated responses
and assign rewards or penalties accordingly. It is important to note that Dy used for instruction
fine-tuning is nontoxic, but our aim is to increase toxicity using the reward model, directing My ,ra
to generate toxic tokens.

As a reward model, we leverage the Google Perspective API (API),> a machine learning-based
tool designed to detect abusive comments. This API furnishes toxicity scores ranging from 0 to
1, serving as a probability indicator without delineating severity. Higher scores indicate a greater
likelihood of resembling patterns observed in toxic comments. We employ PPO to fine-tune M ora
with respect to the reward model, resulting in Mppo.ap;. While My ora has initially been trained
using the instruction dataset, our aim is to optimize its performance leveraging the reward model.

In the proposed PPO framework, Mj.ra serves as an active model (M,t) during training and as
a reference model (M,ef) when not trainable. The generative model functions as an agent, selecting
tokens during language generation. The agent initializes its policy with Mr.ra and, at each time
step t, observes the current state s; (previously generated tokens), takes action a; according to the
policy ¢, and transitions to the next state. The agent receives a reward r from the reward model,
aiming to maximize the expected reward during PPO training. The framework is visually depicted
in Figure 5.

A prompt x; from Dy is simultaneously inputted into both the active model M, and the refer-
ence model My¢r. Active policy g, and reference policy 7, are initialized. The active model My
generates a response (paraphrased input), such that 7y (a; | s;) — Mact(xs) = Yact,. Similarly,
the reference model M.f generates a response 7y, (as | ;) — Mrer(X;) = Yref, ). Subsequently, the
response generated by the active model y,, is decoded and passed to the Google Perspective API,
which assigns a toxicity score. A reward of 1 is given to samples with toxicity scores exceeding
0.7, while those below this threshold receive a penalty of -10. The Google Perspective API assigns
scores on a scale from 0 to 1, with higher values indicating greater toxicity. To ensure that the
generated responses are sufficiently toxic, we set the threshold at 0.7. While a lower threshold,
such as 0.5, could be considered, setting it at 0.7 ensures that only responses with a higher degree

Zhttps://perspectiveapi.com/
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of toxicity are classified as toxic, thereby encouraging the generation of distinctly toxic samples.
This reward scheme is formalized as follows:

+1  ifAPI(yae,) > 0.7
T'toxic = .
—10 ifAPI(yact,) < 0.7

We assigned greater value to punishment compared to reward because if both were given equal
values, such as +1 and -1, the agent might learn to generate only nontoxic responses. In such a sce-
nario, the penalty for producing a nontoxic response would be only 1, which would not sufficiently
differentiate between the reward and the penalty. Additionally, to discourage M, from producing
unnatural responses solely for increased rewards, a reference model with frozen weights serves
as a fixed point of reference. The KL Divergence is calculated between the two policies 7p,,, and
7g,,, as follows:

”aactt
na = fDxi(mo,., || 7o, ) = —flog (—)

Gref[
ry serves as a penalty, ensuring that when M, generates hallucinations, it aligns closer to Myef.
This penalty is added to the toxicity reward, constraining the update within a trust region defined
by the distance between the two policies. The total reward is computed as:

Tt = Ttoxic T Tkl. (1)

This cumulative reward guides PPO through multiple prompt-response experiments, facilitating
ranking averages and employing backpropagation to optimize the response of M,.. The proposed
framework is illustrated in Figure 5.

5 Experimental Setup
5.1 Instruction Dataset

To fine-tune the LLM for text paraphrasing, we employed the Paraphrase Adversaries from
Word Scrambling (PAWS) dataset [155], introduced by Google Al Language in 2019. This openly
accessible dataset comprises 108,463 thoughtfully crafted pairs, encompassing both paraphrases
and non-paraphrases with significant lexical overlap. Specifically, we utilized the PAWS-Wiki La-
beled “Final” version, which includes 65,401 pairs generated through both word swapping and
back translation methods. All pairs have undergone human assessments for both paraphrasing
fidelity and fluency. The dataset is divided into Train, Validation, and Test sets containing 49,401,
8,000, and 8,000, respectively, with no overlap of source sentences across sets. Maintaining high
quality, the dataset is structured with three columns-sentence 1 (L), sentence 2 (L), and a label
(0 or 1). In this organization, sentence 1 ([; € L;) represents the primary text, and sentence 2
(I, € L,) serves as its counterpart. A label of 1 signifies that sentence 2 is a paraphrase of sentence
1, while a label of 0 indicates a distinct semantic meaning between the two. Combining all sets
(train, validation, and test) into one dataset, comprising “65,401” samples, we exclusively consider
the “28,904” samples with label (1), denoting paraphrasing, and discarding samples with label (0).
Subsequently, an 80-20 split was performed, allocating “23,123” samples to the training set and
“5,781” samples to the test set. Within the training set, a further subdivision was implemented for
hyperparameter tuning, with “2,312” samples, constituting 10% of the training data, reserved for
validation purposes.

5.2 Toxic Datasets

5.2.1 Jigsaw-Dataset. We employed a publicly available dataset provided by Google Jigsaw and
Kaggle [26], which comprises 159,571 Wikipedia comments human-rated for toxicity across six
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categories: toxic (15,294), severe toxic (1,595), insult (7,877), obscene (8,449), threat (478), and iden-
tity hate (1,405). The remaining data (143,346), which is not included in any type of toxicity, is
considered nontoxic. Notably, this dataset exhibits a significant imbalance, with the majority class
consisting of nontoxic samples. Within this dataset, aside from nontoxic samples, others may bear
multiple labels. For instance, a sample could be labeled as both insult and obscene without car-
rying the toxic label, while another might solely be labeled as insult, and yet another could have
labels for both insult and toxic. Unfortunately, precise descriptions or definitions for the various
types are not published. Consequently, we classify all samples with at least one form of toxicity as
toxic and convert the dataset into binary labels (toxic, nontoxic). It is crucial to emphasize that, in
this article, we use the term toxic to encompass any type of toxicity. As a result, the final dataset
includes 143,346 nontoxic samples and 16,225 toxic samples. This implies that, for every toxic
sample, approximately eight nontoxic examples exist in the dataset. To ensure an adequately bal-
anced dataset, we decided to generate nine samples per toxic sample, resulting in a total of 146,025
samples. Since not all generated samples are necessarily toxic, we opted for generating additional
samples to maintain a sufficient number even if nontoxic ones are removed, thereby achieving an
equal balance of toxic and nontoxic samples in the final dataset.

5.2.2 ToxiGen-Dataset. ToxiGen is a machine-generated dataset comprising 274,000 state-
ments, encompassing both toxic and benign content associated with 13 distinct minority groups
[52]. They gathered human-written sentences showcasing implicit toxicity directed at the 13 mi-
nority groups, resulting in 26 sets of prompts. Each set includes two variations (benign and toxic)
for every target group. From these sets, we specifically chose 2,000 prompts displaying hateful
content. To achieve our objective, we aim to rephrase toxic prompts and generate additional toxic
samples. Subsequently, to ensure a balanced dataset, we randomly select benign samples from the
dataset equal to the number of augmented toxic samples.

5.3 Instruction Fine-Tuning

In our study, we employed FLAN-T5 [25] for the data augmentation task by paraphrasing existing
samples in the minority class. FLAN-T5 is a Fine-tuned Language Network (FLAN) built on the
T5 (Text-To-Text Transfer Transformer) architecture [69] and pre-trained on an extensive text
corpus. It demonstrates robust generalization across multiple tasks [9]. We specifically employed
flan-t5-base, which features 250 million parameters, an encoder-decoder architecture, and span
corruption [25].

To fine-tune the flan-t5-base model through instruction, we employed the PAWS dataset
from Section 5.1 for the targeted paraphrasing task. Following the methodology explained in
Section 4.1.1, we first constructed the instruction dataset. The PAWS dataset was adapted into
the instruction dataset, where the prompt is generated by wrapping inputs (Vs; € S;) with
paraphrasing instructions, and the response is provided by S;. The minimum and maximum
lengths of the input data are set to 10 and 300, respectively. As mentioned earlier in Section 3.3, we
utilized LoRA to efficiently fine-tune the flan-t5-base model with limited computational resources.
The training consisted of 15 epochs with a learning rate of 1 x 107°, where lora-rank (r) was set to
70,  to 70, and dropout to 0.05. The total number of trainable parameters for the original model
is 255,319,296. With the use of PEFT, this figure is reduced to 7,741,440, signifying that only 3.03%
of the model parameters are now trainable.

To assess the performance of the model for paraphrase generation before and after instruction
fine-tuning, there is a lack of consensus on the metrics appropriate for these task-specific models,
resulting in variations in measurements across different studies. One commonly utilized metric
in the assessment of summarization tasks is ROUGE which is Recall-Oriented Understudy
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Table 2. Comparing Model Performance in Paraphrasing
Tasks Pre- and Post-Instruct-Fine-Tuning

Model Metric Value
ROUGE-1 0.324
ROUGE-2 0.289
ROUGE-L 0.318
FLant5 ers shot ROUGE-LSUM 0.321
METEOR 0.317

BERTScore-Precision 0.332
BERTScore-Recall 0.323

BERTScore-F1 0.326

ROUGE-1 0.416

ROUGE-2 0.392

ROUGE-L 0.412

Flant51ora ROUGE-LSUM 0.413
METEOR 0.526

BERTScore-Precision 0.547
BERTScore-Recall  0.531
BERTScore-F1 0.539

for Gisting Evaluation [81]. This metric, which predominantly emphasizes recall, is widely
employed and extends its applicability to paraphrase evaluation [23, 107]. ROUGE captures the
n-gram overlap between responses generated by LM and reference responses provided by humans.
The reference responses come from the PAWS dataset, which has been manually generated by
humans. It is diversified into several types, including ROUGE-1, ROUGE-2, ROUGE-N, and
ROUGE-L, ROUGE-W, ROUGE-S, each tailored to specific features. As an example, ROUGE-N
emphasizes gram count and calculates recall by examining matching unigrams in the context
of unigram analysis (ROUGE-1). Conversely, ROUGE-L evaluates the Longest Common
Subsequence (LCS), ROUGE-W focuses on Weighted LCS, ROUGE-S delves into skip-bigram
co-occurrence statistics, and ROUGE-LSUM shows the Length of LCS normalized by the total
words in the reference. Additionally, we incorporated other metrics to assess the quality of gener-
ated responses, including METEOR (Metric for Evaluation of Translation with Explicit Ordering)
[13], and BERTScore [159]. METEOR integrates semantic understanding into its translation
evaluation process by assessing matches in terms of exactness, stemming, or synonymy [120].
BERTScore leverages pre-trained contextual embeddings from BERT-based models to compare
words between the source and generated texts, employing cosine similarity for matching [44]. We
utilized METEOR 1.5 [29] and the “BERT-base-uncased” model for BERTScore.

Table 2 presents the assessment outcomes using ROUGE, METEOR, and BERTScore metrics,
comparing the initial model pre-finetuning using Zero-shot learning (flant5zero-shot) With the
instruct-tuned flan-t5-base (flant51,r4).

The findings indicate that the flant51,ra exhibits absolute percentage enhancements compared
to the flant5zero-sho), With improvements in all metrics. Please note that PAWS does not include
any toxic samples, and, so far, flan-t5-base is only instruct-tuned for the paraphrasing task while
preserving semantic meaning. It may not perform well in countering toxic content or may uninten-
tionally remove toxic words to avoid generating harmful samples. Therefore, further optimization
is needed using a reward function to perform paraphrasing while preserving semantic meaning
and addressing or potentially increasing the toxicity level.
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In the following section, we explain our experimental setup for optimizing instruction fine-
tuning of flan-t5-base using a reward function.

5.4 Optimization

While the instruct-tuned flan-t5-base (flant51,r4) has demonstrated improvements over the flan-
t5-base using zero-shot learning (flant5initial), further optimization is possible through the integra-
tion of a reward function and PPO. Due to the unstructured nature of toxic samples, characterized
by online comments deviating from ordinary grammar and vocabulary, the task of paraphrasing
becomes notably challenging. To address this challenge, optimization involves leveraging a reward
function capable of evaluating text toxicity. By rewarding or penalizing the model accordingly, the
objective is to encourage the generation of toxic samples compared to nontoxic ones.

For optimization, we follow the method explained by Section 4.2 and use flant5;,ra as a ref-
erence model (flant5gp), where its adaptors are not trainable, and all weights are frozen, and an
active model (flant5xcT) with trainable adaptors.

We also employ the Google Perspective API® as the toxicity detector in the reward model to
evaluate the toxicity of generated samples. The Perspective API utilizes machine learning to iden-
tify abusive comments, providing toxicity scores between 0 and 1 as a probability indicator, not a
severity measure. Higher scores indicate a greater likelihood of resembling patterns in toxic com-
ments, and developers can set thresholds based on these scores without quantifying the degree of
toxicity [64].

Additionally, we utilize another toxicity detector to score the toxicity of generated paraphrased
samples and gain a toxicity reward. The facebook/roberta-hate-speech,* which we refer to as
HateRoBERT a in this article, is a RoBERTa model fine-tuned on a hate/toxic speech dataset [141],
available on Hugging Face,’ specifically designed for detecting hate/toxic speech.

The goal is to compare the performance of flant5;,ra When optimized by PPO, and the toxicity
detector in the reward function is Perspective API (flant5ppo-ap1), and when the optimization is
done using HateRoBERTa as the toxicity detector (flant5ppo-roBERTa)- Perspective API is more
data-agnostic than HateRoBERT a, and we expect to see superior performance.

The toxicity reward is then added to the penalty. The reference model (flant5gp) also acts as a
fixed point of reference, ensuring that when the active model hallucinates, it aligns closer to the
reference model, providing positive responses that are not bizarre. KL-Divergence is then calcu-
lated and used as a penalty. This penalty is added to the toxicity reward, and the total reward is
passed to the value function (PPO) to update the policy accordingly.

To optimize both optimization techniques utilizing various toxicity reward functions, we uti-
lized the trl package [142]. This involved setting generation parameters to Top-k=0.0, Top-p=1.0,
output-min-length=50, output-max-length=512, and implementing a maximum of 20 PPO steps.It
is important to note that the Top-k sampler restricts sampling to the k most probable tokens, while
the Top-p (nucleus) sampler constrains sampling to the smallest set of tokens [37, 56, 146]. Addi-
tionally, we conducted iterative tests using a validation set and experimented with random values
for hyperparameters to determine the optimal settings.

To assess the quality of paraphrased responses generated by flant5ppoapr and
flant5ppo-roBerTas We utilized ROUGE, METEOR, and BERTScore metrics to analyze the im-
pact of PPO optimization on paraphrasing quality. Table 3 presents the results for these two
models across various metrics. The findings indicate that their performance is quite comparable,

Shttps://perspectiveapi.com/
4https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target
Shttps://huggingface.co/
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Table 3. Examining Paraphrasing Model Performance Enhanced
by PPO Using Diverse Toxicity Reward Mechanisms

Model Metric Value
ROUGE-1 0.798

ROUGE-2 0.793

ROUGE-L 0.797

Flant5ppo.nnt ROUGE-LSUM 0.798
: METEOR 0.831

BERTScore-Precision 0.924
BERTScore-Recall 0.916

BERTScore-F1 0.920

ROUGE-1 0.788

ROUGE-2 0.784

ROUGE-L 0.789

[ e— ROUGE-LSUM 0.789
METEOR 0.803

BERTScore-Precision 0.893
BERTScore-Recall 0.889
BERTScore-F1 0.892

Table 4. Percentage Enhancement in Toxicity Scores for
Paraphrasing Post-Optimization with PPO

Model Improvement in Toxicity Score (%)
Average Standard Deviation

flantSPPO_RogERTa 12.35 27.44

flant5ppo-apr 28.42 25.18

with optimization via PPO leading to noticeable improvements in paraphrasing quality. Further-
more, a comparison between the results presented in Table 3 and those in Table 2, which includes
all four models (including flant5zero-shots flantSiora, flant5ppo-apr, and flant5ppo-RoBERTa)
underscores the significant enhancement in generated response quality achieved through PPO
optimization compared to Zero-shot learning or instruct-finetuning.

Furthermore, to assess the ability of the developed models to generate toxic samples, we
employed a test set for sentence paraphrasing tasks. We assessed the toxicity of the test set,
calculated the average and standard deviation of toxic scores for paraphrasing samples generated
by the reference model (flant5gr), and compared it with the toxicity of samples generated by
flant5ppo-apr and flant5ppo-roBERTa- Table 4 outlines the results, demonstrating the enhancement
in the toxicity of generated samples through the optimization task. Specifically, flant5ppo-ap1
could generate more toxic samples compared to flant5ppo-roBERTa ON average by 21.68% and 7.57%,
respectively.

Please note that the toxicity of generated responces for samples in the test set was evaluated
by HateBERT [19]. In other words, for samples generated by flant5ppo-ap1, and flant5ppo-RoBERTas
HateBERT was employed to score toxicity and facilitate comparison between the reference model
and the optimized model.

After constructing the models for sentence-level augmentation through paraphrasing, we uti-
lized the toxic datasets detailed in Section 5.2 to evaluate our proposed model.
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5.4.1 Jigsaw. As previously mentioned, the jigsaw toxic dataset comprises 143,346 nontoxic
samples and 16,225 toxic samples. The objective is to generate additional toxic samples to achieve
a balanced dataset with an almost equal number of toxic and nontoxic samples. To accomplish this,
we aimed to augment toxic samples approximately 9 X 16, 225 = 146, 025, considering that not all
augmented samples are necessarily toxic, and some may be removed later.

To meet this objective, we chose to generate nine different paraphrases per toxic sample using
all instruct-tuned models flant5ora, flant5ppo-RoBERTas flant5ppo-apr- Subsequently, we trans-
formed the toxic dataset into an instruction dataset by encapsulating all 16,255 toxic samples with
instructions to form prompts. These prompts were then fed into the models with the following
generation parameters: minimum length, top-k, top-p, and the number of returned sequences set
to (5,0.0, 1.0, 9). The results will be presented in the results Section 6.1.

5.4.2 ToxiGen. We followed a similar approach as with the ToxiGen dataset, starting with 2,000
toxic samples. Utilizing all models including flant5rora, flant5ppo-roBERTas and flant5ppo-apr, We
generated an additional 2,000 samples. In other words, we paraphrased every sample in the Tox-
iGen dataset, resulting in 2,000 augmented samples. The outcomes are detailed in the following
section.

5.5 Baselines

We evaluate our proposed method for augmenting toxic samples through paraphrasing by com-
paring it against four baselines. The first baseline is zero-shot learning technique (flant5zero-shot)s
the second one is the instruct-tuned FLAN-T5 model, represented as flant5iora. These baseline
allows us to observe how the incorporation of RLHF can enhance model performance, especially
in the context of toxic paraphrasing.

The third baseline is the optimized model, flant5ppo-roBERTa, Utilizing HateRoBERT a as the toxi-
city detector in the reward model. A comparison between our proposed technique and this baseline
enables us to assess the impact of different reward models on performance.

Additionally, we aim to broaden our comparison to include other data augmentation techniques,
specifically, back-translation. We have already detailed the setup for the first three baselines. In
the following subsection, we will guide you through the setup for data augmentation using back-
translation.

5.5.1 Zero-shot Learning. In our approach to generating toxic text via paraphrasing, we lever-
aged zero-shot learning, which involves training a model without explicit examples of the task it
is meant to perform. We employed “flan-t5-base” for this purpose.

First, we transformed our toxic dataset (Section 5.2) into an instruction dataset. This involved
encoding each toxic sample along with a prompt requesting its paraphrasing while maintaining the
same semantic meaning. This method allowed us to generate toxic text without explicitly providing
examples of such text. Instead, the model learned to generate toxic text by understanding the
underlying semantics of the provided prompts and applying paraphrasing techniques accordingly.

5.5.2  Back Translation. To evaluate our proposed approach against existing text augmentation
techniques, we utilized back-translation to generate additional toxic samples. For the Jigsaw
dataset, our objective was to expand the dataset by creating nine additional samples for each
original toxic sample while maintaining a balanced distribution. We employed the flan-t5-base
model, known for its multilingual capabilities, for this task. However, we encountered a challenge
when translating English toxic samples into nine different versions of a single language, such as
French. To overcome this challenge, we opted to translate each English toxic sample into nine
different languages and subsequently back into English. Notably, we employed the zero-shot
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Fig. 6. Illustration of the Back-Translation Technique, where English toxic samples are translated into mul-
tiple languages and then back into English for data augmentation.

learning technique for this process. In zero-shot learning, the model is trained to perform a task
without explicit examples or training data. In our case, we provided prompts to the flan-t5-base
model, instructing it to translate each English toxic sample into nine different languages. Crucially,
we did not provide any explicit examples for the model to learn from; instead, it generalized
its translation capabilities based on the prompt and input provided. This zero-shot learning
technique allowed us to effectively generate diverse translations for each English toxic sample
without the need for specific training data in each target language. By back-translating these
multilingual translations into English, we were able to augment our dataset with additional
diverse toxic samples, enhancing the robustness of our evaluation.

We translate toxic samples into French, Spanish, Romanian, Bulgarian, German, Dutch, Por-
tuguese, Albanian, and Russian, followed by translating all samples back into English. The selec-
tion of these languages was determined through trial and error, as we experimented with various
languages. Flan-t5-base did not consistently respond appropriately in some instances, generating
responses with unintelligible characters, leading us to settle on the aforementioned languages.

We used all toxic samples as input for the prompt requesting translation from English into
different languages and vice-versa. The method is illustrated in Figure 6.

For the ToxiGen dataset, we followed a similar process, but with a slight modification. Instead
of utilizing all nine languages, we restricted our focus to English and French, and their respective
translations, due to the limited availability of toxic prompts (2k).

5.6 Computational Resources

We utilized the cloud computing instance "Paperspace P6000” equipped with NVIDIA P6000 GPUs.
The P6000 features a GPU with 24 GB memory, 30 GB RAM, 8 vCPUs, and supports multi-GPU
instances of 2X and 4X. The cost per hour for each task on the P6000 is $1.10.

The Google Perspective APl is free and processes each query per second. To expedite the process,
we employed five different API keys simultaneously and divided the Test set into five parts, with
each part assigned to a separate API key.

6 Experimental Results
6.1 Generating Toxic Samples based on Jigsaw Dataset

As detailed in section (Section 5), the proposed technique (flant5ppo-apr) and four baselines, in-

cluding flant5zcro-shot» flant5pora, flant5ppo-roBERTa> and flant5gack-translation, Were employed
to generate toxic samples.
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Fig. 7. Total toxic samples generated by each model: Toxicity scores > 0.3 (jigsaw dataset).

A total of 146,025 samples were generated by each of the models flant5ppo-apr,
flant5ppo-roBERTas flant5rora, flant5zero-shor, and flantSpack-translation. However, not all samples
are deemed acceptable, as some may be repetitive, nonsensical, or nontoxic, lacking coherence or
logical consistency. Consequently, we conducted an analysis of the generated samples, selecting
only those that are readable for both humans and machines.

The flant5zero-shot model struggled to produce multiple responses per request, leading us to
limit each request to one response. Ultimately, it generated 16,225 responses, each corresponding
to a single prompt. However, the model encountered difficulty in generating distinct responses.
Specifically, for 458 toxic samples, the paraphrased responses were identical. To address this issue,
we filtered out the redundant responses, resulting in a final count of 15,763’ unique responses.

We leveraged Google Perspective API to evaluate the toxicity of our selected samples. Notably,
we also incorporated HateRoBERTa into our analysis to mitigate potential bias, ensuring a
comprehensive assessment of toxicity. Interestingly, the results from both evaluators were highly
consistent. As such, for the sake of clarity and simplicity in reporting, we focus solely on the
findings obtained through Perspective APL

Following evaluation with Perspective API, all samples received toxicity scores ranging from
0 to 1. Subsequent manual inspection revealed an apparent threshold: samples scoring below 0.3
typically exhibited nontoxic characteristics, while those surpassing 0.3 were deemed potentially
toxic. As a result, we made the decision to discard samples with scores below 0.3 and focus solely
on those with toxicity scores above this threshold. This ensured that only samples exhibiting a
significant level of toxicity were included in our analysis. It is worth noting that during the training
phase, we incentivized the model to generate responses with higher toxicity by rewarding samples
with scores above 0.7. After experimenting with various thresholds, we determined that a threshold
of 0.7 or higher yielded the most satisfactory results during hyperparameter tuning. Consequently,
this threshold was chosen as the desired level of toxicity for our study.

Figure 7 below displays the final number of toxic samples generated by each model. The
analysis reveals that the proposed model (flant5ppo-ap1) generates a higher number of toxic
samples (122,951) compared to other models. In contrast, flant5zero-shot €xhibits the poorest
performance, generating only 8,691 toxic samples out of 15,763 responses generated. Following
this, flant5pack-translation generates 29,583 toxic samples out of the total 146,025 generated samples.
Overall, the instruction-tuned models demonstrate exceptional performance in the task of text
data augmentation, with potential for further enhancement through RLHF. Back-translation
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Table 5. Composition of Balanced Datasets: Model-Generated Toxic Samples and Random Nontoxic
Samples-Jigsaw

Model Generated Toxic Samples > 0.3 Total Toxic Samples Nontoxic Toxic + Nontoxic
Flant5zero-shot 8,691 24,916 24,916 49,832
flant5pack-transiation 29,583 45,808 45,808 91,616
flant50rA 109,699 125,924 125,924 251,848
flant5ppo-RoBERTa 112,704 128,929 128,929 257,858
flant5ppo-apr 122,951 139,176 139,176 278,352

technique did not work well, because toxic language often contains subtle nuances, sarcasm, or
contextual references that may not translate accurately or be preserved through this process. As
a result, paraphrased versions may fail to capture the original toxicity or convey the intended
tone. Moreover, the complexity of toxic language and the need for contextual understanding pose
challenges for back-translation models, which may struggle to accurately reproduce the nuanced
toxicity present in the original text. Additionally, the effectiveness of back-translation relies on
the quality and capabilities of the underlying translation model, which may further limit its
suitability for toxic text paraphrasing tasks.

Now, we need to understand how the generated toxic samples (GTS) can impact the perfor-
mance of classifiers for toxic language detection. Therefore, we first build balanced datasets and
then employ some classifiers to test the quality and effectiveness of the balanced dataset. Since
we have ensured that the original toxic samples (16,225 toxic samples) are not included in the
augmented dataset, we add them to all augmented samples. Subsequently, we randomly select an
equal number of nontoxic samples from the toxic dataset in Section 5.2 to create a balanced dataset.
Note that different models generated different numbers of toxic samples, as illustrated in Figure 7.
Therefore, we will have balanced datasets with varying numbers of toxic and nontoxic samples, as
shown in Table 5.

6.2 Classification of Balanced Datasets Generated from Jigsaw Prompts

After preparing all balanced datasets, our focus shifted to evaluating the quality of the generated
samples and determining which dataset could enhance the accuracy of classifiers for toxicity de-
tection. In this phase, we selected four different classifiers; two of them are CNN-based, and the
other two are transformer-based, to be trained/fine-tuned using the balanced datasets and the
original unbalanced toxic dataset. The classifiers include CNN [105], CNN with FastText embed-
dings, where FastText embeddings are a vector representation technique created and released by
Facebook Al research [46]. Furthermore, our selection of transformer-based models encompassed
BERT [32], HateBERT [19], a specialized variant of BERT tailored for detecting abusive language
in English, and RoBERTa [87], a robust BERT model that employs dynamic masking during pre-
training to enhance its performance. Additionally, we incorporated BERTweet [102], a pre-trained
language model designed specifically for English Tweets, to further enrich our analysis.

As discussed, we incorporated the primary Jigsaw toxic dataset including 143,346 nontoxic
samples, and 16,225 toxic samples to examine the impact of an imbalanced training set on
classifier performance. To mitigate dataset imbalance, we implemented a weighted loss function
during training, prioritizing the minority class. This strategy enhances the model’s ability to learn
from underrepresented data, effectively addressing challenges posed by imbalanced distributions.
Traditional methods like oversampling and undersampling, as tested on the Jigsaw dataset, often
fall short compared to more sophisticated approaches such as ensemble learning [119]. Under-
sampling risks losing valuable data and features, potentially degrading model performance, while
oversampling may introduce redundancy and overfitting, particularly if not carefully applied.
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Table 6. Classification Results-CNN-Jigsaw

Dataset Accuracy Precision Recall F1-Score
Unbalancedjigsaw 94.78% 71.39% 81.25% 76%
Balancedzero-shot 89.20% 88.42% 90.85%  89.50%
Balancedgack-translation 90.20% 88.85% 91.95%  90.37%
Balancedrora 93.75% 92.03% 95.79% 93.88%
Balancedppo-RoBERTa 94.01% 92.22% 96.12% 94.13%
Balancedppo-apr 95.28% 94.23% 96.46% 95.33%

Table 7. Classification Results-CNN-FastText-Jigsaw

Dataset Accuracy Precision Recall F1-Score
Unbalancedjigsaw 89.98% 50.40%  91.52% 65%
Balancedzero-shot 90.49%  89.12%  91.63%  90.62%
Balancedpack-transiation ~ 91.32% 92.68% 89.72%  91.18%
Balanced pa 93.35% 90.69% 96.61% 93.56%
Balancedppo-RoBERTa 94.00% 91.60% 96.31% 94.17%
Balancedppo-ap1 94.23% 92.47%  96.89% 94.35%

Table 8. Classification Results-BERT-Jigsaw

Dataset Accuracy Precision Recall F1-Score
Unbalancedjigsaw 96.04% 75.75% 89.83%  82.19%
Balancedzero-shot 94.31% 92.74% 96.14%  94.41%
Balancedpack-translation 95.15% 95.61% 94.66%  95.13%
Balancedyora 96.70% 96.11% 97.34%  96.72%
Balancedpporoprrta  96.82%  96.28%  97.41%  96.84%
Balancedppo-apr 97.27% 96.91% 97.65% 97.28%

Table 9. Classification Results-RoBERTa-Jigsaw

Dataset Accuracy Precision Recall F1-Score
Unbalancedjigsaw 96.68% 82.11% 86.19%  84.10%
Balancedzero-shot 94.27% 93.27% 95.42%  94.33%
Balancedpack-translation ~ 95-68% 95.88% 95.45%  95.67%
Balanced; o4 96.65%  95.53%  97.69%  96.59%
Balancedppo-RoBERTa 96.65% 95.89% 97.47% 96.67%
Balancedppo-ap1 97.01% 96.13% 97.97% 97.04%

Additionally, both methods may fail to accurately capture the underlying data distribution, leading
to biased models and suboptimal performance. Details about the experimental setup of classifiers
are mentioned in Appendix A. The performance of classifiers is then evaluated based on Accuracy,
Precision, Recall, and F1-score. All results per classifier are demonstrated in Tables 6-11.

The results indicate that the dataset generated by flant5ppo-apr significantly enhanced the per-
formance of all classifiers, outperforming alternative versions trained or fine-tuned with different
datasets. Classifiers developed using balancedfiantsppo »p 2chieved the highest metrics in accuracy,
precision, recall, and F1-score. Despite addressing the imbalance issue with a weighted loss func-
tion, prioritizing F1-score for comparison due to the dataset’s imbalance revealed BERT developed
by balancedyan sy 4 as the top-performing classifier with an outstanding F1-score of 97.28%.
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Table 10. Classification Results-HateBERT-Jigsaw

Dataset Accuracy Precision Recall F1-Score
Unbalancedjigsaw 96.52% 82.9% 86.11%  84.55%
Balancedzero-shot 94.32% 93.24% 95.56%  94.39%
Balancedgack-translation 95.35% 95.51% 95.16%  95.34%
Balancedrora 96.72% 95.88% 97.63% 96.74%
Balancedppo-RoBERTa 96.75% 96.07% 97.48% 96.77%
Balancedppo-ap1 97.03% 96.20% 97.98% 97.12%

Table 11. Classification Results-BERTweet-Jigsaw

Dataset Accuracy Precision Recall F1-Score
Unbalancedyigsaw 96.41% 82.45% 86.03%  84.21%
Balancedzero-shot 94.22% 93.19% 95.44%  94.24%
Balancedsaoitranslation ~ 95.48%  95.49%  95.12%  95.30%
Balancedy oga 96.68% 95.83% 97.60%  96.64%
Balancedppo-RoBERTa 96.71% 96.67% 97.41% 96.96%
Balancedppo-ap1 97.02% 96.26% 97.95% 97.00%
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Fig. 8. Total toxic samples generated by each model: Toxicity scores > 0.3 (ToxiGen dataset).

Following closely is HateBERT, fine-tuned by balancedfianssppo.5p» Which achieved a notable F1-
score of 97.12%. Conversely, classifiers developed using the Unbalancedj;gsaw dataset did not yield
satisfactory results. Furthermore, classifiers developed with the Balancedppo-roperTa dataset ex-
hibited good performance, closely trailing balancedf)ansppo.ap» Dut fell short of surpassing our
proposed technique.

6.3 Generating Toxic Samples and Classification with ToxicGen Dataset

We selected 2,000 toxic prompts and utilized various models, including flant5zero-shot, f1ant5iora,
flant5ppo-RoBERTas flant5ppo-apr, and flantSpack-translation, 10 generate toxic samples. It is impor-
tant to note that we aimed to generate a maximum of 2,000 samples, as only one response was
requested per prompt. Subsequently, all generated samples underwent toxicity evaluation using
the Perspective AP, and only those with a toxicity score of 0.30 or higher were retained. Figure 8
illustrates the distribution of generated toxic samples across different models.
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Table 12. Composition of Balanced Datasets: Model-Generated Toxic Samples and Random Nontoxic
Samples-ToxiGen

Model Generated Toxic Samples > 0.3 Total Toxic Samples Nontoxic Toxic + Nontoxic
Flant5zero-shot 139 2,139 2,139 4,278
flant5pack-transiation 341 2,341 2,341 4,682
flant5orA 804 2,804 2,804 5,608
flant5ppO-RoBERTa 1,682 3,682 3,682 7,364
flant5ppo-apr 1,894 3,894 3,894 7,788

Table 13. CNN-Based Classification Performance-ToxiGen

Model Dataset Accuracy Precision Recall F1-Score
Balancedyzero-shot 90.18% 89.31% 91.67% 90.24%
Balancedgack-transiation  91.34% 89.97%  93.78%  91.42%

ONN Balanced; oA 92.40% 91.73%  94.15%  92.61%
Balancedppo-RoBERTa 93.36% 91.58% 94.28% 93.71%

Balancedppo-ap1 94.30% 93.86% 95.75% 94.62%
Balancedzero-shot 91.20% 90.42%  92.85%  91.50%
Balancedpaci-transiation  92.31% 91.27% 93.84%  92.69%

Balancedrora 93.75% 91.03% 94.79% 93.88%

CNNFastlext g ) oncedipo roperra 94.01% 94.22%  95.12%  94.24%
Balancedppo-ap1 95.28% 94.10% 96.73% 95.47%

Then, all augmented samples were added to the initially selected toxic samples used as prompts
to create a balanced dataset. To achieve balance, an equal number of nontoxic (benign) samples
were randomly selected from the ToxiGen dataset. The final results are shown in Table 12. The
results indicate that applying reinforcement learning for instruction tuning surpasses other
techniques such as zero-shot learning, back-translation, or even simple instruction fine-tuning.
Moreover, utilizing the Perspective API as a toxicity evaluator for toxicity reward yields better per-
formance compared to HateRoBERTa. Finally, 1,894 toxic samples were generated by flant5ppo-apr,
which, combined with the initial 2,000 toxic prompts, resulted in a total of 3,894 toxic samples.
Subsequently, a balanced dataset comprising 7,788 samples, both toxic and nontoxic, was created.

After creating balanced datasets from ToxiGen, various classifiers, such as CNN, CNN-FastText,
BERT, RoBERTa, and HateBERT, and BERTweet were trained on the complete datasets. Each
dataset was split into training and testing sets, with an 80% and 20% ratio, respectively. The classi-
fication results can be found in Tables 13 and 14.

The classification results for datasets developed using ToxiGen prompts show that classifiers
trained on the Balancedppo-ap1 dataset outperform other models. Overall, transformer-based mod-
els outperform CNN-based models. Specifically, BERT fine-tuned with the Balancedppo-ap1 dataset
achieves the best performance with an accuracy of 97.98% and an F1-score of 98.05%. In contrast,
the CNN classifier trained on the Balancedzero-shot dataset performs the worst, with an accuracy
of 90.18% and an F1-score of 90.24%.

To conclude, our proposed approach to text data augmentation for constructing a balanced
dataset has not only demonstrated its effectiveness in generating a larger quantity of high-quality
toxic samples but also led to enhanced performance across a diverse range of evaluation met-
rics. This augmentation technique, leveraging state-of-the-art language models and reinforcement
learning, provides a straightforward and effective strategy for addressing imbalances in toxic
datasets, contributing to superior classifier performance in toxicity detection tasks.
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Table 14. Transformer-Based Classification Performance-ToxiGen

Model  Dataset Accuracy Precision Recall F1-Score
Balancedzero shot 92.46% 91.25%  92.84%  92.39%
Balancedpactransiation  92.71% 91.44%  93.06%  92.68%

spry | Balancediora 96.88% 95.03%  96.87%  96.75%
Balancedppo roprrra  97.52% 97.12%  96.22%  97.43%
Balancedppo.-api 97.98%  96.23% 98.26% 98.05%
Balancedzeroshot 92.01% 90.34%  93.59%  92.27%
Balancedpack-translation 92.68% 91.38%  92.91%  92.46%
Balancedy opa 95.88% 9439%  95.97%  95.76%

ROBERTa b 1 ancedopooirta  96.83% 96.22%  97.12%  96.43%
Balancedppo.api 97.31%  96.04% 97.59% 97.29%
Balancedzero shot 92.27% 93.59%  90.34%  92.16%
Balancedsac translation 92-23% 93.83%  91.48%  92.57%
Balancedyopa 96.05% 94.83%  96.11%  95.98%

BERTweet b 1 ancedppo poperra  96.94% 96.17%  97.29%  96.88%
Balancedppo.api 97.36%  96.54% 97.62% 97.34%
Balancedzeroshot 92.35% 91.22%  92.76%  92.27%
Balancedsac translation  92-65% 91.39%  93.01%  92.59%
Balancedyopa 96.81% 94.98%  96.79%  96.67%

HateBERT o 1 oncedppo poperra  97.47% 97.02%  96.15%  97.25%
Balancedppo.api 97.85%  97.19% 98.13% 97.92%

However, an important question arises regarding the significance of our improvements. Despite
our model consistently outperforming the baseline methods, the progress might seem modest,
especially considering that the baselines were already quite effective. It is crucial to emphasize that
even small improvements in accuracy and performance have significant implications, particularly
in areas such as detecting toxic content in online conversations. Additionally, the ability of our
method to create more toxic samples is extremely useful, especially when there are not many
toxic examples available.

In terms of the computational aspect, we understand the importance of balancing the complexity
of our model with the available resources. Our approach includes methods such as PEFT to reduce
computational overhead and make better use of memory during training. Furthermore, we use
RLHF to improve our model’s performance while keeping computational demands low.

In summary, our proposed model makes a significant contribution to the field of toxicity
detection by addressing data imbalances and strengthening our model’s resilience.

7 Conclusion

In conclusion, our paper presents a novel approach to sentence-level text data augmentation,
employing reinforcement learning guided by human feedback to enhance the performance
of the fine-tuned FLAN-T5 model. By prioritizing paraphrasing while maintaining semantic
coherence and generating toxic responses, our method effectively tackles the challenges posed
by imbalanced datasets in toxic language detection. Central to our approach is the utilization of
Proximal Policy Optimization as a reinforcement learning technique, coupled with the Google
Perspective API as a toxicity evaluator and the integration of Kullback-Leibler Divergence.
These components synergistically produce high-quality toxic responses, yielding a balanced and
diverse dataset that outperforms existing data augmentation methods. Through a comprehensive
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exploration of various methodologies for toxic text generation, including zero-shot learning,
back-translation, and instruct-tuned FLAN-T5, optimized with PPO and evaluated using different
toxicity evaluators such as HateRoBERTa and the Google Perspective API, we have demonstrated
the superiority of our proposed framework. Our findings, validated across two distinct toxic
datasets, Jigsaw and ToxiGen, consistently point to the efficacy of instruct-tuned FLAN-T5 with
PPO and Perspective API as a superior approach. Our approach has yielded impressive results,
generating 122,951 toxic samples with a toxicity score exceeding 30%, highlighting its potential
to significantly advance toxicity detection models in online conversations. Notably, over 20,000
of the generated samples exhibit toxicity levels exceeding 90%, further emphasizing the impact of
our method on enhancing toxicity detection models. However, it is essential to acknowledge the
limitations of our approach, which we aim to address in future research endeavors. Specifically,
the simplification of the Jigsaw toxic dataset into two broad categories limits the granularity of
our analysis. Future work will focus on generating samples for individual toxic labels to create
a more detailed and balanced dataset, enabling a deeper understanding and modeling of various
forms of toxic language. Additionally, exploring the performance of other FLAN-T5 variants or
larger models could provide additional insights and improvements. Moreover, addressing the
need for human processing of generated responses remains a challenge that will be a focus of
future iterations of our research. In conclusion, our study represents a significant advancement in
the development of robust toxicity detection models for online conversations. By acknowledging
current limitations and outlining future research directions, we aim to continue making impactful
contributions to the field of natural language processing and online moderation.

A Appendix

In this section, we outline the experimental configurations for the classifiers developed in this
research. We divided all datasets, including five balanced datasets generated using TDA and the
original imbalanced dataset, into training and testing sets. The training set consists of 70% of
the data, with 10% allocated for the validation set, and the remaining 20% designated for the test
set, applied to both the Jigsaw and ToxiGen datasets. To ensure consistency across classifiers and
datasets, we used a random-state approach for the train-test split, resulting in identical training
and testing sets for all classifiers. All six classifiers received the same training and testing sets to
maintain uniformity in the experimental setup.

A.1 CNN-Based: CNN and CNN-fastText for Balanced Datasets

We started the training process with a data cleaning and preprocessing phase as the initial step.
This process includes the removal of URLs, punctuation, digits, stop-words, and the normalization
of cases, acronyms, and abbreviations. Subsequently, the tokenization process takes place, with
text comments either truncated or padded to achieve a fixed length before being transformed into
vector words. The model architecture incorporates four 1D convolutional layers with multiple
window sizes and output channels. A pooling layer is employed to reduce the dimensionality
of the convolutions, followed by a global max pooling step to further diminish the dimension.
ReLU activation functions are used in the hidden layers, while the output layer employs a
Sigmoid activation function. During training, the binary cross-entropy loss function measures
the disparity between predicted and actual labels. The Adam optimizer is applied to update the
model’s parameters, facilitating faster convergence and improved accuracy.

To expedite the training process, we integrated pre-trained fastText word embeddings into our
CNN model, resulting in the CNN-fastText variant. Specifically, we utilized the “crawl-300d-2M”
embeddings, consisting of 2 million word vectors trained on Common Crawl using a continuous
bag of words (CBOW) with position weights, character n-grams of length 5, and a window of size
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Table 15. Experimental Configurations for CNN-based Classifiers based on Jigsaw Dataset

Model Dataset Epoch Batch Learning Dropout Filters Max Max
size rate rate Features Length

Unbalancedyigsaw, 35 128 500E-05 05 128 100000 400
Balancedzero-shot 25 128 5.00E-03 0.3 128 100000 400

CNN Balancedpyck-transiation 18 512 2.00E-05 0.5 128 100000 400
Balancedyora 28 512 2.00E-05 0.3 128 100000 400
BalancedpporopERTa 15 128 2.00E-04 0.5 300 100000 400
Balancedppo-api 10 512 1.00E-05 0.5 300 100000 400
Unbalancedjigsa 19 32  1.00E-03 04 128 100000 400
Balancedzero-shot 17 256 5.00E-05 0.5 256 100000 400

ONN-fasText  BAlonCedpacicuansiation 33 128 3.00E-04 03 128 100000 400
Balancedy o a 6 256 2.00E-04 0.4 300 100000 400
BalancedpporopERTa 22 256 5.00E-04 0.5 128 100000 400
Balancedppo-ap 25 512 5.00E-05 0.5 128 100000 400

Table 16. Experimental Configurations for CNN-Based Classifiers based on ToxiGen Dataset

Model Dataset Epoch Batch Learning Dropout Filters Max Max
size rate rate Features Length

UnbalancedroxiGen 31 512 5.00E-05 0.5 300 100000 400
Balancedzero-shot 26 256 5.00E-03 0.5 300 100000 400

ONN Balancedpaci-translation 20 128  5.00E-05 0.5 300 100000 400
Balancedy ora 22 512 5.00E-05 04 128 100000 400
Balancedppo-RoBERTa 27 256 5.00E-05 04 128 100000 400
Balancedppo-api 17 512 5.00E-05 0.4 128 100000 400
Unbalancedﬁgsaw 12 256  2.00E-03 0.5 128 100000 400
Balancedzero-shot 15 256 5.00E-05 0.5 300 100000 400

ONN-fasText  BU0nCedpack-trandlation 24 128 4.00E-04 05 300 100000 400
Balancedora 18 64  4.00E-04 0.5 300 100000 400
Balancedppo-RoBERTa 15 64  5.00E-05 0.5 300 100000 400
Balancedppo-apr 23 64 5.00E-05 0.5 300 100000 400

5 and 10 negatives. The CNN model convolves over these embedded vectors, which then undergo
max pooling to reduce dimensionality. The final classification is executed using fully connected lay-
ers with a Sigmoid activation function. Incorporating pre-trained word embeddings significantly
reduced the training time of our CNN model. We systematically tested hyperparameters to opti-
mize results for each dataset. A detailed overview of the final hyperparameter settings is presented
in Table 15 for datasets developed using prompts from the Jigsaw dataset and in Table 16 for those
developed using the ToxiGen dataset.

A.2 Transformer-Based: BERT, RoBERTa, HateBERT, and BERTweet

We used the Huggingface transformer library, compatible with Tensorflow 2.14.0, for our work. To
identify toxic content, we employed the BERT-base-uncased, RoBERTa-base, GroNLP/hateBERT,
and vinai/BERTweet-base variants. Text data preparation involved the use of tokenizers, which
convert raw text into tokens compatible with BERT/RoBERTa. For each model, we explored a dis-
tinct set of hyperparameters randomly to identify the configuration yielding the most accurate
results. The optimal hyperparameters for each model developed via Jigsaw-based datasets are de-
tailed via Tables 17 and 18 for ToxiGent-based datasets.
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Table 17. Experimental Configurations for Transformer-Based Classifiers:
Jigsaw-Based Datasets

Model Dataset Epoch Batch Learning Dropout Max
size rate rate  Length
Unbalancedjigsaw 2 16 2e-5 0.5 400
Balancedyzero-shot 2 8 3e-5 0.4 400
BERT Balancedp,ck-translation 2 8 3e-5 0.4 400
Balancedy ora 1 8 4e-5 0.5 400
Balancedppo-RoBERTa 1 2 2e-5 0.4 400
Balancedppo-apr 1 4 2e-5 0.5 400
Unbalancedyigsaw 2 16 4e-5 0.3 400
Balancedzero-shot 2 8 3e-5 0.4 400
Balancedp,ck-translation 3 8 3e-5 0.3 400
RoBERTa Balancedy o a 1 16 3es5 0.4 400
Balancedppo-RoBERTa 1 8 3e-5 0.5 400
Balancedppo-ap1 1 2 3e-5 0.4 400
Unbalancedyigsaw 2 16 4e-5 0.3 400
Balancedzero-shot 2 128 3e-5 0.4 400
Balancedpack-translation 2 64 2e-5 0.4 400
HateBERT Balancedy opa 1 16 2e5 0.4 400
Balancedppo-RoBERTa 1 4 2e-5 0.5 400
Balancedppo-ap1 1 4 2e-5 0.5 400
Unbalancedyigsaw 1 16 4e-5 0.3 400
Balancedzero-shot 1 25  3e-5 0.5 400
Balancedg,ck-translation 1 64 2e-5 0.5 400
BERTweet Balancedy o a 1 8 2e-5 0.5 400
Balancedppo-RoBERTa 1 4 2e-5 0.5 400
Balancedppo-ap1 1 4 2e-5 0.5 400

Table 18. Experimental Configurations for Transformer-Based Classifiers:
ToxiGen-Based Datasets

Model Dataset Epoch Batch Learning Dropout Max
size rate rate  Length
Balancedzero-shot 2 128 2e-5 0.5 400
Balancedp,ck-translation 2 64 2e-5 0.5 400
BERT Balancedy ora 1 16 2e-5 0.5 400
Balancedppo-RoBERTa 1 2 2e-5 0.4 400
Balancedppo-ap1 1 2 2e-5 0.5 400
Balancedzero-shot 2 128 2e-5 0.4 400
Balancedg,ck-translation 1 64 2e-5 0.3 400
Balancedy ora 1 16 2e-5 0.5 400
RoBERTa Balancedppo-RoBERTa 1 4 2e-5 0.5 400
Balancedppo-ap1 1 4 2e-5 0.4 400
Balancedzero-shot 2 256 2e-5 0.4 400
Balancedp,ck-translation 2 128 2e-5 0.3 400
Balancedy ora 1 16 2e-5 0.5 400
HateBERT Balancedppo-RoBERTa 1 2 2e-5 0.5 400
Balancedppo-ap1 1 2 2e-5 0.5 400
Unbalancedyero-hot 2 128 2e-5 0.5 400
Balancedpack-translation 2 64 2e-5 0.5 400
Balancedy ora 1 64 2e-5 0.5 400
BERTweet Balancedppo-RoBERTa 1 2 2e-5 0.5 400
Balancedppo-ap1 1 2 2e-5 0.5 400
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