
VirtualGAN: Reducing Mode Collapse in
Generative Adversarial Networks Using Virtual

Mapping
Adel Abusitta

School of Information Studies
McGill University
Montreal, Canada

adel.abusitta@mcgill.ca

Omar Abdel Wahab
Department of Computer Science and Engineering

Université du Québec en Outaouais
Gatineau, Canada

omar.abdulwahab@uqo.ca

Benjamin C. M. Fung
School of Information Studies

McGill University
Montreal, Canada

ben.fung@mcgill.ca

Abstract—This paper introduces a new framework for reduc-
ing mode collapse in Generative adversarial networks (GANs).
The problem occurs when the generator learns to map several
various input values (z) to the same output value, which makes the
generator fail to capture all modes of the true data distribution.
As a result, the diversity of synthetically produced data is
lower than that of the real data. To address this problem, we
propose a new and simple framework for training GANs based
on the concept of virtual mapping. Our framework integrates
two processes into GANs: merge and split. The merge process
merges multiple data points (samples) into one before training
the discriminator. In this way, the generator would be trained to
capture the merged-data distribution rather than the (unmerged)
data distribution. After the training, the split process is applied to
the generator’s output in order to split its contents and produce
diverse modes. The proposed framework increases the chance of
capturing diverse modes through enabling an indirect or virtual
mapping between an input z value and multiple data points. This,
in turn, enhances the chance of generating more diverse modes.
Our results show the effectiveness of our framework compared
to the existing approaches in terms of reducing the mode collapse
problem.

I. INTRODUCTION

Generative adversarial networks (or GANs) [Goodfellow
et al.2014] is a powerful generative model used for learning
any type of data distribution and producing synthetic data.
GANs have shown an unprecedented ability to generate
new synthetic high-quality data compared to the traditional
generative models (e.g., VAE [Doersch2016], DBN [Hinton
et al.2006]). The real-world applications of GANs can be
seen in many domains, including those of computer vision
[Wang et al.2018], cybersecurity [Arora and Shantanu2020],
and mitigating biases in AI systems [Abusitta et al.2020].

Although interesting results (in terms of quality) have been
achieved using GANs, training GANs for many applications is
challenging since it frequently leads to the mode collapse issue.
This occurs when the generator learns to map several noise z
values to the same output point. As a result, the diversity of
synthetically produced samples becomes smaller than that of
the real data. For example, with the database of handwritten
digits (MNIST), which consists of 10 modes e.g., {digit ’1’ ...

digit ’9’}, the generated samples may only produce very few
of these modes [Khorramshahi et al.2020], as shown in Figure
1a.

In most GAN-related applications, we want our GAN to
generate a wide variety of outputs [Zhang et al.2018]. As an
instance, we need different images for every random input (z) to
our face generator [Tripathy et al.2020] [Olszewski et al.2017].
Also, In GAN-related cybersecurity applications, we need our
GAN to produce different synthetic malicious activities in order
to enhance AI-powered Intrusion Detection Systems (IDSs)
[Arora and Shantanu2020] [Abusitta et al.2019]. In real-world
applications of GANs, if a generator generates an accepted
output, the generator tends to learn how to generate only that
output. In other words, the generator is looking to find the
most acceptable one to the discriminator. This makes GANs
to produce limited outputs.

Several attempts have been proposed to mitigate the mode-
collapse issue (e.g., [Lin et al.2020], [Che et al.2016], [Metz et
al.2016], [Dieng et al.2019], [Tolstikhin et al.2017]). However,
most of these approaches suffer from mode collapse when
applying them on high dimensional datasets that contain large
number of modes. Moreover, some approaches require further
modifications to the original GANs structure, which makes it
not useful in practice.

To address the above-mentioned problems, we propose
a novel framework for reducing mode collapse in GANs.
The proposed framework is based on the concept of virtual
mapping, which enables an input noise (z) to be virtually
mapped to multiple data points. To this end, we integrate two
processes into GANs: merge and split. The merge process
combines two or more data points (samples) into one single
point before training the discriminator. Thus, the generator is
trained to produce merged data points rather than separate ones.
Thereafter, the split process is used to split the generator’s
outputs and create separate points. The proposed framework,
named VirtualGAN, can be seen as a trick which can be
applied to the original GANs. For every mode produced from
the VirtualGAN’s generator, there is a chance that this mode
could consist of a set of diverse modes after applying the split

(a) Random Samples generated using GAN (b) Random Samples generated using VirtualGAN

Figure 1: Mode collapse problem in generated samples (MNIST dataset). In (a) generator only produces 0; 1; 4; 7; 9 modes; however,
VirtualGAN (the proposed framework) increases the number of modes recovered (b).

process. The merge process increases the chance of capturing
more modes by combining multiple points and letting the
discriminator treat them as one point.

The proposed framework should not be confused with
PacGAN [Lin et al.2020], which penalizes the generator with
mode collapse by letting the discriminator make decisions based
on multiple samples. Unlike PacGAN, VirtualGAN merges
samples as one unit (merged data) and trains the generator to
produce the merged data. The contributions of this paper are
as follows:
• Proposing a simple and efficient framework for reducing

mode collapse in GANs. The proposed framework can be
easily applied and integrated with any version of GANs,
with any kind of loss functions and parameters

• Devising a new concept, named virtual mapping in GANs.
This concept gives flexibility for training GANs and
mitigating mode collapse. Moreover, it provides a new
direction for further improvement of GANs and their
various versions.

• Evaluating the effectiveness of the proposed framework
using several datasets, and comparing our results with
those produced with other GAN architectures.

The rest of this paper is organized as follows: Section
2 formulates the proposed framework for mode collapse
mitigation in GANs (VirtualGAN). In Section 3, we present
our empirical results to show the effectiveness of the proposed
framework. Section 4 discuss the related work. Finally, Section
5 concludes the paper and presents the future work.

II. RELATED WORK

Several approaches have been proposed to alleviate mode
collapse in GANs, e.g., [Lin et al.2020], [Che et al.2016],
[Metz et al.2016], [Dieng et al.2019], [Tolstikhin et al.2017],
[Balaji et al.2019] [Hoang et al.2018], [Srivastava et al.2017].
Martin et al. [Arjovsky et al.2017] propose to use Wasserstein
loss to mitigate mode collapse. The Wasserstein loss enables
the discriminator to learn how to reject these outputs that the
generator stabilizes on. This strategy motivates the generator to
produce new outputs. Also, Metz et al. [Metz et al.2016]
propose unrolled GANs, which adopts a generator’s loss-
function that incorporates the future outputs of the discriminator
in addition to the current ones. As a result, the generator

becomes unable to over-optimize for a specific and single
discriminator.

Recently, Lin et al. [Lin et al.2020] propose to use the
augmentation of discriminator as a new approach for mitigating
mode collapse in GANs. In this approach, the discriminator is
adjusted to make decisions based on multiple samples from the
same class (real or artificial data). The augmentation strategy
mitigates mode collapse by penalizing generators that produce
mode collapse [Lin et al.2020].

Tolstikhin et al. [Tolstikhin et al.2017] propose to train
multiple generators rather than a single one. This approach is
inspired by boosting algorithms [Welling et al.2003], which
enable individual predictors to cooperate in order to produce a
strong composite.

Another approach used to mitigate mode collapse is the
regularization of encoder approach (e.g., [Dumoulin et al.2016],
[Srivastava et al.2017]). For example, Srivastava et al. [Srivas-
tava et al.2017] present VEEGAN, which is supported by a
reconstructor network (RN) that reverses the generator’s action
through mapping from data to the latent (noise) space. In
particular, they try to train the RN and the generator jointly.
As a result, the generator becomes motivated to produce the
entirety of the real data distribution.

Recently, Khorramshahi et al. [Khorramshahi et al.2020]
propose to use GANs with variational entropy regularizers to
alleviate mode collapse. Specifically, they propose to maximize
a variational lower bound on the generated samples’ entropy
in order to increase the generator diversity. Similarly, Dieng
et al. [Dieng et al.2019] propose to maximize the entropy
of the generative distribution. This strategy motivates GANs
to capture many modes of the data distributions [Dieng et
al.2019].

III. THE PROPOSED FRAMEWORK

In this section, we present the details of our framework
proposed for reducing mode collapse in GANs. We first give
some background on GANs and then present the proposed
framework.

A. Background

GANs is a new generative model, which has been proposed
by [Goodfellow et al.2014]. GANs have received more attention

in the recent years thanks to their unprecedented ability to
generate new synthetic high-quality data compared to the
traditional generative models. It consists of two models: a
discriminator (D) and a generator (G). The generator is trained
to obtain the data distribution through attempting to maximize
the probability of the discriminator committing a mistake. The
discriminator is trained to increase the probability that a data
sample came from a true data (training data) rather than the
generator. In practice, the training of D and G is repeated
over many iterations until the D model becomes unable to
distinguish whether the underlying data point is a sample from
the original data point or generated from G. This approach
is also known as a minimax two-player game [O’Neill1987]
[Goodfellow et al.2014] and is described formally as follows
[Goodfellow et al.2014]:

minG maxDV (G,D) = Ex∼pdata log[D(x)]+

Ez∼pz log[1−D(G(z))]
(1)

B. VirtualGAN

We address the problem of mode collapse by enabling virtual
mapping between the noise space and data space. As can be
seen in Figure 2, several data points are sampled in parallel
from the data generated distribution. These data points are then
merged together as a single data point in order to be used by
a discriminator. The merge process means concatenating (or
combining) data points together either vertically or horizontally.
Thus, the generator is trained to produce combined data points
rather than separated ones. Post training, there will be chances
that each data point produced by the generator would consist
of diverse modes rather than single or limited ones. These
chances further increase if the merge process combines data
points from different modes. Then, the split process is used to
split the generator’s output and produce diverse modes.

Equation 2 shows how the minmax two-player game is
formulated based on the concept of merge process and virtual
mapping. Note that the sampling process is done on the merged
data (pmerged−data) rather than separate data (pdata) as depicted
in Equation 1. Equation 2 represents the theoretical description
of the proposed framework. In the implementation (Algorithm
1), we first sample data and then merge these data by taking
into consideration the merge level l. For example, if l = 3, this
means that we merge three data points together. Therefore, the
generator is trained to produce the merged data.

minG maxDV (G,D) = Em∼pmerged−data log[D(m)]+

Ez∼pz log[1−D(G(z))]
(2)

s1 = G(z)

s2 = split(s1, l)
(3)

After training, the generator learns how to map input z values
to the output value, which consists of merged or combined
data points. The split process is then applied on the output
of the generator to generate separate data points as shown
in Equation (3). The parameter l in Equation (3) represents
the merge level used when we merged data at the beginning.

For example, if l = 3, split(s1, l) will split s1 into 3 data points.

Proposition 1. pm
g (generator’s distribution over merged data

m) converges to the merged-data distribution pmerged−data
if the convergence conditions (presented in [Goodfellow
et al.2014]) have been achieved with respect to the merged data.

Proof. This is because the prove of convergence with
respect to the (unmerged) data (pg converges to pdata), which
is presented in [Goodfellow et al.2014], works with any type
of data used (merged or not). Therefore, if the data used
are replaced with the merged data, then pm

g converges to
pmerged−data.

The proposed framework can be used with any GAN
architecture, any loss function and parameters. Algorithm
1 describes the algorithm of the proposed framework
integrated with WGAN [Arjovsky et al.2017], we call this
"VirtualWGAN". As can be seen in Algorithm 1, each sampled
data is combined with a set of data of size l. The generator is
trained to capture the merged data distribution through trying
to maximize the probability of the discriminator committing a
mistake. The discriminator is trained to increase the probability
that a merged data point sample came from a true merged data
distribution. The loop with j in Algorithm 1 is used to create
the merged data. Each data point (sampled from the training
data) is merged with other data points, which are randomly
selected. The loop with l in Algorithm 1 is used to ensure
that l data points are merged together. It is worth mentioning
here that the merging procedure can be implemented in many
ways. The merging procedure can also be optimized to ensure
that the merged data consist of different modes.

The merge process in Algorithm 1 adds additional complexity
to the WGAN [Arjovsky et al.2017]. The additional complexity
is equal to l * n, where l is the merge level and n is the number
of sampled data.

How to merge and split data. The merging of the data
can be done either vertically or horizontally. Knowing the
dimensions of data points, the split process can easily split the
merged points.

Why VirtualGAN can mitigate mode collapse in GANs?
When applying the merge process in GANs, the generator is
trained to generate merged data points rather than separated
ones. This, in turn, allows the generator to produce several
modes from a single random value z. The split process is then
used to extract these modes.

C. GANs and the Concept of Virtual Mapping

We should note that the proposed framework does not lead
to building a generator that is directly able to produce data
that belong to the true data distribution. Instead, it builds a
generator that produces data that belong to the true merged
data distribution. Although this idea is not popular (perhaps not
available) and it is not directly inline with the basic concept
of generative models and GANs, we believe that this new
approach is not considered as an issue. This is because the

Figure 2: VirtualGAN: The proposed framework.

Algorithm 1: VirtualWGAN
Input: merge level l, learning rate al pha, clip value c
Input: number of iterations (per generator) n− critic
Input: size of batch n, parameters of critic (initial) w0
Input: parameters of generator (initial) θ0
repeat

for t=0 to n-critic do
Sample n data samples {x(i), ...,x(n)} f rom Pdata
for j = 0 to n do

for l steps do
x(j)← concatenate(x(j),x(random(x(1),x(n)))

end
end
Sample n noise samples {z(i), ...z(n)} f rom p(z)
gw← ∇w[

1
n ∑

n
i=1 fw(x(i)− 1

n ∑
n
i=1 fw(gθ (z(i)))]

w ← w+al pha.RMSProp(w,gw)
w ← clip(w,−c,c)

end
gw←−∇w

1
n ∑

n
i=1 fw(gθ (z(i)))

θ ← θ +al pha.RMSProp(θ ,gθ)
until θ hasconverged;
function GENERATOR(z)

s1 ← g(z)
return split(s1, l)

end function

generator is basically considered as a tool for generating new
synthetic data [Goodfellow et al.2016]. Our generator can do
that when applying the split process to each generator’s output.
Our generator also increases the chance of producing diverse

modes compared to other approaches. Moreover, it can be
integrated with any GAN architecture, including those that are
used to mitigate mode collapse and thus it can largely mitigate
mode collapse.

IV. EXPERIMENTS

In this section, we compare the proposed framework with a
set of generative models. These models are GAN [Goodfellow
et al.2014], Deep Convolutional GAN (DCGAN) [Radford et
al.2015], and WGAN [Arjovsky et al.2017]. The aim of the
experiments is to show how the idea of virtual mapping can
work any GAN architecture and improve their performance.
Table I shows the parameters used for the experiments.

Table I: Experimentation parameters.

parameter considered values
Number of epochs 200
Size of the batches 64

Learning rate 0.00005
Clip value 0.01

n-critic 5

The datasets used in the experiments are MNIST [LeCun et
al.1998], 2D-grid [Srivastava et al.2017], 2D-ring [Srivastava
et al.2017] and Stacked MNIST dataset [Lin et al.2020].

For the evaluation, we measure the number of modes
recovered and the quality of generated samples. To measure
the quality of samples, we used the state-of-the-art methods
[Lala et al.2018] [Lin et al.2020] [Khorramshahi et al.2020].
For each dataset, we used the most suitable method to it as
the following [Lala et al.2018] [Lin et al.2020] [Khorramshahi
et al.2020].

2D-grid and 2D-ring datasets. In these two datasets, we
measured the quality of generated samples by computing the

number of high quality samples, which is the proportion of the
samples that are within 3 standard deviation to their nearest
mode [Lin et al.2020].

MNIST dataset. For MNIST dataset, the proportion of high
quality samples were calculated based on a predefined classifier.
High quality samples are those samples that the classifier
is highly confident on i.e., 99.8% confidence score [Lala et
al.2018].

Stacked MNIST. In this dataset, the quality of generated
sampled were calculated based on Kullback-Leibler (KL) diver-
gence, which measures the difference between the generated
distribution and the true data distribution. the lower KL value,
the higher overall samples quality.

A. Results

Below, we compare GAN with VirtualGAN to show the
advantage of using virtual mapping in GAN. As can be seen in
Tables II, III and IV, our framework (VirtualGAN) allowed us to
recover the whole modes when applying it on MNIST, 2D-grid
and 2D-ring datasets. Specifically, the proposed framework
recovered 10 modes from the MNIST, 25 modes from the
2D-grid, and 8 modes from the 2D-ring dataset. The results
also show that GAN was not able to recover the whole modes
when applying it in the same datesets. The superiority of the
proposed framework compared to GAN indicates that the merge
process used by our framework enables us to capture more
modes compared to GAN.

Our results in Tables II, III and IV also show the proportion
of high quality samples generated by each model. The proposed
framework produced a higher proportion of high quality
samples compared to GAN. The proportion value increased
when the merge level has been increased from 2 (VirtualGAN-
2) to 4 (VirtualGAN-4). These results can be interpreted as
the impact of discriminator’s input size used by each model
[Curtó et al.2017]. The larger input size is, the larger number
hyperparameters (number of layers and hidden units) are
required to train. This makes the large-sized discriminator’s
input size to produce better performance [Curtó et al.2017].

Table II: The GAN and VirtualGAN results on MNIST dataset (max
10 modes). The results are averaged over 10 trials.

Model No. of modes % High quality
samples

GAN 5 12.3
VirtualGAN-2 (ours) 10 19.2
VirtualGAN-4 (ours) 10 23.4

Table III: The GAN and VirtualGAN results on 2D-grid dataset (max
25 modes). The results are averaged over 10 trials.

Model No. of modes % High quality
samples

GAN 17.2 93.6
VirtualGAN-2 (ours) 25 95.2
VirtualGAN-4 (ours) 25 96.7

Table IV: The GAN and VirtualGAN results on 2D-ring dataset (max
8 modes). The results are averaged over 10 trials.

Model No. of modes % High quality
samples

GAN 6.4 96.7
VirtualGAN-2 (ours) 8 97.6
VirtualGAN-4 (ours) 8 98.4

Table V shows the results of comparing DCGAN with
VirtualDCGAN (our model) on stacked MNIST dataset. Virtu-
alDCGAN represents DCGAN integrated with the proposed
framework (virtual mapping). As shown in Table 4, our model
captured a higher number of modes compared to DCGAN.
These results indicate that the proposed framework is able to
produce outputs of more diverse modes compared DCGAN.
The results also show that more modes can be captured when
using a higher merge level as shown with VirtualDCGAN-4,
which used a merge level = 4.

Table V also shows the value of KL divergence for each
model. Our model reported a lower value of KL divergence
compared to DCGAN. This suggests that the virtual mapping
allow us to capture more modes of higher quality compared
to DCGAN.

Table V: The DCGAN and VirtualDCGAN results on the Stacked
MNIST dataset (max 1000 modes). The results are averaged over 10
trials.

Model No. of modes KL
DCGAN 79.2 3.2

VirtualDCGAN-2 (ours) 550.0 1.06
VirtualDCGAN-4 (ours) 720.3 1.04

B. WGAN Experiment

To verify that the virtual mapping idea can also work on
Wasserstein loss, we compare WGAN with VirtualWGAN
(Algorithm 1) on stacked MNIST dataset. Table 5 shows that
VirtualWGAN captured a higher number of modes compared
to WGAN. These results suggest that the concept of virtual
mapping allowed us to capture more diverse modes compared to
WGAN. The results also show that more number of modes have
been captured when using a higher merge level. Table VI also
shows that our model yields a lower value of KL divergence
compared to WGAN. This means that VirtualWGAN generated
more higher quality samples than WGAN.

Table VI: The WGAN and VirtualWGAN results on the Stacked
MNIST dataset (max 1000 modes). The results are averaged over 10
trials.

Model No. of Modes KL
WGAN 312.4 2.63

VirtualWGAN-2 (ours) 513.7 1.56
VirtualWGAN-4 (ours) 820.3 1.33

C. Discussion

We should note that VirtualGAN could take longer time to
train compared to the traditional GANs. The additional time
comes from the size (dimension) of inputs and outputs used by
the discriminator and the generator, respectively. These extra
dimensions increase the size of the network and the number

of parameters while training. While this can be considered as
the main disadvantage (limitation) of our new schema, we do
not consider it an issue since the extra time leads at the end
to reduce mode collapse in GANs. Moreover, our results show
that the large size of inputs and output lead to improve the
quality of generated samples.

V. CONCLUSION AND FUTURE WORK

This paper presents a new framework for mitigating mode
collapse in GANs. The proposed framework maps (virtually)
each latent value z to several different outputs (data). This has
been achieved by adding two processes in GANs: merge and
split. The merge process combines data points into a single
one in order to increase the chance of capturing more modes.
Therefore, the discriminator and generator are trained based on
combined data points. After training, the generator becomes
able to produce combined points rather than separated ones.
The split process splits the generator’s output to produce diverse
modes. Our framework can be integrated with any architecture
of GANs, with any setup and any loss function. Experimental
results show the effectiveness of the proposed framework in
generating more modes compared to the existing approaches.

In the future, we would like to integrate and test the proposed
framework with many GANs architectures. This is useful to
understand to which extent the concept of virtual mapping
could enhance the existing and different GAN architectures.
Also, we plan to derive an efficient algorithm for training
VirtualGAN. In particular, we will investigate the use of lossless
data compression with the merge process in order to reduce the
size of inputs and outputs of the discriminator and generator,
respectively. We suggest that the concept of virtual mapping
introduced in this paper could prove useful and we encourage
researchers to work in this new direction.

REFERENCES

[Abusitta et al.2019] Adel Abusitta, Martine Bellaiche, Michel Dagenais, and
Talal Halabi. A deep learning approach for proactive multi-cloud cooperative
intrusion detection system. Future Generation Computer Systems, 98:308–
318, 2019.

[Abusitta et al.2020] Adel Abusitta, Esma Aimeur, and Omar Abdel Wahab.
Generative adversarial networks for mitigating biases in machine learning
systems. In European Conference on Artificial Intelligence, pages 937–944,
2020.

[Arjovsky et al.2017] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

[Arora and Shantanu2020] Aayush Arora and Shantanu. A review on
application of gans in cybersecurity domain. IETE Technical Review,
pages 1–9, 2020.

[Balaji et al.2019] Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Normal-
ized wasserstein for mixture distributions with applications in adversarial
learning and domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 6500–6508, 2019.

[Che et al.2016] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio,
and Wenjie Li. Mode regularized generative adversarial networks. arXiv
preprint arXiv:1612.02136, 2016.

[Curtó et al.2017] Joachim D Curtó, HC Zarza, and T Kim. High-resolution
deep convolutional generative adversarial networks. arXiv preprint
arXiv:1711.06491, 2017.

[Dieng et al.2019] Adji B Dieng, Francisco JR Ruiz, David M Blei, and
Michalis K Titsias. Prescribed generative adversarial networks. arXiv
preprint arXiv:1910.04302, 2019.

[Doersch2016] Carl Doersch. Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908, 2016.

[Dumoulin et al.2016] Vincent Dumoulin, Ishmael Belghazi, Ben Poole,
Olivier Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron Courville.
Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

[Goodfellow et al.2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27:2672–2680, 2014.

[Goodfellow et al.2016] Ian Goodfellow, Yoshua Bengio, Aaron Courville,
and Yoshua Bengio. Deep learning, volume 1. MIT press Cambridge,
2016.

[Hinton et al.2006] Geoffrey E Hinton, Simon Osindero, and Yee-Whye
Teh. A fast learning algorithm for deep belief nets. Neural computation,
18(7):1527–1554, 2006.

[Hoang et al.2018] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung.
Mgan: Training generative adversarial nets with multiple generators. In
International Conference on Learning Representations, 2018.

[Khorramshahi et al.2020] Pirazh Khorramshahi, Hossein Souri, Rama Chel-
lappa, and Soheil Feizi. Gans with variational entropy regularizers:
Applications in mitigating the mode-collapse issue. arXiv preprint
arXiv:2009.11921, 2020.

[Lala et al.2018] Sayeri Lala, Maha Shady, Anastasiya Belyaeva, and Molei
Liu. Evaluation of mode collapse in generative adversarial networks. High
Performance Extreme Computing, 2018.

[LeCun et al.1998] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

[Lin et al.2020] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh.
Pacgan: The power of two samples in generative adversarial networks. IEEE
Journal on Selected Areas in Information Theory, 1(1):324–335, 2020.

[Metz et al.2016] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

[Olszewski et al.2017] Kyle Olszewski, Zimo Li, Chao Yang, Yi Zhou,
Ronald Yu, Zeng Huang, Sitao Xiang, Shunsuke Saito, Pushmeet Kohli,
and Hao Li. Realistic dynamic facial textures from a single image using
gans. In Proceedings of the IEEE International Conference on Computer
Vision, pages 5429–5438, 2017.

[O’Neill1987] Barry O’Neill. Nonmetric test of the minimax theory of two-
person zerosum games. Proceedings of the national academy of sciences,
84(7):2106–2109, 1987.

[Radford et al.2015] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[Srivastava et al.2017] Akash Srivastava, Lazar Valkov, Chris Russell,
Michael U Gutmann, and Charles Sutton. Veegan: Reducing mode collapse
in gans using implicit variational learning. In Advances in neural information
processing systems, pages 3308–3318, 2017.

[Tolstikhin et al.2017] Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet,
Carl-Johann Simon-Gabriel, and Bernhard Schölkopf. Adagan: Boosting
generative models. In Advances in neural information processing systems,
pages 5424–5433, 2017.

[Tripathy et al.2020] Soumya Tripathy, Juho Kannala, and Esa Rahtu. Icface:
Interpretable and controllable face reenactment using gans. In The IEEE
Winter Conference on Applications of Computer Vision, pages 3385–3394,
2020.

[Wang et al.2018] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew
Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and
semantic manipulation with conditional gans. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8798–8807,
2018.

[Welling et al.2003] Max Welling, Richard S Zemel, and Geoffrey E Hinton.
Self supervised boosting. In Advances in neural information processing
systems, pages 681–688, 2003.

[Zhang et al.2018] Zhaoyu Zhang, Mengyan Li, and Jun Yu. On the
convergence and mode collapse of gan. In SIGGRAPH Asia 2018 Technical
Briefs, pages 1–4. 2018.

