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Abstract

Malware detection and classification are becoming more and more challeng-
ing, given the complexity of malware design and the recent advancement of
communication and computing infrastructure. The existing malware clas-
sification approaches enable reverse engineers to better understand their
patterns and categorizations, and to cope with their evolution. Moreover,
new compositions analysis methods have been proposed to analyze malware
samples with the goal of gaining deeper insight on their functionalities and
behaviours. This, in turn, helps reverse engineers discern the intent of a mal-
ware sample and understand the attackers’ objectives. This survey classifies
and compares the main findings in malware classification and composition
analyses. We also discuss malware evasion techniques and feature extraction
methods. Besides, we characterize each reviewed paper on the basis of both
algorithms and features used, and highlight its strengths and limitations. We
furthermore present issues, challenges, and future research directions related
to malware analysis.
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1. Introduction1

In the recent years, many cyber-security mechanisms have been designed2

and developed to defend against evolving security threats. Nevertheless,3
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recent statistics [1] indicate that malware are still evolving and becoming4

more sophisticated than ever. As a result, they become harder to detect5

and understand their innerworkings. This mainly stems from two essential6

reasons. The first is that attackers have now become more proficient in7

launching attacks and hiding their malicious behavior using anti-analysis8

techniques such as obfuscation and packing. The second reason is that the9

current communication and computing infrastructure is becoming more and10

more dynamic and heterogeneous, which enables a single malware to take11

various forms that are semantically but not structurally similar. This, in12

turn, makes malware analysis even more challenging.13

Malware (or Malicious software) is a software that is designed to harm14

users, organizations, and telecommunication and computer system. More15

specifically, malware can block internet connection, corrupt an operating16

system, steal a user’s password and other private information, and/or encrypt17

important documents on a computer and demand ransom. For the latest18

years, malware has been a growing threat to computer users and in 201719

the number of new malware increased by 22,9% over 2016 to reach 8,400,05820

[2, 3, 4, 5]. Moreover, malware has become the primary medium to launch21

large-scale attacks, such as compromising computers, bringing down hosts22

and servers, sending out spam emails, crippling critical infrastructures and23

penetrating data centers [6, 7, 8]. These attacks lead to severe damage and24

significant financial loss [9, 10, 11].25

Most antivirus engines detect and classify malware by continuously scan-26

ning files and comparing their signatures with known malware signatures.27

The malware signatures are typically created by human antivirus experts28

(known as malware defenders) who examine the collected malware samples.29

These malware signatures can be filename, text strings, or regular expres-30

sions of byte code [12, 13]. Obviously, signature-based methods can only31

detect traditional malware that do not change significantly. However, mal-32

ware can hide its malicious behavior using anti-analysis techniques such as33

obfuscation, packing, polymorphism and metamorphism, in such a way that34

the code would look quite different from its original version. Thus, the pri-35

mary shortcoming of the signature-based method is that they entail high36

precision but low recall. Also, the process of creating malware signatures is37

labor-intensive. Considering that there is a large number of new malware38

that appear every day, there is a pressing need to develop new intelligent39

malware analysis methods to tackle the challenges.40

To alleviate the burden of manual signature crafting, researchers propose41
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automatic signature generation methods [14, 15]. The content of the signa-42

tures can be Windows system call combinations [16], control flow graph [15],43

and functions [14].44

Researchers also propose to use machine learning models to detect and45

classify malware [12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Different46

from other machine learning-driven classification tasks, such as image clas-47

sification, there is a competition between malware creators and defenders.48

When malware defenders propose a new malware analysis system using some49

features and machine learning models, malware creators often update their50

malware design to avoid being detected. Then malware defenders would pro-51

pose new systems to detect and analyze the new generation of malware and52

so forth. The race between malware defenders and attackers may never come53

to an end.54

Recently, many researchers have started to use deep learning models to55

enhance the detection and classification accuracy of malware classification56

[24, 25, 26, 27]. Although promising results have been achieved through57

the ability to extract robust and useful features using the state-of-the-art58

deep learning architectures, the proposed models were shown to be highly59

vulnerable to adversarial examples, which can be easily designed (simply by60

perpetuating parts of the inputs) by attackers to fool Artificial Intelligence61

(AI)-driven malware analysis systems and make them generate erroneous62

decisions [24, 25, 26, 27, 28, 29]. As a result, several methods have been63

proposed to defend against adversarial examples [28, 29].64

In addition to malware classification, researchers in malware analysis have65

improved new techniques and methods to analyze the composition of mal-66

ware samples by matching their functionalities and behaviours to multiple67

known malware families. This, in turn, helps reverse engineers discern the68

intent of a malware sample and the attacker. Moreover, these composition69

methods enable the reverse engineers and organizations to effectively triage70

their resources.71

1.1. The Scope72

This literature review classifies and compares the recent and main find-73

ings in malware classification. Unlike other similar works which only focus74

either on AI-driven malware classification [30] [31] [32] or on non-AI-driven75

malware classification [33] [34], this paper includes both AI-driven and non-76

AI-driven recent works. We are also surveying methods and approaches that77
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recently have been proposed to analyze the composition of malware sam-78

ples, in order to understand their functionalities and behaviours. To the79

best of our knowledge, this is the first work that survey the existing com-80

position analysis techniques. This survey also aims at identifying the main81

issues and challenges related to recent malware classification and composi-82

tion analysis techniques. In particular, our analysis leads to recognize three83

major problems to address. The first is the need to overcome modern evading84

techniques (or anti-analysis techniques) such as metamorphism. The second85

relates to the efficiency and scalability of malware search engines as the num-86

ber of functions in the repository might need to scale up to millions. The87

third concerns the vulnerability of malware classification system to evolv-88

ing adversarial examples. We also uncover possible topics that need further89

study and investigation, such as sustainable malware analysis system. In90

this regard, we propose a few guidelines to prepare efficient and trustworthy91

malware detection and analysis system.92

1.2. Contribution93

The main contributions of this survey are:94

• Proposing a new taxonomy for describing and comparing the recent95

and main findings in malware classification and composition analysis.96

• Designing a new framework for analysing the existing malware classifi-97

cation and composition analysis techniques.98

• Identifying and presenting open issues and challenges related to mal-99

ware analysis.100

• Identifying a number of trends on the topic, with guidelines on how to101

improve existing solutions to address new and continuing challenges.102

1.3. Organization103

The rest of this paper is organized as follows. In Section 2, we discuss the104

related survey papers. In Section 3 and Section 4, we present the proposed105

taxonomy for organizing reviewed malware classification and composition106

analysis approaches, respectively. Section 5 characterises reviewed papers107

according to the proposed taxonomy. The challenges and current issues are108

pointed out in Section 6. Section 7 suggests possible research topics in mal-109

ware analysis. Finally, Section 8 concludes the paper.110
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2. Related Surveys111

Other works have already surveyed contributions in malware classifica-112

tion. For example, Bazrafshan et al. [33] classify malware detection and113

classify methods into three types: signature-based, behaviour-based and114

heuristic-based methods. Also, they recognize five classes of features based115

on the proposed heuristic-based method: opcodes, API calls, control flow116

graphs, n-grams, and hybrid features. Another work presented by Shabtai117

et al. [34], which studies how to detect malware using static features. In118

this paper, we study more features (static and dynamic features) used for119

malware classification.120

Ucci et al. [30] survey the literature on machine learning approaches121

for malware detection and analysis. They classify the surveyed articles into122

three categories: objectives (expected output), features, and algorithm used.123

They also highlight a set of problems and challenges and identify the new124

research directions. Similarly, the survey presented by [31] presents a com-125

parative analysis on intelligence-based malware classification. In particular,126

they report cons, pros and problems associated with each machine learning-127

based malware classification technique. Souri and Hosseini [32] also provide128

a taxonomy of AI-driven malware detection techniques. Our paper looks at129

a larger range of articles by including many works on malware classification130

and composition analysis. We also include other works related to non-AI-131

driven classification techniques. Furthermore, We also include new challenges132

related to AI-driven malware classification techniques.133

Also, Basu et al. [35] study different works relying on AI-powered mal-134

ware classification techniques. In particular, they coin five types of features:135

a PI call graph, byte sequence, PE header and sections, assembly code fre-136

quency and system calls. Also, Ye et al. [36] study many different aspects137

of malware classification processes. More specifically, they spot the light138

on a number of issues such as incremental learning, and adversarial learn-139

ing. Recently, Ori et al. [37] survey the literature on techniques used for140

dynamic malware analysis, which includes a description of each technique.141

In particular, they present an overview of machine-learning methods used142

to improve the capability of dynamic malware analysis. Compared to the143

above-motioned works, this paper determines the main issues and challenges144

on malware classification and composition analysis. Also, we identify a num-145

ber of trends on the topic, with guidelines on how to improve solutions to146

address new and continuing challenges.147
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In addition, Barriga and Yoo [38] survey the literature on malware evasion148

techniques and their impact on malware analysis techniques. This paper149

extends beyond that and includes recent AI-driven works used to overcome150

malware evasion techniques.151

3. Taxonomy of Malware Classification152

We present in this section the taxonomy of malware classification. We153

define two categories (or dimensions) to organize the existing works. The first154

category presents the features that our work is based on. In particular, we155

discuss the different methodologies used for extracting features, e.g., dynamic156

and/or static techniques, and what types of features are used, e.g., assembly157

code. The second is concerned with the type of algorithm that is adopted158

for the detection and analysis, e.g., artificial inelegance-driven algorithm.159

Figure 1 shows the proposed taxonomy. The rest of this section is or-160

ganized as follows (according to the proposed taxonomy). Subsection 3.1161

describes malware analysis features, while subsection 3.2 discusses existing162

algorithms.163
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Figure 1: The proposed taxonomy

3.1. Malware Analysis Features164

This subsection presents the features of samples that are used for the165

analysis. In subsection 3.1.1, we show how features are extracted, while in166

subsection 3.1.2, we show type of features that are taken into account.167

3.1.1. Feature Extraction Methods168

In this section, we review the following three feature extraction methods:169

static, dynamic and hybrid methods.170
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Static Method. Static feature extraction is a method to extract features from171

the content of the executables without running them [39]. The static features172

can be extracted using the file format, e.g., Portable Executable (PE) and173

Common Object File Format (COFF) [12, 18, 22, 25]. The static features can174

also be extracted without any knowledge of the format. Features extracted175

this way can be byte sequences, file size, byte entropy, etc. [12, 17, 20, 25].176

The advantage of the static feature extraction method is that it covers the177

complete binary content. But the problem is that static features are prone178

to packing and polymorphism since most of the features that are statically179

extracted come from encrypted contents rather than the original program180

body [40].181

Dynamic Method. Dynamic feature extraction consists of running the exe-182

cutable usually in an insulated environment which can be a virtual machine183

(VM) or an emulator and then extract features from the memory image184

of the executable or from its behaviors [39]. Since malware equipped with185

packing and polymorphism has to exhibit the real malicious code to achieve186

their goals, dynamic feature extraction is more resistant to those malware187

techniques compared with static feature extraction method [40].188

Anderson et al. [21, 41] use Xen 1 and Royal et al. [42], Dai et al. [19],189

and Islam et al. [22] use VMWare 2 to create their VMs and perform dynamic190

analysis. Kolosnjaji et al. [27] use Cuckoo sandbox 3 which is an open source191

automated malware analysis system to extract API calls. Other researchers192

who work for an anti-virus engine use the VMs as parts of their anti-virus193

engines to dynamically extract features [24, 26].194

In fact, there are two categories of an emulator: a full-system emulator195

and application level emulator. A full-system emulator is a computer pro-196

gram that emulates every component of a computer, including its memory,197

processor, graphics card, hard disk, etc., with the purpose of running an un-198

modified operating system. Qemu 4 is a full-system emulator used by several199

systems [40, 43, 23]. Considering the time-consuming of full-system emu-200

lator, Cesare and Xiang [15] propose to use application level emulation to201

unpack malware more efficiently so that only the parts which are necessary202

1https://www.xenproject.org/
2https://www.vmware.com/
3https://cuckoosandbox.org/
4https://www.qemu.org/
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to execute the file including instruction set, API, virtual memory, thread and203

process management, and OS specific structures are implemented.204

One problem of dynamic feature extraction methods is that it does not205

reveal all the possible execution paths [40]. Malware may have detection206

routines to check whether it is executed in a virtual machine or emulator.207

When malware finds itself executing in such an environment, it will halt208

its execution so dynamic models will fail to recognize it as malware. The209

methods to detect whether an executable is executed inside a VM can be210

found from several papers [44, 45]. Another problem of dynamic methods211

lies in its execution time which takes much more than static feature extraction212

[40].213

Hybrid Method. This method is used to achieve higher detection rate by214

merging some of the static feature extraction characteristics with some of215

the dynamic feature extraction characteristics [39].216

Our survey has revealed that most of the surveyed papers were based217

on the dynamic feature extraction approach [46, 47, 48, 49, 50, 51, 21, 52,218

53, 54, 24, 55, 56, 57, 58, 59, 60, 61, 62, 63]. while the others adopt, in219

equal proportions, either the static approach alone [64, 65, 66, 67, 68, 69,220

70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83] or a hybrid approach221

[84, 41, 85, 22, 23, 86, 47].222

3.1.2. Type of Features223

In this section, we classify the features that are used by malware analysts224

and explain how each type is practically extracted and represented.225

Printable Strings. A printable string is a sequence of ASCII characters ter-226

minated with a null character. Schultz et al. [12] find that malware have227

some similar strings that distinguish it from and that Goodware also has228

some common strings that distinguish them from malware. Printable strings229

are represented as binary features, where ”1” represents a string that is230

present in an executable and ”0” represents that it is absent from all systems231

[12, 22, 24, 26].232

Schultz et al. [12] extract printable strings from the headers of PE files.233

The extraction is straight-forward since the header is in plain text format.234

Dahl et al. [24] and Huang and Stokes [26] extract null-terminated objects235

dumped from images of a file in memory [24, 26] as printable strings. The236

coverage of their methods is better than just extract printable strings from237

header [12] but their could be some false positive results.238
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Islam et al.[22] use the strings utility in IDA Pro 5 to extract printable239

strings from the whole file.240

Different from other works, Saxe and Berlin [25] do not take printable241

strings as binary features but use their hash values and the logarithm of the242

string lengths to create a histogram and use the counts of printable strings243

in each bin of the histogram as features. They take all the byte sequences244

of length six or more that are in the ASCII code range as printable strings245

which is also slightly different from other works.246

Essentially, the functionality of most malware does not rely on printable247

strings. Thus, when malware creators find that some strings accidentally are248

used by malware detectors, they can eliminate them or even if the printable249

strings are necessary, they can break them into characters that are distributed250

in different positions. Therefore, printable strings are not reliable features.251

Byte Sequences (Byte Code). Executable files consist of byte sequences (also252

known as byte code). A byte sequence may belong to the metadata, code, or253

data of an executable file. As has been stated, byte sequences are important254

signatures of malware since malware may share some common sequences255

that are exactly the same or follow the same regular expression. Thus, byte256

sequences are also appropriate to be features for malware analysis systems257

[12, 17, 41, 25].258

Schultz et al. [12] use bigram byte sequences in the form of binary features259

and they claim byte sequence feature is the most informative feature because260

it represents the machine code in an executable. In fact, this is not entirely261

true since some byte sequences come from metadata or data section. Even if262

a byte sequence is from code section, since instructions have variable length263

in some architectures, byte sequences may not match machine code. And264

their byte sequence feature has the problem of dimension explosion since265

there are too many different bigram byte sequences and it is too large to fit266

into memory so they could only split the byte sequence set into several sets267

and feed them to multiple native bayes models.268

To solve the dimension explosion problem, Kolter and Maloof [17] use269

information gain to select the top 500 informative 4-gram byte sequences as270

binary features from 255 million distinct 4-grams.271

Different from the above two works, Anderson et al. [41] do not use byte272

sequences per se as features but fit byte sequences into a Markov Model so273

5https://www.hex-rays.com/products/ida/
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essentially the feature they use is transition probability from one byte to274

another.275

Chen et al. [25] use the byte entropy of each 1024 byte window and the276

occurrence of each byte to form a histogram and evenly separate each axis277

into 16 bins to form a 256 length feature vector.278

Nataraj et al. [20] convert the whole byte sequence of a file into a picture279

in which each byte represents the grey scale of a pixel. They find that the280

malware that belongs to the same family appear very similar in layout and281

image. The width of the image that is used to transform the 1D byte sequence282

into a 2D matrix is determined by the size of the file. The image feature of283

the malware image is computed using the algorithm proposed by Oliva and284

Torralbat [87]. The main advantage of image-based techniques is that they285

are robust against many types of obfuscations [88].286

Byte sequences are not reliable in most cases. This is due to the fact that287

obfuscation techniques such as instruction substitution and register reassign-288

ment can change the opcodes and oprands respectively, which means that289

the machine code is changed. In all these works, the byte code is statically290

extracted but the main program body encrypted with different algorithms or291

keys through Packing and Polymorphism will change the byte sequences.292

Assembly Code. Machine code and assembly code can be translated to one293

another through assembly and disassembly. Assembly code has some advan-294

tages over machine code as a feature for malware analysis. First, assembly295

code can be understood by a programmer and therefore as a kind of feature,296

assembly code is more convenient to be preprocessed (e.g., grouped into cat-297

egories according to the function, filtered, truncated etc.) to appear as a298

more informative feature. In addition, malicious code is often encrypted by299

packing or polymorphism so it is impossible to get it from the original byte300

sequence, however, dynamically extracted assembly code has been decrypted301

so it includes the malicious code.302

Moskovitch et al. [18] propose that assembly code can be more robust303

than machine code for the analysis of malware since the same malicious en-304

gine may locate in different locations of a file, and thus may be linked to305

different addresses in RAM or even perturbed slightly so by dropping the306

oprands and just using opcode the robustness is improved. They extract307

assembly code by dissembling the executables with IDA Pro. They try both308

term frequency (TF) and term frequency–inverse document frequency (TF-309

IDF) of each opcode n-gram (n=1,2,...,6) as features and use document fre-310
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quency (DF), information gain ratio, or Fisher score to select features. Their311

best result is achieved using TF values of opcode bigram as features filtered312

by Fisher score. One disadvantage of their method is that it is still prone to313

dead code insertion, operation transpositions, packing, and polymorphism.314

Another one is dropping operands causes loss of information which may sub-315

sequently lead to loss of precision.316

To counter packing and polymorphism, Dai et al. [19] run malware in a317

VM and record the sequence of the running byte code which will be disassem-318

bled to assembly code. They use three kinds of two-opcode combinations:319

unordered opcodes in a block, ordered but not necessarily consecutive op-320

codes in a block, consecutive opcodes in a block. This way their features is321

more resistant to dead code insertion and reorder of operations. They use322

the association between the frequency of a feature in training dataset and a323

class as criterion and apply a variant of Apriori [89] to select top L features.324

Although unordered opcodes and ordered (but not necessarily consecutive325

opcodes) in a block improve the resistance to dead code insertion and re-326

order of operations, those features are too flexible so they also bring more327

false positive situations.328

Royal et al. [42] is another work aiming to detect code that is hidden329

and can only be seen dynamically. The way they do it is to store the static330

code of an executable and check whether each operation executed is within331

the stored static code area. If it is not, it is a part of hidden-code. They332

claim that the main malware engine should be in the hidden-code if both of333

them exist and experiment results also illustrate the hidden-code enhances334

the accuracy of ClamAV 6 and McAfee Antivirus 7.335

Anderson et al. [21, 41] use the transition probability from one opcode to336

another as features, which is similar to how they use byte sequence feature. In337

their paper [21], they just extract assembly code by recording the execution338

of an executable in a VM which is similar to the way Royal et al. [42] use. In339

their second paper [21], they also use IDA Pro to disassemble the executable,340

and the assembly code from the two sources are used as two independent341

feature sets. In addition, they also group instructions into categories in342

several granularities according to the functions of the instructions to reduce343

the impact of instruction substitution in their second paper [21]. In their344

6http://www.clamav.net/
7https://www.mcafee.com/en-us/index.html
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preliminary experiment, they also find if they use instructions with oprands,345

the performance will be worse [21].346

Santos et al. [23] disassemble executables to acquire their assemble code347

and then use weighted opcode n-gram frequencies as one of their features.348

The weight is the product of the information gain of all opcodes in the n-gram349

times the normalized TF of the n-gram.350

API/DLL System Call. DLL files and functions of DLL files used by an351

executable expose the system services they use. Native system calls and352

Windows API calls an executable invokes are shown by the functions of DLL353

files it depends on. Therefore, what behaviors it may intend to do or what354

it would be able to do can be inferred.355

Schultz et al. [12] extract the DLL files by an executable used, the func-356

tions in DLL files, and the number of function of each DLL as features from357

metadata in order to understand how resources affected an executable’s be-358

havior and how heavily each DLL is used. The first two are used as binary359

features and the third is a real-valued feature.360

Bayer et al. [40] and Santos et al. [23] extract calls to Windows API361

functions dynamically using an emulator. Then, they use those API func-362

tions to acquire actions of an executable during execution including I/O363

activity, registry modification activity, process creation/termination activity,364

network connection activity of an executable, self-protection behavior, sys-365

tem information stealing, errors caused by the execution, and interactions366

with Windows Service Manager.367

Fredrikson et al. [43] also use an emulator to monitor system calls. Then,368

they use the relations between system calls and their parameters to form a369

dependency graph in which nodes are system calls and edges connect system370

calls sharing some parameter. They define a behavior to be a subgraph of it371

and behaviors that can be adopted to distinguish malware from Goodware372

will be mined and used to detect malware.373

Anderson et al. [41] and Huang and Stokes [26] group the system calls374

into high-level categories where each category represents functionally similar375

groups of system calls, such as painting to the screen or writing to files.376

Anderson et al. [41] then feed the trace of groups of system calls to a Markov377

chain so that they use transition probability of system calls to be the feature.378

Huang and Stokes [26] use those high-level API call events as binary features.379

Islam et al. [22] and Dahl et al. [24] extract Windows API function calls380

and their parameters by running an executable in a VM. Islam et al. [22]381
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treat Windows API functions and parameters as separate entities and use382

the occurrence frequency of each entity as their feature. Dahl et al. [24]383

use combination of a single system API call, one input parameter, and API384

tri-grams which consist of three consecutive API function calls, as binary385

features which are subsequently selected using mutual information.386

Kolosnjaji et al. [27] use the dynamic malware analysis system Cuckoo387

sandbox to extract the sequence of the Windows system calls invoked by388

an executable. They use one-hot representation of them and feed the full389

sequence of system calls with the order to a sequential deep learning model.390

Similar to assembly code, Windows API call sequences can also be obfus-391

cated. For instance, malware authors can make an executable invoke some392

irrelevant API calls and submerge the API calls they use to fulfill their pur-393

pose in them. Thus, this feature is not reliable in most cases.394

Control Flow Graphs. A control flow graph is a directed graph that represents395

the flow of the program, where nodes are the instructions while the edge396

between two nodes represents the order of sequence of execution of the two397

instructions. A vertex in the graph is a basic block in the middle of which398

there is no jump or branch instructions. A directed edge represents jumps399

in the control flow. Control flow graphs are used as features or signatures to400

detect malware in several papers [15, 41].401

Cesare and Xiang [15] state that similar malware usually have similar402

high-level structured control flows. They find that compressed and encrypted403

data have relatively high entropy so they first use entropy of byte sequence to404

detect whether an executable is packed or not. If so, they use an application405

level emulator to extract hidden code. They still use entropy of byte sequence406

to detect completion of hidden code extraction. Then the memory image of407

the binary is disassembled using speculative disassembly [90]. Finally, they408

use the process of structuring to recover high-level structured control flows409

from control flow graphs of procedures and represent them using strings of410

character tokens. The strings representing control flow graphs are all saved411

as signatures. An example of the relation between a control flow graph and412

the signature string is shown in Figure 2.413
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Figure 2: The relationship between a control flow graph, a high level structured graph,
and a signature.

Anderson et al. [41] also find that it is largely not easy for a polymorphic414

virus to build a semantically similar version of itself while changing its control415

flow graph enough to avoid detection. Therefore, they use control flow graphs416

as features. More specifically, they use the occurrence frequency of each k-417

graphlet (a subgraph of k nodes) in the control flow graph to represent control418

flow graph.419

To counter the detection using control flow graphs, malware authors can420

use control flow flattening and bogus control flow obfuscation techniques421

to change the control flow without affecting the functionality so that the422

effectiveness of control flow graph feature will be harmed [91, 92].423

Function. Some papers (e.g., Islam et al. [22] and Chen et al. [14]) use424

function level features for malware classification.425

In particular, Islam et al. [22] find function length that consists of statisti-426

cally useful information in distinguishing between families of malware. After427

obtaining the assembly code of each executable, they calculate the length428

of them by measuring the number of bytes of code and use the occurrence429

frequency of each function lengths as a feature. However, obviously, function430

length is the least robust feature against obfuscation. Function length can be431

arbitrarily increased by inserting dead code or decreased by splitting them432
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into multiple functions.433

One should note that two functions which are semantically similar to each434

other are considered to be clones of each other. To this end, Chen et al. [14]435

assume that some files that belong to the same malware family share some436

functions which are connected using clone relation. So they cluster functions437

to groups in which any two functions can be connected directly or indirectly438

using clone relation and pick one function from each group as an exemplar to439

be a signature. They use NiCad [93] to detect whether two functions are clone440

to each other. However, to use one function to represent a group of functions441

is problematic. Since the same function evolves over generations, the newest442

version may look quite different from the original one. If the older version is443

picked as the exemplar, the clone detector may fail to identify some unknown444

new generation of it. Although their system works on Android APK files,445

the methodology can be directly applied to classifying executable malware.446

Miscellaneous File Information. Some miscellaneous file properties can help447

engineers distinguish malware from Goodware since the average or majority448

values of them are significantly different between the two groups. So that449

those properties are also used as features. They are file size [40, 41], exit code450

[40], time consumption [40], entropy [94][41], packed or not [41], number of451

static/dynamic instructions [41], and number of vertices/edges in control452

flow graph [41]. These features may be helpful but obviously not informative453

enough.454

Conclusive Remarks. The effectiveness of using all the aforementioned fea-455

tures can be somehow diminished or they are not informative enough. So456

many papers use multiple features [12, 41, 24, 22, 23, 25, 26]. The intuition457

is that any single feature source can be obfuscated to evade the detection458

but it is extremely difficult to obfuscate all features simultaneously without459

hindering the functionality [41, 22].460

3.2. Malware Classification Algorithms461

The extracted features introduced in the previous section are fed into mal-462

ware detection/classification systems. They can be categorized as signature-463

based approaches and artificial intelligence-based approaches.464

3.2.1. Signature-based Approaches465

Signature-based detection is the most papular approach used in most an-466

tivirus engines. Those signatures are created by human malware defenders467
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through examining the collected malware samples [12, 13]. More specifically,468

the antivirus engines detect or classify malware by checking whether the469

files to be analyzed contain malware signatures. The signatures of malware470

can take many formate including filename, text strings, or regular expres-471

sions of byte code [12, 13]. Signatures are usually also hashing of the entire472

file. One should note that signature-based techniques can only detect mal-473

ware originates from known malware which does not change significantly.474

As a result, attackers can exploit these techniques by hiding the malicious475

behaviour of malware using anti-analysis techniques such as packing, obfus-476

cation, polymorphism, and metamorphism (Section 8.1 provides more details477

about these techniques). Therefore, the code looks quite different from its478

original version. The main shortcoming of signature-based method is it has479

high precision but low recall and the other one is labor-intensive.480

Some works [15, 14, 16, 15, 14] address the problem of manual signature481

crafting by proposing automatic signature generation techniques. The con-482

tent of the signatures can be windows system call combinations, control flow483

graph, and functions.484

3.2.2. Artificial Intelligence-based Approaches485

The section discusses artificial intelligence-based malware classification486

approaches. These approaches can be categorized as traditional machine487

learning models, deep learning models, association mining, graph mining488

and concept analysis, and signature creation and search methods. The ex-489

isting artificial intelligence-based approaches also can be classified according490

to the learning method used as follows: supervised, unsupervised or semi-491

supervised.492

In a supervised malware classification model [64, 50, 58, 60, 81, 63, 59, 46,493

95, 96, 65, 22, 55, 23, 74, 80, 62, 82, 71, 97, 85, 72, 24, 25, 67, 54, 76, 98, 99,494

21, 69, 57, 61], the classification algorithm learns on a labeled dataset, which495

enable the algorithm to evaluate its accuracy on training data. In contrast,496

an unsupervised malware classification model [75, 83, 49, 62, 100, 101, 102,497

47, 84, 53, 69], provides unlabeled data that the algorithm tries to make498

sense of by extracting patterns without guidance. Semi-supervised malware499

classification models [68, 103, 75, 78] combine both labeled and unlabeled500

data.501

Traditional Machine Learning Models. The most popular traditional machine502

learning models used by surveyed papers are Naive Bayes classifier (NBC)503
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[64, 65, 50, 58, 60, 81, 63], rule-based classifier[64, 59, 81, 46, 95, 96], decision504

tree (DT) [65, 96, 50, 22, 55, 72, 23, 74, 58, 60, 80, 62, 82], K-nearest neighbors505

(K-NN)[71, 62, 97, 96, 50, 22, 60, 72], Bayesian Network [85, 72, 23], Neural506

Network (NN) [24, 25], Random Forest (RF) [67, 54, 22, 58, 76, 60, 80, 98,507

99, 63], Hidden Markov Models (HMM) [104, 105, 106, 9] and Support Vector508

Machine (SVM) [65, 96, 50, 21, 69, 54, 22, 71, 72, 23, 57, 58, 76, 60, 61, 62, 81,509

63]. Those papers which use traditional machine learning models normally510

try multiple machine learning models [12, 17, 18, 19, 22, 23].511

Below, we briefly introduce the above mentioned machine learning mod-512

els.513

Naive Bayes Classifier (NBC) An NBC [107] uses Bayes’ theorem to514

determine the conditional probability of a sample belonging to a class given515

the input features which can be formally described in the following equation:516

P (Ci|x) =
P (x|Ci)

P (x)
P (Ci) (1)

where x is a sample and Ci is the probability the sample belongs to class i.517

It is based on the Naive Bayes conditional independence assumption that all518

the features are independent to each other given the class it belongs to:519

P ((x1, x2, ..., xn)|Cj) = P (x1|Cj)P (x2|Cj)...P (xn|Cj) (2)

where xj is a feature of x. Although the assumption do not hold, the predic-520

tion results are good in many occasions and the result is explainable which521

means how much each feature contributes is visible.522

Decision Tree (DT) A DT classifier [108] uses a tree structure to523

represent the classification process. Internal nodes of a DT are tested on the524

values of features and edges correspond to a choice on values of a variable.525

Leaf nodes represent the final class of samples fall into it. The tree structure526

is constructed based on the informativeness of each feature conditioned on527

the current choices such as information gain ratio and Gini index. A DT is528

also an interpretable classifier and a DT can be translated sets of if-else-then529

rules.530

K-Nearest Neighbor (KNN) A KNN [109] is an instance-based clas-531

sifier. The model finds the K nearest neighbors of a given sample with some532
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distance metrics (e.g., Euclidian, cosine), and predict it to be the (weighted)533

majority vote of the classes of the k nearest neighbors.534

Support Vector Machine (SVM) An SVM [110] is a binary classi-535

fier which calculates a hyperplane that separates samples from two classes536

with the largest margin. An important characteristic of an SVM is it can537

utilize kernel trick to map samples from the original feature space to a high-538

dimensional (even infinite) feature space to perform non-linear classification.539

Bayesian Network (BN) A BN [111] is a probabilistic graphical model540

which represents variables as vertices and the dependencies as directed edges.541

The graph is used for the inference of probability of any variable.542

Rule-based Classifier A rule-based classification [112] refers to any543

classification method that allows us to use of IF-THEN rules for prediction.544

An example of a rule-based classification is RIPPER [113], which is used545

to build a set of rules to classify samples while minimizing the error of the546

number of misclassified training samples.547

Neural Network (NN) An NN [114] is a biologically-inspired pro-548

gramming paradigm that allows a computer to learn from observational data.549

It consists of a network of functions (i.e., parameters) which enables the com-550

puter to learn, and to fine tune itself, through analyzing new data.551

Random Forest(RF) An RF classifier [115] constructs a set of DTs552

from the subset of training set (selected randomly). The votes are then553

aggregated from trees in order to decide the final class of the test sample.554

Deep Learning Models. Deep learning models allow us to automatically ab-555

stract and extract robust and useful features for efficient and reliable malware556

classification. This can be done using multiple layers of abstraction to learn557

the ”good” representation of the data [116]. An example of deep learning558

models are autoencoder [117], stacked denosing autoencoder [116], restricted559

Boltzman Machine (RBM) [118].560

Dahl et al. [24] applies their 179,000 binary features to a deep learning561

model. The first layer is a random projection layer which maps the input562

features to a much lower dimensional space (4000 dimension). The difference563
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between the random projection layer and a normal fully connected layer is564

the weight of the projection matrix is not updated. The entries of it are565

sampled following an independent and identically distribution over -1,0,1.566

On top of that, they apply 1 to 3 fully connected layers with sigmoid activa-567

tion functions and a 136-way softmax layer as output. They also try using568

a Gaussian-Bernoulli restricted Boltzmann machine (RBM) to pre-train the569

hidden layers. The best result is achieved by the model with 1-hidden layer570

without pre-training which is 9.53% test error rate. They also find the ran-571

dom projection performs better than Principal Component Analysis (PCA).572

Saxe and Berlin [25] propose a deep feed-forward neural network consist-573

ing of four fully connected layers, where the dimensions of the first three574

layers are 1024 followed by a dense layer to get the output. They apply575

dropout to the first three layers. The activation functions of the first two576

layers are parametric rectified linear units (PReLU) to yield improved con-577

vergence rate without loss of performance and the activation function of the578

third layer is sigmoid. They also use Bayesian Calibration to calculate the579

unbiased probability that an executable is malware. They achieve a detection580

rate of 95% and a false positive rate of 0.1% on a dataset of 431,926 samples.581

Huang and Stokes [26] propose a neural network for multi-task training.582

One task is a malware detection to predict whether an unknown software583

is malicious or benign and the other is to predict if it belongs to one of 98584

important malware families. Huang and Stokes [26] also use a random pro-585

jection layer to reduce the dimension to 4,000 from 50,000 and then they586

normalize each of the 4,000 dimension to be zero mean and unit variance.587

Then they use 4 hidden layers with dropout and RELU activation. On top588

of it is two single layers for each of the two classification task. The final loss589

function is a weighted sum of each of the individual loss functions. Exper-590

iment results show that multi-task learning only improve the performance591

of malware detection and harm the performance of malware classification in592

most experiment settings. Specifically, the best result for malware detection593

is 0.3577% test error which uses two hidden layers and multi-task learning594

and the best result for malware classification is 2.935% test error which uses595

one hidden layer and either single task or multi-task learning.596

Kolosnjaji et al. [27] propose a combination of convolutional neural net-597

work (CNN) and Long Short-Term Memory (LSTM) networks to predict the598

family of an executable using the dynamically extracted system call sequence.599

They first use two convolution layers to capture the correlation between con-600

secutive API calls and then apply max-pooling to reduce the dimensionality.601
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The output sequence is fed to a LSTM layer to model the sequential depen-602

dencies of API calls. Then a mean-pooling layer is used to extract important603

features from the LSTM output. They also use Dropout to prevent over-604

fitting and a softmax layer to output the probability of each class. Their605

proposed deep learning model significantly outperforms feed-forward neural606

networks, CNN, SVM, and Hidden Markov Model and achieves 85.6% on607

precision and 89.4% on recall. The advantage of their model is it can fully608

utilize the order of system calls which may also be a drawback if the system609

call sequence is obfuscated. One problem of their model is they use mean-610

pooling rather than max-pooling to extract features of highest importance611

produced by LSTM is not quite reasonable.612

Associative Classifier. An associative classifier relies on association rules that613

can be used to distinguish samples between two classes to perform classifica-614

tion. It is a special case of association rule mining where only the class of a615

sample can be the consequent (a.k.a. right-hand-side) of a rule. Ye et al. [16]616

proposes to use hierarchical associative classifiers (HAC) to classify executa-617

bles based on API calls. There are three techniques regarding the creation618

of an associative classifier: 1) adopt FP-Growth algorithm to find candidate619

association rules (i.e., combination of API calls) 2) prune the candidate rules620

based on χ2, data coverage, pessimistic error estimation, significance w.r.t621

to its ancestors 3) reorder rules: first rank the rules whose confidences are622

100 by confidence support size of antecedent (CSA) and then re-order the623

remaining rules by χ2 measure. Using those three techniques, they create624

a 2-level associative classifier to detect malware from a gray list labeled by625

a signature-based anti-virus engine. The first-level associative classifier is626

aimed for higher recall of malware. It only keeps the rules of Goodware with627

100% confidence and the rules of malware with confidence greater than a628

pre-defined threshold; then it uses the rule pruning technique to decrease the629

generated rules and create the classifier; finally uses “Best First Rule” tech-630

nique to find samples from the gray list. The samples labeled to be malware631

by the first associative classifier are fed to the second level associative clas-632

sifier which is aimed at optimizing the precision. It works with the following633

steps: select those samples whose prediction rules of malware have 100%634

confidences, marking them as “confident” malware; ranking the remaining635

minority class files in an descending order based on their prediction rules’ χ2
636

values; select the first k files from the remaining ranking list and marking637

them as “candidate” malware; mark the remaining files as “deep gray” files.638
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Experiment results show the proposed HAC is effective. In addition, HAC639

is also an interpretable classifier which can be easily represented as simple640

if-then rules.641

Graph Mining and Concept Analysis. Fredrikson et al. [43] extract behaviors642

(dependency graphs of system calls and their parameters) that can distin-643

guish malware from Goodware using structural leap mining [119]. Then they644

use the behaviors to form discriminative specifications. A specification is645

a set of behaviors and a characteristic function that describes one or more646

subsets of the set. A software matches a specification if it matches all of647

the behaviors in at least one characteristic subset. A specification is entirely648

discriminative if it matches malicious software but does not match benign649

software. They use formal concept analysis [120] and Simulated Annealing650

algorithm [121] to find an approximate optimal specification which has true651

positive larger than a threshold and lowest false positive among all specifi-652

cation larger than that true positive rate. During test, if a program matches653

a specification, it will be classified to be malware. The created specification654

can be used in the detection of unseen malware with a 86% true positive rate655

and 0 false positives on a dataset of 961 samples.656

Signature Search Methods. Cesare and Xiang [15] first convert the control657

flow graphs of each procedure in an unkown executable to character strings658

in the same way they create signatures. Each procedure is assigned a weight659

using the length of its string:660

weightx =
len(sx)∑
i len(si)

(3)

Then they use BK Trees to retrieve the strings in the signature database661

which have less Levenshtein distance with strings representing procedures of662

the target file than a threshold. For a particular malware, once a matching663

graph is found, this graph is ignored for subsequent searches of the remaining664

graphs in the input binary. If a graph has multiple matches in a particular665

malware and it is uncertain which procedure should be selected as a match,666

the greedy solution is taken. The graph that is weighted the most is selected.667

For each malware that has matching signatures, the similarity ratios of those668

signatures:669

wed = 1− ed(x, y)

max(len(x), len(y))
(4)
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are accumulated proportional to the weights of the procedure. The final sim-670

ilarity between the unknown executable and a malware in the database is the671

product of two asymmetric similarities: a similarity that identifies how much672

of the input binary is approximately found in the database malware, and a673

similarity to show how much of the database malware is approximately found674

in the input binary. If the program similarity of the examined program to675

any malware in the database equals or exceeds a threshold of 0.6, then it is676

deemed to be a variant. Experiment results show that their method achieves677

86% detection rate with 0 false positives which is better than 55 for commer-678

cial signature-based antivirus (AV) and 62-64 for behavior-based AV. Since679

they use a symmetric similarity calculated as the product of two asymmetric680

similarities, it can not handle asymmetric situations. For instance, if a very681

large unknown executable contains the whole program of a malware sample682

in the database but that malicious program only take up 1% of its whole683

content, the similarity would still be small and it can not be predicted to be684

malware.685

Chen et al. [14] uses NiCad [93] to detect whether an APK file contains686

any function that is clone of an exemplar function which represents a signa-687

ture of a malware family. If a match is found, the file is predicted to be an688

instance of that malware family. They achieve 96.88% accuracy on a dataset689

of 1170 APK files from 19 malware families.690

4. Taxonomy of Composition Analysis Techniques691

This section introduces the taxonomy of malware composition analysis692

techniques. We identify two major dimensions along which surveyed papers693

can be conveniently organized. The first one shows the steps used for compo-694

sition analysis. The second dimension identifies the objective (i.e., strategy)695

of the analysis. Figure 3 shows a graphical representation of the proposed696

taxonomy.697
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Figure 3: The proposed taxonomy

4.1. Steps698

Composition analysis allows reverse engineers to analyze the composi-699

tion of malware samples in order to understand their functionalities and700

behaviours. This, in turn, allows engineers to discern the intent of malware701

samples and the attackers. Moreover, it allows reverse engineers to rank the702

malware by severity and allows them to effectively triage their resources.703

Basically, there are three main steps used for composition analysis: dis-704

assembling, representation, and classification.705

4.1.1. Disassembling706

Most software programs are delivered to users with compiled executables,707

rather than source code. Disassemblers make it feasible for reverse engineers708

to analyze software programs without source code. Technically speaking, a709

disassembler is a process of converting or translating machine language into710
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assembly language. The inverse operation of ”disassembler” is an ”assem-711

bler”. There are many tools used for this purpose (e.g., IDA Pr 8).712

Disassembly methods can be categorized into the following two classes:713

static techniques and dynamic techniques. Methods that belong to the first714

class analyze the binary components statistically, parsing the opcodes in the715

binary file. Methods belong to the second class monitor the execution traces716

of a program in order to identify the instructions and recover disassembled717

version of the binary.718

Both dynamic and static methods have pros and cons. Static analysis719

takes into consideration the whole program, while dynamic analysis can only720

focus on the executed instructions. As a result, it is not easy to ensure that721

the entire executable was visited when adapting dynamic analysis. However,722

dynamic analysis guarantees that the output (i.e., disassembly output) only723

contains actual instructions.724

Generally speaking, there are two approaches for static analysis tech-725

niques. The first approach is called linear sweep [122]. This approach begins726

at the first byte of the binary and starts decoding one instruction after an-727

other. The main shortcoming of using liear sweep disassemblers is the high728

probability of errors which result from data embedded in the program. The729

second approach is called recursive traversal [123], which allows engineers to730

fix the problem of ”embedd data” by following the Control Flow (CF) of the731

program [15, 41]. However, the problem with this approach is that it could732

fail to successfully analyze parts (i.e., functions) of the code. This is due to733

the fact that a control transfer instruction (e.g., jump) cannot be determined734

statically. This problem can be addresses by using a linear sweep algorithm735

to analyze unreachable regions in the code [124].736

4.1.2. Representation Learning737

The success of any malware classification and composition analysis tech-738

nique generally depends on data representation. Although specific domain739

knowledge may help engineers design representations and a feature vector740

for an executable, a manual feature engineering process fail to consider the741

relationships between features and define those unique patterns that can dis-742

tinguish executables.743

Indeed, representation learning is a set of methods and/or techniques that744

8https://www.hex-rays.com/products/ida/
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enables a system to automatically extract the representation needed for mal-745

ware classification from raw data (i.e., assembly code). This process replaces746

manual feature engineering and enables a malware classification system to747

learn the useful features and integrates them to perform a classification.748

The motivation behind using feature learning is the fact that composi-749

tion analysis methods often need inputs that are robust against anti-analysis750

techniques such as obfuscation and packing.751

Deep learning approaches (e.g., stacked autoencoders [125], stacked De-752

noising autoencoders [116], Deep belief networks [126], . . . ) are known and753

considered as the (best) approaches for extracting robust features, which are754

used for building robust malware and similarity analysis tools for large-scale755

heterogeneous environment.756

4.1.3. Classification757

After disassembling executable samples, the assembly code functions are758

used to feed a representation learning module in order to obtain robust fea-759

tures and ”good” representation of data. The function representation are760

then fed into any classification algorithms such as Naive Bayes classifier761

(NBC) [64], rule-based classifier[64], decision tree (DT) [65], K-nearest neigh-762

bors (K-NN)[71], Bayesian Network [85], Neural Network (NN) [24], Random763

Forest (RF) [67], Hidden Markov models (HMM) [127], and Support Vector764

Machine (SVM)[65]. The classification method enables us to identify the re-765

lationships between functions taking into account the following three analysis766

strategies: variants analysis, similarities analysis, and families analysis.767

Variants Analysis (VA). VA [79, 59, 80, 83, 46, 47] enables engineers to768

realize that a malware sample is actually a variant of a known malware in the769

repository. This strategy allows us to understand to which extent malware770

have been evolved over time.771

Similarity Analysis (SA). SA [48, 53, 49, 56, 128] allows engineers to recog-772

nize what parts (i.e., functions) of a malware sample are similar to known773

functions in the repository. This strategy allows us to focus only on new774

parts and prevent unnecessary investigation.775

Families Analysis (FA). FA [101, 51, 102, 24, 70, 22, 71, 55, 76, 60, 61, 62, 97].776

enables engineers to associate undefined malware to defined families. This777

strategy works under the assumption that malware from the same family778
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are similar to each other in terms of functionality. The difficulty to recog-779

nize them comes from the fact that some malware authors use anti-analysis780

techniques (e.g., obfuscation, packing, polymorphism, and metamorphism)781

to conceal that similarity.782

5. Characterization of Surveyed Papers783

In this section, we characterize each reviewed paper. Table 1 provides784

information about both algorithms and features used for each paper and785

highlights the main limitations. The table also shows the scalability of each786

work in terms of its ability to work in the presence of incremental update of787

the repository. The last column shows whether the proposed classification788

techniques are robust against anti-analysis techniques or not. As can be seen789

in the Table 1, most of the works use more than one classification algorithm790

for detecting and classifying malware in order to guarantee more accurate791

results. In Table 2, different approaches are compared w.r.t the of the main792

objective: malware detection and similarity analysis, families analysis and793

variants analysis.794

Table 1: Summary of Extraction Methods, Classification
Methods, and Limitation in Malware Classification.

Begin of Table
Work Classification

method
Features Limitations Scalability

(Yes/No)
Robust
against
noisy
inputs
(Yes/No)

[129] k-NN and SVM Byte Code Not robust
against unseen
inputs

Yes No

[130] NN Byte Code Vulnerable to
adversarial
attacks

Yes Yes

[131] k-NN and NN Byte Code Vulnerable to
adversarial
attacks

Yes Yes
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Continuation of Table 1
Work Classification

method
Features Limitations Scalability

(Yes/No)
Robust
against
noisy
inputs
(Yes/No)

[65] DT, Näıve
Bayes, and SVM

Byte Code Not robust
against noisy
inputs

Yes No

[132] k-NN, NN, and
SVM

Byte Code Vulnerable to
adversarial
attacks

Yes Yes

[73] RF Miscellaneous
File Information

Needs a large
number of la-
beled examples
(malicious and
benign)

Yes Yes

[74] DT, RF Miscellaneous
File Information

Works only
under the as-
sumption that
the new samples
are not packed

Yes No

[57] SVM Internet Traffic Not scalable
(tested using
vary small
datasets)

No Yes

[75] Cluster Analysis Miscellaneous
File Information

Unable to clas-
sify new exam-
ples/samples

Yes No

[64] NBC Printable
Strings and
Byte Code

Not robust
against noisy
inputs

Yes No

[96] DT, NBC, SVM API Not scalable
(tested using
very small
datasets)

No Yes
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Continuation of Table 1
Work Classification

method
Features Limitations Scalability

(Yes/No)
Robust
against
noisy
inputs
(Yes/No)

[103] BN Miscellaneous
File Information

Not efficient giv-
ing new samples

Yes No

[50] DT, NBC, SVM,
k-NN, NN and
SVM

API and Miscel-
laneous File In-
formation

Not scalable
(tested using
small datasets)

No Yes

[21] SVM Byte Code and
API

Not scalable
(tested using
very small
datasets)

No Yes

[41] SVM Byte Code,
Assembly Codes
and API

not scalable
(tested using
very small
datasets)

No Yes

[85] BN API Not robust
against noisy
inputs

Yes No

[23] BN, DT, k-NN
classification,
SVM

Assembly Codes
and API

Not robust
against noisy
inputs

Yes No

[58] DT, RF, Näıve
Bayes,SVM

Byte Code and
API

Not scalable
(tested using
very small
datasets)

No Yes

[78] BN Miscellaneous
File Information

Not robust
against unseen
inputs

Yes No

[59] Rule-based clas-
sifier

API Not scalable
(tested using
very small
datasets)

No Yes
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Continuation of Table 1
Work Classification

method
Features Limitations Scalability

(Yes/No)
Robust
against
noisy
inputs
(Yes/No)

[98] RF Internet Trafic Not robust
against unseen
inputs

Yes No

[99] RF API and Miscel-
laneous File In-
formation

Not robust
against noisy
inputs

Yes No

[25] NN Printable
Strings and
Miscellaneous
File Information

Not robust
against noisy
inputs and not
scalable (tested
using very small
datasets)

No yes

[46] Rule based clas-
sification

API and Miscel-
laneous File In-
formation

not scalable
(tested using
very small
datasets)

No Yes

[47] Cluster analysis API and Miscel-
laneous File In-
formation

Requiring user
interactions

Yes No

[101] Cluster analysis Byte Code Not scalable
(tested using
small datasets)

No Yes

[51] Matching (graph
theory)

API Not robust
against noisy
inputs

Yes No

[102] Cluster analysis Assembly Codes Not robust
against noisy
inputs

Yes No

[24] NN Byte Code and
API

High error rate Yes No
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Continuation of Table 1
Work Classification

method
Features Limitations Scalability

(Yes/No)
Robust
against
noisy
inputs
(Yes/No)

[70] Clustering Assembly Codes Not robust
against noisy
inputs

Yes No

[22] DT, k-NN clas-
sification, RF,
SVM

Byte Code and
API

Not robust
against unseen
inputs

Yes No

[71] k-NN classifica-
tion and SVM

Assembly Codes
and Miscel-
laneous File
Information

Not robust
against unseen
inputs

Yes No

[55] DT Internet Traffic Not scalable
(tested using
very small
datasets)

No Yes

[76] SVM, RF and
DT

Internet Traffic
and Byte Code,
Assembly Codes
and API

Not robust
against noisy
inputs

Yes No

[61] SVM, RF and
DT

Internet Traffic
and Byte Code
and API

Not scalable
(tested using
very small
datasets)

No Yes

[60] DT, RF, k-NN
classification
and NBC

API Not robust
against unseen
inputs

Yes No

[62] DT, k-NN clas-
sification and
SVM

Miscellaneous
File Information
and network

Not robust
against noisy
inputs

Yes No

[133] k-Means Assembly Codes Not robust
against noisy
inputs

Yes No
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Continuation of Table 1
Work Classification

method
Features Limitations Scalability

(Yes/No)
Robust
against
noisy
inputs
(Yes/No)

[48] Hierarchical
Clustering

API, Miscel-
laneous File
Information,
and Internet
Traffic

Not scalable
(tested using
very small
datasets). Not
robust against
noisy inputs

Yes No

[49] Cluster analysis API Not robust
against noisy
inputs

Yes No

[53] Cluster analysis Byte Code and
API

Not robust
against noisy
inputs

Yes No

[56] NN API Not robust
against noisy
inputs and not
scalable (tested
using small
datasets)

No Yes

[72] DT, k-NN classi-
fication, BN and
RF

Assembly codes not scalable
(tested using
very small
datasets)

No Yes

[63] NBC, RF, and
SVM

Byte Code, API
and file system

Not robust
against noisy
inputs

Yes No

[97] k-NN classifica-
tion

Byte Code Not robust
against noisy
inputs

Yes No
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Continuation of Table 1
Work Classification

method
Features Limitations Scalability

(Yes/No)
Robust
against
noisy
inputs
(Yes/No)

[104] HMM opcode se-
quences

Not robust
against severe
obfuscations
techniques

Yes Yes

[105] HMM mnemonic op-
code sequences

Not robust
against severe
obfuscations
techniques

Yes Yes

[106] HMM opcode se-
quences

Not robust
against severe
obfuscations
techniques

Yes Yes

[9] HMM opcode se-
quences

Not robust
against severe
obfuscation
techniques

Yes Yes

End of Table

Table 2: Comparison Summary (SA: Similarity Analyzes;
FA: Families Analysis; VA: Varients Analysis.

Begin of Table
Paper Detection SA FA VA

Schultz et al [64] X
Kolter and Maloof [65] X

Ahmed et al. [96] X
Chau et al. [103] X

Firdausi et al. [50] X
Anderson et al. [21] X
Anderson et al. [41] X
Eskandari et al. [85] X
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Continuation of Table 2
Paper Detection SA FA VA

Santos et al. [23] X
Vadrevu et al. [73] X

Bai et al. [74] X
Kruczkowski and Szynkiewicz [57] X

Tamersoy et al. [75] X
Uppal et al. [58] X
Chen et al. [78] X
Ghiasi et al. [59] X X
Kwon et al. [98] X
Mao et al. [99] X

Saxe and Berlin [25] X
Wuchner et al. [63] X

Raff and Nicholas [97] X X
Gharacheh et al.[79] X

Khodamoradi et al. [80] X
Upchurch et al. [83] X

Liang et al. [46] X
Vadrevu and Perdisci [47] X

Huang et al. [101] X
Park et al. [51] X
Ye et al. [102] X
Dahl et al. [24] X
Hu et al. [70] X

Islam et al. [22] X
Kong and Yan [71] X

Nari and Ghorbani[55] X
Ahmadi et al. [76] X

Lin et al. [61] X
Kawaguchi and Omote [60] X

Mohaisen et al. [62] X
Pai et al. [133] X

Bailey et al. [48] X
Bayer et al. [49] X
Chen et al. [14] X
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Continuation of Table 2
Paper Detection SA FA VA

Cesare and Xiang [15] X
Anderson et al. [41] X

Cordy et al. [93] X
Fredrikson et al. [43] X

Rieck et al. [53] X
Palahan et al. [56] X
Santos et al. [72] X
Egele et al. [128] X

Kolter and Maloof [17] X
Moskovitch et al. [18] X

End of Table

6. Challenges and Issues795

Based on the characterization explained in Section 5, we discuss here the796

challenges and/or issues of the surveyed articles.797

6.1. Malware Evading Techniques798

In this section, we introduce the common techniques that are used by799

malware authors to evade detection.800

6.1.1. Obfuscation801

The term of obfuscation mainly refers to the techniques that are used802

to create a variant of the original code without affecting its functionality.803

The purpose of obfuscation is usually to hide the real logic of the original804

code or to evade signature-based detector or function clone detector. A few805

commonly used obfuscation techniques are as follows:806

1. Dead-Code Insertion [13]: insert useless instructions (e.g., nop) or in-807

sert some instructions that only affect unused variables.808

2. Code Transposition [13]: change the order of the independent instruc-809

tions.810

3. Register Reassignment [13]: exchange the usage of registers for the811

storage of data/address in a specific live range.812

4. Instruction Substitution [13]: replace an instruction with equivalent813

instructions.814
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5. Control Flow Flattening [134]: 1) break up the body of the function to815

basic blocks 2) put all basic blocks which were originally at different816

nesting levels next to each other 3) encapsulate the basic blocks in a817

selective structure (a switch statement in the C++) 4) encapsulate the818

selection in a loop.819

6. Bogus Control Flow [135]: for a basic block, add a new basic block820

which contains an opaque predicate and then make a conditional jump821

to the original basic block.822

6.1.2. Packing823

Packing is a technique to compress/encrypt an executable, where those824

packed files will be uncompressed/decrypted during runtime. It means that825

a static analyzer cannot see the real code since it doesn’t run the executable.826

Packing is used not only for malware but also for the protection of Goodware827

schemes [15, 41]. According to the statistics conducted by Anderson et al.828

[41], 47.56% of the malware are packed and 19.59% of the Goodware are829

packed in their dataset.830

6.1.3. Polymorphism831

Polymorphism is also a technique that is based on encryption and decryp-832

tion. A polymorphic malware contains two parts: the polymorphism engine833

and the real program which performs the malicious functions. The former834

mutates the encryption algorithms and keys when it replicates and the code835

of the latter per se is fixed but it is encrypted by the former in different ways836

during runtime. This way, the whole polymorphic malware program would837

look different at each generation [136].838

6.1.4. Metamorphism839

A metamorphic malware re-programs itself when it replicates. Conse-840

quently, in each generation, the whole program body is modified using code841

obfuscation techniques while the functionality is kept unchanged [136]. Meta-842

morphic malware is considered to be more difficult to write than polymorphic843

malware.844

6.2. Adversarial Attack and Defense845

Since the direction of the recent research is to automate the process of846

malware analysis using machine learning techniques, the proposed solutions847

should be robust against adversarial examples, which are inputs designed848
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by an attacker to fool the machine learning models and make it generate849

erroneous decisions (e.g., making the malware analysis tools unable to detect850

malicious code). It has been recently shown that machine learning models,851

including deep neural networks, are quite vulnerable to adversarial examples.852

It is easy for an attacker to create “adversarial examples” [137] to fool a853

machine learning model through simply perpetuating parts of the inputs.854

6.2.1. Adversarial Attack855

Adversarial samples are crafted from normal samples with minimum per-856

turbations on input variables to confuse a classifier without breaking the857

functionality of the original samples. It is natural that the perturbations858

should be based on the derivative of the loss function with respect to the859

classifier’s input variables since derivatives show the directions of changes on860

the input that is the most effective for changing the output. So a differen-861

tiable classifier is required to create adversarial samples and deep learning862

models are just differentiable and effective classifiers. Studies show that ad-863

versarial samples generated to fool one model can fool a totally different864

model [138, 139]. Therefore, as deep learning models are proposed for the865

malware detection field, malware authors have better opportunities to craft866

adversarial examples to evade the detection of any machine learning models.867

A formal description of the problem to craft an adversarial x∗ to be mis-868

classified by a classifier f is869

min ||δx|| (5)

s.t. x∗ = x+ δx, f(x∗) 6= f(x) (6)

where || · || can be any norm and x is the sample to be perturbed.870

Goodfellow et al. [140] present a fast gradient sign method in which871

the adversarial perturbation is determined by multiplying the gradients’ sign872

of the sample S with some coefficient to control the scale of perturbation.873

Papernot et al. [141] propose a forward derivative method which evaluates874

the sensitivity of the output to each input component using its Jacobian875

matrix and then constructs adversarial saliency maps based on the Jacobian876

matrix, indicating which input features to be included in the perturbation.877

Compared with perturbing an adversarial image sample, there are some878

constraints on perturbing a malware sample since most of the features of879

malware are discrete rather than real-valued and the functionality should be880

intact. Thus, previous methods for perturbation of real-valued features need881
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to be adapted and some binary features can not be changed from ”1” to ”0”882

since ”1” means that the feature exists and that the change in this direction883

may break the functionality.884

Grosse et al. [28] propose a technique to craft adversarial Android mal-885

ware. Inspired by Papernot et al. [141], [28] use the Jacobian matrix to886

examine which features have the greatest potential to lead to the prediction887

of a malicious program as being Goodware. They only allow distortions to no888

more than 20 features. All the features are binary features. To maintain the889

functionality of the adversarial example, they add two constraints: 1) only890

adjust manifest features that relate to the AndroidManifest.xml file. This891

file is available in any Android application; 2) it should be done by adding a892

single line of code to it. Using their method, a state-of-the-art feed-forward893

neural network which achieves 98% of accuracy on the original dataset is894

misled by 63% of the adversarial malware samples.895

6.2.2. Adversarial Defense896

Grosse et al. [28] try two methods to defend against adversarial attack.897

The first is to apply distillation [142, 141] to counter adversarial samples,898

which successfully reduces misclassification rate by 38.5% in some case. The899

second is adversarial training [140] which consists of training the model on900

the original dataset and then training the model again only on the adversarial901

samples for a few epochs. The misclassification rate is reduced to 67% from902

73% through adversarial training.903

Wang et al. [29] defend against adversarial attacks by randomly nulli-904

fying input features. Their nullification is similar to dropout since in both905

mechanisms some input features are randomly set to 0. The main difference906

with dropout is that the model don’t drop any input feature during the test907

but in nullification some features are still dropped randomly during the test.908

Specifically, for each sample in any dataset, a nullification rate is sampled909

under a Gaussian distribution and the dimensions (features) to drop are sam-910

pled uniformly. The intuition is that nullification makes their architecture911

non-deterministic so that the attackers can’t examine the importance of fea-912

tures and so it’s hard for them to detect and exploit the “blind spots” of913

classifiers. In their experiments, the features are the invoked windows sys-914

tem DLL files and they use Jacobian-based saliency map to pick up to 10915

features for each sample to perturb. Experimental results show that their916

method can improve the resistance to adversarial samples and that the best917

resistance is 64.86% and is achieved with a nullification rate of 10%. How-918
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ever, a theoretic problem of their approach is when adversarial samples are919

cross-model [138, 139]. Thus, even though nullification can harm the ability920

of an adversary to use this model to craft adversarial samples, the adversary921

can use other models (i.e., the same neural network without nullification) to922

craft adversarial samples which can also evade the one equipped with nulli-923

fication. Therefore, there is no theoretic proof or evidence to show whether924

nullification can improve the resistance against adversarial samples crafted925

from other deep learning models.926

6.3. Efficiency and Scalability927

A practical malware search engine can help security engineers obtain mal-928

ware search results on-the-fly when they are making analysis. Instant feed-929

back provides the engineer the structure of a given malware that is under930

investigation [92]. One should note that scalability is an important factor as931

the number of malware in the database needs to scale up to millions. It is932

also a critical issue for producing a reliable malware search engine. For prac-933

tical applications, a malware search engine’ efficiency and scalability should934

be evaluated using a large repository in order to measure both its accuracy935

and latency.936

7. Research Direction937

The above contributions are effective in addressing some interesting re-938

search gaps in the literature. However, some points still need further study939

and investigation. The following research avenues could be further explored940

based on our literature review:941

7.1. Robust Solutions942

Although the discussed solutions in the literature review have paved the943

road for a reliable Malware Detection System (MDS) through extracting ro-944

bust and useful features, the solution still needs to reduce human interaction.945

Thus, an automated system is required to take the data and automatically946

abstract and extract robust features from them. For this purpose, deep947

learning techniques could be the best candidate to replace the existing fea-948

ture extraction approaches. The solution can be designed and implemented949

using different Deep Learning architectures (e.g., Generative Adversarial Net-950

works, Stacked Denosing Autoencoder, Restricted Boltzman Machine, and951
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Variational Autoencoder) for auto-abstraction and extraction of robust fea-952

tures to significantly enhance the detection under heterogeneous, changing953

and noisy environments.954

Recently, Ding et al. [143] propose a robust and accurate assembly clone955

search platform named Asm2Vec. The proposed platform enables engineers956

to automatically learns a vector representation of any assembly function by957

discriminating it from others functions. Also, the platform allows engineers958

to jointly learn the semantic relationships of assembly functions based on959

assembly code [143]. This, in turn enables us to construct useful and ro-960

bust features to make efficient and reliable assembly clone search. The pro-961

posed learning representation is inspired by the Distributed Memory Model962

of Paragraph Vectors (PV-DM) model, which is used to learn a vectorized963

representation of a text paragraph [144]. The PV-DM model is fundamen-964

tally based on Word2Vec [145], which is used to learn vector representation of965

words. This is done by enabling words with similar meaning to be mapped to966

a similar position in the vector space. For example, “good” and “great” are967

close to each other, whereas “great” and “Japan” are more distant. Learning968

the vector representation of words becomes possible thanks to the concept969

of Distributed Vector Representation (DVR) of words, a well known method970

used for learning the word vectors. In particular, DVS exploits the power971

of machine learning models (usually Neural Networks) by training machine972

learning models to predict a word (i.e., target word) given the other words in973

a context. In the process of predicting the target word, we learn the vector974

representation of the target word.975

The PV-DM model is inspired by Word2Vec by using the idea for learn-976

ing the word vectors. In the PV-DM model, both word vectors and para-977

graph vectors are asked to contribute to the prediction of the target word978

given many contexts sampled from the paragraph [144]. This process (i.e.,979

predicting the target word) allows us to learn the vector representation of980

the paragraph. Ding et al. [143] exploit the power of the PV-DM model981

to learn the vector representation of assembly functions based on assembly982

code. This is done by mapping assembly function (i.e., repository function)983

and the function’s input tokens (i.e., instructions) to a unique vector. The984

machine learning model is then trained to predict a target token given the985

function and its tokens in a context. This process enables us to learn the986

vector representation of the function.987

In fact, the solution should be able not only to accommodate unknown988

variants of known malware but also to accommodate unknown variants of989
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unknown malware. These solutions should also be robust against adversarial990

attacks. Although some works have already addressed this problem, these991

solutions are mostly based on adversarial training [146] and are not mature992

enough to combine the extraction of robust and useful features to protect the993

system against adversarial examples. Thus, the solution should not only be994

robust against complex and noisy data but also against adversarial examples.995

7.2. Collaborative Solutions996

Computer and communication systems are becoming more and more com-997

plex and vulnerable to intrusions. Cyber attacks are also becoming more998

complex and harder to analyse and recognize. In fact, it became increas-999

ingly difficult for a single MDS to recognize all intrusions, because of limited1000

knowledge about the evolution of malware. The recent works in intrusion1001

detection and malware analysis [147, 148, 149] have shown experimentally1002

that the detection accuracy can be significantly improved, compared to the1003

traditional single MDS, when MDSs cooperate with each other. In collab-1004

orative environment, each MDS can consult other MDSs about suspicious1005

malware to increase the decision accuracy. Figure 4 shows an example of1006

cooperative MDS.1007
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Figure 4: The proposed taxonomy

Recently, Man and Huh [147] and Singh et al. [148] design a collaborative1008

MDS, which enables malware-detection-alerts to be exchanged from different1009

distributed detectors. Moreover, knowledge are enabled to be exchanged1010

between nodes. In addition, Dermott et al. [150] propose a collaborative1011

MDS in a cloud-computing environment. The proposed framework use the1012

Dempster-Shafer theory of evidence [151] in order to combine the decisions1013

form different malware detectors. The received decisions are aggregated to1014

take the final decision regarding a suspicious malware. This technique has1015

a shortcoming: its centralized-based architecture, whereby a reliable third-1016

party is used for combining feedback and coordinating MDS.1017

In fact, the design of a cooperative MDS should take into consideration1018

the following three properties (challenges): trustworthiness, fairness and sus-1019

tainability. By trustworthiness, we mean that the MDS should be able to en-1020

sure that it will consult, cooperate and share knowledge with trusted parties1021

(i.e., MDSs). By fairness, we mean that the MDS should be able to guaran-1022

tee that mutual benefits will be achieved through minimizing the chance of1023

cooperating with selfish MDSs. This is useful to give MDSs the motivation to1024
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participate in the community. Finally, by sustainability, we mean enabling1025

an MDS to proactively take decisions about suspicious attacks, regardless1026

if the complete feedback have been received from consulted MDSs or not.1027

Thus, the proposed solution will be applicable in real-time environments,1028

where MDSs should take decisions about suspicious malware quickly.1029

7.3. Sustainable Solutions1030

The power of most malware analysis tools is largely based on the amount1031

of knowledge that they have about Malware and dangerous attacks. In fact,1032

supervised machine learning algorithms such as SVM, used by MDS, are1033

heavily dependent on labeled data to learn how to effectively classify ma-1034

licious and normal behaviours [152]. However, obtaining data on malicious1035

behaviours is challenging and dangerous, especially if we are required to1036

launch real attacks on production systems and put users, applications and1037

systems at risk. To address this problem, we may need to have an efficient1038

approach to synthesize new malware and augment our training data, in order1039

to improve machine learning-based MDSs.1040

Generative models such as Generative adversarial Networks (GANs) [153]1041

can be used to generate synthetic malware and enhance the detection accu-1042

racy of machine learning-based MDS, by augmenting Malware training sets.1043

We encourage researchers to investigate the use of GANs, which have shown1044

unprecedented ability in generating high quality new synthetic data, to gen-1045

erate malware variants. In particular, they need to design new algorithms to1046

effectively and efficiently train GANs on the existing malware that are avail-1047

able in the repository in order to learn how to generate variants of them. To1048

this end, researchers are required to collect a large volume of malware samples1049

that consists of different attributes (vulnerabilities, targeted users, targeted1050

hosts, etc.) from the public domain. Since GANs are only defined for real-1051

valued, continued data and the design of malware is based on sequences of1052

discrete tokens (bytes), special extensions should be applied on the original1053

GANs theory. For example, we may need to integrate GANs with recur-1054

rent neural networks (RNNs) to tackle the problem of sequenced data [154].1055

Moreover, to address the problem of discrete data, we may need to place in1056

parallel a dense layer per categorical variable, followed by Gumbel-Softmax1057

activation and a concatenation to get the final output [155].1058
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8. Conclusion1059

In this paper, we provide a comprehensive survey on publications that1060

contributed to malware classification and composition analysis. There are1061

four main contributions in our work. First, we proposed an organization of1062

reviewed paper according to three dimensions: the purpose of the analysis1063

(malware classification or composition analysis), the type of features obtained1064

from samples, and the algorithms used to manipulate these features. Second,1065

we provided a comparative analysis of the existing malware classification and1066

composition analysis techniques, while structuring them according to the1067

proposed taxonomy. Third, We determined the main issues and challenges1068

associated with malware classification and composition analysis. Finally,1069

we identified a number of emergent topics in the discussed field, such as1070

collaborative malware analysis system, with guidelines on how to improve1071

solutions to address the new challenges.1072

The above contributions are effective in addressing some interesting re-1073

search gaps in the literature. However, some points still need further study1074

and investigation. The following research avenues could be further explored1075

in order to achieve better accuracy and efficient solutions compared to the1076

state-of-the-art. The first avenue is the design of cooperative MDS to address1077

the problem of limited and incomplete knowledge about malware. Through1078

collaboration, an MDS can consult other MDSs about suspicious malware1079

and increase the decision accuracy. To this end, we identify three challenges1080

that should be addressed in cooperative MDS: trustworthiness, fairness and1081

sustainability. Second, the design of robust MDS by enabling the automatic1082

extraction of robust features from samples. The solution should be able not1083

only to accommodate unknown variants of known malware but also to ac-1084

commodate unknown variants of unknown malware. Moreover, the solution1085

should be robust against adversarial attacks. Finally, the design of sustain-1086

able MDS by enabling an MDS to synthetically generate new malicious and1087

benign code in order to enhance the accuracy of machine learning-based mal-1088

ware classification methods.1089
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Eötvös Nominatae, Sectio Computatorica 30 (2009) 3–19.1533

[135] Bogus Control Flow, 2020 (accessed 2020-03-10).1534

https://github.com/obfuscator-llvm/obfuscator/wiki/Bogus-Control-Flow.1535

[136] X. Li, P. K. Loh, F. Tan, Mechanisms of polymorphic and metamorphic1536

viruses, in: Intelligence and Security Informatics Conference (EISIC),1537

2011 European, IEEE, 2011, pp. 149–154.1538

[137] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the1539

physical world, arXiv preprint arXiv:1607.02533 (2016).1540

[138] J. Bruna, C. Szegedy, I. Sutskever, I. Goodfellow, W. Zaremba, R. Fer-1541

gus, D. Erhan, Intriguing properties of neural networks (2013).1542

[139] N. Papernot, P. McDaniel, I. Goodfellow, Transferability in machine1543

learning: from phenomena to black-box attacks using adversarial sam-1544

ples, arXiv preprint arXiv:1605.07277 (2016).1545

[140] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing1546

adversarial examples, CoRR abs/1412.6572 (2014).1547

[141] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,1548

A. Swami, The limitations of deep learning in adversarial settings, in:1549

Security and Privacy (EuroS&P), 2016 IEEE European Symposium on,1550

IEEE, 2016, pp. 372–387.1551

[142] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural1552

network, arXiv preprint arXiv:1503.02531 (2015).1553

[143] S. H. H. Ding, B. C. M. Fung, P. Charland, Asm2vec: Boosting static1554

representation robustness for binary clone search against code obfus-1555

cation and compiler optimization, in: Proc. of the 40th International1556

Symposium on Security and Privacy (S&P), IEEE Computer Society,1557

San Francisco, CA, 2019, pp. 38–55.1558

[144] Q. Le, T. Mikolov, Distributed representations of sentences and doc-1559

uments, in: International conference on machine learning, 2014, pp.1560

1188–1196.1561

59



[145] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of1562

word representations in vector space, arXiv preprint arXiv:1301.37811563

(2013).1564

[146] N. Carlini, D. Wagner, Audio adversarial examples: Targeted attacks1565

on speech-to-text, in: 2018 IEEE Security and Privacy Workshops1566

(SPW), IEEE, 2018, pp. 1–7.1567

[147] N. D. Man, E.-N. Huh, A collaborative intrusion detection system1568

framework for cloud computing, in: Proceedings of the International1569

Conference on IT Convergence and Security 2011, Springer, 2012, pp.1570

91–109.1571

[148] D. Singh, D. Patel, B. Borisaniya, C. Modi, Collaborative ids frame-1572

work for cloud, International Journal of Network Security 18 (2016)1573

699–709.1574

[149] C. J. Fung, Q. Zhu, Facid: A trust-based collaborative decision frame-1575

work for intrusion detection networks, Ad Hoc Networks 53 (2016)1576

17–31.1577

[150] A. Mac Dermott, Q. Shi, K. Kifayat, Collaborative intrusion detection1578

in federated cloud environments, Journal of Computer Sciences and1579

Applications 3 (2015) 10–20.1580

[151] G. Shafer, Dempster-shafer theory, Encyclopedia of artificial intelli-1581

gence 1 (1992) 330–331.1582

[152] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, L. Cavallaro,1583

{TESSERACT}: Eliminating experimental bias in malware classifi-1584

cation across space and time, in: Proceedings of the 28th USENIX1585

Security Symposium), 2019, pp. 729–746.1586

[153] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,1587

S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in:1588

Advances in neural information processing systems, 2014, pp. 2672–1589

2680.1590

[154] D. J. Im, C. D. Kim, H. Jiang, R. Memisevic, Generating images1591

with recurrent adversarial networks, arXiv preprint arXiv:1602.051101592

(2016).1593

60



[155] E. Jang, S. Gu, B. Poole, Categorical reparameterization with gumbel-1594

softmax, arXiv preprint arXiv:1611.01144 (2016).1595

61




