
1 

 

Development of a Ranking Procedure for Energy Performance Evaluation 

of Buildings based on Occupant Behavior 

 

 
Milad Ashouria, Fariborz Haghighata*, Benjamin C. M. Fungb, Hiroshi Yoshinoc 

a Department of Building, Civil and Environmental Engineering, Concordia University, 

Montreal, Quebec, Canada H3G 1M8 

b School of Information Studies, McGill University, Montreal, Quebec, Canada H3A 1X1 

c Department of Architecture and Building Science, Tohoku University, Japan 

 

 

ABSTRACT  

Identifying the impacts of occupants on building energy consumption has become an important 

issue in recent years. This is due to the interrelationship of influencing factors such as urban 

climate, building characteristics, occupant behavior, and building services and operation, which 

makes it challenging to identify the role of occupants in energy consumption. The research 

problem in this study lies in the fact that the occupants of a building may not be cautious 

regarding energy savings, and there exists no ground to assess their energy consumption 

behavior. One solution is the development of a systematic comparison procedure between 

buildings. This paper introduces a new procedure for comparison between occupants of several 

buildings to show the rank of each building among others and suggest occupants on reducing 

their energy consumption and improving their rank. The proposed framework is developed 

based on multiple data-mining methods, including clustering, association rules mining, and 

neural networks. The proposed methodology is composed of two levels. The first considers the 

amount of energy usage by occupants after filtering effects unrelated to the occupant behavior. 

The second ranks the buildings in terms of achieved and potential savings during the time under 

investigation. To demonstrate the application, the methodology was applied on a set of 

monitored residential buildings in Japan. Results suggest that the proposed method enhances 

the evaluation of buildings’ energy-saving potential by revealing the occupants’ contribution. 

It also provides diverse and prioritized strategies to help occupants manage their energy 

consumption by revealing the building energy end-use patterns. 
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1. Introduction  

1.1 Background 

According to reports published by the Natural Resources Canada [1], residential and 

commercial buildings are a main contributor to total secondary energy use, making up more 

than 30% of the total. This shows the necessity of energy consumption manipulation in 

buildings for a sustainable future. Occupants could affect the energy consumption of a building 

to great extents even if all systems and equipment (end-use loads and heating, ventilation, and 

air conditioning [HVAC] systems) work perfectly [2]. Recently, there have been many 

improvements in technological solutions, such as design and operation of building services [3]. 

Among these, recent research highlights occupant behavior as an important contributor that can 

increase the energy efficiency of buildings, similar to technological solutions [4].  

Generally, the factors influencing the building energy consumption could be divided into four 

main categories (see Table 1).  

Table 1. Influencing factors in energy consumption 

1 Climate (e.g., outdoor temperature, solar radiation) 

2 Building-related characteristics (e.g., type, area, heat loss coefficients) 

3 Building services (e.g., space heating and cooling, hot water supply) 

4 Building occupant activities and behavior (e.g., user presence, activities) 

 

Among these, building occupants’ activities and behavior include factors that indirectly affect 

energy consumption. For example, social and economic factors (energy cost, degree of 

education, etc.) partly affect the occupants’ attitudes toward energy consumption [5]. Indoor 

environmental conditions are also determined by the occupants; therefore, they are an indicator 

of occupant behavior. The combined effect of the first three factors on energy consumption is 

identified using advanced simulation packages that are robust with respect to simulating 
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different scenarios. However, modeling occupant behavior is still a challenge due to its 

complexity and indirect effects. Additionally, various statistical data analysis processes have 

been applied to establish meaningful relationships among energy consumption and influencing 

factors that help reduce energy consumption effectively. However, with the increasing amount 

of data generated by buildings within the complexity of the systems, especially on occupant 

behavior, these relationships cannot be captured by simple statistical methods; thus, such 

methods are inadequate for performance improvement. In this study, the challenge is: “How 

can we develop a procedure to assess the performance of a group of buildings based on the 

occupants’ behavior?” 

1.2 Literature Review 

Data-mining processes usually involve data preprocessing, knowledge discovery, and 

interpretation and selection. Data preprocessing involves data cleaning, outlier detection, 

attribute selection, dimensionality reduction, and transformation. Knowledge discovery aims to 

extract raw information and discover patterns in data using either supervised or unsupervised 

data analytics. Interpretation and selection constitute the final step, referred to as post-mining. 

It basically means to interpret the results and screen for potentially useful knowledge. Fan et al. 

[3] and Miller et al. [7] carried out a review of the application of data analytics in building 

engineering. Different data-mining techniques have been used by researchers to extract 

information from building-related data. Techniques of supervised and unsupervised learning 

were used in the framework development [8–13]. Generally, works are divided into identifying 

operational patterns, predictive modeling, and fault detection and diagnosis. Since these 

concepts are highly tied together, works often involve some or all of them.  

Operational patterns are found using data analytics tools. One of them is conventional clustering 

tools, such as K-means, K-medoids, DB-scan, etc., which have been used extensively [14,15]. 

The observations assigned to the same group are referred to as having similar operational 
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conditions. As an example, clustering analysis has been used to study the patterns of HVAC 

operation [11,13] and windows opening and closing [10]. Carmo et al. [16] clustered hourly 

heat load data of 139 single-family detached houses to find daily routines of thermal load 

demand and the effect of household and building characteristics on energy use. Usually, typical 

operation patterns are investigated at the building, system, or component level. At the building 

level, whole-building energy consumption and environment have been considered [15,17–19]. 

At the system and component levels, the operation of HVAC has been investigated as a whole 

system or as components (pumps, fans, etc.) [20–22].  

Patterns of operation have also been discovered in the form of if–then rules. They are useful for 

identifying the typical working conditions of the system and discovering faulty conditions. Xue 

et al. [23] applied clustering analysis and association rule mining to find typical seasonal 

operating patterns in a district heating system. Any deviations from normal patterns show a fault 

in the system. Similar works in variable refrigerant flow systems and chiller systems have been 

carried out [13,24]. If the analysis of building-related data is performed in a time–series manner 

such as a daily, seasonal, or yearly basis to capture any underlying patterns in time, the 

knowledge discovered is referred to as temporal knowledge [6]. Lavin and Klabjan [14] 

clustered 24-h time–series energy data of commercial and industrial buildings to find patterns 

of operation over time. The results revealed different patterns of usage in different months of 

the year. Fan et al. [25] applied motif discovery (frequent sequential patterns) and temporal 

association rule mining (conclusions are made after a time interval) to discover temporal 

patterns in chiller and air handling unit energy consumption. The knowledge discovered was 

successfully used to identify anomalies in an HVAC system and capture building dynamics. 

Patnaik et al. [26] performed techniques of motif discovery to assess chiller operation in data 

centers. A similar approach was applied by Miller et al. [27] for whole-building energy data 

and energy-saving opportunities.   
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Predictive modeling is another topic for data-mining application in building engineering. Neural 

networks are extensively used in the field. Examples are Belman-Flores and Ledesma [28] in 

the case of a multilayer perception (MLP) artificial neural network (ANN); Bechtler et al. [29] 

in the case of a dynamic neural network; and Swider [30], who used an MLP and radial basis 

(RBF) ANN.  

As pointed out in [4], there is still a need to develop systematic frameworks for evaluation of 

occupant behavior and its impact on building energy consumption. Problems such as identifying 

the behavior of occupants accurately by analyzing their data are still at the fundamental levels 

and have not been solved thoroughly by current data analysis methods. On the one hand, this is 

due to the lack of clear and consistent definitions of occupant behavior and, on the other, to the 

lack of sufficient data, the high cost of establishing large databases and storage systems, or 

privacy issues. Novel integration of data-mining techniques can yield new insights on occupant 

behavior analysis and provide new pathways for energy use management. This study presents 

a data-mining approach for analyzing occupants’ energy usage based on a comparison among 

them.  

The challenges that need to be dealt with are these: 

 How can one monitor the performance of occupants practically and accurately without the 

interference of other factors and based on their capabilities, so that one is able to give them 

applicable prioritized recommendations? 

 How can one develop a process to assess the performance of a set of buildings based on the 

energy-saving awareness of their occupants? 

1.3 Statement of Novelty  

The occupants of a single building may not be well informed regarding their energy 

consumption performance. One solution to this challenge would be developing a procedure for 
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a comparison among occupants of several buildings to show the rank of each building among 

others and showcase occupants’ potential abilities to reduce energy consumption on specific 

end-use loads. This way, the residents of each building would know their real rank and could 

be motivated to take energy-saving measures. In other words, the occupants can learn from each 

other and be persuaded to reduce their consumption because they would observe that a similar 

building is consuming less energy. For example, if occupants of a single building see that the 

occupants of similar buildings are using less energy to provide the required indoor environment, 

they might be persuaded to follow them. However, due to the existence of several factors in 

energy consumption patterns of occupants (such as number of occupants, floor area, and house 

type), we cannot simply compare the energy consumption of several buildings. Also, the 

activities that occupants have performed to save energy and the degree of their energy 

consciousness are not accounted for. Thus, such simple comparisons are not yet effective. As 

many influencing factors as possible should be considered to make a fair comparison. Also, if 

the procedure is well designed, it can reveal potential saving opportunities for occupants of the 

buildings. In this study, a new framework for energy assessment of a set of buildings is 

introduced using data-mining techniques. The details are introduced in the following sections. 

2. Methodology 

The proposed method is composed of multiple steps, shown in Figure 1. The data from 80 

buildings in Japan are collected, integrated, and processed. Outlier detection and removal are 

applied on the dataset as preprocessing steps. As a result, four buildings are removed due to 

data deficiency. Outliers are substituted by approximations using regression on other attributes 

[31]. Each step uses a subset of available features in the data set, which are described in the 

following sections. The proposed method is composed of two-level ranking, as shown in Figure 

1 in red boxes. The first level considers the amount of energy usage by occupants after filtering 

out effects unrelated to occupants. The second level ranks the buildings in terms of achieved 
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and potential savings during the time under investigation. Therefore, the occupants know their 

specific category in terms of each level. This helps them clearly understand their performance 

and take suitable measures. The methodology was applied on detailed data of 76 buildings.  

 

Figure 1. Framework development for building performance comparison based on occupant behavior. 

 

2.1 Grey Relational Analysis 

The influencing factors that affect building energy consumption are listed in Table 2. The 

contribution of each of these factors in overall energy consumption of buildings (energy use 

intensity, EUI) differs greatly. For example, variation in number of occupants may have larger 

effects on the total energy consumption than variation in the annual wind speed. Therefore, 
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weights should be assigned to each of these factors. One of the methods that could give such 

weights is grey relational analysis (GRA), which is applied on the data set as shown in Figure 

1. GRA tries to identify the causative factors of a defined objective (energy use, in this case) 

and sort them in terms of their contribution [32]. Considering an n × m data set, 𝑦𝑗 denotes the 

objective sequence (in this case, building energy consumption), and 𝑦𝑖 denotes the influencing 

factors (listed in Table 2). Therefore, 𝑖: 1,2, …m, and 𝑗: 1,2, … 𝑃 (in this case, P = 1), and  

𝑘: 1,2, … 𝑛 is the index of data point.  

𝑦𝑖(𝑘) =
𝑥𝑖(𝑘)

1
𝑛

∑ 𝑥𝑖(𝑘)𝑛
𝑘=1

 (1) 

Similarly, 𝑦(𝑘) is defined for all objectives. At any data point k, the grey relational grade 

between 𝑦(𝑘) and 𝑦𝑖(𝑘) is defined as:  

𝜉𝑗(𝑘) =
min

𝑖
min

𝑘
|𝑦(𝑘) − 𝑦𝑖(𝑘)| + 𝛼 max

𝑖
max

𝑘
|𝑦(𝑘) − 𝑦𝑖(𝑘)|

|𝑦(𝑘) − 𝑦𝑖(𝑘)| + 𝛼 max
𝑖

max
𝑘

|𝑦(𝑘) − 𝑦𝑖(𝑘)|
 (2) 

where 𝛼 is the “distinguishing coefficient” and is generally set to 0.5 [31]. The results are 

calculated for each data point. The average is used as the weight for the corresponding attribute 

and is known as the relational grade. 

 𝑟𝑖 =
1

𝑛
∑ 𝜉𝑖(𝑘)𝑛

𝑘=1  (3) 

The relational grades are numerical measures which show the effect of the influencing factors 

on the objectives. Basically, 𝑟𝑖 > 0.9 denotes a marked influence, 𝑟𝑖 > 0.8 shows a relatively 

important influence, and 𝑟𝑖 > 0.7  an important one; also, 𝑟𝑖 < 0.6  denotes a negligible 

influence [9,32].  

2.2 Level 1 Clustering 

Clustering analysis tries to group a set of observations by maximizing between-cluster distance 

and minimizing within-cluster similarities. In other words, it tries to put observations into 

distinct groups. The buildings are clustered based on influencing factors unrelated to occupant 
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behavior (mentioned in Table 2), so buildings in the same group have similar characteristics 

except for occupant behavior. In this study, clustering is performed several times for different 

tasks. There are several clustering algorithms, each made for different purposes. They are 

usually applied on two-dimensional data where each row represents an observation and each 

column represents an attribute. Clustering mainly involves five main tasks. The first is feature 

generation, which is the process of choosing appropriate attributes for clustering. This is based 

on domain knowledge and available data. The attributes chosen for level 1 clustering are 

described in Table 2. Therefore, buildings in the same cluster share similar characteristics in 

terms of weather conditions, building structure, number of occupants, and building services.  

Table 2. Representative attributes of the four influencing factors on occupant behavior. 

Influencing Factor in EUI Attribute Category-Unit Abbreviation 

City climate 

a) Annual mean air temperature Numerical-ᵒC T 

b) Annual mean relative humidity Numerical RH 

c) Annual mean wind speed Numerical-m/s WS 

d) Annual mean global solar radiation Numerical-MJ/m2 RA 

Building-related 

characteristics 

a) House typei Categorical HT 

b) Building area Numerical-m2 BA 

c) Equivalent leakage areaii Numerical-cm2/m2 ELA 

d) Heat loss coefficientiii Numerical-W/m2K HLC 

Occupant-related 

characteristics 

a) Number of occupants Numerical NO 

Building services system 

and operationiv 

a) Space heating and cooling Categorical HC 

b) Hot water supply Categorical HWS 

c) Kitchen equipment Categorical KE 

i The houses are either detached or apartments and are transformed to [0, 1].  
ii Measured by fan pressurization method. 
iii Calculated based on building design plans. 
iv Either electric or nonelectric. They are transformed to [0, 1]. As all space cooling equipment is electric, the value of HC is 

determined by space heating.  

 

The second task is choosing proximity measures that differ based on the algorithms used. The 

most widely used measure is the K-means algorithm, given as: 
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∑ ‖𝑥𝑖 − µ𝑗‖
µ𝑗

min
𝑛

𝑖=1

 (4)   

 

where 𝑥𝑖 is the ith observation and µ𝑗 is the cluster center. Other similar algorithms are the K-

medoids and Manhattan distance, Pearson correlation, and cosine similarity algorithms [6]. The 

third and fourth tasks are applying the algorithm and explaining the results. The last task is to 

measure the goodness of the clustering, which is done either by external methods (mutual 

information, F-measure, purity, etc.) or internal measures (such as the Silhouette index or Dunn 

index). A list of methods can be found in [33].    

Prior to clustering the data, some preprocessing is needed to make the data consistent, such as 

unit conversions, outlier diagnosis, and normalization. For binary attributes, their two states, 

such as house types, that is, [detached house, apartment], are transformed to [0, 1]. Outlier 

detection is performed using the quantile method, and the outliers were substituted using 

regression on other attributes [8,34].  

If all features are used at the same time for clustering, we may end up with some buildings in 

the same cluster with different climatic conditions, such as outdoor ambient temperature (other 

features may be very similar, which would put two buildings in the same cluster). However, 

comparing two buildings with different climatic conditions does not make sense. To make sure 

that the buildings in the same group are as similar as possible in terms of weather conditions, 

first, the buildings are clustered in terms of climatic data (temperature, humidity, wind speed, 

and solar radiation) and then grouped based on other characteristics described in Table 2Table 

2 (level 1-1 and level 1-2 clustering).   

2.3 Level 2 Clustering 

Given that all buildings in the same cluster level 1 share similar characteristics in weather 

conditions (level 1-1) and building and occupant characteristics (level 1-2), the differences in 

energy consumption of the buildings of the same cluster (level 1) are due to occupant behavior. 
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The buildings are again clustered in terms of energy use intensities (EUIs), which is an indicator 

of the occupants’ behavior (indicated in Figure 1 as level 2 clustering). The detailed attributes 

are summed up in eight categories:  

1) Heating, ventilation, and air conditioning (HVAC) 

2) Hot water supply (HWS) 

3) Lighting (LIGHT) 

4) Kitchen (KITCH) 

5) Refrigerator (FRIDGE) 

6) Entertainment and information (E&I) 

7) Housework and sanitary (H&S) 

8) Other end-use loads (OTHER) 

This clustering groups the buildings into different energy use levels. The number of clusters is 

determined based on internal measures, such as the Silhouette index [33]. The clusters are then 

ranked from highest to lowest EUI. Therefore, the general category of each group becomes 

known. Also, the main contributors to such differences will be determined from each of the 

eight attributes described above, which gives the occupants information about how to reduce 

their overall energy consumption to enter the lower EUI cluster. This constitutes the level 1 

ranking. 

2.4 Performance Index  

To evaluate the activities of occupants and whether they have tried to take energy-saving 

measures, the performance index (PI) is calculated as described below. It is indicated as PI in 

Figure 1 and is applied on each building.  

PI is defined as: 
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𝑃𝐼 = 𝐴𝑆 − 𝑃𝑆 (5) 

AS is the achieved savings and PS is the potential savings. Achieved savings mean that the 

occupants have tried to lower their energy consumption by taking certain actions to reduce the 

energy usage of one or more of the eight end-use loads. The potential savings are the amount 

of energy that could have been saved if the occupants do not increase their energy consumption 

(opposite to their previous actions which was lower energy usage of a specific end-use load). 

The process is designed to capture any abnormal behavior seen in the recent data based on 

analysis of historical data as indicated in Figure 2. In this process, the eight end-use loads 

described above are broken down into more detailed data. For example, KITCH data are broken 

down to washing machine, dryer, rice cooker, oven, and so on, depending on the available home 

appliances [35]. Data are then clustered based on outdoor hourly temperature so the energy 

consumption data share similar weather conditions. Association rule mining finds all the 

patterns in the data, which forms the basis for alerting occupants when dissimilar behavior to 

those patterns is seen. The rules are categorized as rules for modification (RMs) and rules for 

savings (RSs), as shown in Figure 3. RMs imply that the energy consumption of an appliance 

is low. Any behavior opposite from these rules is flagged as potential savings (PS), meaning 

that there is a potential to save energy by following the recommendation (the RM). In other 

words, occupants have shown a good behavior regarding an end-use load and any behavior 

opposite to that is flagged as waste of energy. For example, consider energy consumption of 

lighting in a room. After analyzing the energy consumptions, the system may extract a rule that 

at certain times, the light should always be (or most of the times) switched OFF. Any behavior 

contradicts with this rule (light be switched ON in the mentioned times) is flagged as inefficient 

and needs consideration and modification. Any waste of energy is considered as potential 

savings for the occupants. RSs imply that the energy consumption of an appliance is high. Any 

behavior opposite to these patterns is flagged as achieved savings (AS), which shows that 
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occupants have used less energy than their normal usage. Artificial neural networks are used to 

quantify the energy-saving potential and achieved savings by occupants. The flowchart of the 

process is shown in Figure 2. More details are provided in [34]. Based on this definition, if a 

building has low potential for improvement and high savings achievements, it is considered a 

very good building regarding its occupants’ energy awareness. Buildings in the same cluster 

are compared and ranked based on PI. This comparison gives the occupants of a building an 

idea of their place regarding their efforts to save energy and motivates them to improve their 

performance using the clues in level 2 clustering. This makes up the basis of a level 2 ranking. 

More insights are given in the Results and Discussion section. The described process is 

independent of level 1 ranking. Therefore, the occupants of a single building are informed about 

their ranks in both levels and can take suitable actions.  

 

Figure 2. The data-mining process for rule extraction among home appliances to find potential and achieved 

savings, along with performance index.  

 

 
Figure 3. Rule categorization process [34]. 
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3. Results and Discussion 

3.1 Grey Relational Analysis  

Accumulated annual energy use intensity of buildings in 2003 was selected as the objective 

variable in Grey Relational Analysis (GRA). Because the EUI already contains information 

about building area, this factor is not considered in GRA. Results are shown in Table 3, in which 

temperature, relative humidity, wind speed, and solar radiation are functions of time and region 

and were therefore averaged over 12 months for each district. The rest of the variables are fixed 

and were calculated using the whole data set.  

 

 

 

Table 3. Grey relational analysis of influencing factors on energy consumption. 

Region 

Factors 

Hokkaido Tohoku Hokuriku Kanto Kansai Kyusyu 

T 0.799 0.831 0.772 0.737 0.712 0.654 

RH 0.620 0.765 0.644 0.732 0.695 0.661 

RA 0.683 0.662 0.716 0.641 0.690 0.675 

WS 0.584 0.555 0.532 0.601 0.580 0.605 

HT 0.617 

ELA 0.490 

HLC 0.780 

NO 0.701 

HC 0.537 

HWS 0.514 

KE 0.551 

 

The results imply that outdoor air temperature has the greatest contribution to EUI considering 

only the weather parameters (except for the Kyusyu region, in which RA has the highest 
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contribution). This is more obvious in colder climates such as Hokkaido and Hokuriku. It 

appears that in warmer climates, the contributions of weather parameters are similar to each 

other, for example in Kyushu regions all parameters are in the range of 0.600-0.675, while in 

Hokkaido they are in the range of 0.580-0.800. Among the other seven variables, heat loss 

coefficient (HLC) and number of occupants (NO) play the dominant roles.  

The achieved GRAs for all variables are multiplied by their corresponding variables in the 

buildings data set so the more influential variables are dominant in clustering the buildings.   
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3.2 Reducing Effects Unrelated to Occupant Behavior 

3.2.1 Clustering based on weather parameters (level 1-1) 

As described in Section 2.2, level 1-1 clustering puts all buildings with similar weather 

conditions in the same group. This way, buildings in the same group share similar characteristics 

in terms of four weather parameters: outside temperature, relative humidity, solar radiation, and 

wind speed. The results imply two clusters, which are shown in Figure 4. The figure on top 

shows that one of the clusters contains buildings from only two regions, Tohoku and Hokkaido, 

which are considered cold regions with less radiation. The figure at the bottom shows the 

centroids of each cluster. It is seen that lower temperature and wind speed are the dominant 

factors that put these buildings in cluster C2, while other clusters contain buildings with higher 

temperature, humidity, wind speed, and solar radiation. The next step divides each of these two 

clusters further to consider building characteristics, too. The reason the buildings are divided 

first by weather conditions is the importance of weather parameters in inspecting occupant 

behavior.   
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Figure 4. Clustering level 1-1 results on statistics and percentages of instances assigned to each cluster. 

 

3.2.2 Clustering based on physical parameters (level 1-2) 

Level 1-2 clustering was performed on the results obtained from level 1-1, and the cluster 

centroids are shown in Figure 5. Five clusters were obtained.    

 

Figure 5. Distribution of seven physical and occupant characteristics in level 1-2 clustering. 

 

It is revealed that buildings in clusters C 1_1 and C 2_2 (red and blue bars) share an electric 

source for kitchen appliance (KE) and hot water supply (HWS), while the opposite behavior is 

seen in clusters C 1_2, C 1_3, and C 2_1. The high HT value of cluster C 1_3 implies that all 
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buildings in this cluster are apartments, as opposed to cluster C 1_2, in which all buildings are 

detached houses (HT = 0 for this cluster). Clusters C 2_1 and C 2_2 have lower outdoor air 

temperature, solar radiation, relative humidity, and wind speed compared to clusters C 1_1, C 

1_2, and C 1_3 (based on level 1-1 clustering). From the highest HC of cluster C 2_1, it can be 

inferred that in cold regions, building owners use a gas-based heating system. It is seen that two 

variables, HT (house type) and HC (heating/cooling equipment), are dominant in separating the 

clusters because their values have a high variation.  

There may be some overlaps between the clusters, and it is quite possible that buildings in the 

same cluster are grouped together by the K-means algorithm simply because they have similar 

characteristics on some non–occupant-related features. However, those dissimilar attributes 

have opposite effects (they neutralize their effect), which causes the algorithm to put the 

buildings together in one cluster; otherwise, the buildings are not grouped with each other.  

Figure 6 shows the distribution of end-use loads in each cluster, along with their corresponding 

proportions. The difference in EUI between buildings in the same cluster is attributed to 

differences in occupant behavior. The eight end-use loads of each building were averaged over 

a year. As shown in Figure 6, KITCH and HWS are the two important contributors in cluster C 

2_2, so the buildings in this cluster need to focus more on these two end-use loads regarding 

energy saving. However, FRIDGE and E&I are the two dominant factors of EUI in cluster C 

2_1. Also, HVAC, LIGHT, and FRIDGE are the main contributors in cluster C 1_3, while 

cluster C 1_1 shows a uniform distribution among different end-use loads. This shows that 

occupants in different clusters show different behaviors regarding the intensities of end-use load 

usage. The noticeable increase in HWS in cluster C 2_2 may be attributed to the low outside air 

temperature of the buildings in this cluster (this cluster comes from C 2 which includes colder 

regions). Also, all buildings in this cluster have electrical heaters (see Figure 5) and apparently 

occupants tend to use them more than kerosene heaters.     
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Figure 6. Distribution of eight end-use loads in different clusters. 

Buildings in the same cluster share similar holistic characteristics, which makes it reasonable 

to compare them to each other to reveal the occupant effects on building EUI, while buildings 

in different clusters should not be compared in terms of energy consumption, mainly due to the 

existence of the influencers listed in Table 2.  

3.3 Level 1 Ranking  

To rank the buildings in each cluster to determine which buildings are responsible for the EUI 

increase, a second clustering was applied on each cluster based on attributes described in 

Section 2.3. The optimum number of clusters according to the Silhouette index [9] was two in 

all clusters. Thus, the cluster centroid with lower EUI was named Low Energy Consumer, 

meaning that the buildings in this cluster generally had lower energy usage. The other cluster, 

on the other hand, was buildings with high energy usage and was named High Energy 

Consumer. The occupants of these buildings need to modify their behavior in order to reduce 

their energy consumption.  

Figure 7 shows the result of the level 1 rankings. Every building of the data set falls into one of 

the leaves of the graph shown. By following the branches of the curve, some information about 
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the general characteristics of the buildings and weather conditions of the buildings in that cluster 

can be found. For example, buildings in clusters C 2_1 and C 2_2 are all in cold regions where 

temperature, humidity, and solar radiation, are low. Buildings in cluster C 2_1 have low 

equivalent leakage areas and nonelectric hot water supply and space heaters, while buildings in 

C 2_2 have electric heaters and hot water supply. By looking at clustering level 2, general 

occupant behavior is extracted. For example, buildings in cluster C 2_1 are clustered further 

into two groups of high and low energy consumers. Cluster C 2_1_1 is the cluster with higher 

energy consumption in the majority of end-use loads, such as HVAC, HWS, LIGHT, FRIDGE, 

E&I, and OTHER. Therefore, the occupants need to focus on these end-use loads. More 

information about all 10 obtained clusters is shown in Figure 7.  



21 

 

 

Figure 7. Results of level ranking. Details of clusters and their general characteristics. 

 

Figure 8 shows clustering centroids for each end use. By analyzing clustering level 2 results, 

specific occupant behavior is determined. Some of the implications are as follows:  

High energy consumer buildings in cluster C 1_1 (top left graph in Figure 8) have higher energy 

consumption specifically in HVAC, KITCH, and FRIDGE, which implies that building 

occupants in this cluster should give primary consideration to these activities and bring their 

energy consumption level to low values. The activities that need more consideration in cluster 

C 1_2 are FRIDGE, HVAC, and OTHER. The end-use load that deserves attention in all 

buildings is FRIDGE, because it is the main contributor in nearly all clusters (high energy 
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consumers), and HVAC is a main contributor in all clusters except C 2_1. Also, C 1_1 shows a 

uniform distribution of energy usage in end-use loads. Blue bars show the centroid of buildings 

at the low energy consumption level. It is important to mention that sometimes one activity may 

have a higher portion compared to its corresponding value in the high energy consumers, but 

the overall energy consumption of occupants (based on Euclidean distance in the K-means 

algorithm) puts them in the low energy category. Such activities are E&I in cluster C 1_3 and 

KITCH and H&S in cluster C 2_1. Occupants may focus on these activities to save more energy.  

Level 2 clustering gives the building occupants of each cluster (level 1) a basis to reduce their 

energy consumption by comparing their consumption with similar group. Low energy 

consumers are encouraged to improve their building’s performance by focusing on major end-

use loads and comparison with the best building in their section.  
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Figure 8. Clustering level 2 results. Data in all clusters were clustered again in terms of EUI. Centroids are 

shown in blue and red bars and are categorized as buildings with either low or high energy consumption, 

respectively. 

 

3.4 Level 2 Ranking  

For each building in the same cluster (level 1), the PI was calculated and the results were 

reported. Buildings with a higher PI have a higher place regarding energy consumption, while 

occupants of buildings with a lower PI are informed to take suitable actions to reduce their 

energy consumption level and improve their rank. Potential and achieved savings are calculated 

based on the extracted rules (RM and RS rules in Figure 3). Two sample rules are indicated in 

Table 4. The first rule indicates that when the living-room TV, kitchen rice cooker, and 

refrigerator consume low energy during the day, kitchen outlet lights should be switched off 



24 

 

most of the time (based on this rule, which is derived using historical data). This occupant 

behavior is frequent; thus, it is expected that kitchen lights should be off when the three loads 

mentioned are low. This rule is categorized as an RM rule, and any record following the premise 

([TV (low), rice cooker (low), refrigerator (low)]) but not the conclusion ([Kitchen light (high)]) 

is considered inefficient. The occupant is warned about this issue. To estimate the potential 

savings associated with this waste of energy, an ANN model is built based on the rule in which 

the input and output are the premise and conclusion, respectively (as shown in Table 4). Figure 

9 and Figure 10 show the outputs of the models based on the rules represented in Table 4, which 

are obtained by plugging the values of the premise into the model and getting the output. The 

recorded (real) values and their differences are also reported in the figure. Figure 9 corresponds 

to the sample RS rule, and Figure 10 refers to the sample RM rule. The potential savings are 

calculated based on the difference between modified and recorded values, and achieved savings 

are estimated based on the difference between expected and recorded values. This process is 

repeated for all extracted rules. The cumulative potential savings are reported as a percentage 

(shown in Table 5). The achieved savings is calculated in a similar manner for RS rules.  

 

Table 4. Two sample rules for calculation of achieved and potential savings. 

Premise 

 

Conclusion Category 

[TV (low), rice cooker (low), refrigerator (low)] [Kitchen light (low)] RM 

[Microwave (low), rice cooker (low), kitchen light (high)] [Refrigerator (high)] RS 
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Figure 9. Calculation of achieved savings based on a sample RS rule. 

 

 
Figure 10. Calculation of potential savings based on a sample RM rule. 

 

It is important to mention that in Equation 5, AS and PS are expressed in terms of percentages, 

and their subtraction may give negative, zero, or positive values. Negative values mean that the 

achieved savings are less than the potential savings, zero means they are the same, and positive 

means the potential savings are lower than the achieved savings, which is the best case. Table 
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5 shows part of the results in cluster C 1_1_1 (high energy consumers; there are 14 buildings in 

this cluster). High energy consumers (red bars in Figure 8) and low energy consumers ((blue 

bars in Figure 8) are ranked separately; therefore, a clear ranking of each building is given to 

tenants, giving them opportunities to know their place among other buildings and see how to 

improve their rank. For example, based on Table 5, building 3 in cluster C 1_1_1 is a high 

energy consumer according to clustering level 2 (red bars in Figure 8, top left). Therefore, the 

tenants are advised to try to modify their behavior (especially on HVAC, KITCH, and FRIDGE 

based on Figure 8, top left) to improve their place. This building shows a relatively good 

performance in terms of PI because it is in second place among the other four buildings, with a 

PI of –2%. The best building has a PI of 1%. Similar interpretations are possible for other 

buildings in the data set. Similar results are obtained and can be reported to the occupants of 

other buildings.  

Table 5. Part of results of two-level ranking system for buildings in cluster 2 in high energy consumers.  

Building No. Cluster Level 1 Ranking Level 2 Ranking AS PS PI 

1 

C1_1_1 

H
ig

h
 E

n
erg

y
 

C
o

n
su

m
er 

4 12% 21% –9% 

2 3 10% 15% –5% 

3 2 10% 12% –2% 

4 1 11% 10% 1% 

4. Limitations and Future Insights  

Some limitations of the proposed methodology are as follows. By resolving these shortcomings, 

it will be possible to increase the accuracy of the proposed methodology.    

Having no hourly data for end-use loads is an important challenge in level 2 ranking that makes 

association rule mining less realistic given that the services might not be operating 

simultaneously. Consequently, estimations may not be as accurate as would be the case if hourly 

data were known. Having hourly data would improve the accuracy and reliability of the process 

beyond that given by daily data.  
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Another challenge originates from data deficiency. For instance, the number of occupants is 

present in the data set; however, more information—age, level of activity, number of adults and 

children, time of arrival and departure, and so on—can be incorporated into Table 2. Also, 

knowing this information would help us provide more detailed recommendations based on 

which activities or behaviors of children or adults consume the most energy. The most useful 

information would be knowing occupants’ daily schedules, preferences (e.g., lighting level, 

room temperature), and holidays.  

The size of the data set is also a problem for most data-mining techniques. Usually, increasing 

the number of data points will improve the accuracy of machine learning algorithms. Eighty 

buildings may not be enough to do a perfect clustering. The data set available for this study 

covered 2003 and 2004 and part of 2002 and 2005 on a daily, monthly, and yearly basis 

(depending on different parts of the process). Higher-resolution data would increase the size of 

the data set, making data-mining results more reliable. 

One problem in clustering level 1 may be that it is quite possible that buildings in the same 

cluster have similar characteristics on some non–occupant-related features but are dissimilar in 

other non–occupant-related features. To reduce the effect of this problem, each characteristic 

was multiplied by its GRA (grey relational analysis). Therefore, those characteristics with 

higher GRA values are dominant in determining the cluster to which the building belongs. Also, 

clustering level 1 was divided into two subsections, levels 1-1 and 1-2, to prioritize the weather 

parameters in clustering. If one tries to increase the accuracy of the clustering in terms of any 

characteristics, it is possible to increase the subsections of level 1 clustering to even more than 

two (for example, one more level for number of occupants). However, this makes the cluster 

sizes smaller, and we were limited by the database size in this study. Increasing the size of the 

database can solve this issue.  
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Having a 24-hour temperature profile of each building throughout the year can further improve 

clustering level 1-1 to capture fluctuations in weather data. However, we have used the annual 

average values due to the data deficiency.  

When feedback is given to the high energy consumer, they are expected to take suitable 

measures to improve their rank. This can be achieved by a real case evaluation to see the 

effectiveness of the proposed system, especially if the ranking is performed online so the 

occupants can see the effect of their energy saving measures within a short period of time. 

The first part of the methodology (level 1 ranking) is based on comparison between several 

buildings. If the low energy consumers are wasting some energy, there is still room for 

improvement which is not identifiable through current methodology. In other words, the 

buildings are not comparing themselves with the best cases. This limitation lays the foundation 

for the future work of the authors, which is creating a role model building for energy usage 

evaluation.    

5. Conclusions 

A novel two-level ranking system for a set of buildings was proposed based on occupant 

behavior and activities. Buildings were first clustered using the K-means method into two 

levels, levels 1-1 and 1-2, to reduce the effects of non–occupant-related factors and put 

buildings into separate groups. The differences between the buildings’ energy consumption in 

the same clusters are attributed to occupant roles. A second clustering in terms of eight end-use 

loads was performed in each group to yield a level 1 ranking for each building (high and low 

energy consumers). Performance index was defined in terms of achieved and potential savings 

to determine the amount of savings for each building based on detailed operational data and 

was named level 2 ranking. Results show that, using the information provided by the two 

ranking levels, tenants of a certain building are able to understand their performance in terms 
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of energy usage compared to other buildings and get recommendations on how to reduce their 

energy consumption and improve their rank.  
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List of abbreviations 

BA Building area KE Kitchen equipment 

E&I 

Entertainment and 

information 

KITCH Kitchen 

ELA Equivalent leakage area LIGHT Lighting 

EUI Energy use intensity NO Number of occupants 

FRIDGE Refrigerator OTHER Other end-use loads 

GRA Grey relational analysis PI Performance index 

H&S Housework and sanitary RA Annual mean global solar radiation 

HC Space heating and cooling RH 

Annual mean relative 

humidity 

HLC Heat loss coefficient RM Rules for modification 

HT House type RS Rules for savings 

HVAC 

Heating, ventilation, and air 

conditioning 

T Annual mean air temperature 

HWS 
Hot water supply 

 

WS Annual mean wind speed 
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