
SafePath: Differentially-Private Publishing of Passenger

Trajectories in Transportation Systems

Khalil Al-Hussaeni

CIISE, Concordia University, Montreal, Canada, H3G 1M8

Benjamin C. M. Fung

School of Information Studies, McGill University, Montreal, Canada, H3A 1X1

Farkhund Iqbal

College of Technological Innovation, Zayed University, Abu Dhabi, UAE, P.O. Box 144534

Gaby G. Dagher

Department of Computer Science, Boise State University, Boise, ID 83725-2055, USA

Eun G. Park

School of Information Studies, McGill University, Montreal, Canada, H3A 1X1

Abstract

In recent years, the collection of spatio-temporal data that captures human movements
has increased tremendously due to the advancements in hardware and software systems
capable of collecting person-specific data. The bulk of the data collected by these systems
has numerous applications, or it can simply be used for general data analysis. Therefore,
publishing such big data is greatly beneficial for data recipients. However, in its raw form,
the collected data contains sensitive information pertaining to the individuals from which
it was collected and must be anonymized before publication. In this paper, we study the
problem of privacy-preserving passenger trajectories publishing and propose a solution
under the rigorous differential privacy model. Unlike sequential data, which describes
sequentiality between data items, handling spatio-temporal data is a challenging task due
to the fact that introducing a temporal dimension results in extreme sparseness. Our pro-
posed solution introduces an efficient algorithm, called SafePath, that models trajectories
as a noisy prefix tree and publishes ϵ-differentially-private trajectories while minimizing
the impact on data utility. Experimental evaluation on real-life transit data in Mon-
treal suggests that SafePath significantly improves efficiency and scalability with respect
to large and sparse datasets, while achieving comparable results to existing solutions in

Email addresses: k_alhus@ciise.concordia.ca (Khalil Al-Hussaeni), ben.fung@mcgill.ca
(Benjamin C. M. Fung), farkhund.iqbal@zu.ac.ae (Farkhund Iqbal), gabydagher@boisestate.edu
(Gaby G. Dagher), eun.park@mcgill.ca (Eun G. Park)

Preprint submitted to Computer Networks May 19, 2018

terms of the utility of the sanitized data.

Keywords: Differential privacy, trajectory data, sparse data, smart city, transportation.

1. Introduction

Location-aware devices and systems capable of collecting user-specific data have been
implemented in many smart city infrastructures over the last several years. For example,
Société de transport de Montréal (STM), the public transport agency responsible for the
bus and metro systems in Montreal, has employed a smart card automated fare collection
(SCAFC) system to collect passenger transit data. The data collected by these systems
has numerous uses for data analysis and is crucial to enactment of administrative regu-
lations and generation of metrics to weigh business practices [1]. However, the collected
data in its raw form contains sensitive information that is specific to individuals and must
be anonymized to protect their privacy before the data is shared by a certain third party
for data analysis.

This paper is motivated by the rising concern of passengers’ privacy, especially when
passenger flow is under constant surveillance [12]. We study the problem of publishing
trajectories with spatio-temporal information and propose a privacy-preserving trajectory
publishing solution under the differential privacy model [14].

Let us consider the spatio-temporal transit data. For every passenger, the collected
data includes the passenger’s smart card number, the visited station ID, and a timestamp.
Data is collected as passengers present their unique smart cards to an automated reader
for fare collection when boarding a bus or entering a metro station. Once collected, the
passenger’s data is stored in a central database whereby the sequence of visited stations
is arranged in a timely order. Table 1 provides an abstract representation of the transit
data in its raw form. Passenger-specific information such as names and card numbers are
omitted; instead, a trajectory ID has been added for ease of referencing. The sequence
of ⟨location, timestamp⟩ pairs forms a passenger’s path or trajectory. For example, tra-
jectory tr1 in Table 1 contains two pairs, a.1 and c.2, indicating that the passenger has
visited locations a and c at timestamps 1 and 2, respectively.

Trajectories collected by transit companies are periodically shared with internal and
external organizations for the purpose of trajectory mining [44][53] and traffic manage-
ment [52][6][33]. Publishing or sharing raw trajectories raises privacy concerns because
the data is susceptible to attacks that rely on attacker’s background knowledge about
some target victims whose trajectories are included in the published data. We illustrate
these attacks in the following example.

Example 1.1. Suppose that Alice is a passenger whose trajectory is in Table 1, which is
being released to the public. Possessing auxiliary knowledge about Alice, an attacker can
uniquely identify Alice’s full trajectory. For example, knowing that Alice was at location
b at timestamp 2, an attacker can use this knowledge to associate Alice with trajectory tr5
with 100% certainty and determine that she has traveled through location a at timestamp
1 and exited the transit system at location c at timestamp 3. Further, suppose that an

2

Table 1: Raw trajectories of 7 passengers

TID Trajectory
tr1 a.1→ c.2
tr2 c.2→ b.4
tr3 a.2→ b.3→ c.4
tr4 c.3→ a.4
tr5 a.1→ b.2→ c.3
tr6 a.3→ c.4
tr7 a.3→ b.4

attacker knows that Bob was at location b at timestamp 4. Hence, Bob’s trajectory is
either tr2 or tr7. In other words, the attacker is able to deduce that Bob was at c.3 with
50% confidence or at a.3 with 50% confidence, as well. The former attack is called record
linkage and the latter is called attribute linkage.

Previously, publishing trajectories has been explored through syntactic and semantic
privacy models. Syntactic models such as k-anonymity [43] and ℓ-diversity [34] have been
combined with spatial generalization, space translation, and suppression-based techniques
to anonymize trajectories. However, while retaining data utility, these models are prone
to a number of privacy attacks [47][22][31].

Differential privacy [14] is a semantic privacy model that provides provable privacy
guarantees. In this paper, we utilize differential privacy to anonymize a set of trajectories
and output a sanitized version with an effective level of utility. There have been several se-
mantic models [27][28][9][26][19] developed by researchers for achieving privacy-preserving
trajectory publishing. Unlike existing approaches, however, our approach preserves the
time dimension in the sanitized trajectories, allowing for more precise analysis, as opposed
to solely preserving the sequentiality of locations.

Differential privacy works in two environments: the interactive setting [17] and the
non-interactive setting [5][49]. The former setting allows the data holder (e.g., the transit
company) to receive a limited number of requests pertaining to the underlying raw data,
and sanitized answers are released. In the latter setting the data holder sanitizes then
releases the entire data. In both settings, the differentially-private mechanism consumes at
most ϵ budget, where ϵ is a pre-defined privacy budget. We propose a solution that works
under the non-interactive setting as it gives extra flexibility in terms of analysis power,
especially when there is no specific data recipient for the released data. Subsequently,
the target data analysis task is unknown and can vary considerably depending on the
desired analysis task. Moreover, many specific data mining techniques rely on count
queries to accomplish their objective. Hence, we focus on preserving count queries in
the sanitized data to provide various data recipients with the freedom to perform a wide
variety of analysis tasks. It is worth noting that in our problem definition we assume the
presence of the entire trajectory of a moving individual before sanitizing the complete set
of trajectories. Section 2 presents a detailed discussion of related problems and existing
solutions.

3

Contributions. In this paper, we investigate the problem of privacy-preserving tra-
jectory publishing. Unlike sequential data, trajectories are spatio-temporal data that
contains a time dimension. The existence of a temporal dimension renders the problem
challenging because extra care is required in the sanitization process to handle the sparse-
ness of data. We first formalize the problem of publishing trajectories under the rigorous
privacy model of differential privacy in the non-interactive setting. We then propose an
efficient and scalable sanitization algorithm, called SafePath, that models trajectories in a
prefix tree structure, which significantly contributes to the ability of handling sparse and
high-dimensional data. The closest work to ours is by Chen et al. [9]. They proposed to
sanitize sequential data (e.g., sequences of locations) under differential privacy and further
suggested that their method could be extended to spatio-temporal data, i.e., sequences
of locations coupled with timestamps. We implemented Chen et al.’s extension and call
it SeqPT. Through theoretical analysis and experiment on real-life trajectory datasets
obtained in Montreal, we demonstrate that SafePath provides several fold improvement
over SeqPT with respect to efficiency in terms of runtime and scalability in terms of both
number of records and dimensionality of the dataset. Moreover, we experimentally com-
pare with another sequential data sanitization method, calledN-gram [8], and showcase
the superiority of our proposed method in terms of runtime.

The rest of the paper is organized as follows. Section 2 discusses related work in the
literature. Section 3 introduces some preliminary concepts and formalizes the problem.
Section 4 presents the details of our method and ends with a theoretical analysis of
the proposed solution. Section 5 provides extensive experimental evaluations on real-life
trajectory datasets. Finally, Section 6 concludes the paper.

2. Related Work

Due to the significance of mining trajectories or moving object databases (MOD),
there has been extensive work on privacy-preserving trajectory publishing under different
assumptions and privacy models. Next, we categorize those works based on their privacy
models, namely, syntactic and semantic.

Syntactic privacy models, such as k-anonymity [43] and ℓ-diversity [34], stipulate that
the output dataset of an anonymization algorithm must adhere to some syntactic con-
ditions in order to protect data records and sensitive items. Nergiz et al. [38] were the
first to apply k-anonymity to a trajectory dataset, whereby every trajectory in its entirety
must be indistinguishable from at least k − 1 other trajectories. Abul et al. [2] proposed
(k, δ)-anonymity that enforces space translation, resulting in having every trajectory co-
existing with a minimum of k− 1 other trajectories within a proximity of δ. Monreale et
al. [37] achieved k-anonymity by using spatial generalization. The novelty of their method
lies in dynamically generating geographical areas based on the input dataset, as opposed
to generating a fixed grid [51]. Hu et al. [29] applied k-anonymity to a trajectory dataset
with respect to a reference dataset containing sensitive events. Particularly, they devel-
oped local enlargement that transforms the trajectory dataset such that every sensitive
event is shared by at least k users.

4

In addition to generalization [38][37][51][42] and space translation [2][39], suppression-
based techniques [45][10][11] have been proposed to achieve k-anonymity-based privacy
models. Terrovitis and Mamoulis [45] developed a privacy model that assumes different
adversaries possess different background knowledge, and consequently they modeled such
knowledge as a set of projections over a sequential (trajectory) dataset. Their anonymiza-
tion method limits the inference confidence of locations to a pre-defined threshold. Sim-
ilarly, Cicek et al. [11] ensured location diversity by proposing p-confidentiality, which
limits the probability of visiting a sensitive location to p. Local suppression has been used
in [10][23] to boost data utility. Under local suppression, only some instances of an item
will be removed from the dataset - as opposed to global suppression, which removes all
instances in the underlying dataset. The authors in [23] proposed to preserve flow analysis
in published trajectories under the LK-anonymity model. We argue that it is possible to
achieve comparable analysis results without employing syntactic privacy models, which
have been proven to be prone to privacy attacks such as minimality attack [47], compo-
sition attack [22], and deFinetti attack [31]. Moreover, our proposed algorithm preserves
count queries, which is the basis for many data analysis tasks, including flow analysis.
Section 5 conducts experimental comparisons when anonymizing trajectories under two
privacy models, i.e., LK-anonymity and differential privacy [15], in terms of data utility
and efficiency.

In the past few years, the body of research in the area of privacy-preserving data pub-
lishing has shifted towards adopting differential privacy [15], a semantic privacy model
that provides provable privacy guarantees. The literature has defined two settings un-
der which differential privacy can be achieved: interactive and non-interactive. For
more information on the interactive setting, non-interactive setting, and recent works
on differentially-private data publishing, we refer the reader to [16][32][46], respectively.
In the following, we review recent works in the non-interactive setting that are relevant
to ours.

Protecting trajectories under differential privacy has been gaining increasing attention
in the past few years. Some of these works focus on publishing data mining results,
e.g., mining trajectories for frequent location patterns [27][28], whereas other works aim
at publishing differentially-private trajectories. We focus on the latter approach as it
provides more analytical power to data recipients.

Chen et al. [9] introduced the first differentially-private work to publish a large-volume
of sequential locations. Although their sanitization algorithm preserves count queries and
frequent sequential pattern mining [3] only, data recipients can perform several other
data mining tasks on the sanitized output dataset. The work in [8] also targets sanitizing
sequential locations, however, by proposing a variable-length n-gram model and construct-
ing a synthetic dataset based on the Markov assumption. In a more recent study, He et
al. [26] proposed to synthesize trajectories from a probabilistic model based on the hier-
archical reference system of the input dataset. Xiao and Xiong. [50] considered temporal
correlation to protect true locations within a single trajectory, as opposed to user-level
privacy (adopted in our work), which protects the presence of an entire trajectory within
a dataset. This is achieved by hiding the true location within a set of probable locations,
called δ-location set. Works similar to [9][9][26][50] define trajectories as sequential loca-

5

tions. We argue that in real-life trajectories every location is paired with a timestamp
that should also be accounted for by the trajectory publishing mechanism. For example,
it is important to know busy streets when performing traffic analysis, but it is equally
important to also know the time period during which traffic jams peak.

Trajectories have also been modeled as time-series [19][20] [41][7], where the objective
of the differentially-private mechanism is to publish summary statistics at every increas-
ing timestamp in a continuous fashion. Fan et al. [19] were among the first to study
the problem of publishing time-series data for traffic monitoring. Their proposed method
partitions a given geographical area into a grid of equally-sized cells; then, for every
timestamp, a Laplace noise is added to every cell’s true count in the 2D space. Finally,
the perturbed 2D snapshot is published. Two estimation techniques, temporal and spa-
cial, were proposed to mitigate the effect of the added noise. To achieve ϵ-differential
privacy, the privacy budget ϵ is distributed equally among all timestamps. To address
the problem of data sparseness, Qardaji et al. [41] studied enhancing partitioning spa-
cial domains. They first proposed a method that uniformly partitions a spacial grid into
equally-sized cells where the size of the cell is calibrated based on the input privacy budget
and the characteristics of the input dataset. Furthermore, they proposed an adaptive-grid
method that imposes finer or coarser partitioning based on cell density. Recently, Cao and
Yoshikawa [7] studied publishing sanitized statistics of ℓ-length trajectories in a stream
of time-series data. Their proposed framework comprises three steps: dynamic budget
allocation among timestamps, private decision making for approximately re-publishing
“close” noisy data, and private data release.

Unlike our problem, which assumes the availability of the full trajectory, time-series
solutions focus on periodically publishing snapshots of summary statistics because the full
trace of a moving individual is not yet available (e.g., location-based services [18]). Fur-
thermore, published summaries statistics under time-series solutions present a sanitized
overview of the entire data as a whole. Our proposed solution, on the other hand, is fine-
tuned towards preserving every trajectory, i.e., the path of every moving individual in the
sanitized data is traceable on the location-timestamp level. For example, there are two
passengers at c.4 in Table 1; our trajectory publishing method allows us to know which
passenger came from b.3 and which came from a.3. This is considerably advantageous for
data analysts.

Jiang et al. [30] sampled distance and angle between true locations within a trajectory
in order to publish an ϵ-differentially private version of that trajectory. However, their
method publishes a single trajectory only, i.e., the entire privacy budget ϵ is spent on
sanitizing a single trajectory. Primault et al. [40] proposed to hide moving individuals’
points of interest [21], such as home or work. While their method protects against in-
ference attacks, we argue that hiding points of interest is harmful for applications that
rely on such information, e.g., traffic analysis and probabilistic flowgraph analysis. Our
sanitization approach, however, aims at maintaining the spatio-temporal characteristics
of the raw trajectories in order to support a wide range of data analysis tasks. Assam
et al. [4] presented a method whereby both spacial and temporal domains are sanitized
and published under differential privacy. In [4], trajectories are represented by a series of
GPS-like data points (x, y, t). Their method first creates temporal blocks (called Running

6

Windows) that average all the data points that fall in them. Every Running Window
is then represented by its average location and timestamp values, which are further per-
turbed under the Laplace mechanism. The sequence of noisy averages constitutes the
sanitized trajectory. Assam et al.’s method is robust enough to output a single trajectory
with fairly good utility. However, it is unclear how their method can handle multiple mov-
ing individuals since the output of their proposed algorithm is always a single sequence
of noisy averaged data points. In contrast, our proposed algorithm outputs a multiset of
trajectories, each belongs to a unique moving individual.

3. Preliminaries

In this section, we introduce differential privacy, followed by an introduction to prefix
tree, and, lastly, we present the problem statement.

3.1. Differential Privacy

Differential privacy [14] is a probabilistic privacy model that bounds the probability
of obtaining the same answer from two different input datasets, D and D′, that differ by
only one record. Any privacy leak on the differentially-private dataset, symbolized as D̂,
will not be conclusive, as D̂ could have been obtained from sanitizing either D or D′. This
gives incentive for individuals to participate in the dataset because a differentially-private
mechanism is impartial to the input raw dataset. Below is a formal definition:

Definition 3.1 (ϵ-Differential Privacy). A randomized algorithm Ag gives ϵ-differential
privacy if for any neighboring datasets D and D′ differing by at most one record, and for
any possible output dataset D̂,

Pr[Ag(D) = D̂] ≤ eϵ × Pr[Ag(D′) = D̂], (1)

where the probability is taken over the randomness of the Ag.

ϵ is a privacy parameter, called the privacy budget, that calibrates the utility of the
sanitized data. Typically ranging 0 < ϵ ≤ 1, lower values of ϵ cause more noise to be
added to the true answer, and vice versa.

Suppose there exists a function f that maps a dataset D to real values. The sensitivity
of f is the maximum change in the true answer due to adding or removing a single record
in D. For example, suppose f answers to count queries over D. The maximum change
of a true query answer due to adding/removing one record in D is 1. Therefore, the
sensitivity of f in this case is 1. The sensitivity of f , symbolized as ∆f , is defined as
follows:

Definition 3.2 (Sensitivity). For any function f : D → Rd, the sensitivity of f is

∆f = maxD,D′ ||f(D)− f(D′)||1 (2)

for all D,D′ differing by one and only one record.

7

The literature has defined two techniques to aid in realizing differential privacy: the
Laplace mechanism [17] and the exponential mechanism [36].

The Laplace mechanism first computes the true answer of a function f over a dataset
D, f(D), and then adds to f(D) a noise drawn from the Laplace distribution. More

formally, the Laplacian noisy answer given by the Laplace mechanism is ˆf(D) = f(D) +
Lap(λ), where Lap(λ) is a noise drawn from the Laplace distribution with probability
density function Pr(x|λ) = 1

2λ
exp(−|x|/λ) of variance 2λ2 and mean 0.

Theorem 3.1. [17] Given any function f : D → Rd over an arbitrary domain of database
D with d attributes, an algorithm Ag that adds independently generated noise with distri-
bution Lap(∆f/ϵ) to each of the d outputs satisfies ϵ-differential privacy.

For example, suppose f answers to count queries over D. Given a privacy budget ϵ
and the sensitivity of f , ∆f , then according to Theorem 3.1, ˆf(D) = f(D) + Lap(1/ϵ)
satisfies ϵ-differential privacy.

As for the exponential mechanism, it is used in situations where the true answer
is not a real value. In this case, the exponential mechanism assigns a probability to every
candidate output o in the output domain O. The assigned probability is based on a utility
function u that gives real-valued scores to every candidate output o ∈ O. Outputs with
higher scores are exponentially more likely to be selected by the exponential mechanism.
This ensures that the selected output is close to the true output.

Theorem 3.2. [36] Given any utility function u : (D × P) → R with sensitivity ∆u =
max∀p,D,D′ |u(D, p)−u(D′, p)|, an algorithm Ag that chooses an output p with probability

proportional to exp(ϵu(D,p)
2∆u

) satisfies ϵ-differential privacy.

Differential privacy enjoys two composition properties: sequential composition, and
parallel composition. Sequential composition stipulates that if a sequence of differentially-
private computations takes place on the same set of data, then the entire sequence guar-
antees the collective privacy guarantee of every computation in the sequence. Whereas,
parallel composition applies to situations where a sequence of differentially-private com-
putations is performed on disjoint sets of data. In this case, the entire sequence gives the
worst privacy guarantee, i.e., the highest privacy budget among the parallel computations.

Lemma 3.1 (Sequential Composition [35]). Let each computationAgi provide ϵi-differential
privacy. A sequence of Agi(D) over the dataset D provides (

∑
i ϵi)-differential privacy.

Lemma 3.2 (Parallel Composition [35]). Let each computation Agi provide ϵ-differential
privacy. A sequence of Agi(Di) over a set of disjoint datasets Di provides ϵ-differential
privacy.

3.2. Trajectories as Prefix Tree

In this paper we assume that individuals are traveling from one location to another on
a geographical map. The map is discretized into unique spacial areas that collectively form
a location universe. A single trajectory is the trace left by a single individual, where every
visited location is coupled with a timestamp. Timestamps within a single trajectory are

8

non-decreasing and are drawn from a timestamp universe, whereas a location may appear
multiple times and/or consecutively. Formally speaking,

Definition 3.3 (Trajectory). A trajectory

tr = L1.T1 → L2.T2 → . . . Li.Tj (3)

is a finite sequence of pairs consisting of a location Li ∈ L and a monotonically-increasing
timestamp Tj ∈ T , where 1 ≤ i ≤ |L|, 1 ≤ j ≤ |T |, and Tj ≤ Tj+1.

Definition 3.3 describes timestamps in a trajectory as monotonically increasing. That
is, given a passenger’s trajectory, two consecutive location-timestamp pairs may have the
same timestamp, i.e., Tj = Tj+1. We define a trajectory in such a way because of two
reasons. First, the sequentiality of timestamps depends on the granularity at which data
were collected. For example, a transportation agency may choose to collect passengers
data every hour, whereas another agency may choose to collect such data every 10 minutes.
Second, a sequence of monotonically-increasing timestamps (Tj = Tj+1) is a general case
of strictly-increasing (Tj < Tj+1) timestamps. Our proposed method can be applied to
both types of increasing timestamps. Without loss of generality, we present the examples
throughout the paper following the strictly-increasing assumption purely to deliver a clear
understanding to the reader.

We use |tr| to denote the trajectory length, which is the number of location and
timestamp pairs in tr. For example, the first trajectory tr1 in Table 1 is of length |tr1| = 2.

As opposed to sequential data [9], trajectory data contain a time dimension that ren-
ders the data high-dimensional and, in most cases, extremely sparse. Handling sparse data
is a challenging problem because processing time is an important aspect of sanitization
and should be performed in a timely manner. For this reason, we structure a set of tra-
jectories D as a prefix tree, which provides the desired compactness for achieving efficient
processing. A prefix tree creates a node for every unique pair of location and timestamp,
such that the node is a prefix to all its descendants. Moreover, a root− to− leaf path in a
prefix tree represents one unique trajectory trn ∈ D. Every node along a root− to− leaf
path contains all the trajectories in D to which the root − to − node path is considered
a prefix. A trajectory trm = Lm

1 .T
m
1 → Lm

2 .T
m
2 → . . . Lm

i .T
m
j is a prefix to another tra-

jectory trn = Ln
1 .T

n
1 → Ln

2 .T
n
2 → . . . Ln

i .T
n
j , denoted by trm ≼ trn, if and only if: (1)

|trm| ≤ |trn|, and (2) ∀Lm
i .T

m
j ∈ trm, L

m
i = Ln

i and Tm
j = T n

j , where 1 ≤ i, j ≤ |trm|. For
instance, let tr1 = L1.T1 → L2.T2 → L3.T3, tr2 = L1.T1 → L2.T2, tr3 = L1.T1 → L3.T3,
and tr4 = L1.T1 → L1.T2. tr2 ≼ tr1, but tr3, tr4 � tr1.

Definition 3.4 (Prefix Tree). A prefix tree R = (Nodes, Edges,Root) of a trajectory
dataset D is a collection of Nodes connected by Edges and rooted at the Root node.
∀v ∈ Nodes, v(L.T) = ⟨tr(v), c(v)⟩, where L.T ∈ tr ∈ D is a pair of location and
timestamp representing v, tr(v) = {tr ∈ D | prefix(v) ≼ tr} where prefix(v) is a unique
prefix preresenting the Root − to − v path, and c(v) = |tr(v)| + Lap(λ) is a noisy count.
The Root node is represented by the pair 0.0 and tr(Root) = D.

9

From Definition 3.4, given a node v in a prefix tree R, tr(v) ⊆ D is the set of trajec-
tories containing the prefix defined by the Root − to − v path, symbolized as prefix(v).
Going from a parent node vp(Li.Tj) at level ℓ in R to a child node vc(Li+1.Tj+1) at level
ℓ+ 1 implies the transition Li.Tj → Li+1.Tj+1. We refer to the set of nodes at level ℓ by
level(ℓ). The Root node belongs to level(0), and the set of Root’s child nodes belongs to
level(1), etc.

3.3. Problem Statement

A trajectory dataset D = {tr1, tr2, . . . , tr|D|} is a multiset of trajectories where every
record in D is a trajectory that belongs to a single and unique record owner. |D| denotes
the size of the dataset, i.e., the number of individuals in D. A data holder has access to
D and wishes to publish a differentially-private version of D, denoted by D̂, that can be
used for various data analysis tasks.

Moreover, we assume the existence of two taxonomy trees, one for locations and one for
timestamps. A taxonomy tree defines a generalization hierarchy across the entire domain
values. For example, given the set of all metro stations L in a trajectory dataset provided
by a transportation agency, a location taxonomy tree Aloc defines non-overlapping subsets
of metro stations as the child nodes of their respective metro lines. The same general-
ization concept extends to timestamp domain values T . We note that such taxonomy
trees are either publicly available (e.g., a map of metro stations and bus routes) or are
practically straightforward to create.

In Section 4 we propose a differentially-private algorithm under the objective of main-
taining count queries over the sanitized trajectories D̂ with respect to the raw trajectories
D. Many data mining techniques rely on count queries to accomplish data analysis. Stem-
ming from the goal of providing data recipients with the freedom to perform a wide variety
of data analysis tasks on the sanitized trajectories, and given that the target data analysis
task is unknown at the sanitization stage, we aim at sanitizing a set of raw trajectories
without compromising its utility in terms of count queries.

A count query over a trajectory dataset returns the number of trajectories of which
the issued query is a subtrajectory. Query q is a subtrajectory of trajectory tr, denoted
by q ⊆ tr, if and only if: (1) |q| ≤ |tr|, and (2) ∀Li.Tj ∈ q, Li.Tj is also ∈ tr, where |q|
denotes the length of the query, i.e., the number of location and timestamp pairs in q.
A count query q ⊆ tr contains a subset of pairs from tr while maintaining sequentiality.
For example, suppose query q = L1.T1 → L5.T10 is issued over the dataset D = {L1.T1 →
L5.T10, L1.T1 → L2.T5 → L5.T10}. Then, the returned answer q(D) = 2.

Definition 3.5 (Count Query). Let q be a count query that contains a sequence of location
and timestamp pairs in accordance with Definition 3.3. A count query q issued over a
trajectory dataset D is defined as q(D) = |{tr ∈ D | q ⊆ tr}|.

The utility of a count query q over a sanitized data D̂ is computed by its relative
error [48][49][9], which measures how far the noisy answer q(D̂) is from the true answer

q(D). That is, relative error(q(D̂)) = |q(D̂)−q(D)|
q(D)

. However, when q(D) returns a very
small value, the computed error becomes very large. In order to limit the impact of

10

{1, 2} {3, 4}

TimestampLocation

{1, 2, 3, 4}{a, b, c}

a b c

1 2 3 4

Figure 1: Taxonomy trees

extremely small count queries, it is common to use a sanity bound [48][49]. This prevents
the relative error from being excessively dominated by extremely small fractions of the
data [24]. Therefore, the relative error is computed as follows:

relative error(q(D̂)) =
|q(D̂)− q(D)|
max{q(D), s}

,

where s is a sanity bound. In Section 5, we choose s = 0.1% of the raw dataset as in [9]
and [49].

The following is a definition of the problem that we tackle in this work:

Definition 3.6 (Privacy-Aware Trajectory Publishing). Given a raw trajectory dataset
D, a privacy budget ϵ, and a set of taxonomy trees, we wish to publicly publish D̂, a
differentially-private version of D, such that: (1) D̂ minimizes the distortion inflicted on
count queries due to sanitization, and (2) the sanitization process is efficient and scalable
to handle extremely sparse trajectories.

4. Proposed Algorithm

In this section we present SafePath, our proposed algorithm for publishing differentially-
private trajectories. Section 4.1 gives an overview of the entire algorithm. Sections 4.2 and
4.3 describe the algorithm in detail. We end with a theoretical analysis of the proposed
solution in Section 4.4.

4.1. Overview

Summary. We propose a sanitization algorithm primarily comprised of two phases:
(1) building the noisy prefix tree, and (2) constructing the sanitized dataset. Given a
raw trajectory dataset D, a privacy budget ϵ, location and timestamp taxonomy trees
Aloc and Atime, respectively, and the height, h, of the noisy prefix tree, our proposed
sanitization algorithm (presented in Algorithm 1) returns a differentially-private trajec-
tory dataset D̂. Algorithm 1 first builds the noisy prefix tree R, and then feeds R to
EnhanceConsistency that constructs D̂ by systematically traversing R to ensure data
consistency along trajectory paths. Lastly, Algorithm 1 releases the sanitized trajectory
dataset D̂.

Taxonomy Trees. A taxonomy tree consists of a generalization hierarchy in which
every node contains a unique range interval that is a subset of the domain values. The

11

range intervals of all the nodes that belong to the same generalization level collectively
constitute the entire domain. Given a taxonomy tree, we call a leaf node a non-general
node and any other node a general node. A taxonomy tree is defined by two parameters
on which we assume no restrictions: the taxonomy tree height and the number of children.
The former parameter defines the height of the generalization hierarchy, i.e., the number
of levels containing the general nodes. The latter taxonomy tree parameter, number of
children, defines the maximum number of child nodes that belong to the same parent node
in the taxonomy tree. An example of user-defined taxonomy trees is given in Figure 1.
The height of the timestamp taxonomy tree is 1 because there exists only one level that
contains general nodes, and the number of children is 2; similarly, the height of the location
taxonomy tree is 0 because the tree contains no levels with general nodes. In Section 5,
we experimentally evaluate the impact of different taxonomy trees on the performance of
our method by varying the taxonomy tree height and the number of children.

Privacy Budget Allocation. In order to satisfy ϵ-differential privacy, Algorithm 1
effectively distributes the input parameter ϵ among its differentially-private operations.
ϵ is uniformly distributed among each level in the noisy prefix tree, i.e., every level ℓ is
allocated ϵℓ =

ϵ
h
. Upon construction, a level consists of two sublevels: location and times-

tamp. Each sublevel is assigned an equal portion of the level’s privacy budget, i.e., ϵs =
ϵℓ
2
.

Furthermore, each sublevel consists of a hierarchy that generalizes location/timestamp
domain values to multiple generalization levels. Here, we employ non-uniform budget
distribution, as follows. A general node receives a portion of ϵs proportional to the gen-
eralization hierarchy level to which the general node belongs, and a non-general node re-
ceives the remaining portion of ϵs. More specifically, a general node (i.e., a non-leaf node)
at generalization level d in taxonomy tree A is allocated a privacy budget ϵg = d × ϵu,
where ϵu = 2ϵs

|U| is a unit budget defined as a function of the underlying universe size |U|,
where U = the location universe L for a location subselvel and U = the timestamp uni-
verse T for a timestamp sublevel. A non-general node (i.e., a leaf node) receives a privacy

budget ϵng =
(|U|−2

∑d
x=1 x)ϵs

|U| . We choose such an allocation scheme because less general

nodes (at the lower levels of a given hierarchy) contain smaller trajectory counts, thus it
is fair to increase the allocated budget portion as the nodes go deeper in the hierarchy.
In Section 5, we examine the effect of ϵ on data utility.

Budget distribution among tree levels does not follow a scientific procedure. We justify
our uniform distribution strategy as per the following two reasons. First, we follow the
tradition in the literature, such as the work in [9], by equally distributing the budget
among tree levels. More importantly, the second reason for choosing a uniform budget
distribution strategy is as follows. A noisy prefix tree level i represents a location and
timestamp pair Li.Ti along trajectory tr. Level i + 1 represents pair Li+1.Ti+1 in the
same tr. Following a uniform allocation strategy, both pairs Li.Ti and Li+1.Ti+1 in tr
have an equal chance of receiving the same noise. Whereas, if level i has, for example, a
higher budget than level i+1, then Li.Ti has a higher chance of receiving less noise, thus
being more accurate, than Li+1.Ti+1. Assuming that all trajectory pairs are of the same
significance, we consider uniform distribution to be a “fair” allocation strategy.

We note that only non-general nodes will be added to the prefix tree. The sublevels

12

L
ev

el
 1

L
ev

el
 2

{c}.{1,2,3,4} tr2, tr4 4{b}.{1, 2, 3, 4} Ø 2{a}.{1, 2, 3, 4} tr1, tr3, tr5, tr6, tr7 6

{a}.{1, 2} tr1, tr3, tr5 8 {a}.{3, 4} tr6, tr7 7

a.3 tr6, tr7 5a.2 tr3 3a.1 tr1, tr5 6

a4 Ø 3 b4 T7 2 c.4 tr6 8

{c}.{2, 3, 4} tr1 3{b}.{2, 3, 4} tr5 5{a}.{2, 3, 4} Ø 0

b.2 tr5 8 {b}.{3, 4} Ø 7

b.3 Ø 5 b.4 Ø 10

L
o
c

T
im

es
ta

m
p

Count

8

Table Records

tr1, tr2, tr3, tr4, tr5, tr6, tr7

Pairs

L{a, b, c}.T{1, 2, 3, 4}

a.4 Ø 4

Figure 2: Noisy prefix tree of the trajectories in Table 1

in the noisy prefix tree, including general nodes, are only part of the building process.

4.2. Building the Noisy Prefix Tree

Our proposed algorithm builds a noisy prefix tree whereby trajectories are distributed
among tree nodes based on noisy counts and prefixes. The idea is to construct tree
level i by extending every node at level i − 1. In order to satisfy differential privacy, a
differentially-private operation should not depend on the underlying dataset. Recall a
node is represented by a unique pair of location and timestamp; we extend every node
by considering all possible combinations of location and timestamp given their respective
universes. In other words, any location and timestamp pair that does not appear in the
raw trajectories has a non-zero probability of appearing in the sanitized trajectories.

Example 4.1. Figure 2 presents a running example of a noisy prefix tree R, where the
input dataset is the raw trajectories in Table 1. The Root of R is the first node at the top
of the tree. Any node in R consists of three pieces of information: location and timestamp
pair(s), a portion of the dataset trajectories, and a noisy count (except the Root). The
height of the tree is 2, and each level consists of two sublevels separated by a dashed
line.

A node is added to the noisy prefix tree, and thus qualifies for extension, if it is
considered to be non-general and non-empty. A non-general node is represented by a
specific location and a specific timestamp (as opposed to a general node as described in
Section 4.1). A decision whether a node is non-empty is rendered based on the node’s
noisy count. Recall a node v’s noisy count is stored in its own c(v), a non-empty node
is a node with c(v) ≥ θ, where θ is a pre-defined threshold computed as follows. Let
node v ∈ level(i), we define the noisy count threshold θ as a function of level i’s allocated
budget portion, ϵℓ. More specifically, we define θ to be two times the standard deviation
of the level’s noise. Recall from Section 3.1 that the Laplace mechanism has variance
2λ2, where λ = 1

ϵ
for count queries as a utility function. Therefore, θng = 2

√
2

ϵℓ
, where

θng is defined for non-general nodes. The same concept is applied to general nodes when

13

Algorithm 1 SafePath

Input: Raw trajectory dataset D, privacy budget ϵ
Input: Taxonomy trees: Aloc and Atime

Input: Height of the noisy prefix tree h
Output: Differentially-private trajectory dataset D̂

1: Create a prefix tree R with node Root;
2: tr(Root)← all trajectories in D;
3: ϵℓ =

ϵ
h
;

4: Compute ϵg and ϵng for loc. and timestamp sublevels;
5: Compute θg and θng;
6: i = 1;
7: while i ≤ h do
8: for each non-general node in level(i− 1) do
9: W ← BuildSubLevel(Aloc, ϵg, ϵng, θg, θng);
10: for each non-general location node in W do
11: level(i)← BuildSubLevel(Atime, ϵg, ϵng, θg, θng);

12: i++;

13: D̂ ← EnhanceConsistency(R);
14: return D̂;

building taxonomy trees. That is, a general node is deemed non-empty, and thus can be
extended within its taxonomy tree, if its noisy count is not less than θg, where θg = 4

√
2

ϵℓ
.

Example 4.2. For the sake of simplicity, let θng = θg = 5 for the example in Figure 2.
Any node with noisy count < 5 (barred) is considered empty and is not going to be
extended. Grey nodes indicate the nodes that are added to the noisy prefix tree.

The above filtering technique prunes the nodes with small true counts, albeit with
reasonable impact on data utility as suggested by the experiments performed on real-
life datasets in Section 5. On the other hand, nodes that contain no trajectories (i.e.,
tr(v) = 0) get filtered out in the early stages of building the noisy prefix tree. This
significantly improves utility and efficiency by preventing building and processing false
trajectories. We next describe our entire approach, as summarized in Algorithm 1.

Algorithm 1 starts at Line 1 by creating a Root node under which the noisy prefix tree
R will be built. Line 2 assigns all the trajectories of the input dataset D to tr(Root), and
Line 3 computes the privacy budget portion dedicated for each level. Lines 4 computes
the privacy budget portions ϵg and ϵng for the general and non-general nodes in both the
location and timestamp sublevels. We note that the location and timestamp sublevels
have the same pair of budget portions ϵg and ϵng if taxonomy trees Aloc and Atime are
identical (see Section 4.1). Line 5 computes the noisy count thresholds θg and θng. Lines
7-12 build the noisy prefix tree by iteratively constructing every level i ≤ h in a breadth-
first manner. Under every non-general node v ∈ level(i − 1), the algorithm attempts
to extend v by first building the location sublevel (Line 9), and then under every non-
empty non-general location node, the algorithm builds the timestamp sublevel (Line 10).

14

Procedure 1 BuildSubLevel
Input: Taxonomy tree A
Input: Privacy budgets ϵg and ϵng
Input: Thresholds θg, and θng
Output: Set of non-general loc. or time. nodes W
1: W = ∅;
2: C ← BuildTaxonomy(A, ϵg, θg);
3: for each general node C ∈ C do
4: for each non-general node n in C’s children do
5: tr(n) = {tr ∈ C | prefix(n) ≼ tr};
6: c(n) = |tr(n)|+ Lap(1/ϵng);
7: if c(n) ≥ θng then
8: W ← n;

9: return W ;

A non-general location node is a node that contains a specific location value but a general
timestamp value (range interval). In Line 9, BuildSubLevel builds the location sublevel
and returns the set of all the non-empty, non-general location nodes, W . In Line 10,
BuildSubLevel builds the timestamp sublevel and returns the set of all the non-empty,
non-general nodes. Note that only the nodes returned by BuildSubLevel in Line 10 are
added to the noisy prefix tree R.

Procedure 1 describes BuildSubLevel. Line 2 calls BuildTaxonomy that builds a gen-
eralization hierarchy according to a user-input taxonomy tree A, where A is rooted at a
non-general node from the previous prefix tree level. BuildTaxonomy (presented in Pro-
cedure 2) returns the set of non-empty leaf general nodes, C. Lines 3-8 of BuildSubLevel
iterate through all the non-general nodes in C to determine if they are non-empty. We
note that if BuildSubLevel is building a location sublevel, then prefix(n) ≼ tr in Line
5 ignores the general timestamp information in the non-general location node n because
the timestamp at this point is a range interval that is by default a prefix to any specific
timestamp value that exists within the range.

4.3. Constructing the Sanitized Trajectories

In Section 4.2 we detailed the steps for building a noisy prefix tree R that contains
the differentially-private trajectories, as summarized in Lines 7-12 of Algorithm 1. At
this point, trajectories are sanitized and ready for release. Constructing the sanitized
trajectories from R is performed as follows. Starting from the Root node, we traverse
R such that each and every node v is visited exactly once. Upon visiting node v, where
v ̸= Root, we construct c(v) copies of prefix(v) (see Definition 3.4) and append them to
the output dataset D̂.

Since it is likely for a set of trajectories to terminate at a parent node, a parent node’s
true trajectory count is never less than the sum of its children’s true counts. Considering
that noise is added to true trajectory counts, the above rule may not hold for noisy

15

Procedure 2 BuildTaxonomy
Input: Taxonomy tree A
Input: Privacy budget ϵg
Input: Threshold θg
Output: Set of general loc. or time. nodes C
1: j = 1;
2: G = ∅;
3: while j ≤ height of A do
4: G ← set of general nodes in A at level j;
5: for each general node G ∈ G do
6: tr(G) = {tr ∈ parent | prefix(G) ≼ tr};
7: c(G) = |tr(G)|+ Lap(1/ϵg);
8: if c(G) < θg then
9: Remove G and its descendants from A;

10: j ++;

11: C = G; // Non-empty leaf general nodes
12: return C;

counts. Hence, we need to make sure that c(v) is no less than the sum of its children’s
noisy counts. We define a consistent noisy prefix tree as follows:

Definition 4.1 (Consistent Noisy Prefix Tree). Given a noisy prefix tree R, ∀v in R,
where v ̸= Root, it holds that c(v) ≥

∑
u∈children(v) c(u).

The objective of EnhanceConsistency in Line 13 of Algorithm 1 is to enforce the
above condition on the noisy prefix tree R before releasing the sanitized trajectories.
We note that the Root node is excluded from the rule in Definition 4.1 because the first
location-timestamp pair in any trajectory in the sanitized (output) dataset of Algorithm 1
belongs to the first level in R, and not the root level.

We introduce a post-processing step that modifies the noisy counts of the nodes in
R such that Definition 4.1 is satisfied. Post-processing noisy counts has been applied
in similar privacy problems whereby consistent estimates are computed to achieve more
accurate results [25][9]. Consequently, the objective of EnhanceConsistency is to find
the consistent estimate for each node in the noisy prefix tree R, except the Root node.

The consistent estimate, denoted by c̄(v), is described in terms of the noisy count c(v)
for each v in R. The consistent estimate is computed by traversing R starting from the
first level and going towards the leaves. Let w be the parent of v and u be a sibling of
v; the idea is to lower each noisy count c(u) ∈ children(w) with respect to c̄(w) such
that the sum of all the children’s noisy counts does not exceed the parent’s noisy count.
The rationale behind decreasing the children’s noisy counts (as opposed to increasing the
parent’s noisy count) stems from the fact that the sum of the children’s noisy counts
results in a numeric value that has |children(w)| times the Laplacian noise of the parent’s
count. Intuitively, suppressing the extra noise helps in achieving a more accurate noisy

16

version of the raw trajectories. The consistent estimate c̄(v) of node v is computed as
follows:

c̄(v) =

c(v), v ∈ level(1)

c(v) +min(0,
c̄(w)−

∑
u∈children(w)c̃(u)

|children(w)|), o.w.

Lastly, the differentially-private trajectories are ready to be released. Line 14 of Al-
gorithm 1 traverses the consistent noisy prefix tree in a top-down fashion. Each node v is
visited exactly once, and c̄(v) copies of prefix(v) are appended to the output dataset D̂.

4.4. Theoretical Analysis

Performance Improvement. Employing a simple prefix tree structure does achieve
a differentially-private trajectory dataset. Chen et al. [9] have suggested a similar ap-
proach towards publishing sanitized trajectories; we call it SeqPT. In this approach, no
hierarchies are imposed; rather, each node is extended by considering every possible com-
bination of location and timestamp. In other words, if an empty node passes threshold
θ, then the subtree rooted at that node will consist solely of empty nodes. On the other
hand, our proposed solution (as described in Algorithm 1) filters out empty nodes as early
as possible, preventing false trajectories from being constructed. Subsequently, runtime
is significantly reduced while data utility is greatly boosted. We present herein a formal
analysis that estimates the factor by which the number of empty nodes of a simple prefix
tree solution is reduced when applying our proposed method.

Lemma 4.1. Let p(x) = 1
2λ
exp(−x

λ
) be probability density function of the Laplace dis-

tribution. Given sensitivity ∆f = 1 for a count queries-based function f , and privacy
budget portion ϵℓ, then λ = ∆f

ϵℓ
= 1

ϵℓ
. Hence, p(x) = ϵℓ

2
exp(−xϵℓ). Given threshold θ, the

probability of an empty node having noisy count x ≥ θ is

Prθ = Pr[x ≥ θ] =

∫ ∞

θ

ϵℓ
2
exp(−xϵℓ)dx =

1

2
exp(−ϵℓθ). (4)

Recall from Section 4.2 that θng = 2
√
2

ϵℓ
and θg = 4

√
2

ϵℓ
. From Equation 4, the proba-

bilities of an empty general node and an empty non-general node passing their respective

thresholds are Prθg =
exp(−4

√
2)

2
and Prθng =

exp(−2
√
2)

2
.

Theorem 4.1. Given location and timestamp taxonomy trees with heights ht1 and ht2,
respectively, and fan-out F , a noisy prefix tree (as described by Algorithm 1) reduces the
number of empty nodes generated under empty node v ∈ level(i) due to v having adequately

large noisy count by a factor of (2
(ht1

+ht2
)+1

F
(ht1

+ht2
))

h−iexp(2
√
2(2(ht1 + ht2) + 1)(h− i)), where h

is the prefix tree height.

Proof. Let empty node v be at level i in a given prefix tree. In a simple prefix tree, the
estimated number of empty nodes descending from v is E1 = (|L||T |Prθng)

h−i, where L
is the location universe, T is the timestamp universe, and h is the height of the pre-
fix tree. In a noisy prefix tree, the estimated number of empty nodes descending from

17

v, E2, is evaluated as follows. Let the heights of the location and timestamp taxon-
omy trees be ht1 and ht2 , respectively. Further, let F denote the maximum number of
general child nodes given any taxonomy tree; thus, F ht is the number of leaf general
nodes in a taxonomy tree with height ht. This estimates the number of empty loca-

tion nodes in one location sublevel to F ht1 (Pr
ht1
θg
· |L|

F
ht1

Prθng) = F ht1Pr
ht1
θg
· |L|Prθng

and the number of empty timestamp nodes in one timestamp sublevel under one empty

location node to F ht2 (Pr
ht2
θg
· |T |
F

ht2
Prθng) = F ht2Pr

ht2
θg
· |T |Prθng . Consequently, the es-

timated number of empty non-general nodes in one level in the noisy prefix tree is

(F ht1Pr
ht1
θg
· |L|Prθng) · (F ht2Pr

ht2
θg
· |T |Prθng) = F (ht1+ht2)|L||T |Pr

(ht1+ht2)

θg
Pr2θng

. Hence,

E2 = (F (ht1+ht2)|L||T |Pr
(ht1+ht2)

θg
Pr2θng

)h−i. Given E1 and E2, the reduction factor is esti-
mated by the following equation:

E1

E2

=
(|L||T |Prθng)

h−i

((F (ht1+ht2)|L||T |Pr
(ht1+ht2)

θg
Pr2θng

)h−i)h−i

=
1

(F (ht1+ht2)Pr
(ht1+ht2)

θg
Prθng)

h−i

=
1

(F (ht1+ht2) · 1

2
(ht1

+ht2
) exp(−4(ht1 + ht2)

√
2) · 1

2
exp(−2

√
2))h−i

=
1

(F
(ht1

+ht2
)

2
(ht1

+ht2
)+1)h−i(exp(−2

√
2(2(ht1 + ht2) + 1)))h−i

= (
2(ht1+ht2)+1

F (ht1+ht2)
)h−iexp(2

√
2(2(ht1 + ht2) + 1)(h− i)).

(5)

Privacy Analysis. Algorithm 1 first builds a noisy prefix tree by accessing the raw
trajectories, and then invokes EnhanceConsistency to achieve a consistent noisy prefix
tree. Building a noisy prefix tree is performed by iteratively constructing one level at a
time. Each level is dedicated privacy budget portion ϵℓ =

ϵ
h
, where h is the noisy prefix

tree height. One prefix tree level consists of two sublevels: location and timestamp, each
is dedicated ϵs =

ϵℓ
2
. Within a sublevel, the collective budget portions ϵng+

∑
ϵg dedicated

for non-general and general nodes add to ϵs; i.e.,
(|U|−2

∑d
x=1 x)ϵs

|U| +
2ϵs

∑d
x=1 x

|U| = ϵs, where d

is a taxonomy tree level. We note that sequential composition (Lemma 3.1) is used for
designing ϵg and ϵng because of the following reason. Given a taxonomy tree in a sublevel
of the noisy prefix tree, a path that starts from the root node to the leaf general node
consumes a budget equal to the summation of all the budgets computed at every general
level of the taxonomy tree.

The algorithm consumes a privacy budget that amounts to (2 × ϵs) × h = ϵ. Such
a budget allocation scheme leverages sequential and parallel compositions (Lemmas 3.1
and 3.2). That is, the total budget consumed along a Root− to− leaf path amounts to
ϵ, whereas the total budget needed for any group of sibling nodes is equal to the same
budget portion dedicated for a single node within the group.

18

EnhanceConsistency post-processes the differentially-private data (the noisy counts
in the noisy prefix tree) without accessing the underlying raw trajectories. Consequently,
EnhanceConsistency maintains the same differential privacy guarantees because post-
processing differentially-private data has no impact on the privacy guarantees. We refer
the reader to [25] for a proof.

Theorem 4.2. Given ϵ as a user-input privacy budget, Algorithm 1 is ϵ-differentially
private.

Complexity Analysis. We analyze the runtime of Algorithm 1 with respect to its
input parameters by first examining Lines 7-12, which build the noisy prefix tree, followed
by EnhanceConsistency. Building the noisy prefix tree starts by building a taxonomy
tree, requiring distributing trajectories from the parent node to its children. At any level
in the taxonomy tree1 there exists exactly |D| trajectories in total. Therefore, a single level
in the noisy prefix tree requires scanning the input dataset O((ht1 + ht2)|D|) = O(ht|D|)
times, where ht1 and ht2 are the heights of the location and timestamp taxonomies, re-
spectively, and ht = max{ht1 , ht2}.

Generating nodes is a costly operation. Generating general nodes does not depend on
the underlying data and is done in linear time with respect to the user-defined taxonomy.
We now estimate the number of non-general nodes in the noisy prefix tree as follows. At
worst, Algorithm 1 fails to filter out empty nodes through general nodes; i.e., all general
nodes are constructed according to their taxonomies. Recall the timestamp sublevel
extends the non-general location nodes in the location sublevel. Intuitively, the number
of non-general nodes in the timestamp sublevel is much greater (no less at best) than that
at the location sublevel. Therefore, we estimate the number of generated nodes at the
timestamp sublevel to be |D|+ k, where k represents the number of empty nodes from T
that pass the noisy count threshold θng. k is a random variable that follows a binomial
distribution and can be estimated according to Theorem 4.3 [13].

Theorem 4.3. Let n denote the total number of empty nodes, each having a success prob-
ability Prθ. The number of successes, k, in a series of independent pass/fail experiments
on each node follows a binomial distribution Bin(n, Prθ), denoted by k ∼ Bin(n, Prθ).

Let k′
l ∼ Bin(|L| − |D|, P rθ), k

′′
l ∼ Bin(|L|, P rθ), k′

t ∼ Bin(|T | − |D|, P rθ), and
k′′
t ∼ Bin(|T |, P rθ). The number of generated nodes at the timestamp sublevel at level

i ≤ h is estimated to be |D|(1 + k′
t + Z) + (k′

lk
′′
t · (k′′

l k
′′
t)

i−1), where

Z =


0, i = 1
i−2∑
j=0

((k′′
l k

′′
t)

j[k′
lk

′′
t + k′

tk
′′
l k

′′
t]), i > 1.

Therefore, generating non-general nodes in a prefix tree of height h runs in O(|D|(k′′
l k

′′
t)

h),
where k′′

l ≪ L and k′′
t ≪ T . Subsequently, building the noisy prefix tree runs in

O(hht|D|+ |D|(k′′
l k

′′
t)

h) = O(|D|(hht + (k′′
l k

′′
t)

h)), where k′′
l ≪ L and k′′

t ≪ T .

1Assuming the taxonomy tree is a perfect F-ary tree.

19

Table 2: Summary statistics of the transit datasets

Dataset |D| |L| |T | max|tr| avg|tr|
Bus 773,296 893 168 121 4.69
Metro 847,668 68 168 90 3.22

EnhanceConsistency does not require scanning the input dataset; rather, this proce-
dure performs one operation, which is computing the consistent estimate for each node.
This is achieved by scanning the noisy prefix tree once in a top-down fashion whereby
each node is visited twice. Therefore, EnhanceConsistency is performed in linear time.
Lastly, Algorithm 1 scans the consistent noisy prefix tree once starting from Root to
release the sanitized trajectories.

In closing, Algorithm 1 runs in O(|D|(hht + (k′′
l k

′′
t)

h)) at worst. However, this is
a theoretical conclusion of the worst-case scenario. In real-life situations, h is a fairly
small integer and the number of generated empty nodes at level i is much smaller than
O(|D|(k′′

l k
′′
t)

i) because general nodes attempt to filter out as many empty nodes as possi-
ble. In the next section, experiments on real-life datasets successfully sanitize extremely
sparse trajectories within seconds.

5. Experimental Evaluation

In this section, we thoroughly evaluate our proposed differentially-private trajectory
sanitization method, SafePath, using real-life trajectories. Evaluation encompasses three
criteria: utility of the sanitized data, efficiency of SafePath in terms of runtime, and
scalability for handling large datasets. Two real-life trajectory datasets are used for
conducting experiments: Bus andMetro, each containing the paths of passengers traveling
through the Montreal bus and metro transit networks, respectively. Table 2 contains
summary statistics of each dataset, where |D| is the number of records in D where each
record represents a trajectory of a unique passenger, |L| is the size of the location universe,
|T | is the size of the time universe, max|tr| is the maximum trajectory length, and avg|tr|
is the average trajectory length. Throughout the experiments conducted in this section,
we note the following about the choice of the value of the noisy prefix tree height h.
In order to capture enough information from the underlying dataset, h should be large
enough. While this is true, our Metro and Bus datasets have average trajectory lengths of
4.69 and 3.22, respectively, as described in Table 2. Therefore, we choose h to be around
the average in order to avoid outliers.

SafePath is implemented in C++, and all the experiments in this section are performed
on a 64-bit Windows 7 running on an Intel Core 2 Due 2.13GHz PC with 8GB RAM.

5.1. Utility and Efficiency

We examine the impact of the different parameters of SafePath on utility and runtime.
Similar to the evaluation methodology of [9] and [49], we measure the utility of a sanitized
dataset by issuing a set of randomly generated count queries. Specifically, we issue 40,000
count queries that randomly draw values from the location and timestamp universes

20

0

0.05

0.1

4 5 6 7 8 9

A
v

er
a

g
e

R
el

a
ti

v
e

E
rr

o
r

Taxonomy Tree Height

Bus-2 Bus-6

0

0.05

0.1

0.15

0.2

0.25

4 5 6 7 8 9

A
v

er
a

g
e

R
el

a
ti

v
e

E
rr

o
r

Taxonomy Tree Height

Metro-2 Metro-6

(a) Bus (b) Metro

Figure 3: Average relative error vs. taxonomy tree height

following an even distribution. For every query issued over the sanitized dataset, we
compute its relative error, then we average all the errors and report the latter value in
the graphs herein. The length of a count query, denoted by |q|, refers to the number of
location and timestamp pairs in the query. For example, q = L1.T1 → L2.T2 has length
= 2. Finally, we set the sanity bound to 0.1% of the underlying dataset.

Taxonomy Trees. Filtering out empty nodes in the early stages of building the
prefix tree is especially important for high-dimensional and sparse data, such as trajectory
data. Therefore, in the next set of experiments we examine the impact of location and
timestamp taxonomy trees on utility and runtime. A taxonomy tree is defined by two
parameters: taxonomy tree height, and number of child nodes (or simply children). The
former parameter defines the number of levels in the tree, whereas the latter parameter
refers to the maximum number of child nodes that belong to the same parent node.
Both parameters can either be public knowledge (e.g., a metro map) or user-defined.
Without loss of generality, one taxonomy tree setting will be applied to both location and
timestamp hierarchies.

To demonstrate the impact of taxonomy trees on relative error, Figure 3 reports the
average relative errors on Bus and Metro with respect to the two taxonomy tree param-
eters: height and number of child nodes. Let the location and timestamp taxonomy trees
have the same values on the same parameter. We vary the taxonomy tree height (the
x-axis in Figure 3). We set the number of child nodes to be 2 and 6, denoted in the
graphs by Bus-2/Metro-2 and Bus-6/Metro-6, respectively. Finally, We set the query
length |q| = h = 2. Figure 3 suggests that the relative error decreases as taxonomy tree
height increases and the number of child nodes decreases. This is because fewer empty
non-general nodes are generated throughout the process of building the prefix tree, where
empty nodes get filtered out by the taxonomy trees. For taxonomy tree height ≥ 6 the
relative error does not exhibit significant change. Moreover, we observe that on both
datasets no significant drop in error results from decreasing the number of child nodes.

Figure 4 shows how runtime varies under different values of taxonomy tree height and

21

(a) Bus (b) Metro

Figure 4: Runtime vs. taxonomy tree

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

6 10 14 18 22 26

A
v

er
a

g
e

R
el

a
ti

v
e

E
rr

o
r

Noisy Prefix Tree Height (h)

Bus-0.5 Bus-1.25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

6 10 14 18 22 26

A
v

er
a

g
e

R
el

a
ti

v
e

E
rr

o
r

Noisy Prefix Tree Height (h)

Metro-0.5 Metro-1.25

(a) Bus (b) Metro

Figure 5: Average relative error vs. noisy prefix tree height

the number of child nodes. Figure 4(a) and Figure 4(b) study Bus andMetro, respectively,
where the noisy prefix tree height h = 2, the privacy budget ϵ = 1, and the runtime axis
is set on a logarithmic scale. Figure 4 suggests that runtime increases as the number of
children increases for all values of taxonomy tree height. This is because larger values of
children allow for more empty general nodes to be mistakenly considered non-empty due
to the added noise, resulting in a much larger number of empty non-general nodes that
require extra processing. Moreover, we observe that runtime decreases non-monotonically
as the taxonomy tree height increases. More specifically, runtime decreases for a smaller
number of children, less than 4, after which it starts increasing up to a significant value
at taxonomy tree height = 9 and number of children = 6. The increase in runtime for a
larger number of children can be noticed at taxonomy tree height ≥ 6. These observations
are shared by both Bus and Metro.

Figures 3 and 4 suggest that a certain range of taxonomy trees allows for a significant
improvement in terms of runtime without compromising utility. Unless otherwise men-
tioned, all our subsequent experiments will have taxonomy tree height = 6 and children
= 2.

22

Noisy Prefix Tree Height and Privacy Budget. Figure 5 examines the effect of
varying the noisy prefix tree height, h, and the privacy budget, ϵ, on the relative error
on both Bus and Metro. The parameters are set as follows: 6 ≤ h ≤ 26, |q| = h/3, and
ϵ = 0.5 and 1.25 denoted in the graph by Bus-0.5/Metro-0.5 and Bus-1.25/Metro-1.25,
respectively. Figure 5 reports a general decrease in the relative error when h increases.
Increasing h allows us to retrieve and sanitize more data from the raw trajectories, how-
ever, up until a certain threshold, after which the added noise at each level of the noisy
prefix tree becomes more dominant, causing the relative error to increase. This is more
evident in sparse datasets with low privacy budget (Bus-0.5 in Figure 5 (a)) because
more empty nodes are generated upon building the noisy prefix tree to satisfy differential
privacy. Lastly, increasing ϵ successfully manages to reduce the relative error for all values
of h. It is interesting to see that our proposed method is capable of reducing the relative
error below 1% on both datasets, suggesting that SafePath maintains high utility even
for extremely sparse data.

5.2. Comparisons

SeqPT. In [9], Chen et al. proposed a prefix tree-based method for sanitizing sequen-
tial locations under differential privacy. Further, they suggested that their method can be
extended to trajectories - series of locations coupled with timestamps. To do so, we imple-
mented their suggested extension that exhaustively considers every possible combination
of location and timestamp under every node throughout the process of building the prefix
tree. We call their extension SeqPT. Moreover, we implemented LK-anonymity [23], a
syntactic-based privacy approach that makes sure that every L-sized sequence of location
and timestamp pairs from the input dataset is shared by at least K trajectories via means
of suppression [45][11].

We carry out performance evaluation with respect to average relative error and run-
time. SeqPT takes nearly 11 minutes to sanitize Metro when setting the prefix tree height
h = 2, and fails to complete a single run on Metro when h ≥ 3 and on Bus when h ≥ 2.
This is because the number of generated nodes increases exponentially as h increases. For
this reason, we reduce the dimensionality of Bus to a maximum of 20 locations and 24
timestamps. A pair that does not fall within the shrunken universe will be excluded from
the dataset. This results in a dataset with 200,000 records and a maximum trajectory
length of 8. For this set of experiments we generate 10,000 non-empty random queries of
size 2, set the privacy budget ϵ = 1, and vary the prefix tree height 2 ≤ h ≤ 5. We note
that unlike the experiments in Figure 5, which allowed for the choice of larger values of h
due to our proposed method’s efficient design, the choice of the value range of h in this
particular set of experiments is limited due to the exhaustive nature of SeqPT. Lastly, for
LK-anonymity, we choose L = 2 (because the average trajectory length is 1.5 in the new
version of Bus) and K = 5.

Figure 6 studies the performance of SafePath, SeqPT, and LK-anonymity in terms of
utility in Figure 6 (a) and runtime in Figure 6 (b), where the runtime axis is set on a
logarithmic scale. We notice that the utility achieved by SafePath is comparable to that
achieved by SeqPT and LK-anonymity for all values of h. On the other hand, SafePath
substantially lowers runtime from 2400 seconds to 1 second at h = 5.

23

0

0.05

0.1

0.15

0.2

2 3 4 5

A
v

er
a

g
e

R
el

a
ti

v
e

E
rr

o
r

Noisy Prefix Tree Height (h)

SafePath SeqPT LK-anonymity

L=2, K=5

1

10

100

1000

10000

2 3 4 5

R
u

n
ti

m
e

(s
ec

)

Noisy Prefix Tree Height (h)

SafePath SeqPT LK-anonymity

L=2, K=5

(a) Average relative error vs. h (b) Runtime vs. h

Figure 6: SafePath vs. SeqPT vs. LK-anonymity

1

10

100

1000

3 4 5 6 7

R
u

n
ti

m
e
 (

se
c
)

h, n

SafePath N-gram

Figure 7: Comparing SafePath vs. N-gram

N-gram. The authors of [8] proposed N-gram: a sequential data sanitization method
that integrates the Markov assumption to synthesize differentially-private sequential data.
The n in N−gram defines the maximum length of a sanitized sequence (before publishing
the synthetic data).

In this set of experiments, we transform our metro dataset, which consists of trajecto-
ries containing a sequence of location and timestamp pairs, to another version that con-
tains unique “locations”. That is, every unique location and timestamp pair is mapped to
a unique “location”. The resulting dimensionality of the transformed dataset is |L|× |T |,
where L and T are the respective universes of locations and timestamps in the source
dataset. For example, trajectory L1.T1 → L1.T2 is transformed to sequence Loc1 → Loc2.
Both our noisy prefix tree height h and the maximum sequence length n of N − gram
describe the height of a prefix tree (Definition 3.4) in the underlying sanitization method.
Figure 7 compares SafePath with N-gram in terms of runtime (in seconds) by varying
3 ≤ h, n ≤ 7, where the x-axis is set on a logarithmic scale. We can see that our
method performs significantly faster than N-gram, which takes several minutes to pro-

24

Table 3: Summary statistics of sub-datasets
|T | |D| max|tr| avg|tr|

Dataset Bus Metro Bus Metro Bus Metro Bus Metro
1 35 35 304,238 263,303 21 16 1.96 1.58
2 70 70 508,283 485,049 44 35 3.12 2.28
3 105 105 618,238 606,917 70 51 3.98 2.81
4 140 140 722,786 766,419 106 73 4.46 3.11
5 168 168 773,296 847,668 121 90 4.69 3.22

0

5

10

15

20

25

30

1 2 3 4 5

R
u

n
ti

m
e

(s
ec

)

Dataset

Reading Sanitization

Writing Total

0

2

4

6

8

10

12

14

16

1 2 3 4 5

R
u

n
ti

m
e

(s
ec

)

Dataset

Reading Sanitization

Writing Total

(a) Bus (b) Metro

Figure 8: Runtime vs. |T | and |D|

duce a differentially-private synthetic dataset. At n = 3, N-gram failed to finish and
produced an out-of-memory error. We note that for all the values of n, N-gram produced
a dataset with a maximum sequence length of 2, whereas our method was able to retain
more information by producing datasets with longer sequences. In all the experiments in
Figure 7, both methods achieved similar average relative errors for query length |q| = 2.

5.3. Scalability

We study the scalability of our approach by varying the size of the input dataset. In
this set of experiments, a dataset size is determined by both the universe size and the
number of records. We limit the timestamp universe T of Bus and Metro to a threshold
≤ |T |, and only consider the portion of the trajectories that satisfy the timestamp limit.
By varying the threshold, we achieve different datasets with smaller timestamp universes
and number of records thanD. We consider limiting only the timestamp universe because,
unlike the location universe, the former defines the length of trajectories in the dataset.
Table 3 contains summary statistics of 5 datasets generated from Bus and 5 datasets
generated from Metro. All the scalability experiments are reported in Figure 8, where
h = 12 and ϵ = 1.

Figure 8 measures how runtime varies as we change the timestamp universe size |T | and
number of records |D| of the input raw dataset. Each value on the x-axis in Figures 8 (a)
and (b) represents a sub-dataset extracted from Bus andMetro, respectively, as illustrated
in Table 3. Runtime increases reasonably with the increase of the input dataset size. We

25

observe that sanitization time increases faster on the Bus sub-datasets because Bus has
a larger location universe size compared with Metro; hence, more processing of empty
nodes is required. In total, our method takes 27 seconds to process the full Bus dataset
and 15 seconds to process the full Metro dataset.

In summary, our proposed method achieves high data utility for count queries and is
robust to handle large-scale and extremely sparse trajectory data without compromising
runtime. Such robustness stems from the ability to fine-tune taxonomy trees according to
the desired utility. In order to achieve a reasonable balance between utility and runtime,
experiments on taxonomy trees suggest minimizing the number of children and choosing
a moderate taxonomy tree height.

6. Conclusion

We study the problem of publishing sanitized trajectories under the rigorous model
of differential privacy. Trajectories are spatio-temporal data characterized by being high-
dimensional and sparse due to the existence of a time dimension; hence, extra care is
required in the sanitization process in order to handle such data efficiently. We propose
SafePath, an efficient and scalable sanitization method for publishing differentially-private
trajectories. SafePath structures trajectories as a noisy prefix tree, then performs a post-
processing step that enhances the utility of the sanitized data. The authors of [9] proposed
sanitizing sequential data and suggested that their method can be extended to trajectories.
We implement their method and provide theoretical and experimental analysis on real-life
trajectory datasets. Evaluation suggests that applying the above extension to trajectories
fails to provide a scalable solution, whereas our proposed method demonstrates significant
improvement in terms of efficiency and scalability with comparable data utility.

Acknowledgments

This research is supported by the Discovery Grants (RGPIN-2018-03872) from the
Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs
Program (950-230623), and the Research Cluster Award (R16083) from Zayed University.

References

[1] S. Abraham and P. S. Lal. Spatio-temporal similarity of network-constrained mov-
ing object trajectories using sequence alignment of travel locations. Transportation
Research Part C: Emerging Technologies, 23:109 – 123, 2012. Data Management in
Vehicular Networks.

[2] O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty for anonymity in
moving objects databases. In Proceedings of the 24th IEEE International Conference
on Data Engineering, ICDE ’08, pages 376–385, 2008.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the 11th
International Conference on Data Engineering, ICDE ’95, pages 3–14, 1995.

26

[4] R. Assam, M. Hassani, and T. Seidl. Differential private trajectory protection of mov-
ing objects. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop
on GeoStreaming, IWGS ’12, pages 68–77, 2012.

[5] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy,
accuracy, and consistency too: A holistic solution to contingency table release. In
Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’07, 2007.

[6] M. Burger, M. van den Berg, A. Hegyi, B. D. Schutter, and J. Hellendoorn. Consid-
erations for model-based traffic control. Transportation Research Part C: Emerging
Technologies, 35:1 – 19, 2013.

[7] Y. Cao and M. Yoshikawa. Differentially private real-time data release over infinite
trajectory streams. In Proceedings of the 16th IEEE International Conference on
Mobile Data Management - Volume 02, MDM ’15, pages 68–73, 2015.

[8] R. Chen, G. Acs, and C. Castelluccia. Differentially private sequential data publica-
tion via variable-length n-grams. In Proceedings of the ACM Conference on Computer
and Communications Security, CCS ’12, pages 638–649, 2012.

[9] R. Chen, B. C. Fung, B. C. Desai, and N. M. Sossou. Differentially private transit
data publication: A case study on the montreal transportation system. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’12, pages 213–221, 2012.

[10] R. Chen, B. C. M. Fung, N. Mohammed, and B. C. Desai. Privacy-preserving tra-
jectory data publishing by local suppression. Information Sciences: Special Issue on
Data Mining for Information Security, 231:83–97, 2013.

[11] A. E. Cicek, M. E. Nergiz, and Y. Saygin. Ensuring location diversity in privacy-
preserving spatio-temporal data publishing. The VLDB Journal, 23(4):609–625,
2014.

[12] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. A real-time computer vision
system for vehicle tracking and traffic surveillance. Transportation Research Part C:
Emerging Technologies, 6(4):271 – 288, 1998.

[13] G. Cormode, C. Procopiuc, D. Srivastava, and T. T. L. Tran. Differentially private
summaries for sparse data. In Proceedings of the 15th International Conference on
Database Theory, ICDT ’12, pages 299–311, 2012.

[14] C. Dwork. Differential privacy. In Proceedings of the 33rd International Conference
on Automata, Languages and Programming - Volume Part II, ICALP’06, pages 1–12,
2006.

27

[15] C. Dwork. Differential privacy: A survey of results. In Proceedings of the 5th Interna-
tional Conference on Theory and Applications of Models of Computation, TAMC’08,
pages 1–19, 2008.

[16] C. Dwork. A firm foundation for private data analysis. Communications of the ACM,
54(1):86–95, 2011.

[17] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Proceedings of the 3rd Conference on Theory of Cryptogra-
phy, TCC’06, pages 265–284, 2006.

[18] E. ElSalamouny and S. Gambs. Differential privacy models for location-based ser-
vices. Transactions on Data Privacy, 9(1):15–48, 2016.

[19] L. Fan, L. Xiong, and V. Sunderam. Differentially private multi-dimensional time
series release for traffic monitoring. In Proceedings of the 27th Annual IFIP WG 11.3
Conference on Data and Applications Security and Privacy XXVII - Volume 7964,
DBSec 2013, pages 33–48, 2013.

[20] L. Fan, L. Xiong, and V. Sunderam. Fast: Differentially private real-time aggregate
monitor with filtering and adaptive sampling. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD ’13, pages 1065–1068,
2013.

[21] S. Gambs, M.-O. Killijian, and M. N. n. del Prado Cortez. Show me how you
move and i will tell you who you are. In Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on Security and Privacy in GIS and LBS, SPRINGL ’10,
pages 34–41, 2010.

[22] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition attacks and auxiliary
information in data privacy. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’08, pages 265–273,
2008.

[23] M. Ghasemzadeh, B. C. Fung, R. Chen, and A. Awasthi. Anonymizing trajectory
data for passenger flow analysis. Transportation Research Part C: Emerging Tech-
nologies, 39:63 – 79, 2014.

[24] P. J. Haas and A. N. Swami. Sequential sampling procedures for query size estima-
tion. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD ’92, pages 341–350, 1992.

[25] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially
private histograms through consistency. Proceedings of the VLDB Endowment, 3(1-
2):1021–1032, 2010.

28

[26] X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc, and D. Srivastava. Dpt:
Differentially private trajectory synthesis using hierarchical reference systems. Pro-
ceedings of the VLDB Endowment, 8(11):1154–1165, 2015.

[27] S.-S. Ho. Preserving privacy for moving objects data mining. In Proceedings of the
IEEE International Conference on Intelligence and Security Informatics (ISI), pages
135–137, 2012.

[28] S.-S. Ho and S. Ruan. Preserving privacy for interesting location pattern mining
from trajectory data. Transactions on Data Privacy, 6(1):87–106, 2013.

[29] H. Hu, J. Xu, S. T. On, J. Du, and J. K.-Y. Ng. Privacy-aware location data
publishing. ACM Transactions on Database Systems (TODS), 35:18:1–18:42, 2010.

[30] K. Jiang, D. Shao, S. Bressan, T. Kister, and K.-L. Tan. Publishing trajectories with
differential privacy guarantees. In Proceedings of the 25th International Conference
on Scientific and Statistical Database Management, SSDBM, pages 12:1–12:12, 2013.

[31] D. Kifer. Attacks on privacy and definetti’s theorem. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD ’09, pages
127–138, 2009.

[32] D. Leoni. Non-interactive differential privacy: A survey. In Proceedings of the 1st
International Workshop on Open Data, WOD ’12, pages 40–52, 2012.

[33] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic density-based discovery of hot
routes in road networks. In Proceedings of the 10th International Conference on
Advances in Spatial and Temporal Databases, SSTD’07, pages 441–459, 2007.

[34] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity:
Privacy beyond k-anonymity. volume 1, 2007.

[35] F. McSherry. Privacy integrated queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD ’09, pages 19–30, 2009.

[36] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS
’07, pages 94–103, 2007.

[37] A. Monreale, G. Andrienko, N. Andrienko, F. Giannotti, D. Pedreschi, S. Rinzivillo,
and S. Wrobel. Movement data anonymity through generalization. Transactions on
Data Privacy, 3(2):91–121, 2010.

[38] M. E. Nergiz, M. Atzori, and Y. Saygin. Towards trajectory anonymization: A
generalization-based approach. In Proceedings of the SIGSPATIAL ACM GIS Inter-
national Workshop on Security and Privacy in GIS and LBS, SPRINGL ’08, pages
52–61, 2008.

29

[39] R. G. Pensa, A. Monreale, F. Pinelli, and D. Pedreschi. Pattern-preserving k-
anonymization of sequences and its application to mobility data mining. In Proceed-
ings of the 1st International Workshop on Privacy in Location-Based Applications,
2008.

[40] V. Primault, S. B. Mokhtar, C. Lauradoux, and L. Brunie. Time distortion
anonymization for the publication of mobility data with high utility. In Proceed-
ings of the 14th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, pages 539–546, 2015.

[41] W. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for differen-
tially private histograms. Proceedings of the VLDB Endowment, 6(14):1954–1965,
2013.

[42] R. Sherkat, J. Li, and N. Mamoulis. Efficient time-stamped event sequence
anonymization. ACM Transactions on the Web (TWEB), 8(1):4:1–4:53, 2013.

[43] L. Sweeney. K-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[44] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, W.-C. Peng, and T. L. Porta.
A framework of traveling companion discovery on trajectory data streams. ACM
Transactions on Intelligent Systems and Technology (TIST), 5(1):3:1–3:34, 2014.

[45] M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of trajec-
tories. In Proceedings of the The Ninth International Conference on Mobile Data
Management, MDM ’08, pages 65–72, 2008.

[46] J. Wang, S. Liu, and Y. Li. A review of differential privacy in individual data release.
International Journal of Distributed Sensor Networks, 2015:1:1–1:1, 2016.

[47] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in privacy
preserving data publishing. In Proceedings of the 33rd International Conference on
Very Large Data Bases, VLDB ’07, pages 543–554, 2007.

[48] X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct: Differential privacy with reduced
relative errors. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, pages 229–240, 2011.

[49] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 23(8):1200–1214, 2011.

[50] Y. Xiao and L. Xiong. Protecting locations with differential privacy under temporal
correlations. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 1298–1309, 2015.

30

[51] R. Yarovoy, F. Bonchi, L. V. S. Lakshmanan, and W. H. Wang. Anonymizing moving
objects: how to hide a mob in a crowd? In Proceedings of the 12th International
Conference on Extending Database Technology: Advances in Database Technology,
EDBT ’09, pages 72–83, 2009.

[52] D. Zekri, B. Defude, and T. Delot. Building, sharing and exploiting spatio- temporal
aggregates in vehicular networks. Mobile Information Systems, 10(3):259–285, 2014.

[53] Y. Zheng, N. J. Yuan, K. Zheng, and S. Shang. On discovery of gathering patterns
from trajectories. In Proceedings of the IEEE International Conference on Data
Engineering, ICDE ’13, pages 242–253, 2013.

31

