
FIN: Boosting Binary Code Embedding by Normalizing

Function Inlinings

Mohammadhossein Amoueia, Benjamin C. M. Funga,∗, Philippe Charland

aSchool of Information Studies, McGill University, Montreal, QC, Canada
bMission Critical Cyber Security Section, Defence R&D Canada, Quebec, QC, Canada

Abstract

Binary code similarity detection (BCSD) is essential for identifying similar
code sections across different programs, regardless of their source languages,
compilation options, or underlying architectures. It plays a crucial role in
areas such as code plagiarism detection, malware analysis, and vulnerabil-
ity discovery. However, BCSD faces significant challenges due to compiler
optimizations, such as function inlining, which alter the binary structure.
Existing rule-based function control flow graph (CFG) expansion strategies
have limited success, due to low precision and recall in identifying inlined call
sites. In this study, we present a detailed investigation of function inlining
and propose an AI-driven solution to expand CFGs, offering improvements
for BCSD approaches. We designed a set of features for a machine learning
algorithm to identify functions at O0 and O1 optimizations that may be in-
lined at the higher optimizations O2 and O3, without prior knowledge of the
optimization level. By utilizing this information to expand function CFGs,
we observed significant enhancements in the performance of state-of-the-art
binary code representation learning techniques. Experimental results show
that our proposed method increases the effectiveness of representation learn-
ing approaches by up to 21.54%. Additionally, our experiments show that
our proposed method can improve true positive rate in identifying known
vulnerabilities.

Keywords: binary code, similarity detection, function inlining, control flow
graph, random forest

∗Corresponding author.
Email address: ben.fung@mcgill.ca (Benjamin C. M. Fung)

Preprint submitted to The Journal of Systems & Software August 30, 2025

Published in Elsevier Journal of Systems and Software (JSS),
231(112603):1-20, January 2026.

1. Introduction1

Binary code similarity detection (BCSD) involves comparing different bi-2

nary code sequences to identify identical or similar code sections within dif-3

ferent programs, often irrespective of their source languages, compilation4

options, or underlying architectures. It plays a pivotal role in various fields,5

including code plagiarism detection (Luo et al., 2017), malware analysis (Li6

et al., 2021; Sun et al., 2023), and vulnerability discovery (Zhao et al., 2019;7

Yu et al., 2021; Luo et al., 2023).8

By analyzing the binary codes of programs, BCSD can uncover instances9

where code has been copied or slightly modified to obscure its origins, even10

when source code is unavailable or has been deliberately obfuscated. This11

technique is widely used in digital forensics to investigate code plagiarism,12

where it can trace code reuse or copying, supporting intellectual property13

protection (Luo et al., 2017). In malware analysis, BCSD is instrumental14

in identifying and classifying malicious software by detecting similarities be-15

tween new malware samples and known threats. This enables cybersecurity16

professionals to quickly recognize and respond to emerging threats, under-17

stand malware behaviors, and develop effective countermeasures (Li et al.,18

2021; Sun et al., 2023). Additionally, BCSD assists in identifying reused or19

modified vulnerable code across binaries, aiding in the identification of secu-20

rity flaws without requiring access to source code. This proactive approach21

improves the ability to detect and remediate potential security issues before22

they can be exploited, thereby strengthening overall software security (Zhao23

et al., 2019; Yu et al., 2021; Luo et al., 2023).24

Two pieces of binary code are similar if they exhibit comparable struc-25

tural, behavioral, or semantic characteristics, indicating they perform similar26

functions or operations despite potential differences in their representation or27

compilation. In the literature, similarities between binaries are categorized28

into three primary types: similar, identical, and equivalent. Identical binaries29

are exactly the same at the byte level, implying that the sequences of instruc-30

tions, with no modification, are the same when disassembled. If two pieces of31

binary code have dissimilar syntax but provide identical functionality, they32

are considered equivalent (Haq and Caballero, 2021).33

Identical functions are often easily detected using hash-based or exact34

match techniques. However, in practice, it is common for two binary func-35

tions, even when compiled from the same source code, to be equivalent in36

function, but not identical in form (Chandramohan et al., 2016). This is37

2

mainly due to various factors, including differences in compiler optimiza-38

tions, compiler versions, or the target architecture for which the code is39

compiled. These factors can lead to changes in instruction sequences, mem-40

ory allocation, and other optimizations that alter the binary’s form without41

affecting its functionality, resulting in significantly different binary outputs42

for the same source code (Li et al., 2023).43

Function inlining is a compiler optimization technique, where the compiler44

replaces a function call with the actual code of the callee function. This45

process eliminates the overhead associated with calling a function, such as46

the call and return instructions, potentially making the code faster and more47

efficient (Theodoridis et al., 2022). However, function inlining significantly48

impacts BCSD, because when a callee function is inlined, its code is merged49

with the caller’s code, making functions that perform the same tasks look50

different at the binary level (Jia et al., 2023).51

Function inlining significantly challenges BCSD by altering the direct52

mapping between binary functions across different optimization levels. This53

transformation often results in complex “1-to-n” or even “n-to-n” mapping54

scenarios. Specifically, function inlining optimization can cause a single func-55

tion at one optimization level to correspond to multiple functions at another56

optimization level. More critically, multiple functions at one optimization57

level may collectively map to multiple functions at a different level, further58

complicating the process of establishing direct correlations between functions.59

This deviation from the traditional “1-to-1” mapping complicates the detec-60

tion of similar binary functions, as evidenced by statistical findings where61

the proportion of function inlining ranges from 30% to 40% under certain62

optimization levels, and can sometimes reach nearly 70%. The high rates63

of inlining cause significant mismatches during code search and vulnerability64

detection, leading to a decrease in code search accuracy of up to 30%, and a65

decline in vulnerability detection efficacy of 40% (Jia et al., 2023).66

There are two main strategies for handling function inlining in BCSD:67

CFG expansion and detect-and-remove. Studies like BinGo (Chandramo-68

han et al., 2016), Asm2Vec (Ding et al., 2019), and OpTrans (Sha et al.,69

2025) use CFG expansion, i.e., they explicitly inline certain callee functions70

post-compilation, to ensure that equivalent functions compiled at different71

optimization levels remain similar. In contrast, methods such as BINO (Bi-72

nosi et al., 2023) and ReIFunc (Lin et al., 2024) locate the boundaries of73

inlined functions within a caller’s body so that those regions can be later74

excised. However, once a compiler inlines a callee, subsequent optimizations,75

3

including constant folding, dead-code elimination, and common subexpres-76

sion elimination, tend to fuse caller and callee instructions so tightly that no77

clean subgraph may not remain to delete; any removal attempt risks dropping78

or corrupting fused code. Moreover, a false positive in boundary detection79

could cause remove-based approaches to delete semantically essential instruc-80

tions, whereas CFG expansion, at worst, merely duplicates a callee’s graph81

without ever erasing the original code.82

Although CFG expansion techniques are safe, existing approaches em-83

ploy manually defined huristics to expand function CFGs to improve cross-84

optimization BCSD. These approaches employ selective inlining strategies85

guided by manually tuned thresholds, such as function size limits, stack size,86

and coupling scores, to determine whether a callee should be inlined within87

a given function. While these heuristics help mitigate code-size explosion88

and maintain scalability, they fail to fully capture the nuanced inlining be-89

haviors exhibited by modern compilers across different optimization levels.90

Consequently, they often miss functions that should be inlined or mistakenly91

include functions that should not, resulting in low precision and recall when92

identifying inlined callees. As a result, they offer only minimal improvements93

in the performance of BCSD approaches.94

In this study, we investigate function inlining in detail and propose a95

solution that can intelligently expand function CFGs, improving existing96

BCSD approaches. For this purpose, we first analyzed function inlining and97

its effects on BCSD performance. We then designed a set of features that98

could be used in a machine learning algorithm to identify a significant portion99

of functions at O0 and O1 optimizations that were inlined at the higher100

optimizations O2 and O3, without knowing the current optimization level.101

Using this information, we expanded the functions’ CFGs and examined the102

impact of these CFG expansions on the performance of state-of-the-art binary103

code representation learning techniques.104

This work specifically focuses on the impact of compiler optimizations and105

function inlining decisions on BCSD, as these transformations often disrupt106

binary similarity detection pipelines. We evaluated our approach on x86107

binaries generated from C/C++ programs, as they are widely used in reverse108

engineering and vulnerability detection research. While the current scope is109

limited to x86, the primary goal is to address function inlining challenges110

caused by compilers and optimization levels, and not architecture-specific111

variations. Evaluations on other architectures and languages are left for112

future work.113

4

Our experiments show that 30.63% of functions include at least one call114

site inlined with both O2 and O3 optimization levels. They also demonstrate115

that our proposed method can increase the performance of state-of-the-art116

representation learning approaches in terms of Mean Reciprocal Rank (MRR)117

value by up to 21.54%. Moreover, our real-world vulnerability detection118

analysis shows that FIN can improve BCSD in vulnerability detection. In119

summary, the contributions of this study are as follows:120

• We investigated the impact of function inlining on BCSD techniques121

to gain a clearer understanding of the problems it introduces and their122

extent. In addition, we conducted a detailed study on the effect of CFG123

expansion on BCSD performance. Our findings show that the presence124

of inlinined functions poses a significant challenge for BCSD. Never-125

theless, CFG expansion can potentially enhance BCSD effectiveness by126

mitigating the issues introduced by function inlining optimization.127

• We developed and proposed a set of features for caller-callee pairs that128

can predict compiler decisions regarding inlining at high optimization129

levels. Our analysis of these features revealed that, contrary to the130

common belief that function size and the in and out degrees of a callee131

function are the most critical factors for deciding CFG expansion, the132

average distance of a callee function from its callers is actually the most133

significant feature.134

• We proposed the Function Inlining Normalizer (FIN), an AI-driven135

CFG expansion approach designed to enhance the effectiveness of bi-136

nary code representation learning. FIN intelligently identifies and in-137

lines call sites within a function to increase the similarity of functions138

across different optimization levels. This adjustment equalizes the con-139

textual information across all four optimization levels, thereby improv-140

ing the performance of language models used for binary function rep-141

resentation learning.142

• We developed and publicly released a tool1 designed to generate ground143

truth data for investigating issues stemming from function inlining in144

cross-optimization BCSD. Although this paper focuses on functions145

inlined at O2 and O3 for ground truth generation, the tool itself is not146

1https://github.com/McGill-DMaS/FIN

5

https://github.com/McGill-DMaS/FIN

limited to these optimization levels; it can compare any two binaries147

regardless of their optimization settings.148

The rest of the paper is organized as follows: Section 2 explains our problem149

and motivation. Section 3 presents FIN, our proposed solution. Section 4150

describes the empirical studies, research questions, answers, and experimen-151

tal results. Section 5 discusses limitations, future research directions, and152

threats to validity. Section 6 reviews related work. Finally, Section 7 con-153

cludes the paper with key findings.154

2. Problem and Motivation155

Function inlining modifies assembly functions by integrating called func-156

tions (callee) directly into the caller function (caller), significantly affecting157

the structure of the generated code. At the O0 optimization level, most op-158

timizations are disabled, including function inlining. This level focuses on159

reducing compilation time and preserving the structure of the source code160

for debugging purposes.161

Starting with O1, basic optimizations are enabled. Function inlining at162

this level is limited. The compiler begins to perform simple optimizations163

that do not significantly increase compilation time. While the compiler may164

inline a few small, frequently-called functions, these particular inlinings are165

not guaranteed to persist at higher optimization levels. At this stage, the166

compiler begins to perform simple optimizations that do not significantly167

increase compilation time.168

At the O2 optimization level, the compiler activates a broader set of169

optimizations aimed at improving performance without excessive compilation170

time. Function inlining becomes more aggressive, with the compiler inlining171

functions that are small or frequently called. This leads to more efficient172

code execution by reducing function call overhead.173

At the highest optimization level, O3, the compiler applies all optimiza-174

tions from O2 and additional ones that may increase compilation time and175

code size for potential performance gains. Function inlining is even more176

aggressive at this level, with the compiler inlining larger functions and those177

with more complex control flows to maximize performance.178

2.1. Problem Definition179

Variability in function inlining across optimization levels poses significant180

challenges for BCSD, especially when comparing binaries compiled at differ-181

6

ent optimization levels. To understand the impact of inlining across different182

optimization levels, consider the set of functions reachable from f through183

function calls at optimization level O. Let GO(f) denote this set, which184

includes all functions that are called, directly or indirectly, from f at that185

optimization level.186

At optimization level O0, since no inlining occurs, GO0(f) represents the187

complete set of functions that f can call, matching the call graph derived188

from the source code. As optimization levels increase to O1, O2, and O3,189

the compiler may inline some of these functions into f . When a function g190

is inlined into f , the call to g within f is replaced by the whole or part of191

g’s body. It is worth noting that g may still exist in GO(f) if there are still192

other direct or indirect calls to g that were not inlined.193

At O0, f and the functions in GO0(f) remain separate entities. As the194

optimization level increases, some or all functions fromGO0(f) may be inlined195

into f , altering f ’s structure. For a given optimization level O ̸= O0, the196

transformed f can be conceptually represented as {f} ∪ G′, where G′ ⊆197

GO0(f) consists of the functions inlined into f at O. This creates a 1-to-n198

mapping challenge: a single function f at O0 corresponds to f and potentially199

multiple functions G′ that were merged into it at higher optimization levels.200

It is worth noting that we exclude function calls introduced by other compiler201

optimizations, such as replacing loops with calls to memset, if these functions202

do not exist in GO0(f). This is because a function that does not exist in the203

call graph at O0 cannot be inlined at O0.204

Similarly, the n-to-n problem arises when multiple functions at one opti-205

mization level correspond to multiple functions at another level, with complex206

inlining relationships complicating direct correspondence. These discrepan-207

cies make it challenging to match functions across optimization levels. For208

example, at optimization level O1, the compiler may inline a subset of func-209

tions from GO0(f) into f , resulting in {f} ∪ G′
1, where G′

1 ⊆ GO0(f). At210

another optimization level O3, a different subset G′
3 ⊆ GO0(f) may be inlined211

into f , yielding {f} ∪G′
3. The subsets G

′
1 and G′

3 may or may not be equal.212

Consequently, when comparing fO1 and fO3, we are effectively comparing213

{f} ∪ G′
1 with {f} ∪ G′

3. Since G′
1 and G′

3 may include different functions,214

the code structures of fO1 and fO3 differ, complicating direct comparisons215

and creating a many-to-many mapping challenge.216

7

O1 O2 O3

Optimization Level
0

20

40

60

80

100

C
ov

er
ag

e
(%

)

92% 95%
90%

Figure 1: Percentage of caller–callee pairs that, when inlined at any optimization level
(O1, O2, or O3), are also inlined at both O2 and O3 for GCC and Clang compilers.

2.2. Motivation and Core Idea217

Our motivation stems from the observation that detecting similarities be-218

tween binaries across the O2 and O3 optimization levels is generally easier,219

since these levels share very similar optimization flags and yield the highest220

recall rates for cross-optimization comparisons (Ding et al., 2019). Conse-221

quently, the sets of callee functions chosen for inlining at O2 and O3 tend222

to overlap significantly. In other words, the functions inlined at both lev-223

els follow a consistent pattern that an AI model can potentially learn. We224

further compared, for both GCC and Clang, the set of functions inlined at225

each optimization level to those inlined simultaneously at O2 and O3. Fig. 1226

shows that over 90% of caller–callee pairs with an inlining relationship (i.e.,227

where the callee was inlined into the caller at least once) at any optimization228

level (O1, O2, or O3) also exhibited that relationship at both O2 and O3. As229

expected, since O0 disables inlining, all relationships present at both O2 and230

O3 were absent at O0. At O1, 58% of these relationships were missing for231

GCC, while only 1.4% were missing for Clang. These observations suggest232

that normalizing binary functions by their inlining patterns and employing233

the set of functions inlined at both O2 and O3 may enhance BCSD, par-234

ticularly in comparisons between O0 binaries and those produced at higher235

optimization levels.236

To address the challenges posed by function inlining, we propose defin-237

8

ing a synthetic optimization level Onorm that normalizes inlining decisions238

across functions compiled at different optimization levels. Specifically, we239

aim to adjust functions compiled at lower optimization levels (O0 and O1)240

by inlining certain callees that are consistently inlined at higher optimization241

levels (O2 and O3). By focusing on the intersection of O2 and O3 we aim242

to increase similarity across optimization levels with minimal modifications243

rather than relying on blanket aggressive inlining. Over-inlining can rapidly244

inflate function sizes and control-flow complexity, complicating binary clone245

detection. In addition, modern language models generally have a fixed token246

limit; if a function becomes too large, the model may truncate or omit key247

instructions, thereby degrading the quality of the learned representations.248

Let’s define IO(f) as the set of functions that are inlined into f at opti-249

mization level O. Then, define:250

IOnorm(f) = IO2(f) ∩ IO3(f)

This set IOnorm(f) represents the callees that are consistently inlined into f251

at both O2 and O3. By inlining these callees into f at every call site, we aim252

to achieve a more similar distribution of information within the function. To253

accomplish this, we define an adjusted function fOnorm as follows:254

fOnorm = Inline(f, IOnorm(f))

Here, Inline(f, IOnorm(f)) denotes the process of inlining the callees in IOnorm(f)255

into f . Functions compiled at O2 or O3 will still be modified if some call256

sites to the callees in IOnorm(f) remain (i.e., only partial inlining has been257

applied).258

By normalizing the inlining of certain functions across different optimiza-259

tion levels, we aim to reduce discrepancies in their underlying semantics,260

thereby improving the effectiveness of BCSD when comparing functions com-261

piled at different optimization levels.262

The rationale for focusing on caller–callee pairs rather than call site-263

level decisions stems from the added complexity that fine-grained inlining264

entails. Partial inlining patterns at higher optimization levels mean that265

some call sites may be inlined while others are not, which would require266

including call site-specific features. This approach can increase false negatives267

(e.g., predicting inlining at a less informative site, such as those located268

outside a language model’s maximum context window, while missing a more269

critical one). Modern NLP models operate within fixed context windows270

9

and may truncate inputs; if the first inlined site would fit, but a later one271

would not, inlining the latter yields no benefit. By treating each callee as272

a single unit and inlining it unrecursively at all available sites, we simplify273

the prediction task and ensure that the most semantically relevant code is274

consistently included for our representation-learning models.275

However, determining IOnorm(f) is still challenging because, without de-276

bug information, we cannot directly observe the compiler’s inlining decisions.277

These decisions are based on heuristics and vary depending on factors such278

as function size, complexity, and compiler settings. To overcome this, we279

hypothesize that it is possible to predict the compiler’s inlining decisions us-280

ing machine learning techniques. By extracting relevant features from the281

code and training models on known inlining decisions, our aim is to estimate282

IOnorm(f) even without knowing the specific optimization level used during283

compilation.284

3. Approach285

Fig. 2 presents the workflow of the inference stage (after training) for286

our proposed approach, FIN. During the training phase, we first generate287

ground-truth data by analyzing compiler inlining decisions across optimiza-288

tion levels (detailed in Section 3.1). This ground-truth guides the training of289

a random forest classifier to predict inlining decisions. In the inference stage,290

the method begins with disassembling binary code to extract assembly func-291

tions. Next, callees are identified for each function, and the features are292

computed for both the functions and their corresponding callees to generate293

the feature vectors (Section 3.2). These vectors are used by the trained clas-294

sifier to predict whether function inlining should occur (Section 3.3). Finally,295

based on predictions, the CFGs are expanded to unify the optimization levels296

and improve BCSD (Section 3.4). The adjusted functions are subsequently297

passed into representation learning approaches for further processing.298

3.1. Ground-truth Generation299

In this study, we utilized the BinKit (Kim et al., 2022) dataset, a bench-300

mark for binary code similarity analysis, which contains 51 GNU project301

(Project, 2024) packages. These packages were compiled using two compilers,302

GCC and Clang, across ten versions each, involving six optimization levels,303

and targeting eight different architectures. For our analysis, we specifically304

focused on packages compiled with gcc-11.2.0 and clang-13.0.0, restricting305

10

10110

00110

BIN
10110

00110

BIN

Disassembler Assembly

Function

Assembly

Functions

Assembly

Functions

Calls

Extraction

Feature

Extraction

Random ForestRandom Forest

CFG

Expansion

Adjusted

Function

Caller-callee Feature Pairs

FIN

f1, f2, ..., fnf1, f2, ..., fnf1, f2, ..., fn
f1, f2, ..., fnf1, f2, ..., fnf1, f2, ..., fn

Representation

Learning (e.g., jTrans)

Assembly

Function

Calls

Extraction

Ground-truth

Generation

CFG

Expansion

Assembly

Functions

Assembly

Functions

FIN Ground-truth

Inference

Training

10110

00110

BIN

Disassembler Assembly

Function

Assembly

Functions

Calls

Extraction

Feature

Extraction

Random Forest

CFG

Expansion

Adjusted

Function

Caller-callee Feature Pairs

FIN

f1, f2, ..., fnf1, f2, ..., fnf1, f2, ..., fn

Representation

Learning (e.g., jTrans)

Assembly

Function

Calls

Extraction

Ground-truth

Generation

CFG

Expansion

Assembly

Functions

FIN Ground-truth

Inference

Training

Figure 2: Overview of the FIN method.

our study to optimization levels O0, O1, O2, and O3 for the x86 64 archi-306

tecture. More details are provided in Section 4.1.2.307

Considering that the Binkit dataset comes pre-compiled with the -g op-308

tion, it utilizes Dwarf debugging information to generate the .debug line sec-309

tion in the binaries. This section is important, as it includes mappings from310

instructions to source code locations. Instruction-to-source mapping can be311

extracted using the pyelftools (Bendersky, 2025) tool.312

To generate a ground-truth dataset, we first established equivalence be-313

tween functions compiled at different optimization levels. For this purpose,314

we adopted the approach proposed in (Kim et al., 2022). According to this315

strategy, two functions are considered equivalent if they have the same name316

in their binaries, originated from the same source file, and share the same317

line numbers in the source code. Additionally, we verified that both functions318

belong to the same package to further reinforce their equivalence.319

Next, we utilized instruction-to-source mappings to discover inlined func-320

11

tions. Although instruction-to-source mappings can be influenced by com-321

piler optimizations, research suggests that this information remains suffi-322

ciently reliable for accurately identifying inlined functions (Jia et al., 2023).323

Thus, we used this information to identify inlined functions at the O2 and324

O3 optimization levels. More specifically, we first extracted mappings for all325

callee functions associated with callers at the O0 optimization level. Then,326

these mappings were then compared against the mapping of the same caller327

functions at optimization levels O2 and O3. If any segment of the callee328

function’s mappings matched those of the caller functions in O2 and O3, we329

inferred that the callee function was inlined at least once within the caller at330

these optimization levels. Consequently, such caller-callee pairs were marked331

with a label of 1, indicating inlining occurrence. However, we only con-332

sider a callee as inlined only if it undergoes inlining at both the O2 and O3333

optimization levels. This approach is grounded in the understanding that334

comparing functions across these particular optimization levels is the easiest335

(Ding et al., 2019), leading to the hypothesis that the impact of differences336

in inlining between these levels is likely to be negligible.337

The proposed method identifies callee functions rather than individual338

call sites for inlining, as this approach ensures that the expanded semantics339

of a function are incorporated into the broader dataset, even if the function340

is not fully inlined at all call sites of the caller. This allows the model to341

learn from a richer set of semantic features, enhancing its ability to gener-342

alize. However, this method can result in cases where functions marked as343

inlined at O2 and O3 are still partially present at certain call sites, requiring344

those functions to be further expanded during the normalization. This fur-345

ther expansion is needed because, except for the rare case of recursive calls,346

we are already inlining all corresponding call sites at O0 and O1. There-347

fore, extending this consistency to O2 and O3 is beneficial, as it aligns the348

representation of these functions across all considered optimization levels.349

By inlining these functions at every call site within the caller, we aim to350

achieve a more uniform and comparable distribution of information within351

the functions. However, we observed that this approach affected less than 2%352

of training caller functions (using ground-truth labels) and less than 4% of353

testing caller functions (using predicted labels), suggesting that its impact on354

the dataset’s overall structure at O2 and O3 optimization levels is minimal.355

Fig. 3 illustrates an example of function inlining detection at the O3356

optimization level. In this case, the O0 version of the file existsp function357

contains several function calls. We begin by extracting the instruction-source358

12

util.c 496 0x414810 push rbp
...
util.c 501 0x414833 mov rax, [rbp+suffix]
 0x414837 mov [rbp+var_38], rax
util.c 501 0x41483B jmp loc_414853
 0x414840 mov rax, (offset abcd+17h)
 0x41484A mov [rbp+var_38], rax
 0x41484E jmp $+5
 0x414853 mov rax, [rbp+var_38]
util.c 501 0x414857 mov [rbp+ctx.suffix], rax
util.c 502 0x41485B call buffer_alloc
util.c 502 0x414860 mov [rbp+ctx.fullname], rax
util.c 504 0x414864 mov rdi, ds:libpath
util.c 504 0x41486C lea rdx, [rbp+ctx]
util.c 504 0x414870 mov rsi, offset file_lookup
 0x41487A call pathwalk
util.c 504 0x41487F mov [rbp+result], eax
util.c 506 0x414882 mov rdi, [rbp+ctx.fullname]
util.c 506 0x414886 call buffer_free
util.c 508 0x41488B mov eax, [rbp+result]
util.c 508 0x41488E add rsp, 40h
 0x414892 pop rbp
 0x414893 retn

Source line address instruction file_existsp (O0)

util.c 2058 0x41B890 push rbp
 0x41B891 mov rbp, rsp
 0x41B894 sub rsp, 10h
util.c 2059 0x41B898 mov edi, 1
 0x41B89D mov esi, 18h
 0x41B8A2 call xcalloc
util.c 2059 0x41B8A7 mov [rbp+buffer], rax
util.c 2061 0x41B8AB mov rdi, [rbp+buffer]
util.c 2061 0x41B8AF call buffer_init
util.c 2063 0x41B8B4 mov rax, [rbp+buffer]
util.c 2063 0x41B8B8 add rsp, 10h
 0x41B8BC pop rbp
 0x41B8BD retn

Source line address instruction buffer_alloc

util.c 2041 0x413CD0 push rbp
 0x413CD1 mov rbp, rsp
 0x413CD4 sub rsp, 10h
 0x413CD8 mov [rbp+buffer], rdi
util.c 2042 0x413CDC mov rax, [rbp+buffer]
util.c 2042 0x413CE0 mov qword ptr [rax+8], 80h
util.c 2043 0x413CE8 mov rax, [rbp+buffer]
util.c 2043 0x413CEC mov rdi, [rax+8]
util.c 2043 0x413CF0 call xmalloc
 0x413CF5 mov rcx, rax
util.c 2043 0x413CF8 mov rax, [rbp+buffer]
util.c 2043 0x413CFC mov [rax], rcx
util.c 2044 0x413CFF mov rax, [rbp+buffer]
util.c 2044 0x413D03 mov rax, [rax]
util.c 2044 0x413D06 mov byte ptr [rax], 0
util.c 2045 0x413D09 mov rax, [rbp+buffer]
util.c 2045 0x413D0D mov qword ptr, [rax+10h] 0
util.c 2046 0x413D15 add rsp, 10h
 0x413D19 pop rbp
 0x413D1A retn

Source line address instruction buffer_init

...
util.c 1705 0x4148B7 mov rax, [rbp+path]
util.c 1705 0x4148BB mov [rbp+cp], rax
util.c 1705 0x4148C2 cmp [rbp+cp], 0
 0x4148CA jz loc_4149C4
util.c 1707 0x4148D0 mov rax, [rbp+cp]
util.c 1707 0x4148D7 cmp rax, [rbp+path]
util.c 1707 0x4148DB jz loc_4148F3
util.c 1708 0x4148E1 mov rax, [rbp+cp]
 0x4148E8 add rax, 1
 0x4148EC mov [rbp+cp], rax
util.c 1710 0x4148F3 mov rdi, [rbp+cp]
util.c 1710 0x4148FA mov esi, 3Ah
 0x4148FF call _strchr
util.c 1710 0x414904 mov [rbp+cp2], rax
util.c 1711 0x41490B cmp [rbp+cp2], 0
util.c 1711 0x414913 jz loc_414935
util.c 1712 0x414919 mov rax, [rbp+cp2]
util.c 1712 0x414920 mov rcx, [rbp+cp]
util.c 1712 0x414927 sub rax, rcx
util.c 1712 0x41492A mov [rbp+len], eax
util.c 1712 0x414930 jmp loc_414947
util.c 1714 0x414935 mov rdi, [rbp+cp]
util.c 1714 0x41493C call _strlen
util.c 1714 0x414941 mov [rbp+len], eax
util.c 1716 0x414947 lea rdi, [rbp+buf]
...

Source line address instruction pathwalk

util.c 496 0x40DBA0 push rbp
...
util.c 2059 0x40DBC7 mov edi, 1
 0x40DBCC mov esi, 18h
 0x40DBD1 call xcalloc
 0x40DBD6 mov r15, rax
util.c 2042 0x40DBD9 mov qword ptr [rax+8], 80h
util.c 2043 0x40DBE1 mov edi, 80h
 0x40DBE6 call xmalloc
util.c 2043 0x40DBEB mov [r15], rax
util.c 2044 0x40DBEE mov byte ptr [rax], 0
util.c 2045 0x40DBF1 mov qword ptr [r15+10h], 0
util.c 502 0x40DBF9 mov [rsp+258h+var_240], r15
util.c 504 0x40DBFE mov r14, cs:libpath
 0x40DC05 xor ebx, ebx
util.c 1705 0x40DC07 test r14, r14
 0x40DC0A jz loc_40DC95
 0x40DC10 lea r13, [rsp+258h+dest]
 0x40DC15 lea r12, [rsp+258h+context]
 0x40DC1A mov rax, r14
 0x40DC1D nop dword ptr [rax]
util.c 1707 0x40DC20 xor ebx, ebx
 0x40DC22 cmp rax, r14
 0x40DC25 setnz bl
util.c 1707 0x40DC28 add rbx, rax
util.c 1710 0x40DC2B mov rdi, rbx
 0x40DC2E mov esi, 3Ah
 0x40DC33 call _strchr
util.c 1711 0x40DC38 test rax, rax
util.c 1711 0x40DC3B jz loc_40DC50
util.c 1712 0x40DC3D sub rax, rbx
 0x40DC40 jmp loc_40DC58
util.c 1714 0x40DC50 mov rdi, rbx
 0x40DC53 call _strlen
util.c 1716 0x40DC58 movsxd rbp, eax
util.c 1716 0x40DC5B mov rdi, r13
 0x40DC5E mov rsi, rbx
 0x40DC61 mov rdx, rbp
 0x40DC64 call _memcpy
util.c 1717 0x40DC69 mov [rsp+rbp+258h+dest], 0
util.c 1719 0x40DC6E mov rdi, r13
 0x40DC71 mov rsi, r12
 0x40DC74 call file_lookup
util.c 1720 0x40DC79 test eax, eax
util.c 1720 0x40DC7B jnz loc_40DC93
util.c 1705 0x40DC7D mov rdi, rbx
 0x40DC80 mov esi, 3Ah
 0x40DC85 call _strchr
util.c 1705 0x40DC8A test rax, rax
...

Source line address instruction file_existsp (O3)

Figure 3: Illustration of Function Inlining Detection Process for Creating Ground Truth
Data.

mapping for these callee functions, then search for these mappings in the O3359

version of file existsp. Notably, a portion of the buffer alloc function corre-360

sponds to line 2059 in util.c, a mapping that persists in the O3 version of361

file existsp. This observation leads us to conclude that the compiler has in-362

lined buffer alloc within file existsp at the O3 level. We proceed to apply this363

method recursively for calls within callee functions until no further inlined364

functions are detected. For instance, buffer alloc itself invokes buffer init,365

which is also found to be inlined in the O3 version of file existsp, demon-366

strating the depth of this inlining detection process.367

3.2. Feature Extraction368

Determining whether to inline a function presents a complex decision-369

making challenge. Compilers must carefully weigh the potential performance370

benefits of inlining against the associated trade-offs, such as increased code371

13

size and other costs (Zhao and Amaral, 2004). While specific heuristics and372

internal metrics vary across compilers (e.g., GCC, Clang/LLVM, MSVC),373

several common factors are generally taken into account in this process:374

• Function Size: Small functions, such as simple getters, setters, or375

basic arithmetic operations, are ideal candidates for inlining, as their376

runtime cost is dominated by call overhead. In contrast, larger func-377

tions are generally less suitable for inlining due to the potential for378

significant code size expansion with limited performance gains.379

• Function Complexity: Functions with high complexity, character-380

ized by numerous branches, loops, or nested function calls, are gener-381

ally less likely to be inlined due to the significant increase in code size382

and the reduced likelihood of substantial performance benefits. Addi-383

tionally, recursive functions are typically not inlined, except in specific384

cases such as tail recursion, which can be transformed into an iterative385

loop by the compiler to optimize performance.386

• Function Call Frequency and Profile-Guided Information: Com-387

pilers often estimate the frequency of function calls through static anal-388

ysis. For instance, calls within loops or those that occur multiple times389

are classified as ”hot” and are deemed more advantageous for inlining.390

When profile-guided optimization (PGO) is employed, the compiler391

leverages runtime execution profiles to identify call sites that are fre-392

quently executed. These ”hot” call sites are assigned a higher priority393

for inlining, as eliminating their call overhead can result in significant394

performance improvements.395

In designing our feature set, we sought to encapsulate the multifaceted396

factors influencing compiler decisions by incorporating a diverse range of397

metrics. These include direct size measures, relative indicators, control-flow398

complexity assessments, and low-level operand usage profiles. Each feature399

was carefully selected to approximate known or inferred compiler heuristics.400

Below, we provide a detailed introduction to each feature, highlighting its401

rationale and how it contributes to modeling the compiler’s decision-making402

process.403

3.2.1. FuncSize (Absolute Function Size in Bytes)404

This metric records the raw size of a function in machine code bytes. In-405

lining smaller functions typically delivers more pronounced benefits because406

14

the call overhead often constitutes a significant portion of their runtime cost.407

Conversely, inlining large functions can incur significant code bloat with lim-408

ited performance gains.409

3.2.2. LoopCount (Number of Loops)410

Loops significantly impact a function’s structural complexity. Functions411

with numerous loops not only have a larger code footprint but also exhibit412

intricate control flows, complicating downstream optimization passes after413

inlining. Compilers typically employ thresholds and heuristics to avoid inlin-414

ing functions with excessive loops unless there are compelling benefits against415

potential drawbacks like code size increase and cache inefficiency.416

3.2.3. IsRecursive (Recursion Indicator)417

Recursion is generally resistant to straightforward inlining, as it does not418

resolve the recursive pattern without additional transformations. Unless spe-419

cific cases, such as tail recursion, are identified and optimized into iterative420

loops, repeatedly inlining a recursive function can result in unbounded code421

growth with minimal performance gains. Compilers typically adopt a con-422

servative approach, avoiding the inlining of recursive functions unless further423

analysis supports a bounded unrolling strategy.424

To capture this behavior, we include the IsRecursive feature in our425

model. This feature is a binary indicator, where a value of 1 denotes that426

the function is recursive, and a value of 0 indicates that the function is427

non-recursive. By incorporating IsRecursive, we align with the compiler’s428

cautious stance on inlining recursive functions, reflecting its consideration of429

the associated risks and limitations.430

3.2.4. SizeInc (Relative Increase in Program Size) and BBInc (Relative In-431

crease in Basic Blocks)432

Inlining eliminates the overhead associated with a function call but can433

duplicate the callee’s instructions, potentially increasing the overall code size.434

To emulate the compiler’s decision-making process, which balances the ben-435

efits of reduced call overhead against the global impact of code expansion,436

we introduce two features: SizeInc and BBInc.437

• SizeInc quantifies the expected increase in code size by measuring the438

number of instructions that would be added to the caller if the callee439

were inlined.440

15

• BBInc estimates the growth in the number of basic blocks resulting441

from inlining, capturing the structural expansion of the control flow442

graph.443

To compute SizeInc and BBInc, we utilize the relative change formula:444

x2 − x1

x1

,

where x2 denotes the program’s size in bytes or the updated count of ba-445

sic blocks following the inlining of a specific function, and x1 refers to the446

program’s size or the number of basic blocks before the inlining process. To447

calculate x2, we use the following equation:448

x2 = x1 − x′ + (λ× x′) = x1 + ((λ− 1)× x′),

where, depending on the relative change we aim to calculate, x′ represents449

either the callee function’s size in bytes or its total number of basic blocks,450

while λ denotes the number of incoming calls to the function. We subtract451

one from λ under the assumption that the function is inlined at all call sites452

and as a result, would no longer be present within the program. Substituting453

x2 into the relative change formula yields the following equation:454

∆ =
(λ− 1)× x′

x1

We calculated ∆s and ∆b, denoting SizeInc and BBInc, respectively, and455

incorporated them into the feature set.456

3.2.5. Z-Scores (SizeZScore, BBZScore, InCallsZScore, OutCallsZScore)457

While absolute values (e.g., raw function size) provide a baseline, compil-458

ers often judge the characteristics of a function relative to the entire program459

(Theodoridis et al., 2022). Functions that deviate significantly from the norm460

may trigger special heuristics. To emulate this, we used standardized scores461

(z-scores):462

z =
X − µ

σ
,

where z represents the z-score, X denotes the feature’s value, µ signifies463

the mean of the feature across the program, and σ stands for the standard464

deviation of the feature within the program. We calculated z-score for four465

key features:466

16

• SizeZScore: Quantifies how a function’s size compares to the average467

function size within the program, expressed in terms of standard devia-468

tions from the mean. This metric reflects the extent to which a function469

is unusually large or small relative to its peers. Compilers often em-470

ploy size-related thresholds when making inlining decisions; functions471

that are several standard deviations above the mean may exceed these472

cutoffs and be considered unsuitable for inlining.473

• BBZScore: Measures how a function’s basic block count deviates from474

the program-wide average, expressed as standard deviations from the475

mean. This metric highlights whether the function’s control flow com-476

plexity is atypical. Functions with significantly higher basic block477

counts often involve intricate logic, which compilers typically approach478

cautiously when evaluating them for inline expansion.479

• InCallsZScore: Captures the relative frequency with which a function480

is called, expressed in terms of standard deviations from the program-481

wide mean. This metric highlights functions that are invoked signif-482

icantly more often than others. Functions with unusually high call483

frequencies are strong candidates for inlining at hot call sites, as elimi-484

nating the repetitive overhead of function calls can transform it into a485

one-time cost of additional instructions.486

• OutCallsZScore: Quantifies the extent to which a function is call-heavy,487

measured as standard deviations from the program-wide average num-488

ber of calls made by functions. This metric indicates whether a function489

invokes significantly more functions than is typical. Inlining call-heavy490

functions into a caller can lead to significant code expansion. This is491

because inlining replaces the function call with the function’s body,492

and if that body contains multiple calls, each of those may also need493

to be inlined or managed, increasing the overall code size. Despite the494

potential benefit of eliminating a single call overhead, such functions495

are generally less appealing for inlining.496

These z-scores contextualize each function’s characteristics within the broader497

scope of the program, emulating the compiler’s dynamic adaptation of heuris-498

tics based on global program statistics. By incorporating these relative mea-499

sures, our approach aligns with how compilers leverage global insights to500

refine inlining decisions and prioritize functions for further optimization.501

17

3.2.6. Operand Type Frequencies (o reg, o mem, o phrase, o displ, o imm,502

o near, o fpreg)503

Compilers take into account not only high-level metrics such as function504

size and loop counts, but also the ”texture” of a function at the instruction505

level. The variability and frequency of different types of operands (Hex-506

Rays, 2024b) used can provide valuable insight into how data is accessed and507

manipulated within the function.508

• Register Operands (o reg): A high usage of register operations suggests509

a function that could benefit from inlining. Post-inlining, the compiler’s510

register allocation optimizations can reduce instruction count further511

and improve execution throughput by minimizing memory accesses and512

leveraging faster register-based computations.513

• Memory References (o mem, o phrase, o displ): These features capture514

different forms of memory addressing within a function. Functions with515

a high prevalence of memory-bound instructions may pose challenges516

for optimization and register allocation when inlined. Such instructions517

can introduce additional complexity, especially if they do not simplify518

or integrate efficiently within the caller’s context.519

• Immediate Values (o imm): Immediate values within a function of-520

ten facilitate optimizations such as constant propagation and constant521

folding when the function is inlined. These transformations can lead522

to further simplifications and efficiency gains, making functions with a523

high occurrence of immediate values more favorable for inlining.524

• Near Addresses (o near): Near address references, such as relative525

jumps or calls, signify control-flow complexity within a function. In-526

lining functions with numerous near address references may simplify527

some control-flow structures by folding them into the caller. However,528

excessive control-flow complexity can impede further analysis and op-529

timization, making such functions less attractive for inlining in certain530

contexts.531

• Floating Point Register (o fpreg): The use of floating-point registers532

and associated computations requires specialized handling and opti-533

mization. Inlining such functions may unlock opportunities for vector-534

ization or improved floating-point instruction scheduling, depending on535

the caller’s context.536

18

The distribution and frequency of operand types within a function offer valu-537

able indicators of its suitability for inlining. These features can reveal the538

function’s complexity, optimization potential, and inlining overhead. There-539

fore, by integrating these features, we aim to approximate the way compilers540

incorporate low-level code patterns into their cost models.541

3.2.7. Average Distance to Callers (AvgCallDist)542

The average distance between a function and its callers significantly im-543

pacts how efficiently the CPU fetches and executes the function’s instruc-544

tions. When the caller and callee are far apart in memory, the processor is545

more likely to encounter instruction cache misses and pipeline stalls, harm-546

ing performance (Chen and Chung, 2022). Functions frequently invoked from547

distant code regions may benefit from being moved closer to their callers or548

inlined to improve cache locality and reduce overhead. Compilers and linkers549

address this through code layout optimizations to identify frequently inter-550

acting functions and place them in adjacent memory regions to minimize551

caller-callee distance (Chen and Chung, 2022).552

At lower optimization levels, such as O0 or O1, a function’s natural prox-553

imity to its callers often reflects characteristics like small size, localized us-554

age, and simple call relationships, making it a good candidate for inlining.555

While these optimization levels apply minimal transformations, such traits556

align with what compilers prioritize for inlining at higher levels like O2 or557

O3. Thus, we identified spatial relationships between functions as a valuable558

feature for predicting inlining decisions.559

To build the feature vectors, we first extract the described features for560

both the caller and the callee in each caller-callee pair. This approach reflects561

a fundamental aspect of inlining decisions: both the caller’s and the callee’s562

characteristics influence the potential benefits and costs of integrating one563

function into another.564

Callee attributes help estimate risks of code bloat, changes in complexity,565

and optimization opportunities introduced by inlining. However, the caller’s566

profile is equally critical. For instance, a caller that is already large or com-567

plex may not be a suitable environment for inlining additional code, even if568

the callee appears ideal (Zhao and Amaral, 2004). Conversely, a structurally569

simple and non-dense caller can more easily absorb a callee’s instructions570

without incurring significant penalties.571

By extracting the same set of features, such as size, complexity indicators,572

and operand type frequencies, for both the caller and the callee, we approx-573

19

imate the compiler’s holistic evaluation of the call-callee pair. Through this574

approach, we aim to train a model that considers not only the callee’s suit-575

ability for inlining but also whether the caller provides a conducive context576

for embedding the callee’s logic.

Table 1: Average feature values for caller and callee, under GCC and Clang (Class 0 vs.
Class 1)

Feature

GCC Clang

Caller Callee Caller Callee

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

FuncSize (KB) 2.0164 2.4514 0.4605 0.1749 1.8040 2.0316 0.5040 0.1613

AvgCallDist (KB) 56.2802 61.9754 171.0332 10.0488 49.6553 51.1279 187.8687 9.3681

LoopCount 0.0004 0.0005 0.0008 0.0015 0.0028 0.0021 0.0014 0.0006

SizeInc (%) 0.37 0.68 0.87 0.04 0.40 0.67 1.02 0.04

BBInc 0.39 0.70 0.87 0.04 0.0036 0.0059 0.0099 0.0004

SizeZScore 1.4389 1.7795 0.0396 -0.1289 1.2557 1.5669 0.0691 -0.1659

BBZscore 1.4381 1.7560 0.0463 -0.1436 1.3074 1.6124 0.0685 -0.1800

InCallsZScore -0.0590 -0.0664 2.9220 0.0778 -0.0575 -0.0771 3.0756 0.1002

OutCallsZScore 1.3432 1.9695 0.0608 -0.1537 1.2603 1.3044 0.0808 -0.1851

IsRecursive 0.0607 0.0750 0.0349 0.0014 0.0653 0.0815 0.0469 0.0014

o reg 361.0589 424.5251 87.2807 51.2832 408.3902 477.0281 97.5262 43.1628

o mem 4.4020 5.2916 1.2723 0.8134 6.2861 7.7381 1.5145 0.6180

o phrase 13.5424 16.3894 3.7727 1.9959 19.4364 27.6524 5.1402 1.8905

o displ 147.4741 159.3307 28.2359 21.9068 127.0596 132.6433 34.2130 22.3549

o imm 77.3868 81.1916 18.2039 9.4215 83.5391 104.2657 21.1404 9.7377

o near 93.2617 106.2236 19.4754 8.5513 97.5166 109.6421 22.7912 8.3419

o fpreg 0.0202 0.1433 0.0081 0.0618 0.0111 0.1005 0.0118 0.0240

577

Table 1 presents the mean value of each feature for both classes 0 and578

1. To evaluate the effectiveness of our proposed features, we conducted a579

Wilcoxon signed-rank test on our train set at O0 and O1 (see Section 4.1.2)580

to compare feature distributions between class 0 (cases where the callee was581

not inlined at higher optimization levels) and class 1 (cases where the callee582

was inlined at higher optimization levels). Table 2 summarizes the mean583

percentage differences in feature values for samples in class 1 relative to those584

20

Table 2: Means of feature values for samples in class 1 relative to those in class 0. Cells
with p− values higher than 0.05 are highlighted in gray, indicating that the difference in
the distribution of the features between the two classes is not statistically significant.

Feature
Caller Callee

GCC Clang Selected GCC Clang Selected

FuncSize △ 21.59% △ 12.62% ✓ ▽ 62.01% ▽ 68.00% ✓

AvgCallDist △ 10.12% △ 2.96% ✓ ▽ 94.12% ▽ 95.01% ✓

LoopCount △ 25.00% ▽ 25.00% ✗ △ 84.61% ▽ 56.45% ✗

SizeInc △ 84.16% △ 68.82% ✗ ▽ 95.74% ▽ 96.11% ✓

BBInc △ 77.10% △ 65.42% ✗ ▽ 95.82% ▽ 96.42% ✓

SizeZScore △ 23.67% △ 24.79% ✓ ▽ 425.84% ▽ 340.03% ✓

BBZScore △ 22.11% △ 23.33% ✓ ▽ 409.99% ▽ 362.62% ✓

InCallsZScore △ 12.63% △ 34.01% ✗ ▽ 97.34% ▽ 96.74% ✓

OutCallsZScore △ 46.62% △ 3.50% ✗ ▽ 352.77% ▽ 329.09% ✓

IsRecursive △ 23.51% △ 24.79% ✓ ▽ 95.97% ▽ 96.95% ✓

o reg △ 17.58% △ 16.81% ✓ ▽ 41.24% ▽ 55.74% ✓

o mem △ 20.21% △ 23.10% ✓ ▽ 36.07% ▽ 59.19% ✓

o phrase △ 21.02% △ 42.27% ✓ ▽ 47.09% ▽ 63.22% ✓

o displ △ 8.04% △ 4.39% ✗ ▽ 22.41% ▽ 34.66% ✓

o imm △ 4.92% △ 24.81% ✓ ▽ 48.24% ▽ 53.94% ✓

o near △ 13.90% △ 12.43% ✓ ▽ 56.09% ▽ 63.40% ✓

o fpreg △ 609.27% △ 801.86% ✓ △ 667.05% △ 103.11% ✓

in class 0. Features are categorized based on their significance and direction585

of change, with distinctions made between caller and callee contexts across586

GCC and Clang.587

Gray-shaded cells in Table 2 indicate features where the p-value of the588

21

Wilcoxon test is greater than 0.05, meaning that the observed differences are589

not statistically significant. Such features are considered uninformative for590

distinguishing between the two classes and were excluded from further anal-591

ysis. For all features, the percentage increases (△) are highlighted in green,592

while percentage decreases (▽) are shown in red to illustrate the direction of593

change between the two classes, regardless of statistical significance.594

Features marked with a checkmark (✓) in the ”Selected” column were595

included in the final feature set, as their differences were statistically signif-596

icant for both compilers and indicative of meaningful patterns between the597

two classes. In contrast, features marked with a cross (✗) were excluded due598

to lack of significance. In our observations, we realized that including these599

features often improved the F1 score for one compiler while degrading it for600

the other. This imbalance in performance highlights the compiler-specific601

nature of these features, which could lead to biased models that fail to gen-602

eralize effectively across different compilers.603

By selecting only features that are statistically significant across both604

compilers, we intend to ensure that the final feature set emphasizes gen-605

eralizable patterns rather than compiler-specific artifacts. Future work may606

revisit these excluded features to investigate their potential in compiler-aware607

models or scenarios targeting a single compiler family.608

The results presented in Table 2 strongly align with our initial hypotheses609

regarding the factors influencing compiler inlining decisions. Specifically, fea-610

tures such as FuncSize, SizeInc, and BBInc align with our expectations that611

compilers balance the trade-off between reducing call overhead and avoiding612

excessive code expansion. The observed positive mean changes for FuncSize613

in the caller context and the significant negative changes in the callee con-614

text align with our assumption that smaller functions are generally favored615

for inlining, whereas larger functions are avoided to prevent unnecessary code616

bloat.617

Moreover, the use of Z-scores, particularly SizeZScore and BBZScore,618

supports our expectation that compilers use relative metrics to assess a func-619

tion’s suitability for inlining. The extremely negative values observed in the620

callee context for these features show that functions significantly smaller and621

simpler than the program’s average are strong candidates for inlining.622

Finally, the results for operand-type features and AvgCallDist further623

support our assumptions. Especially, the negative mean changes for Avg-624

CallDist of class 1 samples relative to class 0 align with our expectation that625

functions with shorter average distances from their callers are more likely to626

22

be inlined. This negative change shows that, on average, functions in class 1627

are closer to their callers compared to those in class 0.

Table 3: Distribution of inlining decisions for caller-callee pairs in our dataset. Positive
(Pos.) classes refer to caller-callee pairs where the callee was inlined at both O2 and
O3 optimization levels. Negative (Neg.) classes indicate cases where the callee was not
inlined at one or both optimization levels. The table presents a breakdown of positive and
negative cases for both GCC and Clang compilers. Notably, the positives at O2 and O3
can indicate situations where a function is inlined at certain call sites of the caller, while
other call sites remain uninlined, or scenarios where the callee may be recursive.

Set Compiler
O0 O1 O2 O3

Total
Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.

Train
GCC 19,112 103,083 6,500 84,658 649 79,037 451 75,687 369,177

Clang 23,909 101,836 2,028 82,244 1,533 79,742 1,485 79,451 372,228

Test
GCC 9,537 54,322 3,645 46,819 372 43,083 300 41,507 199,585

Clang 10,592 52,461 658 43,710 570 42,211 551 41,882 192,635

Total 63,150 311,702 12,831 257,431 3,124 244,073 2,787 238,527 1,133,625

628

3.3. Inlining Decision Prediction629

The Random Forest (RF) classifier is an efficient non-linear ensemble630

model, where multiple decision trees are used to solve the same problem631

and improve overall performance. One of RF’s key strengths is its ability to632

handle large datasets as well as its robustness to overfitting (Breiman, 2001).633

Additionally, RF is adept at classifying imbalanced data (Khoshgoftaar et al.,634

2007).635

Table 3 illustrates the distribution of caller-callee pairs statuses within636

our dataset. A “Positive” status indicates that the callee is inlined at both637

O2 and O3 optimization levels. Conversely, a “Negative” status denotes638

callee that are either never inlined or inlined only at one of O2 or O3 levels.639

The data reveals a sever imbalance, with the “Positive” class being signifi-640

cantly rarer than the “Negative” class, highlighting a considerable skew in641

our dataset. Furthermore, the dataset employed in this research is both siz-642

able and complex. Consequently, we opted to utilize an RF classifier for two643

primary reasons: it is adept at managing the imbalance present within our644

dataset and it effectively navigates the challenges posed by the dataset’s size645

and complexity through its inherent non-linearity.646

Given a set of caller-callee features X = {x1, x2, . . . , xn}, the objective of647

our RF classifier is to predict the binary target variable y ∈ {0, 1}, where648

23

y = 1 (Positive) if the callee should be inlined and y = 0 (Negative) otherwise.649

More specifically, the RF classifier aims to learn the mapping function f :650

X→ y such that the probability P (y = 1 | X) is maximized for true Positive651

instances and minimized for true Negative instances.652

To achieve this, each decision tree Ti within the forest makes an inde-653

pendent prediction hi(X
i
s) based on a random subset of the features X. The654

final prediction of the RF classifier is obtained through majority voting or655

averaging these individual tree predictions:656

ŷ = mode{h1(X
1
s), h2(X

2
s), . . . , hm(X

m
s)}

By averaging the probabilities from each tree, we obtain:657

P (y = 1 | X) =
1

m

m∑
i=1

Pi(y = 1 | Xi
s)

wherem is the number of trees in the forest. We then utilize these predictions658

to adjust functions prior to feeding the language models.659

The RF model was trained on our fixed-length feature vectors obtained660

by concatenating chosen features of callers and their callees. Specifically,661

each caller-callee pair was represented as a single row in the design matrix662

X, with its corresponding class label in y. To determine the optimal hyper-663

parameters, we randomly partitioned the training data into an 80% subset664

for model fitting and a 20% subset for validation. We then performed a ran-665

domized search over a predefined range for each parameter, sampling com-666

binations of n estimators ∈ [50, 200], max depth ∈ [10, 30], max features ∈667

[0.1, 1.0], min samples split ∈ [2, 20], and criterion ∈ {gini, entropy}, and668

evaluated performance on the validation set. The best configuration used669

100 trees (n estimators = 100), a maximum depth of 21, max features =670

0.6, min samples split = 10, and the “entropy” splitting criterion, with671

class weight = balanced to mitigate class imbalance. Finally, we merged672

the training and validation sets and retrained the Random Forest on the full673

dataset to obtain the final model.674

3.4. CFG Expansion675

As discussed earlier, Oi represents a hypothetical optimization level at676

which we inline the subset IOi(f) of functions that are commonly inlined at677

both O2 and O3. To transform functions from their initial optimization level678

24

Algorithm 1 CFG Expansion

Require: f - target function
Ensure: Expanded CFG of f with eligible callees
1: Q← empty queue
2: Enqueue (f, 0) into Q
3: while Q ̸= ∅ do
4: (fcurr, dcurr)← Dequeue from Q
5: for each c ∈ GetCallees(fcurr) do
6: if c ̸= f AND ShouldInline(c) then
7: if ¬InlinedAtLowerDepth(c, dcurr) then
8: f ← ExpandCFG(f, c)
9: Enqueue (c, dcurr + 1) into Q

10: end if
11: end if
12: end for
13: end while
14: return Modified CFG of f

to Oi, we trained an RF model to predict IOi(f). Once we have this set of679

predicted inline targets, we apply a CFG expansion procedure to incorporate680

these callees into the target CFG, thereby constructing fOi.681

Our CFG expansion algorithm (Algorithm 1) is designed to systematically682

inline the predicted set IOi(f) into f . Its key operations are as follows:683

3.4.1. Initialization684

Starting with the baseline CFG of the target function f , we identify all685

direct call sites. Each callee is assigned a depth level (initially zero) and686

placed into a queue for possible inlining. The depth concept allows the687

algorithm to maintain a strict order of expansions, ensuring that it avoids688

inlining the same callee recursively through direct (recursive function) or689

indirect calls (called by another callee).690

3.4.2. Breadth-First Search (BFS)691

The algorithm employs a BFS strategy to traverse the call hierarchy orig-692

inating from f . When a callee is dequeued, the algorithm checks if it should693

be inlined based on the model’s prediction (Line 6). If eligible and was not694

inlined at a lower depth (Line 7), it is merged into f at the given call site.695

25

Caller: file_existsp

Callee: pathwalk

a) Original functions (Caller-callee pair) b) Expanded function: file_existsp

push rbp
mov rbp, rsp
...
jmp loc_416AF4

mov rax, [rbp+cp]
cmp rax, [rbp+path]
jz loc_416A53

add [rbp+cp], 1

mov rax, [rbp+cp]
...
cmp [rbp+cp2], 0
jz loc_416A7C mov rax, [rbp+cp2]

sub rax, [rbp+cp]
mov [rbp+len], eax
jmp loc_416A8Bmov rax, [rbp+cp]

mov rdi, rax
call _strlen
mov [rbp+len], eax mov eax, [rbp+len]

...
call _memcpy
...
cmp [rbp+i], 0
jz loc_416ADF

mov eax, [rbp+i]
jmp locret_416B04

mov rax, [rbp+cp]
...
call _strchr
mov [rbp+cp], rax

cmp [rbp+cp], 0
jnz loc_416A41

mov eax, 0

leave
retn

push rbp
mov rbp, rsp
...
jmp loc_416AF4

mov rax, [rbp+cp]
cmp rax, [rbp+path]
jz loc_416A53

add [rbp+cp], 1

mov rax, [rbp+cp]
...
cmp [rbp+cp2], 0
jz loc_416A7C mov rax, [rbp+cp2]

sub rax, [rbp+cp]
mov [rbp+len], eax
jmp loc_416A8Bmov rax, [rbp+cp]

mov rdi, rax
call _strlen
mov [rbp+len], eax mov eax, [rbp+len]

...
call _memcpy
...
cmp [rbp+i], 0
jz loc_416ADF

mov eax, [rbp+i]
jmp locret_416B04

mov rax, [rbp+cp]
...
call _strchr
mov [rbp+cp], rax

cmp [rbp+cp], 0
jnz loc_416A41

mov eax, 0

leave
retn

push rbp
...
cmp [rbp+suffix], 0
jz loc_4115EA

mov rax, [rbp+suffix]
jmp loc_4115EF

mov eax, offset
unk_4211A5

mov [rbp+ctx.suffix], rax
mov eax, 0
call buffer_alloc
mov [rbp+ctx.fullname], rax
mov rax, cs:libpath
lea rdx, [rbp+ctx]
mov esi, offset file_lookup
mov rdi, rax
call pathwalk
mov [rbp+result], eax
mov rax, [rbp+ctx.fullname]
mov rdi, rax
call _ZN14target_ira_intD2Ev
mov eax, [rbp+result]
leave
retn

push rbp
...
cmp [rbp+suffix], 0
jz loc_4115EA

mov rax, [rbp+suffix]
jmp loc_4115EF

mov eax, offset
unk_4211A5

mov [rbp+ctx.suffix], rax
mov eax, 0
call buffer_alloc
mov [rbp+ctx.fullname], rax
mov rax, cs:libpath
lea rdx, [rbp+ctx]
mov esi, offset file_lookup
mov rdi, rax
call pathwalk
mov [rbp+result], eax
mov rax, [rbp+ctx.fullname]
mov rdi, rax
call _ZN14target_ira_intD2Ev
mov eax, [rbp+result]
leave
retn

pathwalk

file_existsp

push rbp
...
cmp [rbp+suffix], 0
jz loc_4115EA

mov rax, [rbp+suffix]
jmp loc_4115EF

mov eax, offset
unk_4211A5

mov [rbp+ctx.suffix], rax
mov eax, 0
call buffer_alloc
mov [rbp+ctx.fullname], rax
mov rax, cs:libpath
lea rdx, [rbp+ctx]
mov esi, offset file_lookup
mov rdi, rax
push rbp
mov rbp, rsp
...
jmp loc_416AF4

mov rax, [rbp+cp]
cmp rax, [rbp+path]
jz loc_416A53

add [rbp+cp], 1

mov rax, [rbp+cp]
...
cmp [rbp+cp2], 0
jz loc_416A7C mov rax, [rbp+cp2]

sub rax, [rbp+cp]
mov [rbp+len], eax
jmp loc_416A8Bmov rax, [rbp+cp]

mov rdi, rax
call _strlen
mov [rbp+len], eax mov eax, [rbp+len]

...
call _memcpy
...
cmp [rbp+i], 0
jz loc_416ADF

mov eax, [rbp+i]
jmp locret_416B04

mov rax, [rbp+cp]
...
call _strchr
mov [rbp+cp], rax

cmp [rbp+cp], 0
jnz loc_416A41

mov eax, 0

leave
mov [rbp+result], eax
mov rax, [rbp+ctx.fullname]
mov rdi, rax
call _ZN14target_ira_intD2Ev
mov eax, [rbp+result]
leave
retn

push rbp
...
cmp [rbp+suffix], 0
jz loc_4115EA

mov rax, [rbp+suffix]
jmp loc_4115EF

mov eax, offset
unk_4211A5

mov [rbp+ctx.suffix], rax
mov eax, 0
call buffer_alloc
mov [rbp+ctx.fullname], rax
mov rax, cs:libpath
lea rdx, [rbp+ctx]
mov esi, offset file_lookup
mov rdi, rax
push rbp
mov rbp, rsp
...
jmp loc_416AF4

mov rax, [rbp+cp]
cmp rax, [rbp+path]
jz loc_416A53

add [rbp+cp], 1

mov rax, [rbp+cp]
...
cmp [rbp+cp2], 0
jz loc_416A7C mov rax, [rbp+cp2]

sub rax, [rbp+cp]
mov [rbp+len], eax
jmp loc_416A8Bmov rax, [rbp+cp]

mov rdi, rax
call _strlen
mov [rbp+len], eax mov eax, [rbp+len]

...
call _memcpy
...
cmp [rbp+i], 0
jz loc_416ADF

mov eax, [rbp+i]
jmp locret_416B04

mov rax, [rbp+cp]
...
call _strchr
mov [rbp+cp], rax

cmp [rbp+cp], 0
jnz loc_416A41

mov eax, 0

leave
mov [rbp+result], eax
mov rax, [rbp+ctx.fullname]
mov rdi, rax
call _ZN14target_ira_intD2Ev
mov eax, [rbp+result]
leave
retn

pathwalk

file_existsp

push rbp
...
cmp [rbp+suffix], 0
jz loc_4115EA

mov rax, [rbp+suffix]
jmp loc_4115EF

mov eax, offset
unk_4211A5

mov [rbp+ctx.suffix], rax
mov eax, 0
call buffer_alloc
mov [rbp+ctx.fullname], rax
mov rax, cs:libpath
lea rdx, [rbp+ctx]
mov esi, offset file_lookup
mov rdi, rax
push rbp
mov rbp, rsp
...
jmp loc_416AF4

mov rax, [rbp+cp]
cmp rax, [rbp+path]
jz loc_416A53

add [rbp+cp], 1

mov rax, [rbp+cp]
...
cmp [rbp+cp2], 0
jz loc_416A7C mov rax, [rbp+cp2]

sub rax, [rbp+cp]
mov [rbp+len], eax
jmp loc_416A8Bmov rax, [rbp+cp]

mov rdi, rax
call _strlen
mov [rbp+len], eax mov eax, [rbp+len]

...
call _memcpy
...
cmp [rbp+i], 0
jz loc_416ADF

mov eax, [rbp+i]
jmp locret_416B04

mov rax, [rbp+cp]
...
call _strchr
mov [rbp+cp], rax

cmp [rbp+cp], 0
jnz loc_416A41

mov eax, 0

leave
mov [rbp+result], eax
mov rax, [rbp+ctx.fullname]
mov rdi, rax
call _ZN14target_ira_intD2Ev
mov eax, [rbp+result]
leave
retn

Figure 4: Illustration of CFG Expansion Process.

26

Any new callees introduced by this inlining step are then enqueued, assigned696

an incremented depth, and considered in a subsequent iteration.697

3.4.3. Expanding CFG698

The CFG expansion process (Line 8) transforms a caller function by merg-699

ing its CFG with the CFG of a selected callee. The primary goal of this step700

is not to generate a fully runnable binary, but rather to create a richer rep-701

resentation for training language models. Thus, the exact register naming is702

less critical than the flow of logic and control. The representation learning703

model, trained on such CFGs, is expected to learn the underlying semantics704

of the code.705

Fig. 4 shows an example of our CFG expansion strategy. In the illustrated706

example, the file existsp function (caller) invokes the pathwalk function707

(callee) at a specific call site. To inline this call and expand the CFG of708

file existsp, the call instruction is conceptually replaced with the body709

of pathwalk. During this process, the retn instruction in the callee’s code710

is removed, as returning is no longer necessary once its instructions are di-711

rectly integrated into the caller’s control flow. The call site in file existsp712

thus becomes the insertion point for the callee’s CFG, integrating the two713

functions into a unified and continuous CFG.714

4. Empirical Study715

In our empirical study, we seek to address the following research questions:716

RQ1: What is the impact of function inlining on BCSD?717

RQ2: Can compiler behavior regarding function inlining decisions be reason-718

ably predicted after compilation?719

RQ3: How does FIN affect the performance of BCSD?720

RQ4: What is the computational overhead introduced by our proposed pre-721

processing technique in a BCSD pipeline?722

RQ5: How does FIN impact the effectiveness of identifying real-world known723

vulnerabilities?724

27

Q1 is designed to explore the impact of frequently inlined functions on the725

BCSD. Q2 assesses the feasibility and effectiveness of our proposed method726

for predicting compiler inlining decisions. Q3 focuses on evaluating the effect727

of FIN on state-of-the-art binary code representation learning techniques. Q4728

examines the efficiency of our proposed preprocessing technique within the729

BCSD pipeline. Lastly, Q5 investigates how FIN impacts the effectiveness of730

BCSD in identifying real-world known vulnerabilities.731

4.1. Experimental Environment732

In this study, all experiments were conducted on a server equipped with733

a 32-core AMD Ryzen Pro 3975WX CPU operating at 3.50 GHz, 500 GB734

of memory, 4 Nvidia RTX A6000 GPUs, and running Windows Server 2022735

Datacenter. For disassembly purposes, we utilized IDA Pro version 8.0 (Hex-736

Rays, 2024a).737

4.1.1. Baseline Models738

For the embedding generation and binary code clone search, we em-739

ployed three state-of-the-art transformer models, CLAP Wang et al. (2024),740

jTrans (Wang et al., 2022), and Trex (Pei et al., 2020). Our choice was741

guided by two main considerations. Firstly, we prioritized models with pub-742

licly available official implementations, ensuring the validity and reliability of743

our results. Secondly, transformer-based models have demonstrated superior744

performance over other static BCSD techniques (Wang et al., 2022; Pei et al.,745

2020). For our experiments, we initially downloaded the pretrained jTrans2746

and Trex3 models. These models were then fine-tuned using two versions of747

the BinKit dataset, details of which are provided subsequently. Throughout748

the fine-tuning process, we maintained the default hyperparameters as spec-749

ified in the original configurations of these models. To ensure fairness in the750

fine-tuning process, we standardized the initial conditions for both dataset751

versions, including the training samples and the configurations of anchor,752

positive, and negative pairs. This approach ensures that any observed dif-753

ferences in model performance are attributable to the dataset variations and754

not to changes in the experimental setup. For CLAP Wang et al. (2024),755

however, we opted for a zero-shot evaluation rather than fine-tuning. This756

decision was motivated by two factors: first, CLAP’s zero-shot performance757

2https://github.com/vul337/jTrans
3https://github.com/CUMLSec/trex

28

https://github.com/vul337/jTrans
https://github.com/CUMLSec/trex

Table 4: Number of functions and unique caller-callee pairs in the dataset used in this
research.

Set
GCC Clang

Total
O0 O1 O2 O3 O0 O1 O2 O3

Functions
Train 62,016 46,489 44,666 42,953 61,300 43,255 43,236 43,122 387,037

Test 36,194 26,240 27,064 26,922 35,141 23,924 23,901 23,687 223,073

Caller-callee pairs
Train 122,195 91,158 79,686 76,138 125,745 84,272 81,275 80,936 741,405

Test 63,859 50,464 43,455 41,807 63,053 44,368 42,781 42,433 392,220

on BinKit was already reasonably high; second, using a zero-shot setting758

eliminated training effects, allowing us to isolate and assess the impact of759

CFG expansion alone during testing.760

4.1.2. Datasets761

The dataset used in this research is a subset of BinKit (Kim et al., 2022),762

consisting of all functions compiled with Clang 13.0 and GCC 11.2.0 across763

four optimization levels (O0, O1, O2, and O3) for the x86-64 architecture.764

The dataset originally includes a total of 920,761 functions. However, for our765

experiments, we only selected the functions that originated from the source766

code and excluded any compiler-generated functions. This selection left us767

with a total of 610,110 functions. We then extracted unique caller-callee768

pairs from these functions.769

To ensure meaningful evaluation and prevent information leakage, our770

train-test split was performed at the project level rather than at the function771

level. This means that entire projects (along with their associated functions)772

were placed exclusively in either the training or test set. Given the substantial773

variance in the number of functions per project, we first grouped projects by774

their size. Subsequently, we randomly selected a set of projects to achieve775

a roughly 70–60% training and 30–40% testing proportion. This strategy776

was employed to maintain a representative distribution of functions while777

ensuring no overlap of project-related information between the training and778

test sets.779

Table 4 provides a detailed breakdown of the number of functions and780

caller-callee pairs for each compiler and optimization level in both the train-781

ing and test sets. The BinKit subset was primarily used for the BCSD task,782

while the caller-callee pairs were utilized for function inlining prediction and783

analysis.784

29

More specifically, we leveraged the caller-callee dataset to generate in-785

lining ground-truth and to train FIN. The generated ground-truth was then786

used to preprocess BinKit functions in the training set, while FIN predictions787

were used to preprocess functions in the test set. We subsequently fine-tuned788

and tested Trex and jTrans on both the original BinKit and the preprocessed789

BinKit datasets.790

4.1.3. Evaluation metric791

To evaluate the performance of FIN in predicting compiler behavior re-792

garding inlining decisions, we use precision, recall, F1 score, and AUC. Fur-793

thermore, we use the Mean Reciprocal Rank (MRR) to measure and compare794

the performance of the baseline models with and without FIN preprocessing.795

MRR is a statistic used to evaluate the performance of a system that pro-796

duces a list of possible responses to a query, ranked by their relevance. MRR797

is defined as the average of the reciprocal ranks of the first relevant response798

for a set of queries.799

Let Q be the set of queries, and let |Q| denotes the number of queries in800

Q. For a given query q ∈ Q, let rankq denotes the rank position of the first801

relevant response in the list of results produced by the system for query q.802

The reciprocal rank for query q is then given by:803

ReciprocalRank(q) =
1

rankq

The Mean Reciprocal Rank (MRR) is the mean of the reciprocal ranks804

for all queries in the set Q:805

MRR =
1

|Q|
∑
q∈Q

1

rankq

The MRR provides a single-figure measure of quality across multiple806

queries, with higher MRR values indicating better performance. It effec-807

tively captures the ability of the system to rank relevant results higher in the808

response list.809

4.1.4. Clone search task810

Clone search is a BCSD task where the goal is to identify similar or identi-811

cal code fragments across different binary executables. LetQ = {q1, q2, . . . , qn}812

represents a set of binary functions in the query set and P = {p1, p2, . . . , pm}813

30

O0 O1
Optimization Levels

0

5

10

15

20

25

30

35

%
 o

f
Fu

nc
ti

on
s

27.73%

16.25%

33.53%

1.20%

GCC
Clang

Figure 5: Comparison of the number of functions identified for CFG expansion at opti-
mization levels O0 and O1 relative to the total number of functions in our dataset.

represents a pool of binary functions. The objective of the clone search task814

is to identify functions in P that are similar or identical to each function in815

Q.816

For each function qi ∈ Q, the task is to find the function(s) pj ∈ P that817

maximize a similarity measure S(qi, pj). Techniques such as graph matching,818

embedding models, or machine learning classifiers are employed to compute819

S(qi, pj).820

Formally, for each qi ∈ Q, we seek to find the function pj ∈ P that821

maximizes S(qi, pj), i.e.,822

∀qi ∈ Q, find pj ∈ P such thatS(qi, pj) = max
pk∈P

S(qi, pk)

The similarity scores S(qi, pj) are then sorted in descending order for each823

qi, allowing the identification of the most similar functions pj ∈ P to each824

query function qi.825

Following the literature (Hu et al., 2018; Marcelli et al., 2022; Wang826

and Wu, 2017; Xu et al., 2023), we use a pool size of 500 query functions827

from Om and 500 corresponding functions from On in the repository for828

our clone search experiments, where m and n are in the range [0-3] and829

m ̸= n. To ensure robustness and reliability of our results, we repeat the830

test 100 times, each time selecting 500 random query functions and their831

corresponding functions. After conducting these repeated tests, we employ832

the Wilcoxon signed-rank test to statistically compare the results.833

31

4.2. RQ1: Function Inlining Impact834

To answer RQ1, we conducted three experiments on the test functions835

directly without applying FIN. We first estimated the portion of functions836

affected by function inlining. For this purpose, after generating the ground-837

truth inlining, we collected functions at the O0 and O1 optimization levels838

that have at least one callee identified as inlined at both the O2 and O3839

optimization levels. As illustrated in Fig. 5, our observations show that840

at optimization level O0, 27.73% of the functions in GCC and 33.53% of841

the functions in Clang contain callees that are inlined at both O2 and O3.842

Similarly, at optimization level O1, 16.25% of the functions in GCC and843

1.20% of the functions in Clang exhibit such inlining behavior.844

Next, we measured the similarities of function pairs using embeddings ob-845

tained from jTrans and Trex, which were fine-tuned on the BinKit dataset.846

As shown in Fig. 6, the highest similarity drop occurs when comparing func-847

tions at O0 with those at O2 or O0 with those at O3. We observed that848

the presence of function inlining can cause a similarity drop of up to 5.58%,849

8.96%, and 26.78% for CLAP, jTrans, and Trex, respectively. Additionally,850

we noticed that jTrans is more robust against function inlining than Trex.851

To evaluate the effect of similarity drops in binary clone search, we de-852

signed an experiment where we separated functions with inlining from those853

without inlining. We then queried functions at O0 against a pool of O3854

functions for both groups. Fig. 7 shows the average MRR values obtained855

from 100 repetitions for each experiment. We observed that the MRR values856

drop by up to 21.84%, 18.42%, and 49.01% when performing clone search on857

functions affected by inlining using CLAP, jTrans, and Trex, respectively.858

The observed drop in MRR suggests three possible reasons:859

1. Inherent Function Complexity: Functions that do not have inlin-860

able call sites might be inherently simpler than those that do. This861

simplicity could complicate BCSD. However, since language models862

such as jTrans and CLAP are designed to understand the semantics of863

binary functions, this is unlikely to be the primary reason for the drop864

in MRR.865

2. Semantic Enrichment through Function Inlining: When com-866

paring functions at O0 with those at higher optimization levels, func-867

tion inlining introduces the 1-to-n matching problem, significantly com-868

plicating BCSD. Function inlining adds the semantic of the inlined869

callee to the caller function, enriching the O3 versions with additional870

32

O0-O1 O0-O2 O0-O3 O1-O2 O1-O3
Optimization Level Comparisons

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty
 S

co
re

s

CLAP
GNI GWI CNI CWI

O0-O1 O0-O2 O0-O3 O1-O2 O1-O3
Optimization Level Comparisons

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty
 S

co
re

s

jTrans
GNI GWI CNI CWI

O0-O1 O0-O2 O0-O3 O1-O2 O1-O3
Optimization Level Comparisons

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty
 S

co
re

s

Trex
GNI GWI CNI CWI

Figure 6: Comparison of similarity scores by compiler and inlining settings. In this figure,
GNI refers to GCC-compiled functions without inlining, and GWI to those with inlined
call sites. Similarly, CNI and CWI refer to Clang-compiled functions without and with
inlining, respectively.

context and information. This enrichment causes the similarity be-871

tween O0 and O3 versions of the same function to drop (see Fig. 6), as872

the added semantics alter the structure and behavior of the function.873

3. Post-Inlining Optimizations: Post-inlining optimizations can fur-874

ther alter functions and complicate BCSD. These transformations often875

depend on the initial inlining step, making function inlining the starting876

point for subsequent structural and semantic changes in the code.877

33

W
ith

ou
t I

nl
in

in
g

Clan
g

W
ith

 In
lin

in
g

Clan
g

W
ith

ou
t I

nl
in

in
g

GCC

W
ith

 In
lin

in
g

GCC

0.65

0.70

0.75

0.80

0.85

0.90

M
R

R

0.87

0.68

0.79

0.74

CLAP

W
ith

ou
t I

nl
in

in
g

Clan
g

W
ith

 In
lin

in
g

Clan
g

W
ith

ou
t I

nl
in

in
g

GCC

W
ith

 In
lin

in
g

GCC

0.60

0.65

0.70

0.75

0.80

M
R

R

0.76

0.62

0.76

0.68

jtrans

W
ith

ou
t I

nl
in

in
g

Clan
g

W
ith

 In
lin

in
g

Clan
g

W
ith

ou
t I

nl
in

in
g

GCC

W
ith

 In
lin

in
g

GCC

0.3

0.4

0.5

0.6

M
R

R

0.51

0.26

0.62

0.34

Trex

Figure 7: Comparative analysis of MRR for functions compiled with optimization level
O0, searched within a repository of functions compiled at optimization level O3, with and
without function inlining.

Answer to RQ1: Our observations show that functions containing in-
lined callees correlate with lower similarity scores and reduced retrieval
performance in BCSD tasks. The substantial difference in inlining be-
tween low and high optimization levels is associated with a notable per-
formance drop in state-of-the-art BCSD approaches. Since function
inlining often serves as a starting point for further optimizations, its
presence may contribute to more complex transformations that compli-
cate similarity detection. While these findings suggest that inlining and
the subsequent optimizations may influence the observed difficulties,
further investigation is needed to establish a direct causal relationship.

878 34

Table 5: Performance comparison of FIN, BinGo, Asm2Vec, and OpTrans in predicting
whether a callee should be inlined.

Method Compiler Precision Recall F1 Score AUC

BinGo (Chandramohan et al., 2016)
GCC 0.36 0.25 0.30 N/A
Clang 0.45 0.23 0.30 N/A

Asm2Vec (Ding et al., 2019)
GCC 0.41 0.24 0.30 N/A
Clang 0.44 0.18 0.26 N/A

OpTrans (Sha et al., 2025)
GCC 0.23 0.21 0.22 N/A
Clang 0.23 0.16 0.19 N/A

FIN
GCC 0.75 0.61 0.67 0.91
Clang 0.85 0.72 0.78 0.95

AUC values are not available for the BinGo, Asm2Vec, and OpTrans rule-based ap-
proaches.

4.3. RQ2: Compiler Inlining Decision Predictions879

We trained an RF model using the proposed features to predict the inlin-880

ing decisions made by compilers and evaluated its performance on our test881

set. Additionally, we implemented the BinGo (Chandramohan et al., 2016),882

OpTrans (Sha et al., 2025), and Asm2Vec (Ding et al., 2019) strategies for883

CFG expansion to compare with our approach, FIN. Table 5 presents the re-884

sults obtained by the four approaches. Since BinGo, Asm2Vec, and OpTrans885

are rule-based approaches and do not provide probabilities, we could not cal-886

culate the AUC value for them. The results show that while our counterparts887

could not achieve an F1 score higher than 0.30, FIN achieved an average F1888

score of 0.72, which is 140% higher than that of BinGo and Asm2Vec. This889

shows that relying solely on the in and out degree of the callee function (as890

introduced by BinGo) and function sizes (as added by Asm2Vec and also used891

in OpTrans) might not be sufficient for making CFG expansion decisions. To892

further investigate this, we analyzed the contribution of our selected features893

by obtaining importance of features from our RF model.894

In RF, feature importance is quantified using the Mean Decrease in Im-895

purity (MDI). Let S be the set of training samples, and let H(S) represents896

the entropy of S. For a given feature A, the information gain IG(S,A) from897

splitting S on A is calculated as:898

35

0.00 0.05 0.10 0.15 0.20 0.25
Importance

Callee: AvgCallDist
Callee: FuncSize

Callee: SizeInc
Callee: BBInc

Callee: InCallsZScore
Callee: o_near

Caller: FuncSize
Callee: o_reg

Callee: o_displ
Callee: OutCallsZScore

Caller: AvgCallDist
Callee: SizeZScore
Callee: BBZScore

Callee: o_imm
Caller: o_reg

Caller: o_phrase
Caller: o_imm
Caller: o_near

Caller: BBZScore
Callee: o_phrase

Caller: SizeZScore
Caller: o_mem
Callee: o_mem

Caller: IsRecursive
Callee: IsRecursive

Caller: o_fpreg
Callee: o_fpreg

Fe
at

ur
e

Figure 8: The importance values obtained from the RF model.

IG(S,A) = H(S)−
∑

v∈Values(A)

|Sv|
|S|

H(Sv)

where Sv is the subset of S for which feature A takes the value v, and899

Values(A) represents all possible values of A. The feature importance for A900

is then determined by summing the information gain IG(S,A) over all nodes,901

where A is used for splitting across all trees in the forest, and then averaging902

these sums over all trees. Formally, for T trees in the forest and node t in903

tree Ti:904

Importance(A) =
1

T

T∑
i=1

∑
t∈nodes

IGt(S,A)

This aggregated measure represents the total reduction in entropy at-905

tributable to feature A throughout the forest.906

Fig. 8 illustrates the contribution of each feature in making correct deci-907

sions about whether a callee function should be inlined. The results reveal908

that, contrary to the common belief that function size and the in and out909

degrees of a callee function are the most important factors for deciding CFG910

expansion, the average distance of a callee function from its callers is actually911

the most significant feature.912

36

Not Inlined Inlined
100

101

102

103

104

105

106

D
is

ta
nc

e
(l

og
 s

ca
le

)

Figure 9: Boxplot of average distance of callees from their callers in both class 0 (Not
Inlined) and class 1 (Inlined).

Upon further examination of the average incoming call distances of callees,913

we found that functions that are very far from their callers are less likely to914

be suitable choices for CFG expansion. As shown in Table 2, the average915

distance of samples in class 1 is 94.14% and 95.01%, lower than those in916

class 0 for GCC and Clang, respectively. Furthermore, upon analyzing all917

callees in our dataset, we discovered that 40% of the functions in class 0 had918

an average distance greater than the maximum average distance observed in919

class 1 (Fig. 9).920

Answer to RQ2: Our findings show that although GCC and Clang com-
pilers make inlining decisions based on different heuristics, which can
also vary by program, the overall structure of a binary executable and
certain function features can help predict a considerable number of the
inlining decisions made by these compilers.

921

4.4. RQ3: Effectiveness of FIN922

To evaluate the effect of FIN predictions, we conducted an experiment923

using the BinKit dataset with three CFG expansion techniques: BinGo,924

Asm2Vec, OpTrans, and FIN. We preprocessed the dataset with each of925

these techniques, collected functions that were affected by inlining accord-926

ing to our ground-truth data, as well as extracted their embeddings from927

37

Table 6: Comparison of the MRR values for clone searches on functions that include
at least one inlined callee, using different CFG expansion strategies relative to using no
strategy. Cells with p-values higher than 0.05 are highlighted in gray, indicating that the
improvement is not statistically significant.

None BinGo Asm2Vec OpTrans FIN
Model Compiler Query - Pool

MRR MRR Impr. MRR Impr. MRR Impr. MRR Impr.

O0 - O1 0.77 0.79 1.69% 0.78 1.02% 0.79 1.76% 0.80 3.44%

O0 - O2 0.74 0.75 1.97% 0.74 0.87% 0.74 0.41% 0.76 3.57%GCC

O0 - O3 0.71 0.72 1.76% 0.72 0.66% 0.71 -0.44% 0.73 2.77%

O0 - O1 0.66 0.66 0.32% 0.65 -1.32% 0.66 -0.02% 0.69 5.57%

O0 - O2 0.65 0.64 0.54% 0.64 -1.55% 0.65 -0.11% 0.68 5.40%

jTrans

Clang

O0 - O3 0.64 0.64 0.33% 0.63 -1.58% 0.64 -0.15% 0.67 5.08%

O0 - O1 0.55 0.56 1.39% 0.55 0.21% 0.57 3.60% 0.58 4.79%

O0 - O2 0.41 0.43 4.99% 0.43 3.93% 0.41 -0.40% 0.45 9.62%GCC

O0 - O3 0.36 0.39 10.50% 0.39 9.02% 0.37 2.99% 0.40 12.48%

O0 - O1 0.28 0.31 9.48% 0.30 7.71% 0.31 11.20% 0.34 21.54%

O0 - O2 0.27 0.30 11.10% 0.29 9.01% 0.30 11.84% 0.32 19.99%

Trex

Clang

O0 - O3 0.27 0.30 11.14% 0.29 9.10% 0.30 11.11% 0.32 19.73%

O0 - O1 0.84 0.84 -0.18% 0.84 -0.30% 0.85 0.83% 0.87 3.21%

O0 - O2 0.74 0.76 1.82% 0.76 1.93% 0.74 -0.18% 0.76 2.66%GCC

O0 - O3 0.75 0.75 0.66% 0.75 0.62% 0.73 -1.70% 0.75 -0.12%

O0 - O1 0.67 0.69 2.77% 0.69 2.58% 0.68 1.07% 0.75 11.01%

O0 - O2 0.68 0.70 2.58% 0.70 2.26% 0.68 0.84% 0.74 8.05%

CLAP

Clang

O0 - O3 0.68 0.70 2.32% 0.70 2.06% 0.68 0.82% 0.73 7.64%

Note: MRR values were originally calculated with 16-bit floating-point precision, and im-
provements were computed based on these 16-bit values. However, both MRR and improve-
ment percentages are reported to two decimal.

both the original and preprocessed data compiled with GCC and Clang us-928

ing CLAP, jTrans and Trex. This process resulted in a total of 30 sets of929

embeddings.930

Next, we performed clone search experiments on these 30 sets. Specifi-931

cally, for each set, we randomly selected a query set of O0 embeddings and932

a pool of randomly selected functions at O1, O2, and O3 optimization lev-933

els. The rationale behind this selection is that the BCSD between O0 and934

the other three optimization levels is significantly challenging, making these935

settings suitable for observing potential improvements.936

In total, we designed 18 experiments, each incorporating a combination of937

the following variables: compiler (GCC or Clang), query/pool optimization938

38

setting (e.g., O0/O1), CFG expansion technique (None, BinGo, Asm2Vec,939

OpTrans, and FIN), and representation learning technique (CLAP, jTrans,940

or Trex). For fair comparison, we used a single random set of functions in941

each experiment for each CFG expansion technique, with different sets for942

each repetition.943

Table 6 presents the MRR values obtained from the clone search experi-944

ments conducted with functions affected by inlining. The improvements for945

each strategy were calculated relative to the MRR obtained from the no in-946

lining strategy. The results show that, in the presence of function inlining,947

FIN improved the performance of jTrans, CLAP, and Trex by up to 5.57%,948

11.01%, and 21.54%, respectively, outperforming the BinGo and Asm2Vec949

strategies.950

The improvements in Table 6 were largely expected given how OpTrans,951

BinGo, and Asm2Vec handle function inlining. The three of them rely on952

selective inlining guided by a set of tuned thresholds, such as function size953

limits and coupling scores, that do not fully reflect how compilers actually954

decide which functions to inline at different optimization levels. Although955

these heuristics can prevent code-size explosion and maintain scalability, they956

often miss or misrepresent the detailed inlining behavior performed by the957

compiler. In contrast, FIN strives to predict and mirror the compiler’s real958

inlining decisions rather than relying on inflexible, handcrafted rules. As a959

result, FIN covers a wider range of inlining scenarios and more accurately960

represents the inlined code, leading to the performance gains observed in961

Table 6.962

To evaluate how false positives from FIN affect clone search when deal-963

ing with functions that were not originally affected by inlining, we repeated964

a similar set of experiments, this time employing only FIN. Specifically, we965

first collected functions that were not affected by inlining. Then, we designed966

18 additional experiments for these collected functions. We maintained the967

same compiler and optimization settings and the same representation learn-968

ing techniques as in the previous experiments. However, we excluded Op-969

Trans, BinGo and Asm2Vec from this part, due to their lesser relevance and970

space limitations.971

Table 7 shows the results obtained from the clone search experiments972

conducted with functions that were not originally affected by function in-973

lining. The results indicate that in 77% of the experiments, the difference974

is negligible. However, FIN achieved notable improvements in some of ex-975

periments, suggesting two hypotheses for future study. The first hypothesis976

39

Table 7: Comparison of the MRR values for clone searches on functions that include no
inlined callee, using different CFG expansion strategies relative to using no strategy. Cells
with p-values higher than 0.05 are highlighted in gray, indicating that the improvement is
not statistically significant.

jTrans Trex CLAP

None FIN None FIN None FINCompiler Query - Pool

MRR MRR Impr. MRR MRR Impr. MRR MRR Impr.

O0 - O1 0.78 0.78 -0.18% 0.71 0.71 -0.16% 0.90 0.90 -0.40%

O0 - O2 0.78 0.79 0.80% 0.66 0.65 -1.28% 0.81 0.81 -0.15%GCC

O0 - O3 0.76 0.76 0.74% 0.62 0.62 0.33% 0.79 0.79 -0.10%

O0 - O1 0.75 0.76 0.45% 0.52 0.55 4.96% 0.86 0.86 -0.25%

O0 - O2 0.76 0.77 0.65% 0.51 0.54 4.84% 0.87 0.87 -0.03%Clang

O0 - O3 0.76 0.76 0.01% 0.51 0.54 5.28% 0.87 0.87 -0.01%

Note: MRR values were originally calculated with 16-bit floating-point precision, and im-
provements were computed based on these 16-bit values. However, both MRR and improve-
ment percentages are reported to two decimal.

is that having functions with expanded CFGs during training or fine-tuning977

may make it easier for the language model to learn. The second hypothe-978

sis suggests that even though some functions are falsely inlined, they might979

still add more context and semantic information, making the functions more980

distinguishable.981

By specifically targeting the challenges posed by function inlining, FIN982

demonstrates a more pronounced improvement in scenarios where models983

are highly impacted by inlined code. Our experimental results suggest that984

Trex, which experiences a greater drop in MRR when handling inlined func-985

tions, benefits substantially from the mitigation provided by FIN. In contrast,986

CLAP and jTrans, having been pretrained on a broader set of functions, in-987

cluding those compiled at various optimization levels, exhibit better baseline988

resilience to the effects of inlined code. Consequently, the improvements ob-989

served with FIN are more modest for CLAP and jTrans, as their performance990

is less affected by inlining-related discrepancies. Furthermore, the gains in991

CLAP’s performance show that FIN can potentially enhance representation-992

learning models even without additional fine-tuning.993

These findings suggest that the enhancements achieved by FIN do not994

simply inflate performance metrics by exploiting weaknesses in models such995

as Trex, but rather highlight FIN’s ability to effectively address inlining-996

40

specific challenges. This is particularly observed in cases where baseline997

models struggle with inlined code, emphasizing FIN’s role in targeted miti-998

gation rather than artificially boosting results.999

Answer to RQ3: The results of our experiments show that FIN can sig-
nificantly boost the performance of state-of-the-art assembly represen-
tation learning techniques. This represents a step forward in achieving
accurate and robust cross-optimization BCSD.

1000

4.5. RQ4: Efficiency Analysis1001

FIN consists of three main steps: feature extraction, callee inlining pre-1002

diction, and CFG expansion. The feature extraction step requires FIN to1003

analyze the entire binary program. This process involves disassembling the1004

binary, which inherently requires visiting each instruction in the program.1005

As a result, the time complexity of feature extraction is O(n), where n is1006

the number of instructions in the program. However, since disassembly is1007

a prerequisite for most BCSD pipelines, the feature extraction step in FIN1008

can be integrated into this process, effectively leveraging the same operation1009

without introducing additional overhead to the overall pipeline.1010

2 4 6 8 10 12 14 16 18 20
Number of Jobs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

re
nc

e
Ti

m
e

(s
ec

on
ds

)

0.24

0.76 Inference Time

Figure 10: Average inference time (in seconds) for predicting the inlining status of 100,000
caller-callee pairs using different numbers of concurrent workers.

To evaluate the efficiency of the RF model used in FIN, we predicted1011

the inlining status of 100,000 caller-callee pairs using 1 to 20 concurrent1012

41

workers to determine the best and worst inference times on our machine.1013

We repeated each experiment 100 times and measured the prediction time.1014

Fig. 10 shows the average prediction time for different numbers of concurrent1015

workers. The experiments were conducted in a WSL Ubuntu environment1016

with resources limited to 16GB of RAM and 4 CPU cores, along with reduced1017

CPU scheduling priority to simulate a resource-constrained environment. In1018

the worst case, it took 0.76 seconds with a single job to predict the labels of1019

100,000 caller-callee pairs, while in the best case, it took 0.24 seconds using1020

4 concurrent workers.1021

The time complexity of our CFG expansion for a single function is O(cd),1022

where c denotes the number of call sites associated with caller-callee pairs1023

identified for inlining by our prediction model, and d represents the depth1024

of the call tree for the selected inlined calls. These caller-callee pairs are1025

extracted during the feature extraction phase as part of the disassembly pro-1026

cess. As a result, there is no additional overhead introduced for identifying1027

call sites and caller-callee pairs beyond what is required for disassembly.1028

In practice, functions typically invoke a limited number of other functions1029

(resulting in a small c), and the call depth tends to be relatively shallow1030

(resulting in a small d). This ensures that the CFG expansion remains com-1031

putationally manageable within the overall BCSD pipeline.1032

Answer to RQ4: Overall, our analysis shows that FIN introduces low
relative overhead to the BCSD pipeline. Its feature extraction is per-
formed in conjunction with the required disassembly step, and the anal-
ysis of inlining prediction by a Random Forest model shows a man-
ageable overhead, making it practical for integration into the BCSD
pipeline.

1033

4.6. RQ5: Real-World Application1034

BCSD plays a critical role in vulnerability search by allowing analysts to1035

match known security flaws against potentially different versions or variants1036

of compiled code. When developers reuse code or apply standard libraries1037

across multiple platforms, these similarities can remain hidden, sometimes1038

subtly, by compiler optimizations, function inlining, or other transforma-1039

tions. BCSD aims to abstract away low-level differences, focusing instead1040

on the core program logic. By identifying similar structural and semantic1041

features in binaries, BCSD approaches help security researchers find known1042

42

Table 8: CVEs identified for each program in the BinKit dataset.

Program CVEs

a2ps-4.14 CVE-2015-8107

tar-1.34 CVE-2022-48303

sharutils-4.15.2 CVE-2018-1000097

cpio-2.12 CVE-2010-4226, CVE-2019-14866, CVE-2021-38185

cflow-1.7 CVE-2023-2789

patch-2.7.5 CVE-2016-10713, CVE-2018-6951, CVE-2018-6952, CVE-2019-13636, CVE-2018-20969, CVE-2019-20633

libmicrohttpd-0.9.75 CVE-2023-27371

binutils-2.40 CVE-2023-1972, CVE-2023-25586, CVE-2025-0840

inetutils-2.4 CVE-2023-40303

O1 O2 O30.0

0.2

0.4

0.6

0.8

1.0

TP
R

GCC

O1 O2 O3

Clang

jTrans jTrans + FIN CLAP CLAP + FIN

Figure 11: Average TPR for CVE retrieval using jTrans and CLAP, comparing perfor-
mance before versus after FIN.

vulnerabilities in newly compiled or proprietary software.1043

To investigate the impact of FIN on the known vulnerability search task,1044

we first extracted the CVEs associated with the programs in the BinKit1045

dataset from the National Vulnerability Database. Next, we manually exam-1046

ined each CVE to establish a mapping between the CVEs and their corre-1047

sponding source functions. We then leveraged assembly-to-source mappings1048

to build ground-truth associations between assembly functions and CVEs4.1049

In total, we collected 18 CVEs; however, we omitted four CVEs related to1050

4https://github.com/McGill-DMaS/BinKit_CVE

43

https://github.com/McGill-DMaS/BinKit_CVE

binutils and inutils because those programs had already appeared during our1051

training phase. Table 8 summarizes the CVEs identified for each program.1052

We selected jTrans and CLAP, the two embedding models that performed1053

best in our previous experiments, and evaluated them before and after ap-1054

plying FIN. For each model variant, we queried every vulnerable function1055

compiled at O0 against the same program compiled at O1, O2, and O31056

(evaluating each level separately). Finally, we computed the average true1057

positive rate (TPR) for each model at each optimization level.1058

As illustrated in Figure 11, FIN has a generally positive impact on CVE1059

retrieval. Except for CLAP on programs compiled with Clang at optimization1060

levels O2 and O3, applying FIN resulted in equal or improved TPR. On1061

average, jTrans + FIN achieved an 83% TPR compared to 76% for jTrans1062

alone, and CLAP + FIN achieved a 67% TPR.1063

Answer to RQ5: Our results suggest that FIN can provide benefits for
identifying real-world known vulnerabilities. In the majority of queries,
adding FIN to jTrans and CLAP improved the TPR, suggesting that
its inline-neutralizing approach can help mitigate some of the inconsis-
tencies introduced by compiler optimizations.

1064

5. Discussion1065

The following sections discuss the strengths, the design choice, and short-1066

comings of our FIN approach, providing an analysis of its performance and1067

applicability. We begin by outlining the primary limitations that hinder1068

FIN from fully resolving the cross-optimization clone search problem. Sub-1069

sequently, we examine the potential threats to the validity of our results,1070

highlighting factors that can affect the reliability and generalizability of our1071

findings. We then provide further justification regarding the selection of1072

callee functions that were inlined at both O2 and O3. Finally, we explore the1073

adaptability of FIN to different optimization levels, specifically addressing1074

its effectiveness under the Os optimization setting. Through this structured1075

examination, we aim to present a balanced view of FIN’s capabilities and1076

identify avenues for future enhancements.1077

5.1. Limitations1078

Although FIN improved the performance of the CLAP, jTrans and Trex1079

models, the resulting MRR values indicate that the cross-optimization clone1080

44

search problem remains unsolved. CFG expansion alone may not be sufficient1081

to address this challenge. Three potential issues justify this conclusion.1082

First, when a compiler inlines a function, it adjusts registers, memory1083

references, and performs further optimizations on the caller function. FIN,1084

on the other hand, merely replaces the call site with the assembly code of the1085

callee function. Thus, even though the callee is added to the caller function,1086

its representation may still differ from the compiler-inlined version, leading1087

existing approaches to fail in capturing the similarity between the two.1088

Second, although CFG expansion is expected to add extra semantic value1089

to the function, in practice, if the callee function is very similar to the caller1090

function or if the callee function is too small, it might not add significant1091

information, resulting in no performance improvement.1092

Third, Link-Time Optimization (LTO) poses additional challenges. LTO1093

enables the compiler to perform optimizations, including aggressive cross-1094

translation-unit function inlining, during the linking phase rather than at1095

compile time. This process can significantly alter the call graph and function1096

boundaries, complicating inlining detection and rendering our method less1097

effective when applied to LTO-enabled binaries.1098

Our proposed FIN method operates within the boundaries of individ-1099

ual compilation units, relying on debug information extracted from binaries1100

compiled without LTO enabled. As a result, the function inlining decisions1101

observed in our dataset may not reflect the more aggressive or cross-unit1102

inlining strategies applied in LTO-enabled compilations.1103

To address this limitation, future work could extend our approach to in-1104

corporate LTO-specific features by analyzing binaries compiled with LTO en-1105

abled and comparing their instruction-to-source mappings. Despite this lim-1106

itation, we hypothesize that the core principles of our approach—capturing1107

consistent inlining decisions at higher optimization levels—remain applicable,1108

even under LTO, albeit with adjustments to account for its broader scope.1109

5.2. Threats to validity1110

There are three major threats to the validity of our proposed method that1111

should be considered:1112

First, our approach relies heavily on IDA Pro for disassembly and feature1113

extraction. Any inaccuracies or limitations inherent to IDA Pro could di-1114

rectly impact the accuracy and reliability of our results. For instance, if IDA1115

Pro fails to correctly disassemble a binary or misidentifies certain features,1116

the subsequent analysis and predictions made by FIN could be flawed.1117

45

Second, our ground truth generation process assumes that function map-1118

pings derived from debug information (using the .debug line section) provide1119

a reliable basis for identifying inlined functions. While prior research (Jia1120

et al., 2023) supports this assumption, we acknowledge that debug infor-1121

mation can be affected by compiler optimizations, resulting in partial or1122

inconsistent mappings.1123

Lastly, we utilize the BinKit dataset for our experiments. Any issues or1124

inaccuracies in the compilation process of the BinKit dataset could lead to1125

invalid or biased results. If the dataset contains errors, such as incorrectly1126

compiled binaries or mislabeled binary files, our method’s performance met-1127

rics might not accurately reflect its true effectiveness.1128

5.3. Intersection of O2 and O31129

In this study, we decided to predict and inline only those caller–callee1130

pairs that were inlined at both O2 and O3 to strike a balance between cov-1131

erage and consistency, covering approximately 90% of the functions inlined1132

across all optimization levels. An alternative approach, taking the union of1133

inlining relationships at O1, O2, and O3, would guarantee 100% ground-1134

truth coverage; however, we preferred our intersection-based design choice1135

for three main reasons. First, prior works comparing O1, O2, and O3 con-1136

sistently reported high recall and MRR scores across those levels Ding et al.1137

(2019); Pei et al. (2020); Wang et al. (2022, 2024), suggesting that the re-1138

maining 10% of inlining discrepancies have only a marginal impact on BCSD.1139

Second, the union set includes many rarely inlined functions that introduce1140

noise and complexity into the learning process. In our preliminary exper-1141

iments, incorporating these rare cases resulted in a 12% drop in precision,1142

leading to a substantial increase in false positives that can negatively impact1143

functions that are never subject to inlining. Third, expanding the CFGs with1144

too many callees, given the limited token budget of modern language models,1145

risks pushing the primary caller function out of the model’s input window,1146

thereby undermining effective feature extraction.1147

5.4. Handling Os Optimization1148

The proposed FIN approach is primarily designed to address inlining1149

decisions across optimization levels O0, O1, O2, and O3. However, it is1150

important to discuss the potential applicability of FIN to the Os optimization1151

level, which prioritizes reducing code size while maintaining performance.1152

46

The Os optimization level often applies similar inlining strategies as O2 and1153

O3 but imposes additional constraints focused on minimizing binary size.1154

Preliminary observations suggest that functions inlined under -Os exhibit1155

patterns comparable to those observed at O2 and O3. Functions inlined at1156

both O2 and O3 are likely already inlined at -Os, and for those not inlined un-1157

der Os, applying FIN will likely resolve inconsistencies. Conversely, functions1158

inlined at Os but not at O2 or O3 are expected to have a minimal impact,1159

similar to O1, making them less problematic for BCSD. These observations1160

suggest that FIN can adapt to Os without substantial modifications. While1161

our current evaluation does not explicitly cover Os, future work could in-1162

clude an empirical analysis of FIN’s performance on binaries optimized at1163

this level.1164

6. Related Work1165

BCSD is a critical area of research within computer network security,1166

focusing on comparing binary files to identify similarities. BCSD has criti-1167

cal applications, including software vulnerability detection (Luo et al., 2023;1168

Yu et al., 2021; Zhao et al., 2019) and malware analysis (Sun et al., 2023;1169

Molloy et al., 2022; Li et al., 2021). The fundamental process of BCSD1170

involves three main stages: code preprocessing, comparison unit generation,1171

and similarity calculation. During code preprocessing, irrelevant instructions1172

are removed and instructions are normalized to improve detection accuracy1173

and efficiency (Xu et al., 2023; Guo et al., 2023). The comparison unit gener-1174

ation stage transforms binary code into an intermediate representation, such1175

as byte streams or feature vectors (Sun et al., 2024; Gu et al., 2023). Finally,1176

similarity computation is performed using methods such as vector distance1177

calculation or subgraph matching (Shalev and Partush, 2018). BCSD faces1178

several challenges, including variations due to compiler optimizations, differ-1179

ences across platforms, and code obfuscation techniques (Ding et al., 2019;1180

Xue et al., 2019).1181

Representation learning techniques—particularly those that leverage lan-1182

guage models—have gained prominence in BCSD, aiming to produce embed-1183

dings that capture semantic similarity despite low-level differences. For in-1184

stance, Asm2Vec (Ding et al., 2019) employs the Paragraph Vector–Distributed1185

Memory (PV-DM) model to embed instructions, while Trex (Pei et al.,1186

2020) uses a transformer-based architecture to learn unified function rep-1187

resentations across different platforms and compilers. jTrans (Wang et al.,1188

47

2022) and BinShot (Ahn et al., 2022) have applied BERT-based encoders1189

with contrastive learning objectives to achieve cross-compiler function em-1190

beddings. More recently, CLAP (Wang et al., 2024) introduces Contrastive1191

Language-Assembly Pre-training, aligning binary code with natural language1192

explanations to learn transferable representations that excel in few-shot and1193

zero-shot BCSD scenarios. Despite these advances, function inlining remains1194

a particularly stubborn obstacle: when the compiler replaces a function call1195

with the body of its callee, the resulting binary can differ dramatically from1196

any single “un-inlined” version.1197

To mitigate the effects of inlining on BCSD, several CFG expansion strate-1198

gies have been proposed. BinGo and BinGo-E (Chandramohan et al., 2016;1199

Xue et al., 2019) perform selective inlining-simulation by recursively expand-1200

ing callee CFGs according to manually tuned heuristics (e.g., function size1201

thresholds, coupling scores). Asm2Vec’s authors adapted a similar approach,1202

inlining only one layer of callees and pruning functions that exceed a length1203

limit. More recently, OpTrans (Sha et al., 2025) proposed function-level1204

heuristics, such as size, call-frequency thresholds, and stack size to identify1205

inlining candidates. These manually defined heuristics help strike a balance1206

between search accuracy and scalability, but they are inherently brittle: they1207

miss many inlined functions and sometimes inline callees that should remain1208

separate, resulting in low recall or precision.1209

Other works have tackled inlining from different angles. BINO (Binosi1210

et al., 2023) introduces a fingerprinting framework to recognize inlined meth-1211

ods of C++ template classes by capturing both syntactic/semantic features1212

and CFG structure, then matching via subgraph isomorphism. This approach1213

achieves good precision and recall on known template methods but does not1214

address arbitrary functions and incurs significant computational cost as the1215

fingerprint database grows. ReIFunc (Lin et al., 2024) also leverages sub-1216

graph isomorphism and deep learning to identify recurring inline functions1217

(RIFs) across binaries by detecting repeated basic-block patterns and then1218

using a neural model to determine function origins. Although ReIFunc can1219

locate inlined regions with high precision, it relies on expensive graph match-1220

ing.1221

Meanwhile, O2NMatcher (Jia et al., 2022) and CI-Detector (Jia et al.,1222

2024) focus on “1-to-n” matching for binary-to-source and binary-to-binary1223

function mapping, respectively. O2NMatcher trains a multi-label classifier1224

to predict which call sites will be inlined under various compilation set-1225

tings, then generates source-function sets (SFSs) that represent all func-1226

48

tions merged into an inlined binary function. CI-Detector organizes bi-1227

nary functions into cross-inlining patterns and uses GNNs over attributed1228

CFGs to compute similarity across inlining transformations. While both ad-1229

vance the state-of-the-art in identifying when and how functions are inlined,1230

O2NMatcher’s dependence on source-level information renders it inapplica-1231

ble in purely binary-to-binary scenarios, and CI-Detector is an end-to-end1232

cross-inlining embedding pipeline that does not explicitly discover inlined1233

functions.1234

Taken together, prior works focusing on function inlining address distinct1235

research problems:1236

• BINO and RelFunc intend to detect and recover the bodies (and, if1237

possible, names) of functions that have been inlined into callers.1238

• O2NMatcher handles 1 to n binary to source mappings caused by in-1239

lining, by expanding the source side into “multi-function sets,” then1240

applying a standard 1 to 1 matcher.1241

• CI-Detector directly computes a similarity score between two binary1242

functions when either (or both) may contain different inlining patterns,1243

without explicitly recovering inlined bodies first.1244

• BinGo, Asm2Vec, and OpTrans expand certain callsites to normalize1245

assembly functions in terms of function inlining.1246

Similar to BinGo, Asm2Vec, and OpTrans, FIN addresses function inlin-1247

ing by expanding CFGs rather than by post-hoc detection. To our knowl-1248

edge, FIN is a pioneer work in predicting compiler inlining decisions explicitly1249

for function inlining normalization. We chose CFG expansion over “detect-1250

and-remove” schemes (e.g., BINO or ReIFunc) for two reasons: first, once1251

inlining occurs, subsequent optimizations, such as constant folding, dead-1252

code elimination, and common subexpression elimination, merge caller and1253

callee code so tightly that there is no clean subgraph to delete; attempting re-1254

moval risks losing or corrupting instructions. Also, false positive boundaries1255

would delete code that remains semantically essential, whereas expansion1256

simply duplicates the callee’s graph without ever deleting original code. Sec-1257

ond, detect-and-remove methods rely on expensive subgraph matching across1258

large CFGs, which does not scale to thousands of functions. In contrast, our1259

Random Forest classifier enables fast, large-scale normalization without sac-1260

rificing completeness.1261

49

7. Conclusion1262

Our study delves into the complexities of function inlining and intro-1263

duces a novel solution, FIN, that enhances BCSD by intelligently expanding1264

function CFGs. We identified the substantial impact of function inlining on1265

BCSD performance and handcrafted a set of features to predict appropriate1266

callees for CFG expansion. By expanding CFGs based on these predictions,1267

we achieved significant improvements in binary code representation learn-1268

ing techniques. Our research also highlights the importance of the average1269

distance of a callee function from its callers as a critical factor for CFG ex-1270

pansion. Additionally, we developed a tool to generate ground truth data,1271

facilitating further research on the challenges of function inlining in cross-1272

optimization BCSD. Our experiments showed that while CFG expansion is1273

effective, it may not be sufficient to overcome all cross-optimization BCSD1274

challenges. Therefore, in our future work, we aim to develop a representa-1275

tion learning approach that can more effectively incorporate the information1276

added by CFG expansion.1277

8. Acknowledgment1278

This research is supported by Defence Research and Development Canada1279

(contract no. W7701-217332), NSERC Discovery Grants (RGPIN-2024-04087),1280

NSERC DND Supplement (DGDND-2024-04087), and Canada Research Chairs1281

Program (CRC-2019-00041).1282

References1283

Ahn, S., Ahn, S., Koo, H., Paek, Y., 2022. Practical Binary Code Similarity1284

Detection with BERT-based Transferable Similarity Learning, Association1285

for Computing Machinery, New York, NY, USA. p. 361–374. URL: https:1286

//doi.org/10.1145/3564625.3567975, doi:10.1145/3564625.3567975.1287

Bendersky, E., 2025. pyelftools: A Python library for parsing ELF files1288

and DWARF debugging information. https://github.com/eliben/1289

pyelftools. Accessed: March 05, 2025.1290

Binosi, L., Polino, M., Carminati, M., Zanero, S., 2023. BINO: Auto-1291

matic recognition of inline binary functions from template classes. Com-1292

puters & Security 132, 103312. URL: https://www.sciencedirect.1293

50

https://doi.org/10.1145/3564625.3567975
https://doi.org/10.1145/3564625.3567975
https://doi.org/10.1145/3564625.3567975
http://dx.doi.org/10.1145/3564625.3567975
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
https://www.sciencedirect.com/science/article/pii/S0167404823002225
https://www.sciencedirect.com/science/article/pii/S0167404823002225
https://www.sciencedirect.com/science/article/pii/S0167404823002225

com/science/article/pii/S0167404823002225, doi:https://doi.org/1294

10.1016/j.cose.2023.103312.1295

Breiman, L., 2001. Random forests. Machine learning 45, 5–32. doi:10.1296

1023/A:1010933404324.1297

Chandramohan, M., Xue, Y., Xu, Z., Liu, Y., Cho, C.Y., Tan, H.B.K.,1298

2016. BinGo: cross-architecture cross-OS binary search, in: Proceedings1299

of the 2016 24th ACM SIGSOFT International Symposium on Founda-1300

tions of Software Engineering, Association for Computing Machinery, New1301

York, NY, USA. p. 678–689. URL: https://doi.org/10.1145/2950290.1302

2950350, doi:10.1145/2950290.2950350.1303

Chen, W., Chung, Y.C., 2022. Profile-Guided optimization for Function1304

Reordering: A Reinforcement Learning Approach, in: 2022 IEEE Inter-1305

national Conference on Systems, Man, and Cybernetics (SMC), pp. 2326–1306

2333. doi:10.1109/SMC53654.2022.9945280.1307

Ding, S.H.H., Fung, B.C.M., Charland, P., 2019. Asm2Vec: Boosting Static1308

Representation Robustness for Binary Clone Search against Code Obfus-1309

cation and Compiler Optimization, in: 2019 IEEE Symposium on Security1310

and Privacy (SP), pp. 472–489. doi:10.1109/SP.2019.00003.1311

Gu, Y., Shu, H., Kang, F., 2023. BinAIV: Semantic-enhanced vulner-1312

ability detection for Linux x86 binaries. Computers & Security 135,1313

103508. URL: https://www.sciencedirect.com/science/article/1314

pii/S0167404823004182, doi:https://doi.org/10.1016/j.cose.2023.1315

103508.1316

Guo, J., Zhao, B., Liu, H., Leng, D., An, Y., Shu, G., 2023. DeepDual-SD:1317

deep dual attribute-aware embedding for binary code similarity detection.1318

International Journal of Computational Intelligence Systems 16, 35.1319

Haq, I.U., Caballero, J., 2021. A Survey of Binary Code Similarity. ACM1320

Comput. Surv. 54. URL: https://doi.org/10.1145/3446371, doi:10.1321

1145/3446371.1322

Hex-Rays, 2024a. Ida pro 8.0 release notes. URL: https://hex-rays.com/1323

products/ida/news/8_0. accessed: 2024-05-29.1324

51

https://www.sciencedirect.com/science/article/pii/S0167404823002225
https://www.sciencedirect.com/science/article/pii/S0167404823002225
https://www.sciencedirect.com/science/article/pii/S0167404823002225
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103312
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103312
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103312
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2950290.2950350
https://doi.org/10.1145/2950290.2950350
https://doi.org/10.1145/2950290.2950350
http://dx.doi.org/10.1145/2950290.2950350
http://dx.doi.org/10.1109/SMC53654.2022.9945280
http://dx.doi.org/10.1109/SP.2019.00003
https://www.sciencedirect.com/science/article/pii/S0167404823004182
https://www.sciencedirect.com/science/article/pii/S0167404823004182
https://www.sciencedirect.com/science/article/pii/S0167404823004182
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103508
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103508
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103508
https://doi.org/10.1145/3446371
http://dx.doi.org/10.1145/3446371
http://dx.doi.org/10.1145/3446371
http://dx.doi.org/10.1145/3446371
https://hex-rays.com/products/ida/news/8_0
https://hex-rays.com/products/ida/news/8_0
https://hex-rays.com/products/ida/news/8_0

Hex-Rays, 2024b. Ida pro sdk documentation: Operand types.1325

URL: https://hex-rays.com/products/ida/support/sdkdoc/group_1326

_o__.html. accessed: 2024-05-29.1327

Hu, Y., Zhang, Y., Li, J., Wang, H., Li, B., Gu, D., 2018. BinMatch: A1328

Semantics-Based Hybrid Approach on Binary Code Clone Analysis, in:1329

2018 IEEE International Conference on Software Maintenance and Evolu-1330

tion (ICSME), pp. 104–114. doi:10.1109/ICSME.2018.00019.1331

Jia, A., Fan, M., Jin, W., Xu, X., Zhou, Z., Tang, Q., Nie, S., Wu, S., Liu,1332

T., 2023. 1-to-1 or 1-to-n? investigating the effect of function inlining on1333

binary similarity analysis 32. URL: https://doi.org/10.1145/3561385,1334

doi:10.1145/3561385.1335

Jia, A., Fan, M., Xu, X., Jin, W., Wang, H., Liu, T., 2024. Cross-Inlining1336

Binary Function Similarity Detection, in: Proceedings of the IEEE/ACM1337

46th International Conference on Software Engineering, Association for1338

Computing Machinery, New York, NY, USA. URL: https://doi.org/1339

10.1145/3597503.3639080, doi:10.1145/3597503.3639080.1340

Jia, A., Fan, M., Xu, X., Jin, W., Wang, H., Tang, Q., Nie, S., Wu, S., Liu,1341

T., 2022. Comparing One with Many–Solving Binary2source Function1342

Matching Under Function Inlining. arXiv preprint arXiv:2210.15159 .1343

Khoshgoftaar, T.M., Golawala, M., Hulse, J.V., 2007. An Empirical Study1344

of Learning from Imbalanced Data Using Random Forest, in: 19th IEEE1345

International Conference on Tools with Artificial Intelligence(ICTAI 2007),1346

pp. 310–317. doi:10.1109/ICTAI.2007.46.1347

Kim, D., Kim, E., Cha, S.K., Son, S., Kim, Y., 2022. Revisiting Binary Code1348

Similarity Analysis using Interpretable Feature Engineering and Lessons1349

Learned. IEEE Transactions on Software Engineering , 1–23doi:10.1109/1350

TSE.2022.3187689.1351

Li, M.Q., Fung, B.C.M., Charland, P., Ding, S.H.H., 2021. A novel and1352

dedicated machine learning model for malware classification, in: Pro-1353

ceedings of the 16th International Conference on Software Technolo-1354

gies, SCITEPRESS - Science and Technology Publications. doi:10.5220/1355

0010518506170628.1356

52

https://hex-rays.com/products/ida/support/sdkdoc/group__o__.html
https://hex-rays.com/products/ida/support/sdkdoc/group__o__.html
https://hex-rays.com/products/ida/support/sdkdoc/group__o__.html
http://dx.doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1145/3561385
http://dx.doi.org/10.1145/3561385
https://doi.org/10.1145/3597503.3639080
https://doi.org/10.1145/3597503.3639080
https://doi.org/10.1145/3597503.3639080
http://dx.doi.org/10.1145/3597503.3639080
http://dx.doi.org/10.1109/ICTAI.2007.46
http://dx.doi.org/10.1109/TSE.2022.3187689
http://dx.doi.org/10.1109/TSE.2022.3187689
http://dx.doi.org/10.1109/TSE.2022.3187689
http://dx.doi.org/10.5220/0010518506170628
http://dx.doi.org/10.5220/0010518506170628
http://dx.doi.org/10.5220/0010518506170628

Li, Z., Liu, H., Shan, R., Sun, Y., Jiang, Y., Hu, N., 2023. Binary Code1357

Similarity Detection: State and Future, in: 2023 IEEE 12th International1358

Conference on Cloud Networking (CloudNet), pp. 408–412. doi:10.1109/1359

CloudNet59005.2023.10490019.1360

Lin, W., Guo, Q., Yu, D., Yin, J., Gong, Q., Gong, X., 2024. ReIFunc:1361

Identifying Recurring Inline Functions in Binary Code, in: 2024 IEEE In-1362

ternational Conference on Software Analysis, Evolution and Reengineering1363

(SANER), pp. 670–680. doi:10.1109/SANER60148.2024.00074.1364

Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S., 2017. Semantics-Based1365

Obfuscation-Resilient Binary Code Similarity Comparison with Applica-1366

tions to Software and Algorithm Plagiarism Detection. IEEE Transactions1367

on Software Engineering 43, 1157–1177. doi:10.1109/TSE.2017.2655046.1368

Luo, Z., Wang, P., Wang, B., Tang, Y., Xie, W., Zhou, X., Liu, D., Lu, K.,1369

2023. VulHawk: Cross-architecture vulnerability detection with entropy-1370

based binary code search, in: Proceedings 2023 Network and Distributed1371

System Security Symposium, Internet Society, Reston, VA. doi:10.14722/1372

ndss.2023.24415.1373

Marcelli, A., Graziano, M., Ugarte-Pedrero, X., Fratantonio, Y., Mansouri,1374

M., Balzarotti, D., 2022. How Machine Learning Is Solving the Bi-1375

nary Function Similarity Problem, in: 31st USENIX Security Sympo-1376

sium (USENIX Security 22), USENIX Association, Boston, MA. pp. 2099–1377

2116. URL: https://www.usenix.org/conference/usenixsecurity22/1378

presentation/marcelli.1379

Molloy, C., Charland, P., Ding, S.H.H., Fung, B.C.M., 2022. JARV1S: Phe-1380

notype Clone Search for Rapid Zero-Day Malware Triage and Functional1381

Decomposition for Cyber Threat Intelligence, in: 2022 14th International1382

Conference on Cyber Conflict: Keep Moving! (CyCon), pp. 385–403.1383

doi:10.23919/CyCon55549.2022.9811078.1384

Pei, K., Xuan, Z., Yang, J., Jana, S., Ray, B., 2020. Trex: Learning exe-1385

cution semantics from micro-traces for binary similarity. arXiv preprint1386

arXiv:2012.08680 .1387

Project, G., 2024. Gnu operating system. URL: https://www.gnu.org/.1388

accessed: 2024-05-29.1389

53

http://dx.doi.org/10.1109/CloudNet59005.2023.10490019
http://dx.doi.org/10.1109/CloudNet59005.2023.10490019
http://dx.doi.org/10.1109/CloudNet59005.2023.10490019
http://dx.doi.org/10.1109/SANER60148.2024.00074
http://dx.doi.org/10.1109/TSE.2017.2655046
http://dx.doi.org/10.14722/ndss.2023.24415
http://dx.doi.org/10.14722/ndss.2023.24415
http://dx.doi.org/10.14722/ndss.2023.24415
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
http://dx.doi.org/10.23919/CyCon55549.2022.9811078
https://www.gnu.org/

Sha, Z., Lan, Y., Zhang, C., Wang, H., Gao, Z., Zhang, B., Shu, H., 2025.1390

Optrans: enhancing binary code similarity detection with function inlining1391

re-optimization. Empirical Software Engineering 30, 49.1392

Shalev, N., Partush, N., 2018. Binary Similarity Detection Using Machine1393

Learning, in: Proceedings of the 13th Workshop on Programming Lan-1394

guages and Analysis for Security, Association for Computing Machin-1395

ery, New York, NY, USA. p. 42–47. URL: https://doi.org/10.1145/1396

3264820.3264821, doi:10.1145/3264820.3264821.1397

Sun, H., Shu, H., Kang, F., Guang, Y., 2023. ModDiff: Modu-1398

larity Similarity-Based Malware Homologation Detection. Electronics1399

12. URL: https://www.mdpi.com/2079-9292/12/10/2258, doi:10.3390/1400

electronics12102258.1401

Sun, R., Guo, S., Guo, J., Li, W., Zhang, X., Guo, X., Pan,1402

Z., 2024. GraphMoCo: A graph momentum contrast model1403

for large-scale binary function representation learning. Neuro-1404

computing 575, 127273. URL: https://www.sciencedirect.com/1405

science/article/pii/S0925231224000444, doi:https://doi.org/10.1406

1016/j.neucom.2024.127273.1407

Theodoridis, T., Grosser, T., Su, Z., 2022. Understanding and exploiting1408

optimal function inlining, in: Proceedings of the 27th ACM International1409

Conference on Architectural Support for Programming Languages and Op-1410

erating Systems, Association for Computing Machinery, New York, NY,1411

USA. p. 977–989. URL: https://doi.org/10.1145/3503222.3507744,1412

doi:10.1145/3503222.3507744.1413

Wang, H., Gao, Z., Zhang, C., Sha, Z., Sun, M., Zhou, Y., Zhu, W., Sun,1414

W., Qiu, H., Xiao, X., 2024. CLAP: Learning Transferable Binary Code1415

Representations with Natural Language Supervision, in: Proceedings of1416

the 33rd ACM SIGSOFT International Symposium on Software Testing1417

and Analysis, Association for Computing Machinery, New York, NY, USA.1418

p. 503–515. URL: https://doi.org/10.1145/3650212.3652145, doi:10.1419

1145/3650212.3652145.1420

Wang, H., Qu, W., Katz, G., Zhu, W., Gao, Z., Qiu, H., Zhuge, J.,1421

Zhang, C., 2022. JTrans: Jump-Aware Transformer for Binary Code1422

54

https://doi.org/10.1145/3264820.3264821
https://doi.org/10.1145/3264820.3264821
https://doi.org/10.1145/3264820.3264821
http://dx.doi.org/10.1145/3264820.3264821
https://www.mdpi.com/2079-9292/12/10/2258
http://dx.doi.org/10.3390/electronics12102258
http://dx.doi.org/10.3390/electronics12102258
http://dx.doi.org/10.3390/electronics12102258
https://www.sciencedirect.com/science/article/pii/S0925231224000444
https://www.sciencedirect.com/science/article/pii/S0925231224000444
https://www.sciencedirect.com/science/article/pii/S0925231224000444
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2024.127273
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2024.127273
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2024.127273
https://doi.org/10.1145/3503222.3507744
http://dx.doi.org/10.1145/3503222.3507744
https://doi.org/10.1145/3650212.3652145
http://dx.doi.org/10.1145/3650212.3652145
http://dx.doi.org/10.1145/3650212.3652145
http://dx.doi.org/10.1145/3650212.3652145

Similarity Detection, in: Proceedings of the 31st ACM SIGSOFT Inter-1423

national Symposium on Software Testing and Analysis, Association for1424

Computing Machinery, New York, NY, USA. p. 1–13. URL: https:1425

//doi.org/10.1145/3533767.3534367, doi:10.1145/3533767.3534367.1426

Wang, S., Wu, D., 2017. In-memory fuzzing for binary code similarity1427

analysis, in: 2017 32nd IEEE/ACM International Conference on Auto-1428

mated Software Engineering (ASE), pp. 319–330. doi:10.1109/ASE.2017.1429

8115645.1430

Xu, X., Feng, S., Ye, Y., Shen, G., Su, Z., Cheng, S., Tao, G., Shi, Q.,1431

Zhang, Z., Zhang, X., 2023. Improving Binary Code Similarity Transformer1432

Models by Semantics-Driven Instruction Deemphasis, in: Proceedings of1433

the 32nd ACM SIGSOFT International Symposium on Software Test-1434

ing and Analysis, Association for Computing Machinery, New York, NY,1435

USA. p. 1106–1118. URL: https://doi.org/10.1145/3597926.3598121,1436

doi:10.1145/3597926.3598121.1437

Xue, Y., Xu, Z., Chandramohan, M., Liu, Y., 2019. Accurate and Scalable1438

Cross-Architecture Cross-OS Binary Code Search with Emulation. IEEE1439

Transactions on Software Engineering 45, 1125–1149. doi:10.1109/TSE.1440

2018.2827379.1441

Yu, L., Lu, Y., Shen, Y., Huang, H., Zhu, K., 2021. Bedetector: A two-1442

channel encoding method to detect vulnerabilities based on binary simi-1443

larity. IEEE Access 9, 51631–51645. doi:10.1109/ACCESS.2021.3064687.1444

Zhao, D., Lin, H., Ran, L., Han, M., Tian, J., Lu, L., Xiong, S., Xiang, J.,1445

2019. CVSkSA: cross-architecture vulnerability search in firmware based1446

on kNN-SVM and attributed control flow graph. Softw. Qual. J. 27, 1045–1447

1068. doi:10.1007/s11219-018-9435-5.1448

Zhao, P., Amaral, J.N., 2004. To Inline or Not to Inline? Enhanced Inlining1449

Decisions, in: Rauchwerger, L. (Ed.), Languages and Compilers for Parallel1450

Computing, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 405–419.1451

55

https://doi.org/10.1145/3533767.3534367
https://doi.org/10.1145/3533767.3534367
https://doi.org/10.1145/3533767.3534367
http://dx.doi.org/10.1145/3533767.3534367
http://dx.doi.org/10.1109/ASE.2017.8115645
http://dx.doi.org/10.1109/ASE.2017.8115645
http://dx.doi.org/10.1109/ASE.2017.8115645
https://doi.org/10.1145/3597926.3598121
http://dx.doi.org/10.1145/3597926.3598121
http://dx.doi.org/10.1109/TSE.2018.2827379
http://dx.doi.org/10.1109/TSE.2018.2827379
http://dx.doi.org/10.1109/TSE.2018.2827379
http://dx.doi.org/10.1109/ACCESS.2021.3064687
http://dx.doi.org/10.1007/s11219-018-9435-5

	Introduction
	Problem and Motivation
	Problem Definition
	Motivation and Core Idea

	Approach
	Ground-truth Generation
	Feature Extraction
	FuncSize (Absolute Function Size in Bytes)
	LoopCount (Number of Loops)
	IsRecursive (Recursion Indicator)
	SizeInc (Relative Increase in Program Size) and BBInc (Relative Increase in Basic Blocks)
	Z-Scores (SizeZScore, BBZScore, InCallsZScore, OutCallsZScore)
	Operand Type Frequencies (o_reg, o_mem, o_phrase, o_displ, o_imm, o_near, o_fpreg)
	Average Distance to Callers (AvgCallDist)

	Inlining Decision Prediction
	CFG Expansion
	Initialization
	Breadth-First Search (BFS)
	Expanding CFG

	Empirical Study
	Experimental Environment
	Baseline Models
	Datasets
	Evaluation metric
	Clone search task

	RQ1: Function Inlining Impact
	RQ2: Compiler Inlining Decision Predictions
	RQ3: Effectiveness of FIN
	RQ4: Efficiency Analysis
	RQ5: Real-World Application

	Discussion
	Limitations
	Threats to validity
	Intersection of O2 and O3
	Handling Os Optimization

	Related Work
	Conclusion
	Acknowledgment

