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Recent advancement inmobile computing and sensory technology has facilitated the possibility of
continuously updating,monitoring, and detecting the latest location and status ofmoving individ-
uals. Spatio-temporal data generated and collected on the fly are described as trajectory streams.
This work is motivated by the concern that publishing individuals' trajectories on the fly may
jeopardize their privacy. In this paper, we illustrate and formalize two types of privacy attacks
against moving individuals. We devise a novel algorithm, called Incremental Trajectory Stream
Anonymizer (ITSA), for incrementally anonymizing a sequence of sliding windows on trajectory
stream. The sliding windows are dynamically updated with joining and leaving individuals. The
sliding windows are updated by using an efficient data structure to accommodate massive vol-
ume of data.We conducted extensive experiments on simulated and real-life data sets to evaluate
the performance of our method. Empirical results demonstrate that our method significantly
lowers runtime compared to existing methods, and efficiently scales when handling massive
data sets. To the best of our knowledge, this is the first work to anonymize high-dimensional
trajectory stream.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The improvement of information technology in the past years has facilitated sharing data among organizations, firms, and to
the public. Location-aware devices, such as GPS andmobile phones, constantly report spatio-temporal data of a moving object or
the individual carrying this object. In many cases, it is important to publish the automatically-collected data on the fly for var-
ious purposes, such as traffic analysis, live monitoring of moving objects, andmining recent events in a data stream. This process
becomes of vital importance especially when it is essential to take immediate actions or follow certain detection or prevention
measures. Nevertheless, releasing the automatically-collected raw data by a data holder for analysis and service improvement
may compromise individuals' privacy. We assume that recipients of a published data stream are untrustworthy, and they may
attempt to identify target victims or infer their sensitive information. In this paper, we study the challenges in anonymizing a
stream of trajectories, and propose an efficient algorithm to anonymize a trajectory stream with the goal of minimizing data
distortion.

Fig. 1 shows an overview of the trajectory stream environment. A trajectory stream S is a continuous sequence of triples, in
which each triple has the form 〈id, loc, t〉, indicating a person pwith id is at location loc at timestamp t. A combination of loc and t
is called a doublet. We assume that the trajectory stream S is published for streammining [16] or the trajectory paths are simply
displayed on screen. We propose a trajectory stream anonymization method based on a sliding window [18,5]. The literature has
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Fig. 1.Mining trajectory stream over a sliding window.
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defined two types of sliding windows: count-based and time-based [6,18]. The former type defines a window that includes the N
most recent data elements while the latter type defines a window that includes all elements belonging to the most recent N
timestamps. We adopt a time-based sliding window because it is more general than count-based. However, using a count-
based window has no impact on our approach. Hence, our approach models data stream as a sequence of sliding windows in
which the most recent window includes the triples having the most recent N timestamps.

The Copenhagen International Airport is testing a mechanism for monitoring travelers' movements in real-time by following
their Wi-Fi trails with the goals of improving airport design and security, directing the flow of travelers, and providing custom-
ized services to travelers [30]. Yet, disclosing the raw trajectory stream to some third-party service provider, such as an airline
company or an outsourced security firm, may compromise the travelers' privacy. The following example illustrates two types of
privacy attacks that an adversary can carry out by having access to the data stream.

Example 1.1. Table 1 shows the trajectories of eight travelers sorted by their ids. For simplicity, this example considers
timestamps 1–4; however, in reality, timestamps continue indefinitely. Let us assume that sensitive information is being collect-
ed from travelers along with trajectories. The sensitive information is displayed in the sensitive attribute sen _ att. A potential
sensitive attribute could be Disability where travelers with Epilepsy, for instance, may require special attention to facilitate
their journey. The data holder (the airport) can specify a set of sensitive values from the sensitive attributes. Upon publishing
the anonymized data, sensitive values should not be associated with their respected travelers. Suppose s1 is the only sensitive
value in this example.

Let the size of the sliding window be N=3. The first windowW1→ 3 includes doublets with timestamps 1–3, as indicated by
the dashed box in Table 1. As the window slides with step size = 1, the second window W2→ 4 now includes doublets with
timestamps 2–4 with no traces of doublets having timestamp 1. We note that the absence of doublets within a given window
(the empty spots in Tables 1 and 2) indicates no change in a traveler's location.

Suppose an adversary has access to the trajectory stream in the form a sliding window, as in Table 1. It is possible to identify a tar-
get victim's trajectory and/or sensitive value by performing the following privacy attacks.

Identity linkage takes place when the collected trajectories contain a sequence of doublets with a rare appearance. This allows
an adversary to uniquely identify a target victim. For example, suppose that the current window isW2→ 4, and that an adversary
knows that a target victim has visited location e at timestamp 4. W2→ 4 contains only one trajectory (id = 8) with doublet e4.
Hence, the adversary is able to learn the victim's other visited locations and sensitive value.

Attribute linkage takes place if there is a group of records, sharing the same sequence of doublets, that contains infre-
quent sensitive values. These values can be associated with their pertinent individuals with high confidence. This type
of privacy attacks is also known as homogeneity attack [24,25]. Suppose that an adversary knows that a target victim
has visited locations b and d at timestamps 2 and 4, respectively. W2→ 4 shows that one of two records that contain
〈b2 → d4〉 has the sensitive value s1. Hence, the adversary is able to infer that the target victim has s1 with 50%
confidence. □



Table 1
Raw sliding windows,W1→ 3 andW2→ 4, on trajectory stream.

id

Timestamps

sen att

1 s1
s2

3 s3
s4

5

1 2 3 4

b2 c3 d4

2 a1 f2 c3 d4

b2 c3 d4

4 a1 f2 c3

b2 c3 s5
6 c3 s2
7 f2 d4 s3
8 c3 e4 s1

W1 3
W2 4
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1.1. Challenges

Data streams are characterized by being time-variant and potentially infinite. Therefore, it is infeasible to first store the data and
then anonymize. Rather, data have to be anonymized on the fly. Moreover, every possible combination of location and timestamp in
trajectory data forms a distinct dimension [42]. This characteristic is referred to as the curse of high dimensionality [2]. For example, if
the airport in Example 1.1 contains 200 hotspots (access points), thenmonitoring travelers' movements over the period of 60minwill
result in 12,000 dimensions. Consequently, applying anonymizationmethods based on quasi-identifier attributes [33]will impose too
much data loss, rendering the anonymous data useless for any data analysis.

1.2. Contributions

To the best of our knowledge, this is the first work to anonymize high-dimensional trajectory stream. We summarize our contri-
butions as follows. First, to address the transient nature of trajectory streams, we propose an anonymization method based on a
dynamically updated sliding window, where trajectories are modeled as a prefix tree to ensure compactness and efficient
data retrieval. Second, a naïve solution to anonymizing a trajectory stream is by simply anonymizing every single window inde-
pendently. To avoid this redundancy, we identify some important properties in trajectory streams, and utilize these properties
to efficiently anonymize trajectories in a sliding window by incrementally updating the prefix tree. Third, our proposed method
guarantees that the output anonymous trajectory stream satisfies LKC-privacy [27,28]. LKC-privacy is a flexible privacy model
that has proven efficient in handling high-dimensional data [28]. Fourth, our experimental evaluation on simulated and real-
life data sets demonstrates that our proposed algorithm is capable of handling large volume of trajectory streams without
compromising their utility.

The rest of the paper is organized as follows. Section 2 provides a literature review. Section 3 formally defines the privacy attacks
and LKC-privacy model. Section 4 discusses our proposed algorithm and data structure. Section 5 presents experimental evaluations.
Section 6 concludes the paper.

2. Related work

In the area of privacy-preserving data publishing [15], researchers proposed various privacy models to thwart identity and attri-
bute linkages. Different anonymization and sanitization methods were developed to transform raw data to an anonymous version.
Table 2
Anonymous sliding windowW2→ 4′ for L = 2, K = 2, C = 40 %.

id Timestamps sen_att

2 3 4

1 c3 d4 s1
2 f2 c3 d4 s2
3 c3 d4 s3
4 f2 c3 s4
5 c3 s5
6 c3 s2
7 f2 d4 s3
8 c3 s1
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In the context of publishing relational data, some attributes known as quasi-identifiers (QI) can be used to re-identify individ-
uals. The classical privacy model of k-anonymity [33] requires that every record in the table must be indistinguishable from at
least k − 1 other records over the QI attributes. Due to the curse of high dimensionality [2], applying anonymization methods
based on QI attributes [24,25] to trajectory data imposes significant data loss because every doublet of location and timestamp
in a trajectory is considered to be a distinct QI attribute. In other words, the notion of a fixed set of QI attributes in trajectory data
does not exist anymore because of the continuously changing reported locations and timestamps [43].

In the context of continuous data release, updated versions of a data table are published on a regular basis, e.g., every 1 week
[9,40,37]. Wang et al. [37] proposed a method for anonymizing temporal data in relational format. Their method is based on
temporal record relocationwithin a window of multiple releases. Xiao and Tao [40] considered the problem of re-publishing up-
dated relational data tables. Their method, calledm-invariance, is the first to address the insertion and deletion of records in the
updated data table. If a record does not meet the imposed privacy requirement, counterfeit records are created in order to
achieve anm-invariant updated table. Applyingm-invariance to trajectory streams is not suitable due to the following reasons.
First, m-invariance anonymizes relational data. Trajectories are high dimensional by nature; thus, applying methods based on
QID attributes incurs significant data loss as explained in the above paragraph. Second, m-invariance does not assume the exis-
tence of data streams, which gives the advantage of not having a sharp time constraint for publishing the updated data table. In
contrast, our method maintains the transient nature of streams by anonymizing and publishing newly-arrived data on the fly.
Third,m-invariance is achieved by adding counterfeit records to the data table. On the other hand, our method maintains truth-
fulness because all published records belong to real-life moving individuals. This property gives more credible results when
analyzing the anonymized data. In summary, continuous data release does not require publishing the data table at the time of
data collection since the table does not contain “live” data. Algorithms for anonymizing continuous data are not suitable for po-
tentially infinite streams of transient and time-critical data because these properties require dynamic and scalable processing
with little time delay.

Recently, several methods have been proposed targeting anonymizing static trajectory (or moving objects) data
[7,17,31,1,34,29,43,21]. Gidofalviet al. [17] presented the first work to perform knowledge discovery on anonymized trajec-
tory data. They proposed a probabilistic method by which trajectories are hidden behind a series of rectangles. Nergiz et al.
[31] presented the first work to apply k-anonymity on static trajectory data by means of generalization. Their enforced pri-
vacy model stipulates that every trajectory, in its entirety, must be indistinguishable from at least k − 1 other trajectories.
They further proposed a method for publishing randomly reconstructed versions of anonymized trajectories. Abul et al. [1]
proposed (k, δ)-anonymity whereby space translation is used to make every trajectory coexists with a minimum of k − 1
other trajectories within a proximity of δ. Monreale et al. [29] used spatial generalization by replacing each specific location
point in a trajectory with the centroid of a more general geographical area covering that point. The novelty of their method
lies in generating geographical areas in a dynamic fashion based on the input data set, as opposed to generating a fixed grid
[43].

Pensa et al. [32] studied the problem of anonymizing sequential data by preserving frequent sequential patterns. The authors
consider temporal sequentiality, which can be considered a simpler form of trajectory data. To account for high dimensionality
in sequential data, the authors use a prefix tree to structure sequences of temporal items. The proposed method is based on k-
anonymity, thus, thwarts only identity linkage attacks. Whereas, our method extends k-anonymity to thwart both identity and
attribute linkage attacks, covering broader attack scenarios against trajectory streams. Similar to space translation [1], Pensa
et al. [32] use insertion, deletion, or substitution of items to anonymize a sequence.

Methods based on probabilistic approaches [17,21], space translation [1,32], or generalization [31,29,43] degrade the utility of the
published data, rendering analysis less accurate. In this paperweperform a series of suppressions (informally defined as the removal of
specific doublets) on raw data. Suppression guarantees data truthfulness because any anonymous trajectory is a subset of its raw
version.

Suppression-based approaches have been used to anonymize trajectory data before [34,12]. The privacy model in [34] assumes
that different adversaries possess different background knowledge, requiring data holders to obtain all such background knowledge.
We argue that collecting this information is non-trivial and impractical under normal circumstances. Therefore, our proposedmethod
limits any adversary's knowledge about any target victim to a maximum of L doublets. This realistic assumption is also adopted in
other works involving high-dimensional data [35,42]. More discussion on the adversary's background knowledge L will be provided
in Section 3.1. The authors in [12] use local suppression to anonymize a set of trajectories T. While our method removes a doublet by
removing all its instances from T (global suppression), local suppression removes only some instances from T. Naturally, local suppres-
sion causes less information loss by preserving more instances; however, in Section 3.3 we explain why local suppression is not fea-
sible for our target problem.

Next, we review some of the relevant work in the context of privacy preservation in data streams.
Li et al. [22] target preserving individuals' privacy in numerical data streams. Dwork et al. [13] proposed a set of algorithms

based on differential privacy to address some specific counting tasks. Both [22] and [13] involve noise addition, while our
method preserves data truthfulness, allowing for various data mining tasks. Recently, Chan et al. [11] addressed the problem
of privacy-preserving aggregation on sensitive streams. In this setting, an untrusted aggregator should not learn individuals'
exact data points, rather, only estimated aggregate statistics. This goal is different from ours, as follows. The work in [11]
achieves statistic aggregations while our work preserves the exact whereabouts of each moving individual. The latter approach
allows for providing customized services, e.g., recommendations, tailored for each individual. Hence, our method supports more
operations on the output anonymous data.
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Zhou et al. [45] proposed a framework for k-anonymizing a stream of relational data. Clusters are created and filled with
arriving data elements. Once a cluster contains data belonging to at least k moving individuals, the data are published in
the same generalization level. To limit information loss due to generalization, both [45] and [44] incorporate a prediction
mechanism of future data elements. Another approach targeting the same type of streaming data is CASTLE [10], a
cluster-based approach. It incorporates cluster merging and splitting mechanisms based on a maximum allowable delay
parameter. In SANATOMY, Wang et al. [38] employed anatomy to publish an ℓ-diverse data stream. They also assumed
the arrival of a single data element in the stream at any given timestamp. Li et al. [23] proposed a method called SKY
that allows a data owner to determine how much an anonymized stream deviates from its raw version. All [10,38,23]
enforce a user-defined time constraint to limit the delay of the published data. We argue that imposing time constraint
damages the anonymized data usefulness due to higher generalization levels incurred on nearly-expired data. We differen-
tiate our work as follows. (a) All the above works target stream of relational data while we target trajectory data. (b) The
privacy models in these works are heavily based on traditional k-anonymity while our model is more relaxed to accommo-
date both identity and attribute linkage attacks with a wide spectrum of adversary's knowledge. (c) The anonymous data in these
works are achieved mostly by means of generalization while we perform suppression. These points have been explained earlier in
this section.

3. Problem definition

A data holder is constantly collecting trajectories of moving individuals. A trajectory tr is a sequence of triples. A triple 〈idp, loc, t〉
that belongs to individual p∈ P reports p's location loc at timestamp t∈ ℕ, where P is the universe of moving individuals generating
trajectories. We define trajectory stream as follows.

Definition 3.1. Trajectory stream

A trajectory streamS ¼ id1; locid1 ; tid1
� �

; id2; locid2 ; tid2
� �

;…; idp; locidp ; tidp
D E

;…
n o

is a continuous sequence of triples generated by

every moving individual p ∈ P. ■

We assume that triples are being generated continuously; therefore, it may not be feasible to store all the data in a con-
ventional database. Moreover, we assume that the data recipient is more concerned with recent data rather than “outdated”
data. In Example 1.1, the airport manager may want to monitor the data in real-time by checking for congestions at any gate
for the past 60 min and react by opening new gates or allocating additional staff. If the airport, however, is to store trajec-
tories for later analysis, say on a weekly or monthly basis, several anonymization solutions exist for this particular
problem [7].

For the aforementioned reasons, we use a time-based sliding window W to represent the most recent data in a trajectory
stream S. A data holder specifies the size of W in terms of timestamps.

Definition 3.2. Sliding window

Let N be the size of a sliding window W, x be the starting timestamp, and y = x + N − 1 be the ending timestamp. Wx → y =
{triple ∈ S|x ≤ triple. t ≤ y}. ■

Following Definition 3.2, Table 1 shows W1→ 3, which starts at timestamp 1 and has a size of N = 3.
When a window W contains all proper triples, the next step would be to anonymize this window then publish it (Section 4) — a

data recipient has only a view over stream S through a sequence of anonymized windows published one at a time, and any mining
operation is performed exclusively on the most recent window. After that, the window slides, a process by which outdated triples
are dropped out and new triples are added. When a window slides, it shifts by a certain number of timestamps determined by
step _ size.

Definition 3.3. Outdated and new triples

From Definition 3.2, given a window size N, x+ = x + step _ size, and y+ = y + step _ size, we define outdated triples
O = {triple ∈ Wx → y|x ≤ triple. t b x+} and new triples E = {triple ∈ S|y b triple. t ≤ y+}, where E ∪ Wx → y = ∅. ■

Definition 3.4. A slide

From Definition 3.3, when window Wx → y experiences a single slide, it becomes Wxþ→yþ ¼ Wx→y−O
� �

∪E. ■

Example 3.1. Consider Table 1. Suppose that the first window isW1→ 3 (dashed box),N=3, step _ size=1, and that timestamp 4
has not appeared yet. ForW1→ 3, x=1 and y=1+3− 1= 3.W1→ 3 is then anonymized an published. At this point, timestamp
4 appears, and since step _ size=1, O={〈2, a, 1〉, 〈4, a, 1〉} and E= {〈1, d, 4〉, 〈2, d, 4〉, 〈3, d, 4〉, 〈7, d, 4〉, 〈8, e, 4〉}. The newwindow
is now W2→ 4. E is now a subset of W2→ 4. However, a set union between E and W1→ 3 remains an empty set because window
W1→ 3 is unaware of any future data, therefore, E does not exist in this particular window. ■
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We assume that the data holder publishes the moving individuals' sensitive information along with their trajectories. Therefore,
we define an object table in which each record corresponds to a unique moving individual p and contains p's trajectory and sensitive
information. More formally,
idp; trx→y; s1;…; sm
D E

;

where id is a record identifier, trx → y is p's trajectory of doublets corresponding to Wx → y, and si ∈ SAi are values from sensitive
attributes SA1, …, SAm where m ≥ 1. For the sake of simplicity, we consider m = 1 throughout our examples; i.e., object tables
contain only one sensitive attribute. Without loss of generality, our method can handle multiple sensitive attributes. Recall
that a doublet is nothing but loc and t from the triple to which it corresponds. We use this term whenever the focus is rather
on trajectories themselves, regardless to whom they belong.

3.1. Privacy threats

A data recipient has access to the most recently updated sliding window W. The published window includes recent moving
individuals' trajectories along with their sensitive information. We mentioned in Section 1 that adversaries are data recipients
who attempt to identify a target victim's trajectory tr and/or sensitive value s. We assume that an adversary possesses a subse-
quence of the victim's trajectory. We denote this subsequence by κ, and we call it the adversary's background knowledge. We also
assume that κ has a maximum size of L doublets, that is,
κ ¼ loc1t1ð Þ→…→ locztzð Þh i;
where z ≤ L. We note that given a sliding window with size N, L ≤ N. κ is a subsequence of a victim's trajectory tr if each and every
doublet in κ also exists in tr following the same order.

Obtaining the background knowledge κ from real-time trajectories is feasible due to the following two reasons. First, a
relatively long window allows a stalking adversary to gather a considerable amount of data about a target victim. Second, an
adversary may learn a victim's trends and habits (e.g., route from home to office), which are highly likely to appear in several
windows to come.

As we mentioned in Section 2, the concept of estimating the maximum length of adversary's background knowledge, has
been previously proposed in the literature [42,35]. Those works proposed privacy models that take into consideration the
attacker's “power”. The “power” of any attacker is the maximum number of items known by the attacker about any transaction,
and is denoted by L. We use a privacy model (Section 3.2) that shares this same concept.

It is possible for the data holder to estimate how much background knowledge the attacker can acquire based on the
effort needed to obtain such knowledge. If acquiring background knowledge about target victims is deemed relatively
easy, then the data holder can increase L to its maximum value. We note that the worst case about setting L is not the en-
tire trajectory size, rather, the window size N because the size of real-time trajectories is unknown to our anonymization
algorithm.

Given an object table T that contains the trajectory of a target victim, κ could be found in a group of trajectories in T. We denote the
group of records containing κ by G(κ), and the group size, i.e., number of records in G(κ), by |G(κ)|. κmaymatch to only a few records
in T. That is, if |G(κ)| is very small, the adversary might be able to uniquely identify the victim's record, thus, learning his/her other
visited locations and sensitive value.

Example 1.1 demonstrates that given W2→ 4 in Table 1, and given that κ = 〈e4〉, an adversary is able to uniquely identify the
victim's record (id = 8) since |G(〈e4〉)| = 1. We refer to this type of attack as identity linkage.

If the sensitive values in G(κ) are not diverse enough, an adversary might be able to infer the victim's sensitive value s with high
confidence. We denote the probability of inferring the victim's sensitive value s from G(κ) as follows:
C on f sjG κð Þð Þ ¼ G κ∪sð Þj j
G κð Þj j ;
where G(κ ∪ s) is the group of records within G(κ) containing both the subsequence κ and the sensitive value s. In Example 1.1, if
κ = 〈b2 → d4〉, then C on f(s1|G(〈b2 → d4〉)) = 1/2 = 50 %.

3.2. Privacy model

We use LKC-privacy model [27,28,14] to transform raw window Wx → y to an anonymous version W′
x → y such that the

published object table T thwarts identity and attribute linkage attacks. The reason for choosing LKC-privacy is its flexibility,
demonstrated as follows. (a) By changing the input parameters, LKC-privacy can metamorphose into k-anonymity or an in-
stance of ℓ-diversity (Section 3.3). This property also implies that if no sensitive information is involved in the process of
data publishing, LKC-privacy can still function properly. (b) A larger L provides more protection against adversaries with longer
background knowledge.
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We note that unlike the work in [20], LKC-privacy does not require the data holder to specify a set of predefined sub-
sequences in S. Rather, we explore the entire domain of loc and t with no restrictions on the number of triples in any
window.

In a given window, LKC-privacy ensures that any subsequence of size up to L appears at least K times and the probability of infer-
ring victims' sensitive values is at most C. We formalize this model as follows.

Definition 3.5. LKC-privacy

Given a set of sensitive values Sen, a positive integer L, an anonymity threshold K ≥ 1, and a confidence threshold 0 ≤ C ≤ 1, a
window Wx → y satisfies LKC-privacy iff for any subsequence q with |q| ≤ L, |G(q)| ≥ K and Conf(s|G(q)) ≤ C for any s ∈ Sen. ■

Sen is defined by the data holder. In Example 1.1, s1 is the only sensitive value in the sensitive attribute. If a stream does
not contain any sensitive values, then Sen = ∅. If a data holder wants to ignore all sensitive values completely, then
assigning C = 100 % would let any subsequence q satisfy the condition Conf(s|G(q)) ≤ C. Furthermore, should certain locations
be deemed sensitive, the data holder can include such locations in Sen. This hallmark in our privacy model gives the data holder
further flexibility in terms of privacy requirements.

Given an anonymous window, denoted by Wx → y′, that satisfies LKC-privacy, the probabilities of successful identity and attribute
linkage attacks are≤ 1/K and≤ C, respectively.We note that the same degree of data utility is achieved from bothWx → y′ and its static
version, i.e., static trajectories.

3.3. Problem statement

Ourproposedmethod achieves anonymity through suppression by efficiently removing selected doublets from rawwindowWx→ y

with the goal of preserving its utility.We perform global suppression: all instances of the selected doubletwill be removed fromWx→ y.
For example, the anonymous windowW2→ 4′ depicted in Table 2 is the result of suppressing all instances of doublets b2 and e4 from
the raw window W2→ 4 in Table 1.

Suppression does not require a predefined taxonomy tree, which is essential for performing generalization andmay not be conve-
niently available in real-life scenarios. Moreover, suppression targets specific doublets, resulting in more useful data for better anal-
ysis. Generalization, on the other hand, is imposed on all the sibling nodes in any subtree in the taxonomy tree, causing unnecessary
information loss.

Although applying local/multidimensional generalization achieves less information loss than suppression, the former methods
suffer from significant limitations. Existing statistical tools, such as SAS and SPSS, are unable to handle data anonymized by
local/multidimensional generalization due to the complexity of performing analysis on overlapping sub-domains [41]. Further-
more, even though sibling nodes are not affected by locally generalizing value v to u, most standard data mining methods treat v
and u as two independent values, which is not the case [15]. For instance, mining classification rules may create fuzzy rules; the
following two rules make it ambiguous to classify a new v: v → class1 and u → class2.

Applying techniques based on local suppression is not feasible even though such techniques may cause less information loss
than global suppression. We use global suppression because it takes advantage of the monotonicity property of Apriori. In con-
trast, this property does not hold for local suppression because the number of violations does not decrease monotonically with
respect to local suppressions. For example, suppose a trajectory table contains the sequence a1→ b2with support = 2. Let K=2
and L = 2. a1 → b2 is not a violation. If b2 was locally suppressed from one record only, then the resulting sequence a1 → b2
becomes a new violation. As a result, applying local suppression requires an extra step to check for newly generated violations.
The authors in [12] showed that such extra step is computationally costly. Therefore, to accommodate the transient, real-time
trajectories, we cannot afford local suppression for trajectory streams.

Definition 3.6. Anonymizing trajectory stream

Given a trajectory stream S, a sliding window Wx → y, and an LKC-privacy requirement, the problem is to efficiently publish a
sequence of anonymized sliding windows over S such that suppressions are minimized. ■

k-Anonymity and confidence bounding are special cases of LKC-privacy [14]. According to [26] and [36], achieving optimal
k-anonymity and optimal confidence bounding is NP-hard. It follows that achieving optimal LKC-privacy, i.e., performing the
least number of suppressions in any window, is also NP-hard. As a result, anonymizing a sequence of windows over S with
minimum number of suppressions is NP-hard. In the next section we propose a greedy algorithm that obtains a sub-optimal
solution.

4. Anonymization algorithm

In this section, we present Incremental Trajectory Stream Anonymizer (ITSA), our algorithm for incrementally anonymizing every
windowWx → y on S bymeans of suppression.We identify all subsequences inWx → y that violate a given LKC-privacy requirement. A
window is anonymouswhen it contains no violations.We also present the dynamic tree structure ofwindow for efficient updates and
data retrieval.
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4.1. Incremental identification of violations

In order to publish an anonymouswindow, we need tomake sure it does not contain any violation.We formally define a violation
as follows.

Definition 4.1. Violation

Assume a given LKC-privacy requirement and a slidingwindowWx → y over S. If any subsequence q inWx → y, with 1≤ |q|≤ L, has
1 ≤ |G(q)| b K and/or Conf(s|G(q)) N C, then q is a violation. ■

A violation can be any possible combination of doublets in Wx → y that does not adhere to LKC-privacy. For example,
〈b2 → d4〉 in W2→ 4 (Table 1) is a violation, as Example 1.1 demonstrates. Eliminating all violations transforms Wx → y to
an anonymous version W′

x → y that protects against privacy threats. Section 4.3 discusses how violations are efficiently
suppressed.

If a window contains z distinct doublets, the total number of possible sequences to be checked is 2z − 1. Due to this exponential
growth of candidate subsequences, we adopt the monotonicity property of Apriori [3] and only identify critical violations instead of
exhaustively finding all violations in a window. A critical violation is defined below.

Definition 4.2. Critical violation

A sequence v is a critical violation iff v is a violation and none of its subsequences is a violation. ■

If v has at least one subsequence v′ that violates a given LKC-privacy requirement, then v is a violation but not a critical violation.

Example 4.1. GivenwindowW2→ 4 in Table 1, let L=2, K=2, C=40%, and s1 be a sensitive value. q1= 〈b2→ c3〉 is not a violation
because |G(q1)| = 3 ≥ 2 and Conf(s1|G(q1)) = 33 % ≤ 40 %. q2 = 〈b2 → c3 → d4〉 is a violation because, although |G(q2)| = 2 ≥ 2,
Conf(s1|G(q2)) = 50 % N 40 %. On the other hand, q2 is not a critical violation because one of its subsequences, q2′ = 〈b2 → d4〉, is a
violation. q2′ itself, however, is a critical violation because neither b2 nor d4 is a violation. ■

From Definition 4.2, we make the following observation about anonymizing a raw window.

Observation 4.1. Removing all critical violations from a raw windowWx → y transforms it to an anonymous versionW′
x → y , w.r.t. a

given LKC-privacy requirement, that contains no violations. ■

Proof 4.1. Let v1 be a critical violation due to |G(v1)| b K. Then any supersequence v1
″ of v1 is a violation because |G(v1″)|≤ |G(v1)| b K.

However, any subsequence v1′ of v1 is not a violation because |G(v1′)| ≥ q|G(v1)|. Therefore, if v1 satisfies LKC-privacy then v1 also
satisfies L′KC-privacy, for L′ b L.

Let v2 be a critical violation due to Conf(s|G(v2)) N C. A supersequence v2″ of v2may ormaynot be a violation because there exists no
relation between Conf(s|G(v2)) and Conf(s|G(v2″)). Therefore, according to Definitions 3.5 and 4.2, v2″ will not be in any Candi. ■

We iteratively generate the set of all i-size candidate subsequences, Candi, by self-joining non-violating subsequences in Candi − 1.
Every subsequence q∈ Candi is checked against the given privacy requirement. If q is a (critical) violation, it is removed from Candi. To
mitigate information loss due to suppression, Section 4.3 shows that we do not actually need to remove all occurrences of a critical
violation v from Wx → y; rather, removing specific doublets in v is sufficient.

We identify below certain properties in a trajectory stream S and integrate them in building an efficient algorithm for incremen-
tally anonymizing a sliding window over S. Recall that the subsequent window of Wx → y is denoted byWxþ→yþ (Definition 3.4).

Property 4.1. When anonymous windowW′
x → y slides, W′

x → y − O incurs no violations. ■

Removing the set of outdated doublets O from anonymous window W′
x → y does not create violations. This is because: (a) All

doublets in O are globally suppressed fromW′
x → y. (b) According to Definition 3.5, all subsequences of size up to L satisfy the privacy

requirement.

Property 4.2. If subsequence q in anonymous window W′
x → y satisfies LKC-privacy, then q also satisfies LKC-privacy in any subse-

quent window that contains q. ■

Let q be a non-violation in anonymouswindowW′
x→ y. If subsequent rawwindowWxþ→yþ contains q, then q is still a non-violation.

Property 4.3. When anonymous windowW′
x → y slides, ∪ E may create new violations. ■

Let q be a non-violation in anonymous window W′
x → y. Adding the set of new doublets E to the subsequent raw window

Wxþ→yþ creates new combinations of doublets. Consequently, q ∪ e, where e is a subsequence from E, may or may not be a
violations.

Algorithm 1 (ITSA): This algorithm runs every time the window slides over a trajectory stream S. Suppose that anonymous win-
dowW′

x → y of size N has just been published. Line 2 slides the window by step _ size timestamps. Outdated doublets O drop out and
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newdoublets E arrive. The updatedwindow,Wxþ→yþ, contains rawdata. Phase 1 anonymizes E, Phase 2 obtains all critical violationsV,
and Phase 3 removes V from the raw window. Finally, anonymousW 0

xþ→yþ is published.

Algorithm 1. Incremental Trajectory Stream Anonymizer (ITSA)
Phase 1. As a preprocessing step, we first anonymize E. Any subsequence e from E is a special case to which Property 4.3 applies.
Consequently, any subsequence e with |e| ≤ L is checked. The maximum length of any e is equal to step _ size, which is relatively
small compared to window size N. Procedure 2 applies LKC-privacy on raw E. Critical violations found in E are removed from
Wxþ→yþ . Line 6 creates the 2-size candidate set Cand2 by self-joining Cand1 and E′. This process is demonstrated below.
Phase 2.We identify all critical violationsV inWxþ→yþ. Thanks to Properties 4.2 and 4.3, we check only subsequences that contain at
least one doublet from E. This phase iteratively generates Candi (Line 20) to check for critical violations. The iteration is
terminated when i exceeds L or Candi cannot be generated. Two subsequences, qy = 〈(loc1

y
t1
y
) → … → (loci − 1

y
ti − 1
y

)〉 and
qz = 〈(loc1

z
t1
z
)→…→ (loci − 1

z ti − 1
z )〉, can be self-joined only if all doublets except the last (the one having ti − 1) are identical

in both subsequences, and ti − 1
y

b ti − 1
z . The resulting sequence is l〈(loc1

y
t1
y
)→…→ (loci − 1

y
ti − 1
y

)→ (loci − 1
z ti − 1

z )〉. Lines 10–12
ensure that a candidate subsequence q is not a super sequence of a violation in V.
Phase 3. We remove all critical violations fromWxþ→yþ . Line 23 calls Procedure 3 in order to suppress only selected doublets in V
fromWxþ→yþ . Finding these doublets, referred to aswinner doublets Win, for suppression is motivated by the goal of incurring less
impact on the data utility. This process is detailed in Section 4.3. Line 27 publishes the anonymouswindowW 0

xþ→yþ after all winner
doublets have been removed.

Example 4.2. We continue from Example 4.1. AsW′
1→ 3 slides, E= {〈2, d, 4〉, 〈3, d, 4〉, 〈7, d, 4〉, 〈8, e, 4〉}. First, Procedure 2 in Phase 1

determines that e4 is a violation and, thus, suppresses e4 from E resulting in E′. Second, Phase 2 generates and tests every candidate
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subsequence q containing existing and new doublets inW2→ 4. Cand2= {〈b2→ d4〉, 〈c3→ d4〉, 〈f2→ d4〉}. q1= 〈b2→ d4〉 is a critical
violation because C on f(s1|G(q1)) = 50 % N 40 %. To demonstrate self-joining, let L = 3. Then, Cand3 = {〈f2 → c3 → d4〉}. Note that
Cand3 does not include 〈b2 → c3 → d4〉 because it is a supersequence of q1. ■

Procedure 2. AnonymizeNew()
4.2. Sliding window as a tree

When the sliding windowmoves, a relatively small fraction of the data is added/dropped while the remaining larger portion does
not change (overlapping data). Our proposedmethod efficiently handles this transition.Moreover, ourmethod allows the slidingwin-
dow to add/remove trajectories of joining/leaving individuals. ITSA entails adding, removing, and searching sequences of doublets.
We explain below how our method facilitates these operations on the window.

We use a trie structure to implementing sliding window. A trie is a type of trees where each node is a prefix to all its descendants.
The trie is created once (firstwindow), then is dynamically updated upon everywindow slide. Our tree structure is reminiscent to the
FP-tree structure introduced in FP-growth, a method for mining frequent patterns [19].

Definition 4.3. Trie

A trie, R = (Nodes, Edges, root), of trajectories in Wx → y consists of a collection of nodes, edges, and a root node. Every node
n ∈ Nodes contains a doublet b from Wx → y and a prefix count, count. The count of node n stores the number of distinct trajectories
containing the prefix subsequence in the unique root-to-node path. The sequence of doublets on a root-to-leaf path constitutes a
full trajectory. The root node contains only a count, which is the total number of trajectories. ■

Procedure 3. findWinners()



Fig. 2. Raw window W2→ 4 in Table 1 structured as a trie.
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The trie structure has a significant impact on storage space by allowing a concise view over trajectories. For example, rawwindow
W2→ 4 in Table 1 contains three instances of the sequence 〈b2 → c3〉. Fig. 2 is a trie of window W2→ 4. Only two nodes are used to
represent all the three instances of this sequence.

Nodes containing new doublets from E′ are added as leaves, and nodes on the higher levels are removedwhen removing outdated
doublets O. Fig. 3 shows anonymous window W′

2→ 4, where nodes containing a1 ∈ O and b2, e4 ∈ Win are removed.
When generating candidate subsequences from trie R, a subsequence q ∈ Candi may appear in several branches in R. This

is challenging when counting the total number of trajectories containing q (i.e., the support of q). A naïve way is exhaustively
search R. Instead, we use a virtual line, called Link, to connect all nodes containing the same doublet in R. Figs. 2 and 3 show
Linke4 and Linkd4.

Definition 4.4. Link

Given a trie R, Linkb is a sequence of positions that belong to all the nodes containing doublet b in R. ■

Finding the support and confidence of a doublet b is achieved by traversing Linkb. Simply adding up the counts of all the nodes on
Linkb yields the support of b, i.e., |G(b)|. To calculate C on f(s|G(b)), we use a separate sensitive count for every unique sensitive value in
Sen. Summing up the sensitive counts pertaining to sensitive value s yields |G(b ∪ s)|, which is used along with the previously found
support to calculate the confidence.

Example 4.3. Fig. 2 shows the trie R of the raw window W2→ 4. New nodes of d4, e4 ∈ E are added as leaves. The node of d4 in the
sequence q1= 〈b2→ c3→ d4〉 has count=2. This indicates that two instances of d4 preceded by 〈b2→ c3〉 appear in two trajectories
in W2→ 4. These two trajectories, as shown in Table 1, are associated with s1 ∈ Sen and s3. Therefore, the node of d4 has sensitive
count = 1. Hence, C on f(s1|G(q1)) = 1/2 = 50 %. ■

From the above discussion, we can find the support of a given sequence q = 〈b1 → b2 → b3 → … → b|q|〉 in a given trie R as
follows. Since every node in R is a prefix to all its descendants, it follows that countbi ≤countb j

, where j b i. This finding implies
that countq ¼ countb qj j . To find the support of q, we need to trace Linkb qj j to check for other instance of q in other branches of R. The
support of q ¼ jG qð Þj ¼ ∑countb qj j , given q exists in these branches. Calculating the confidence follows the same reasoning.

Example 4.4. Let us review q1 in Example 4.3. The leaf node of d4 has count = 2. Consequently, any subsequence of q1 con-
taining d4 will have its count = 2. Let q1′ = 〈c3 → d4〉 ⊆ q1. q1′ has two instances in two separate branches in R. The support of
q1′ = ∑ countd4 = 2 + 1 = 3. ■

As we pointed out earlier, the trie is created once (first window). Only at this one point does Procedure 2 run on an entire
window since all doublets in the first window are new, where step _ size = N. Afterwards, the trie is adjusted dynamically as
new doublets arrive and outdated doublets drop out. Hence, only new doublets E are read from S.
Fig. 3. Anonymous window W2→ 4′ in Table 2 structured as a trie.
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4.3. Suppression

After identifying all critical violations V in rawwindowWx → y (Phase 2 in Algorithm 1), we need to remove them fromWx → y. A
naïve approach is to remove every instance of a critical violation v ∈ V. Although this approach will result in an anonymous window
that satisfies LKC-privacy, the incurred data loss (referred to it as distortion) would be significantly high. Instead, we propose a greedy
procedure that selects certain winner doublets from V for suppression.

When a doublet w is chosen for suppression,w is globally suppressed. That is, all instances ofw are removed fromWx → y. Global
suppression does not increase the maximum probability of a successful attack (identity and attribute linkages) because any proper
subsequence in W′

x → y still satisfies the imposed LKC-privacy requirement.
Score dð Þ ¼ PrivGain dð Þ
InfoLoss dð Þ ð1Þ
Removing a violating sequence v implies that: (a) we are gaining privacy by removing an attack channel, and (b) we are inflicting
data distortion due to permanently removing doublets from the original trajectories inWx → y. Hence, we adopt a greedy function that
attempts at removing all violating sequences in V by suppressing selected winner doublets, Win. We apply Eq. (1) to every distinct
doublet b in V. PrivGain(b) is the number of critical violations containing b, and InfoLoss(b) is the support of b in the current raw
window. The doublet with the highest Score is labeled a winner doublet w and is added toWin.

Procedure 3finds thewinner doubletsWin from the set of all critical violationsV produced by Phase 2 in Algorithm1. Line 1 creates
the score table and fills in the values of PrivGain(b) and InfoLoss(b) pertaining to every unique doublet b in V. Lines 3–7 iterate the
score table to find awinner doublet. The purpose is to find a doublet that its removalwould result in the removal of amaximumnum-
ber of critical violations yet causing least distortion. Therefore, Procedure 3 selects the doubletw that has the highest Score. Then,w is
added to the set of winner doublets Win. After that, Procedure 3 updates the score table by removing w and adjusting the value of
PrivGain(b) of every doublet that coexists with w in the same critical violation. If b no longer exists in V, b's entry is removed from
the score table. Line 8 returnsWin containing all winner doublets to be suppressed from rawWx → y.

4.4. Complexity analysis of ITSA

The algorithm starts by sliding the window over stream S (Line 2). This process requires reading the set of new doublets E from S
and inserting the new subsequences into thewindow. The former step is proportional to the total number of individuals, |P|. The latter
step costs O N:jUj:jejð Þ, where U is the universe of locations, and e is a new subsequence from E and |e| ≤ step _ size.

We explain the complexity of generating Candi (Phase 2). Let D be the set of all distinct doublets in a given window. Candi, where
2≤ i≤ L− 1 (Property 4.3), is a set of i-combinations from D. We can approximate the size of a candidate set |Candi|≈ |D|i due to the
following two reasons. First,Candi is achieved by self-joining the sequences in Candi− 1 having the same prefix. Second, a sequence q is
removed from Candi − 1 if q is a supersequence of a previous critical violation. Therefore, increasing i does not have a significant effect
on the size of Candi, because it is less likely to find long sequences sharing the sameprefix. However, theworst-case scenariowould be
|Candi|≈ |D|L − 1, knowing that L≤N. Hence, Phase 2 is bounded byO(|D|L. |Linke|), where |Linke| is the number of branches containing
the full sequence q in the current trie. Likewise, Procedure 2 in Phase 1 generates Candi. However, for any sequence q in this case,
|q| ≤ min(L, step _ size) ≤ N.

To search for a single winner doublet w (Phase 3) in a trie R, we only need to follow Linkw. When updating R after deleting a
single w node, the child nodes of w go up by one level. Nodes containing the same doublet are merged. Any level contains at
most ¼ N−Levelþ 1ð Þ:jUj child nodes.

In summary, the most costly operation in ITSA is candidate sets generation, described in Phase 2. The complexity of ITSA is
dominated by attacker's knowledge L: O(|D|L), where L ≤ N. Practically, Phase 2 is most likely to terminate in early iterations due
the aforementioned reasons.

4.5. Discussion

We discuss two types of privacy attacks on the published data. These attacks differ from the privacy attacks we introduced in
Section 1. Furthermore, we discuss the situation where adversary's knowledge covers more than one published window.

4.5.1. Attacks
The first attack is called the minimality attack [39]. It stems from knowing that a certain anonymization method does not

anonymize data beyond aminimum point at which the data satisfy a given privacy requirement. Minimality provides less data distor-
tion, allowing for better data utility. This attack is based on the ability of an adversary to reconstruct raw data from its anonymized
version. Data reconstruction is made possible when there exists a public data set with matching quasi-identifier attributes. From
the reconstructed data, the adversary would be able to narrow down to the portions of the data that contain potential violations.
However, our method produces anonymized trajectories that are subsets of their pertinent raw versions by a sequence of suppres-
sions. By looking at an anonymized trajectory, it is impossible to conclude if suppression took place and on which doublets. Also,
we assume raw data only show doublets when a traveler changes locations. For example, Record # 8 in Table 2 contains only c3.
An adversary would not be able to tell if two doublets at timestamps 2 and 4 were suppressed or the traveler stayed at location c
at timestamp 4.
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The second attack is correlation attack. It takes place when a doublet is widely known by data recipients to be highly associ-
ated with a sequence of other doublets. As an example, most drivers in area a taking highway h cross over bridge r to get to mall
m. If the sequence 〈a1→ h2→m4〉 exists in the published data, then an adversary will be able to deduce the missing doublet of
the target victim, r3.We point out that if such association exists (i.e., high confidence), it is unlikely that ITSAwould suppress the
recurring doublet since it would have a high support. Moreover, in this paper, we assume that locations are not considered to be
sensitive information. If locations are sensitive, some methods already exist that incorporate this assumption in their solution
[34].

4.5.2. Adversary's knowledge
The slidingwindow contains recentwhereabouts of themoving individuals, since recentmovements aremost useful for datamin-

ing tasks. However, if adversary's knowledge spansmultiplewindows, the data holder needs to adjust thewindow size so that awider
range of trajectories is anonymized.

This solution, though simple and practical, suffers from two limitations. First, it is not always trivial to deduce the length of
the adversary's knowledge, L. Second, from Section 4.4, we can see that larger L incurs higher complexity. To circumvent these
drawbacks, in a future work we will consider anonymizing sequential windows so that recent windows are not published inde-
pendently. In other words, ITSA will still publish one anonymized window at a time, but recent windows will cover wider
adversary's knowledge. One way to accomplish this goal is to maintain a buffer containing count statistics of the most recent
n windows. The algorithm would then anonymize the current window based on the information available about recently published
anonymized windows.

5. Performance analysis

We implemented ourmethod in C++. All experiments run on an Intel Core i5 CPUwith 2.4 GHz and 4GB of RAM.We evaluate the
performance of our method in terms of data utility, efficiency, and scalability.

We carry out performance evaluation using three data sets. The first one is a simulated data set calledMetroData1. The second one
is a real-life data set calledMSNBC, which is publicly available at the UCI machine learning repository [4]. The third data set is gener-
ated using Brinkhoff's network-based synthetic data generator [8], and is called Oldenburg. MetroData is a simulation of the traffic
routes of a large group of passengers using the public transit metro system in Montreal, Canada. Routes are generated based on the
information and statistics provided in an annual report published by www.metrodemontreal.com. The generator that we built
takes into consideration the actual metro map and the passenger flow rate of each station. According to the published statistics, a
passenger passes through 8 stations on average.

MetroData contains trajectories generated for 100,000 passengers who use any of the metro's 65 stations over a 60-minute time
period. Therefore, MetroData includes 100,000 records; each record belongs to a unique passenger. The total dimensionality of the
data set is 65 × 60 = 3900 dimensions. We also assume the existence of a sensitive attribute, namely social_status. The sensitive
attribute has five domain values, we choose On-Welfare to be sensitive. In this case, the set of sensitive values Sen = {On–Welfare}.
All records are evenly assigned one value from the sensitive attribute.

The second data set, MSNBC, is a real-life web log containing visited webpages by nearly 1 million users, where every record
belongs to a unique user. The data set contains 17 categories of webpages: News, Tech, Health, etc. Despite the fact that this data
set contains no physical locations, it shares the same property of high dimensionality with a typical trajectory data set. Therefore,
categories of webpages are treated as unique locations visited by users at non-decreasing timestamps. We also impose a sensitive
attribute on the original data. The sensitive attribute contains 10 domain values, each record is randomly assigned one value. We
choose two domain values to be sensitive.

The last data set, Oldenburg, is generated using Brinkhoff's network-based traffic generator. Oldenburg contains 100,000 tra-
jectories of objects moving throughout the city of Oldenburg (Germany) over the course of 24 h. The representation of the gen-
erated trajectories has been modified to adhere to Definition 3.1. Hence, as a preprocessing step, the road-network map of the
city of Oldenburg was discretized into 10 × 10=100 regions and all X–Y coordinates of the generated trajectories were replaced
with their pertinent regions. In addition, a sensitive value is randomly assigned to every trajectory in a similar setting as in
MetroData.

To simulate a streaming environment, thewindow slides over trajectories reading only doublets that fit within thewindow scope.
Algorithm1 runs only on the data available in a givenwindow. That is, any future or outdated doublets are unknown to the algorithm.
Without loss of generality, we set step _ size= 1 in all experiments.

We compare our method ITSA with two other methods, namely RFIDAnonymizer [14] and Never Walk Alone (NWA)
[1]. RFIDAnonymizer was previously proposed for anonymizing a static RFID data set. To apply this static anonymization
method on trajectory stream, we apply RFIDAnonymizer on every window independently. We compare our method with
RFIDAnonymizer only in terms of efficiency and scalability, not in terms of data utility, because both methods apply exactly
the same sequence of suppression operations, yielding the same result. The contribution of ITSA over RFIDAnonymizer is on
efficiency and scalability. We also compare our method with another method called NWA that was proposed by Abul et al.
[1] to anonymize a static trajectory data set. We carry out performance analysis with NWA in terms of data utility and
1 http://dmas.lab.mcgill.ca/fung/pub/MetroDataSet.txt.

http://www.metrodemontreal.com
http://dmas.lab.mcgill.ca/fung/pub/MetroDataSet.txt
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Fig. 4.MetroData: the impact of L, K, C (N = 7).
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efficiency. In addition, we compare the impact of applying different privacy models, namely LKC-privacy and k-anonymity, on
the data utility.

Unless otherwise specified, a value on the distortion ratio and runtime reported in any of the following figures reflects the average
value of all the windows sliding over the same data set in one run.
5.1. Metro data set

First, we study the impact of the different parameters on data utility. Then,we generatemuch larger data sets to test the scalability
of our method.

Fig. 4a:We fix N to 7 and the adversary's background knowledge L to 4. We vary the minimum anonymity threshold K from 20 to
100 and the maximum inference confidence C from 20% to 100%. We see that increasing K implies higher distortion ratio. This is be-
cause more trajectories must share any subsequence q with |q| ≤ L, and it is unlikely that a large number of passengers share longer
journey routes. Therefore, more suppressions are needed to achieve anonymity. We also notice that the distortion ratio is highest at
C = 20 %. We attribute this odd jump to the random distribution of the sensitive values in each record, 1 out of 5 = 20 % = C. As a
result, more doublets are suppressed to satisfy the inference confidence requirement.

Fig. 4b: We fix N to 7 and C to 60%. We vary L from 1 to 5 and K from 20 to 60. For L≥ 2, the distortion ratio experiences a steady
behavior because the values of K are relatively small compared to the total number of records in the data set.We note that in real-life
data sets, the distortion ratio is expected to be proportional to L. This is because in order to satisfy LKC-privacy, more trajectoriesmust
share longer subsequences (which is unlikely by itself), thus, requiring further suppressions. Fig. 4b also affirms that distortion ratio
increases when K increases.
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Fig. 5. MetroData: sliding window (L = 4, K= 40, C = 60 %).
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Fig. 5a:We evaluate the impact ofN.Wefix L to 4,K to 40, and C to 60%.WevaryN from5 to 9. Fig. 5a insinuates that largerwindow
sizes are likely to cause higher distortions. This is because a larger window size produces a much larger Candi, resulting in increasing
the number of potential critical violations. Generally speaking, as the window slides, new data may or may not introduce new critical
violations (Property 4.3), and thus, there is no formal approach for systematically predicting an association betweenwindow size and
distortion. This reasoning is reflected in Fig. 5a when 5≤ qN≤ 7 where the distortion ratio increases slowly. However, the distortion
ratio experiences a sudden jump at N = 8, but has a marginal increase at N = 9.
Fig. 6.MetroData: scalability (L = 4, K = 120, C = 60 %, N = 7).
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Fig. 7.MSNBC: distortion ratio vs. L, K, C.

104 K. Al-Hussaeni et al. / Data & Knowledge Engineering 94 (2014) 89–109
Fig. 5b: All previous figures were depicting the distortion ratio on average for all windows. Fig. 5b presents the distortion ratio of
every window onMetroData. We set L=4, K=40, C=60 %, and N=7.We see that the distortion ratio exhibits mild fluctuation as
the window slides.

Efficiency and scalability: In all the experiments thus far, the runtime of anonymizing a single window before it slides is less than
1 s. We now evaluate the efficiency and scalability of our method in terms of handling data sets with a huge number of records. Our
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Fig. 8. MSNBC: runtime vs. K, L, N.
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method puts no restrictions on the amount of data to be processed in a slidingwindow. Themaximumnumber of doublet instances in
any window is equal to window sizeN × the number of records [23,38,45]. We use our generator to produce data sets with size rang-
ing from 200 thousand to 1 million records. We set L = 4, K= 120, C = 60 %, and N= 7. Fig. 6 shows that a window sliding over 1
million records finishes anonymization in less than 1 s.



Fig. 9. k-Anonymity vs. LKC-privacy (C = 60 %, L = 2, N = 5).
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5.2. MSNBC data set

For our second data set, we performmore in-depth analysis and observe the impact of the different parameters on distortion
ratio and runtime. All experiments consider the first 10 windows sliding over the entire data set.

Fig. 7: We evaluate the impact of L, K, and C on distortion ratio. Experiments are carried out for window size N = 5,
anonymity threshold 5 ≤ K ≤ 25, maximum adversary's background knowledge 1 ≤ L ≤ 3, and confidence threshold
C = 20 %, 60 %, 100 %. Overall, distortion ratio increases as K increases. At L = 1 (sequences of one doublet), the distortion
ratio stays below 1%mainly becauseMSNBC contains a very large number of records, thus, unique doublets are bound to appearmore
frequently.

Fig. 7 also shows that distortion ratio is proportional to L. Higher values of L imply that longer sequencesmust existmore frequent-
ly. Since it is unlikely that toomany users would visit the same sequence of webpages,many doublets have to be suppressed to satisfy
the given privacy requirement. Setting L = 3 produces a high distortion of ≥ 60 % in Fig. 7a–c.

Lastly, Fig. 7a (C=20 %) reports a higher distortion ratio at L=2 (30% to 40%) than Fig. 7b and c (10% to 30%). This is justified
by how sensitive values are assigned to each record. Since the sensitive attribute contains 10 domain values, 2 of which are sen-
sitive, each record has a probability of 20% to be assigned a sensitive value, which is equal to the confidence threshold. Therefore,
more suppressions are performed. This observation is reflected in Fig. 7b and c that report lower distortions.

Fig. 8: We study the effect of K, L, and N on the runtime of our method. For every graph, we vary one parameter and fix the others
(values are in caption). In Fig. 8a, for 20 ≤ K ≤ 100, runtime stays below 0.5 s. Moreover, we note that runtime is insensitive to the
change of K. This is because the number of critical violations does not grow significantly as K increases, hence the time to findwinner
doublets is not generally affected. This observation is depicted in Fig. 7b at L=2where the distortion ratio increases slowly as K goes
higher. The same reasoning can be applied to the inference confidence, C.

Fig. 8b depicts the impact of L on runtime. Themaximumvalue that can be assigned to L is thewindow sizeN. Therefore, we vary L
between 1 andN. In general, the runtime increases as L increases. For 1≤ L≤ 5, 0.4s≤ runtime≤ 1.3s. As L increases, more sequences
Fig. 10. RFIDAnonymizer vs. ITSA (K= 20, C = 60 %, L = 2, N = 10).
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are generated to be checked for potential critical violations. This fact is also reflected in Fig. 8c where 10≤ N≤ 50. Larger values of N
imply more unique sequences in any candidate set Candi, hence more processing time.

Fig. 9: We compare the distortion ratios caused by applying the LKC-privacy model and the traditional k-anonymity model,
respectively, in our ITSA method. By setting L = N and C = 100 %, LKC-privacy turns into k-anonymity. For LKC-privacy, we set
C = 60 %, L = 2, N = 5 and 10 ≤ K ≤ 50. Results in Fig. 9 show that k-anonymity maintains a minimum distortion ratio of 60%.
Applying LKC-privacy significantly lowers the distortion ratio over the different values of K. This can be explained by the fact that
k-anonymity requires every record to be shared in its entirety by at least k− 1 other records. This strict requirement is addressed in
LKC-privacy by manipulating the parameter L.

Fig. 10: We measure the efficiency and scalability of our method in terms of runtime (in seconds), and compare the results with
those achieved by using RFIDAnonymizer [14]. For this experiment, we measure the runtime of every individual window when
ITSA and RFIDAnonymizer are applied, independently. Fig. 10 depicts the runtimes of 10 windows. It is evident that ITSA performs
significantly better than RFIDAnonymizer by maintaining an overall runtime of ≤ 1 s, thanks to the properties that we identified in
trajectory streams (Section 4.1) and the compact and dynamic tree structure for representing trajectories (Section 4.2). Moreover,
when the window slides, ITSA reads only the new data in the stream, while RFIDAnonymizer reads every window in its entirety.
5.3. Oldenburg data set

In this set of experiments, we compare the performance of ourmethod ITSA with another method called NWA that was proposed
by Abul et al. [1] to anonymize static trajectory data. We carry out performance analysis of both methods in terms of data utility and
efficiency using the Oldenburg data set.

NWA applies anonymization through space translation, by which trajectory points are either suppressed or dragged in space until
every trajectory coexistswith at least k− 1 other trajectories. A translated point is assigned a penalty equal to the translation distance.
If a point is suppressed, it is assigned a penalty equal to the max point translation (a constant value corresponding to the maximal
translation distance in the entire experiment). This penalty metric is called Information Distortion, and is used in our experiments
to evaluate the utility of the output anonymized data set. Higher Information Distortion implies less data utility.

Ourmethod ITSA applies anonymization through a sequence of suppressions. To compute Information Distortion, every suppressed
point is assigned a penalty equal to the max point translation obtained from applying NWA on the same data set.
Fig. 12. Oldenburg: runtime (s).
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Fig. 11: We compare ITSA with NWA in terms of data utility by measuring Information Distortion. For ITSA, we set C= 60 %, L= 4,
andN=5.As forNWA,wemostly use the default parameters values, specifically,we set δ=200,π=5, δmax= 0.01, and trashmax=10.
For both methods, we set 10 ≤ K ≤ 50. As depicted in Fig. 11, our method constantly achieves 20% less distortion than NWA.

Fig. 12:We compare ITSAwith NWA in terms of efficiency bymeasuring the average runtime (in seconds) of anonymizing a single
window. The parameters of both methods are the same as those used in Fig. 11, except that in this experiment we set L to be equal to
the window size, L = 5. Increasing L requires processing of longer sequences, causing our algorithm to run longer. However, Fig. 12
shows the following two observations. First, ITSA runs significantly faster than NWA,which takes severalminutes to anonymize a sin-
gle window. Second, the runtime of our method is insensitive to the minimum anonymity threshold K (as also observed in Fig. 8a),
steadily reporting a runtime of almost 1 s. These two observations suggest that our proposed method is suitable for anonymizing a
“live” stream of trajectories.

In summary, the distortion ratio caused by ITSA is dominated by themaximum adversary's background knowledge L and thewin-
dow size N. This is because both of these parameters incur larger candidate sets containing potential critical violations. This finding
validates our analysis of ITSA in Section 4.4. Changing the minimum anonymity threshold K and the inference confidence C does
not cause a significant impact on distortion ratio.

6. Conclusion

Due to recent advancement in mobile technology, spatio-temporal data are being continuously generated. The data can be auto-
matically collected by some data holder. In this paper, we propose a novel approach for anonymizing a stream of trajectories gener-
ated by moving individuals. The anonymized trajectories are published on the fly to guarantee freshness. We illustrate and formalize
two types of privacy threats.We also propose an algorithm for incrementally anonymizing a sequence of dynamically-updated sliding
windows on the stream.We structure the window in a way to accommodate massive volumes of data. We evaluate the performance
of our method on simulated and real-life data sets, and compare with other methods. Empirical evaluation demonstrates that our
method is suitable for anonymizing real-life high-volume trajectory streams, and that it outperforms existing methods.
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