
CSGraph2Vec: Distributed Graph-based
Representation Learning for Assembly Functions

Wael J. Alhashemi
McGill University

Montreal, Canada
wael.alhashemi@mail.mcgill.ca

Benjamin C. M. Fung
McGill University

Montreal, Canada
ben.fung@mcgill.ca

Adel Abusitta
Polytechnique Montréal

Montreal, Canada
adel.abu-sitta@polymtl.ca

Claude Fachkha
University of Dubai

Dubai, United Arab Emirates
cfachkha@ud.ac.ae

Abstract—Software reverse engineering is an essential but
time-consuming undertaking in identifying malware, software
vulnerabilities, and plagiarism, especially when access to the
source code is limited. The extraction of abstract characteristics
that represent malware and work as classifier inputs in tradi-
tional machine learning approaches requires feature engineering.
The calibre of the features that are extracted has a major impact
on how well these algorithms perform. In contrast, end-to-end
learning solutions do not require hand-designed features and
instead attempt to determine if an executable is harmful or not.
However, a certain level of preprocessing remains essential in
order to present malware content in a manner that the machine
learning algorithm can comprehend. Due to the development of
machine learning and deep learning, automating the construction
of vector embeddings has become more feasible. This research
introduces CSGraph2Vec, a distributed and automated deep
learning approach that produces representations of assembly
functions. Using the power of the Electra pre-trained language
model, as well as message-passing neural networks, CSGraph2Vec
efficiently incorporates control flow and semantic information
from assembly code. Our model successfully learns significant fea-
tures that distinguish benign from malicious functions. Through
extensive experimentation and evaluation of the malware classifi-
cation task, we show that our model performs better than several
alternative approaches.

Index Terms—Cybersecurity, representation learning, dis-
tributed learning, spark, reverse engineering

I. INTRODUCTION

Machine learning technology has gained traction to detect
malware thanks to recent advancements, including the avail-
ability of labeled malware datasets for research, the decreasing
cost of computational power, and the progress made in ma-
chine learning techniques. This approach is attractive because
it possesses the ability to comprehend intricate relationships
within the input data and make informed decisions without
relying on specific signatures.

The extraction of abstract characteristics that represent
malware and work as classifier inputs in traditional machine
learning approaches requires feature engineering. The calibre
of the features that are extracted has a major impact on
how well these algorithms perform. In contrast, end-to-end
learning solutions do not require hand-designed features and
instead attempt to determine if an executable is harmful or not.
However, a certain level of preprocessing remains essential in

This research is supported by NSERC Discovery Grants (RGPIN-2024-
04087) and Canada Research Chairs Program (950-232791).

order to present malware content in a manner that the machine
learning algorithm can comprehend [1]–[3].

Reverse engineering proves to be a complex and time-
consuming process that requires significant expertise and
knowledge in the field [4]. This technique is employed by pro-
fessionals to gain a comprehensive understanding of software
in cyber-physical systems, particularly in situations where
access to the source code is not available. As a result, reverse
engineering serves as a critical tool in detecting malware and
is a fundamental component in modern cybersecurity efforts.

Previous work pertaining to representation learning specif-
ically targeting the assembly code level has been limited [5],
[6]. Although these studies have shown promising outcomes,
they primarily focus on capturing the semantic aspects of
binaries by embedding the relationships among assembly
instruction tokens. However, they overlook the significant
information embedded within the hierarchical structure of the
assembly code. In order to bridge the aforementioned gap,
we present an innovative model that incorporates both the
semantic and hierarchical structures of the assembly code.
Our model aims to offer a more comprehensive representation
of assembly functions. Furthermore, to optimize efficiency
and scalability, we suggest employing Spark, a distributed
computing framework, for generating distributed vector repre-
sentations of assembly functions. Using Spark, we can enhance
the computational performance and scalability of our model.

In this paper, our research mainly revolves around the
assembly code level, where we conduct experimental analysis.
Our main focus is on exploring a novel approach to representa-
tion learning using graph neural networks [7]. Specifically, we
delve into the utilization of message-passing neural networks
(MPNN) [8], which have shown remarkable performance in
various tasks. By leveraging MPNN, we aim to generate
enhanced representations of assembly code by effectively
aggregating messages from neighboring nodes. To ensure that
semantically similar instructions are closely embedded, we
harness the power of a pre-trained Transformer model called
Electra [9]. In particular, our work marks the first utilization
of the Electra model to represent assembly instructions. The
model’s workflow is structured in the following manner: 1)
Construction of control flow graphs (CFGs) for assembly
functions, 2) Generation of initial embeddings for basic blocks
using Electra, 3) Utilization of message-passing neural net-



work for generating comprehensive vector embeddings of the
assembly function, and 4) Utilization of these embeddings for
malware classification tasks, such as distinguishing between
benign and malicious samples. In addition, we evaluate the
effectiveness of our model by comparing it with alternative
approaches already in use. The crux of our study revolves
around addressing the representation learning challenge and
devising effective and efficient representations for assembly
code. Furthermore, we are focusing on the task of classifying
malware. It is worth mentioning that these vector representa-
tions hold potential for broader applications, including binary
clone detection [10], thus offering promising avenues for
further research.

The main contributions of this paper can be summarized as
follows.

• We introduce a new method for learning representations
of assembly code. What sets our approach apart is its
innovative utilization of a hybrid semantic and structural
distributed representation learning technique, which har-
nesses the power of Apache Spark for parallel processing.
This combination enables us to effectively capture both
the semantic aspects and the structural characteristics of
the assembly code, resulting in enhanced representations.
Notably, our study marks the first instance of incorpo-
rating Apache Spark into assembly code representation
learning, making it a pioneering contribution in the field.

• We reduce the execution time for generating vector em-
beddings for assembly functions by employing multiple
Spark workers to execute the pipeline concurrently.

• By leveraging datasets that are publicly accessible,
we demonstrate the effectiveness of our model, CS-
Graph2Vec, through rigorous experimentation. In our
approach, we leverage a language model to learn the
embeddings of assembly code, which allows us to capture
their semantic properties. This is achieved by considering
the relationships between tokens within the language
model. Additionally, we present the benefits of utilizing
CFGs with MPNN, since it helps to produce improved
vector embeddings. Taking the aforementioned compo-
nents, along with the utilization of Apache Spark for
parallel processing, our model surpasses the performance
of various other models in the task of assembly code-
level malware classification. The combination of semantic
understanding, structural analysis, and parallel processing
provides our model with a competitive advantage and
contributes to its superior performance.

II. RELATED WORK

A. Malware Classification

As machine learning continues to progress, it has be-
come crucial to evaluate its potential within the realm of
cybersecurity [11]. Sethi et al. [12] introduced an innovative
framework in the field of machine learning, aiming to detect
and categorize malware. The authors first use Cuckoo Sand-

box1 to retrieve the static and dynamic analysis report of an
executable file. The analysis report then serves the purpose
of extracting pertinent characteristics, which are subsequently
employed to identify and classify the most important features
for the detection and categorization of malicious software. In
another work, Gulmez et al. [13] focus on using graph-based
techniques to detect malware based on opcode sequences.
They disassemble the executable files to obtain the opcode
sequences. Then, the opcode sequences are transformed into
weighted and directed graphs, where each node represents an
opcode, and the transitions between opcodes are represented as
edges. In order to capture important features and differentiate
between malware and benign files, sub-graphs are created by
eliminating connections between distinct opcodes. Finally, The
sub-graphs are used to generate a histogram file containing the
node degrees. The histogram depicts the degree distribution
of each opcode in the graph, where the degree refers to the
number of edges connected to a node. The generated histogram
files of the degrees of the nodes are used as input features for
classification.

B. Assembly Code Representation

Researchers have recognized the shared characteristics be-
tween assembly code and natural text, leading them to ap-
ply natural language processing (NLP) models to analyze
these programs [14], [15]. To embed assembly instructions,
Redmond et al. [16] used the Word2Vec [17] model. Their
work examined NLP methods and modified them for cross-
architectural binary code analysis, including multilingual word
embedding [18]. Instruction2Vec, a framework created ex-
pressly to model assembly code, was introduced by Lee et al.
[6]. It is an improved Word2Vec model that takes into account
the syntax of the assembly language. The authors created
a lookup table with each instruction represented as a fixed-
dimension vector made up of an opcode and two operands us-
ing Word2Vec. Then, they used Text-CNN [19] to find software
flaws. Incorporating extensive semantic information between
tokens, Ding et al. [5] suggested an approach to representing
assembly code based on the PV-DM model [20]. However, it
should be noted that the main emphasis of these approaches
lies in the semantics of the code rather than explicitly taking
into account the real-time execution sequence.

Researchers have increasingly employed graph embedding
networks to acquire representations of assembly functions. In
their work, Feng et al. [21] developed Genius, a scalable
graph-based bug search model designed for firmware images.
Their approach involves converting the control flow graphs
(CFGs) of executable functions into numeric feature vectors
at a higher level, followed by using cutting-edge hashing
techniques for efficient searching. Moreover, Yan et al. [22]
suggested a malware classification model that takes advantage
of the capabilities of the deep graph convolutional neural
network (DGCNN) to embed structural information extracted
from a CFG. Initially, they converted the CFG into an at-

1https://cuckoosandbox.org/



tributed control flow graph (ACFG), where each vertex was
associated with specific attributes at the block level. Subse-
quently, DGCNN is applied to the graph data, transforming
it to facilitate classification tasks. In their research, Xu et
al. [23] introduced a neural-based graph embedding model
called Gemini for detecting similarity in cross-platform binary
code. Their model used the control flow graph and associated
attributes with each node to represent the code. To transform
the graph into an embedding suitable for detecting similarities,
they employed Structure2Vec [24] as a graph embedding
network. By integrating the graph embedding network into a
Siamese network [25], they effectively captured the objective
of bringing similar graph embeddings closer to each other. In
contrast, our work explores the usage of Electra [9] to generate
the initial node embedding. Subsequently, a message-passing
neural network is employed for further analysis.

III. PROBLEM DEFINITION

This section defines the research problem as well as the
notation used. Our model takes as input an assembly function,
denoted as f . We initiate the process by parsing f into a con-
trol flow graph (CFG). The CFG is produced by establishing
connections, which are the edges, between the basic blocks
that invoke each other. Each basic block, represented as v, is
characterized by a vector embedding, xv . To generate xv , we
map the set of assembly instructions in a basic block, bv , to
their corresponding vector embedding xv using an embedding
function fv(bv) = xv .

Graph G = (V,E) serves as the message-passing neural
network’s (MPNN) input, where V represents the set of initial
basic block representation in the CFG, and E denotes the set of
edges connecting the basic blocks. After obtaining the initial
block embedding (xv), a graph neural network, denoted fg is
used to improve the quality of block embeddings, resulting
in enhanced representations, x′

v . Subsequently, we derive the
graph embedding, θf , for the CFG, which serves as the input
for the malware classification task. The classification model
assigns a label, ŷ, to the assembly function, with ŷ taking
values from the set {0, 1} to indicate whether the function is
classified as benign or malicious: fg(G) = ŷ.

The research problem of our malware classification task
can be defined as follows, taking into account the depicted
workflow of our CSGraph2Vec model in Figure 1.

Definition 1 (Malware Classification): Consider a set of
assembly functions F , accompanied by their corresponding
labels Y , indicating whether each assembly function is clas-
sified as malicious or benign. Let f be an unknown assembly
function such that f /∈ F . The malware classification problem
involves constructing a classifier M , which is based on F and
Y . This model M is designed to enable the identification of
whether the assembly function, f , is malicious (ŷ has the value
1) or benign (ŷ has the value 0).

IV. GRAPH-BASED REPRESENTATION OF ASSEMBLY CODE

We divide our pipeline into three steps. Step 1 is to generate
the control flow graph. Step 2 is to generate the initial node

embedding and enhance them. Step 3 is to store the final graph
embedded in a local disk. Before explaining our approach, we
first discuss the preliminaries needed to understand our model.

A. Preliminaries

Assembly functions can be effectively represented using
control flow graphs (CFGs), which visually depict the various
paths through which a program can be executed [26]. A
CFG provides a graphical representation of the control flow
within a program, illustrating the decision points, loops, and
branches that influence the execution flow. By mapping the
control flow of a program into a graphical format, a CFG
facilitates understanding of the program’s structure and the
possible execution paths it can take. In a CFG, the basic
blocks (v) serve as nodes and represent groups of sequential
instructions without any branching or jumping. These basic
blocks are connected by the CFG’s edges, which indicate
the direction in which execution might proceed. These edges
capture the transitions between basic blocks that can occur
during program execution. Fig. 2 shows how the CFG of an
assembly function is generated. This representation is helpful
for malware classification because it helps us determine the
behaviour of program execution.

To obtain vector representations of assembly instructions,
we utilize message-passing neural network (MPNN) [8]. The
MPNN is a valuable choice because it accumulates messages
from neighboring nodes, incorporating hidden layer represen-
tations, and combines them to improve the node embeddings.
This allows us to capture the intricate relationships and de-
pendencies among the assembly instructions within the CFG.
Moreover, we must encode each basic block bv’s instruction
sequence as embeddings in order to make it easier to integrate
the CFG with the MPNN. Motivated by the accomplishments
of pre-trained language models in problems involving natural
language processing [27], a pre-trained language model fv
is used to obtain the initial block embeddings xv . These
embeddings effectively capture the semantic aspects of each
assembly instruction by considering the interrelationships be-
tween different tokens and preserving crucial information such
as the grammar and the associations between the operation
and its operands. Our primary objective is to preserve the
assembly instructions’ semantic information throughout the
representation learning process. By incorporating the MPNN
and harnessing the capabilities of pre-trained language mod-
els, we can generate comprehensive and meaningful vector
representations for assembly code.

B. Apache Spark Framework

In recent times, there has been a noticeable increase in the
expansion of data both in terms of volume and variety. This,
in turn, has spurred the development of sophisticated big-data
technologies aimed at efficiently managing and processing
these data. Among the prominent distributed systems for
handling big data, one that has gained significant attention is
Apache Spark2. Apache Spark [28], an in-memory cluster com-

2https://spark.apache.org/



Fig. 1. Workflow of CSGraph2Vec model

Fig. 2. Control flow graph generation and preprocessing.

puting system, has emerged as a result of extensive research
and widespread adoption. Spark employs a data abstraction
known as Resilient Distributed Datasets (RDDs) [29], which
enables the system to handle large datasets by dividing them
into smaller partitions across multiple machines. This approach
facilitates rapid data processing while ensuring fault tolerance.
Furthermore, in the event of a partition loss, the RDD can be
reconstructed as the system retains knowledge of its derivation
from parent RDDs.

RDDs can be generated through two different approaches:
by utilizing data stored in stable storage or by employing
other RDDs. These RDDs support two main categories of
operations. The first category is known as transformations,
which involve creating a fresh dataset from a pre-existing
dataset. Examples of transformation operations include map
and filter. The second category is referred to as actions, which
execute computations on the dataset and return a value to the
driver program. Examples of action operations include count
and collect. In Apache Spark, transformations are designed to
be lazy, which means that the actual results are not computed
immediately. Instead, they store information about the applied

transformation in a base dataset, such as a file. Only when an
action requires the delivery of a result to the driver program,
the transformations are executed. Additionally, Spark offers a
persist method, allowing users to retain an RDD in the cluster
for faster accessibility during subsequent queries. By utilizing
Spark, we leverage its ability to parallelize pipeline execution
by evenly distributing the data set among multiple workers.
This approach enables efficient and concurrent processing of
the data.

C. Message-Passing Neural Network

Message-passing neural network (MPNN) [8] is a frame-
work that can operate on graph G with node and edge features,
xv and evw, respectively. It is based on the notion of enhancing
node embeddings by combining the node embeddings from
neighboring nodes. Figure 3 illustrates the overview of mes-
sage aggregation. The message passing phase, which is used
to update the node embeddings, and the readout phase make
up MPNN’s architecture. The vertex update functions and
message sending phases are defined for the message passing
phase, which lasts for T time steps. Mt and Ut respectively.
During the message passing phase, at every time step t, every
node possesses a hidden state, ht

v that gets updated according
to the messages mt+1

v received from neighboring nodes.

Fig. 3. Illustration of message aggregation in message-passing neural network.



mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v,m

t+1
v ) (2)

A feature vector pertaining to the complete graph is gener-
ated in the final stage, also referred to as the readout phase,
using a predetermined readout function abbreviated R.

ŷ = R({hT
v |v ∈ G}) (3)

It is vital to remember that the learnt, differentiable func-
tions (Mt, Ut, and R) for message update, node update, and
readout are all used. This flexibility allows for the incorpo-
ration of various message and update functions within the
framework, providing robustness and adaptability to different
scenarios.

D. Electra

Electra [9] is a method employed for self-supervised lan-
guage representation learning, allowing the pre-training of
transformer text encoders [30]. These encoders can be sub-
sequently fine-tuned on particular tasks using limited compu-
tational requirements. The primary objective of this approach
is to distinguish between input tokens classified as either ”real”
or ”fake,” which are generated by an additional neural network,
akin to the discriminator component in generative adversarial
nets (GAN) [31].

The Electra methodology involves the training of two neural
networks: a generator and a discriminator. The purpose of the
generator is to perform masked language modelling (MLM),
where a portion of tokens within an input are masked, and the
goal is to predict the original vocabulary ID of the masked
token. Typically, around 15% of the tokens are selected for
masking, and the generator learns to accurately predict their
original identities. Conversely, the role of the discriminator is
to tell apart between tokens in the original data and tokens
that have been substituted by the samples generated by the
generator.

We utilize Electra due to its comparable performance with
RoBERTa as well as XLNet, while requiring less than one-
fourth of their computational resources. Moreover, Electra
outperforms these models when the same amount of compute
is employed.

E. Proposed Method: CSGraph2Vec

By integrating the aforementioned concepts and knowledge,
we develop our model, called CSGraph2Vec, which aims to
convert assembly functions (f ) into graph embeddings (θf ).
These embeddings can be utilized for malware classification
by employing a graph neural network on CFGs and producing
corresponding embeddings. CSGraph2Vec effectively captures
both the semantic and structural elements of assembly code
by utilizing a graph structure, specifically CFG. Each basic
block within the CFG is represented by a vector representation
derived from a pre-trained language model. These elements are
then combined using a graph neural network that aggregates

messages from neighboring nodes, ultimately producing an
enhanced embedding for the graph. Lastly, these enhanced
vectors are utilized for the purpose of malware classification.

To begin with, we generate the CFG of the assembly func-
tion by establishing connections between the basic blocks that
call one another. Each assembly instruction is treated as a word
while training our language model, and the complete basic
block including assembly instructions is treated as a sentence.
For learning the initial block embeddings, we employ Electra
and calculate the basic block’s overall instruction embedding
average. We choose the mean approach since each basic block
can contain a varying number of assembly instructions, and the
number of assembly code instructions that can be contained
in a basic block is not restricted in any way.

In order to train the Electra model to generate the ini-
tial node embeddings, we built a text collection containing
3,890,170 x86 assembly instructions with optimization levels
varying from O0 to O3. We train Electra on the Masked
Language Modelling (MLM) task, and we generate the block
embedding by taking the average of the instruction embed-
dings in that block. Training our language model took 39
hours, 41 minutes and 19 seconds with an Intel i9-9980XE 18
core 3.00GHz CPU, 128GB RAM, and two NVIDIA GeForce
RTX 2080 Ti graphic cards.

To create the relationship between the embeddings of each
block (nodes) and the blocks themselves (edges), we utilize
them as input for our MPNN. The MPNN framework effi-
ciently gathers data from nearby blocks and uses it to produce
improved block embeddings. One of the advantages that our
architecture has is scalability in the sense that any deep neural
network model can be used in place of our MPNN as long as
the deep neural network takes as input a graph. To generate
the final embedding of the function, we employ a pooling
layer. During our experimentation, we evaluate average as
well as add pooling layers, and find that the average readout
layer yields superior results. Subsequently, we employ the
embeddings to perform malware classification as part of the
downstream task

We utilize Spark framework for parallel processing. Each
deployed worker will be given an equal share of the dataset
to execute steps 1 through 4. The concurrent execution of the
pipeline from each worker allows for a faster runtime and more
data handling.

V. EXPERIMENTS

The objective of the experiment is to evaluate the efficiency
and scalability of the generation of embedding functions in
the assembly function. However, it is also important to ensure
that the quality of the learned embedding is high. To assess
the quality of the embeddings, we compare CSGraph2Vec
with various methods in the task of malware classification.
PyTorch [32] and PyTorch Geometric [33] are used for our
model’s implementation, and our experiments are run on an
Intel Xeon E5-1650 v4 6 core 3.60GHz CPU, and 32GB RAM.



A. Dataset
We use a subset of the dataset used by Asm2Vec [5] as

benign software, consisting of four widely used utility and
numerical calculation libraries. As for malicious software, we
collect 10 different classes of malware. The entire dataset has
a total of 9,371 assembly functions. Our analysis involves
benchmarking the performance of our model in the software.
Furthermore, we observe from Figures 4 and 5 that each
software has a different number of nodes and edges. More
detailed statistics of the dataset are listed in Tables I and II.

Fig. 4. The average number of nodes in the dataset.

Fig. 5. The average number of edges in the dataset.

TABLE I
STATISTICS OF THE BENIGN DATASET. A TOTAL OF 5,195 FUNCTIONS.

Library Number of Functions
Busybox 1389

Curl 468
OpenSSL 3124
PuttyGen 214

In the preprocessing step, we begin by converting all in-
structions to lowercase. To avoid the need to learn distinct
representations for every unique hexadecimal address and
constant value, we opt to replace hexadecimal addresses with
the token address and numerical constants with the token
constant. This substitution enhances the quality of the
vector embeddings.

B. Experimental Settings
For the efficiency evaluation, we execute the entire pipeline

but with varying the number of Spark workers being em-

TABLE II
STATISTICS OF THE MALICIOUS DATASET. A TOTAL OF 4,176 FUNCTIONS.

Library Number of Functions
339b5d 56

5hex 1924
613375f 72
961a5b 67
adagent 1076
adhelper 57

adinstaller 197
adkor 58

adposhel 269
3proxy 400

ployed. Efficiency experiments are conducted using {1, 2, 4,
6, 8} workers. For each of these experiments, we utilize the
whole 9,371 functions. Further, we split the dataset equally
between the workers. However, for the 1 worker case, it will
be given the entire dataset as that particular experiment is
considered a nonparallel experiment.

As for evaluating the scalability, we set the number of Spark
workers to 4. For each experiment, we execute the pipeline
while varying the dataset’s size. We conduct the scalability
experiments using {3,000, 6,000, 9,371} functions. Again, the
dataset is split equally between the 4 Spark workers for each
experiment.

For evaluating the accuracy of our model, we perform mal-
ware classification experiments. To showcase the effectiveness
of our semantic and structural components, we conduct a
comparative analysis of the performance of our model against
various methods. In the first method, we adopt a methodology
that relies on manually crafting features to generate our basic
block embeddings [23]. We craft each basic block’s features
by counting the number of instructions, transfer instructions,
function calls, arithmetic instructions, logical operations, con-
stants, and strings in the block. However, this representation
would cause us to miss the crucial information expressed in
the assembly instruction. In a separate approach described in
[6], the authors utilize Instruction2Vec to embed the assembly
instructions, and then employ TextCNN as a classification
method to classify the samples. We also experiment with
using Word2Vec [17] for node representation and GCN for
the message-passing element. Ultimately, we assess our model
CSGraph2Vec, using the following variations: 1) Using man-
ually crafted features with GCN (MC-GCN). 2) Employing
Instruction2Vec along with TextCNN (I2V-TCNN). 3) Utilizing
Word2Vec along with GCN (W2V-GCN).

Furthermore, we conduct a performance comparison be-
tween our model and Asm2Vec [5], CACompare [34], and
Genius [21] with regard to their accuracy on the task of
clone search. Given the functions’ embedding, we calculate
the cosine similarity between pairs of functions. We evaluate
the performance of our model using precision at 1 (P@1) and
evaluate it in comparison with other methods. For clone search,
We specifically focus on assembly functions that consist of
a minimum of five basic blocks so that the functions have



semantically more meaning and graph structure. The dataset
used for this experiment is the benign software mentioned in
V-A. We conduct experiments on the compiler optimization
level O0 as it is the default optimization level as well as no
optimization is performed.

C. Results

Figures 6 show that using more than one Apache Spark
worker in CSGraph2Vec reduces the time to generate the graph
embedding of assembly functions. This is due to the fact that
more workers are executing the pipeline in parallel as the
dataset is split equally amongst them. We also observe that
using 4 workers is the optimal number. Setting it to more than
4 would result in increasing the running time slightly and then
plateaus. We believe that this is due to the overhead of the
workers. Moreover, given the scale of our dataset, using more
than 4 workers is overkill. Hence, there is a fine line between
the size of the dataset and the number of workers. When com-
paring CSGraph2Vec’s performance with Asm2Vec’s, Figure 7
shows that Asm2Vec is faster than our model. This is due
to CSGraph2Vec’s MPNN being computationally expensive
as messages are being exchanged between nodes. Hence, the
larger the graph and edges between nodes, the longer it will
take to exchange messages.

Fig. 6. Efficiency of CSGraph2Vec on 9,371 functions. It depicts the runtime
to generate the assembly functions embeddings.

Fig. 7. Efficiency of Asm2vec with only 1 worker on 9,371 functions.

Regarding scalability, Figure 8 that as the number of func-
tions increases, the time it takes to generate the embeddings

Fig. 8. Scalability of CSGraph2Vec with 4 workers.

increases almost linearly. This is due to Spark splitting the
dataset equally to each worker so that no worker is being
overworked.

For malware classification, Table III shows that CS-
Graph2Vec performs better than the other models. We observe
that the manually crafted features do not adequately capture
the essence of the assembly instructions. Therefore, in order
to ensure high-quality representation, it is imperative to inte-
grate meaningful contextual representations of the assembly
instructions.

TABLE III
MALWARE CLASSIFICATION RESULTS.

Malware Classification Results
Model F1-Score Accuracy Recall Precision AUC-ROC

MC-GCN 63.85 68.92 62.03 66.24 68.29
W2V-GCN 92.62 93.45 92.16 93.22 93.32
I2V-TCNN 99.57 99.62 99.15 99.64 99.58

CSGraph2Vec* 99.81 99.83 99.81 99.81 99.83

For clone search, Table IV shows that our model is able
to attain comparable results to other methods when searching
using same compiler optimization level. This is due to the
target function having identical graph structure as the ground
truth, thus precision at 1 will always return the same function
as the target function.

TABLE IV
CLONE SEARCH RESULTS OF COMPILER OPTIMIZATION LEVEL O0 USING

THE PRECISION AT POSITION 1 (PRECISION@1) METRIC.

O0 Compiler Optimization Clone Search
Baseline Busybox Curl OpenSSL PuttyGen Avg.

CACompare [34] 1 ∅ 1 1 1
Genius [21] 1 ∅ 1 1 1

Asm2Vec [5] 1 1 1 1 1
CSGraph2Vec* 1 1 1 1 1

VI. CONCLUSION

In this paper, we propose a distributed representation learn-
ing method for malware classification named CSGraph2Vec.



To create efficient graph embeddings, we use message-passing
neural networks in conjunction with the Electra model. We
evaluate the performance of CSGraph2Vec by conducting ex-
tensive experiments on the malware classification task. We also
evaluate the efficiency of generating the graph embeddings by
employing Apache Spark for parallel processing. We demon-
strate that CSGraph2Vec is able to efficiently generate the
embeddings with more Apache Spark workers and outperforms
various methods in the malware classification task considering
the semantic and structural hierarchy of the assembly code.
The message-passing neural network provides a more thorough
representation by collecting messages from all neighbors,
while the control flow graph aids in identifying the malicious
execution routes.

REFERENCES

[1] A. Abusitta, M. Q. Li, and B. C. M. Fung, “Malware classification
and composition analysis: A survey of recent developments,” Journal of
Information Security and Applications (JISA), vol. 59, no. 102828, pp.
1–17, June 2021.

[2] M. Saqib, B. C. M. Fung, P. Charland, and A. Walenstein, “GAGE:
Genetic algorithm-based graph explainer for malware analysis,” in Proc.
of the 40th IEEE International Conference on Data Engineering (ICDE).
Utrecht, Netherlands: IEEE Computer Society, May 2024, pp. 2258–
2270.

[3] T. Bilot, N. El Madhoun, K. Al Agha, and A. Zouaoui, “A survey on
malware detection with graph representation learning,” ACM Computing
Surveys, vol. 56, pp. 1–36, June 2024.

[4] E. Eilam, Reversing: secrets of reverse engineering. John Wiley &
Sons, 2011.

[5] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” 2019 IEEE Symposium on
Security and Privacy (SP), pp. 472–489, 2019.

[6] Y. Lee, H. Kwon, S.-H. Choi, S.-H. Lim, S. H. Baek, and K.-W. Park,
“Instruction2vec: Efficient preprocessor of assembly code to detect
software weakness with cnn,” Applied Sciences, vol. 9, no. 19, 2019.
[Online]. Available: https://www.mdpi.com/2076-3417/9/19/4086

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[8] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” 2017. [Online].
Available: https://arxiv.org/abs/1704.01212

[9] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra:
Pre-training text encoders as discriminators rather than generators,”
2020. [Online]. Available: https://arxiv.org/abs/2003.10555

[10] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Kam1n0: Mapreduce-
based assembly clone search for reverse engineering,” Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016.

[11] M. Q. Li, B. C. M. Fung, and P. Charland, “Dyadvdefender: An instance-
based online machine learning model for perturbation-trial-based black-
box adversarial defense,” Information Sciences (INS), vol. 601, pp. 357–
373, July 2022.

[12] K. Sethi, R. Kumar, L. Sethi, P. Bera, and P. K. Patra, “A novel machine
learning based malware detection and classification framework,” in 2019
International Conference on Cyber Security and Protection of Digital
Services (Cyber Security), 2019, pp. 1–4.

[13] S. Gülmez and I. Sogukpinar, “Graph-based malware detection using
opcode sequences,” in 2021 9th International Symposium on Digital
Forensics and Security (ISDFS), 2021, pp. 1–5.

[14] M. Q. Li, B. C. M. Fung, P. Charland, and S. H. H. Ding, “I-MAD:
Interpretable malware detector using Galaxy Transformers,” Computers
Security (COSE), vol. 108, no. 102371, pp. 1–15, September 2021.

[15] L. Li, S. H. H. Ding, Y. Tian, B. C. M. Fung, P. Charland, W. Ou,
L. Song, and C. Chen, “VulANalyzeR: Explainable binary vulnerability
detection with multi-task learning and attentional graph convolution,”

ACM Transactions on Privacy and Security (TOPS), vol. 26, no. 28, pp.
1–25, August 2023.

[16] K. Redmond, L. Luo, and Q. Zeng, “A cross-architecture instruction
embedding model for natural language processing-inspired binary
code analysis,” CoRR, vol. abs/1812.09652, 2018. [Online]. Available:
http://arxiv.org/abs/1812.09652

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[18] T. Luong, H. Pham, and C. D. Manning, “Bilingual word representations
with monolingual quality in mind,” in Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language Processing. Denver,
Colorado: Association for Computational Linguistics, Jun. 2015, pp.
151–159. [Online]. Available: https://aclanthology.org/W15-1521

[19] Y. Kim, “Convolutional neural networks for sentence classi-
fication,” CoRR, vol. abs/1408.5882, 2014. [Online]. Available:
http://arxiv.org/abs/1408.5882

[20] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents,” CoRR, vol. abs/1405.4053, 2014. [Online]. Available:
http://arxiv.org/abs/1405.4053

[21] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 480–491.

[22] J. Yan, G. Yan, and D. Jin, “Classifying malware represented as
control flow graphs using deep graph convolutional neural network,”
in Proceedings of the 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2019, pp. 52–63.

[23] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song,
“Neural network-based graph embedding for cross-platform binary
code similarity detection,” CoRR, vol. abs/1708.06525, 2017. [Online].
Available: http://arxiv.org/abs/1708.06525

[24] L. Song, “Structure2vec: Deep learning for security analytics over
graphs.” Atlanta, GA: USENIX Association, May 2018.

[25] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a ”siamese” time delay neural network,” in Advances
in Neural Information Processing Systems, J. Cowan, G. Tesauro, and
J. Alspector, Eds., vol. 6. Morgan-Kaufmann, 1993.

[26] K. D. Cooper, T. J. Harvey, and T. Waterman, “Building a control-flow
graph from scheduled assembly code,” Tech. Rep., 2002.

[27] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang,
“Pre-trained models for natural language processing: A
survey,” CoRR, vol. abs/2003.08271, 2020. [Online]. Available:
https://arxiv.org/abs/2003.08271

[28] M. A. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCloud, 2010.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” 04 2012,
pp. 2–2.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[Online]. Available: https://arxiv.org/abs/1706.03762

[31] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” 2014. [Online]. Available: https://arxiv.org/abs/1406.2661

[32] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation
in pytorch,” in NIPS 2017 Workshop on Autodiff, 2017. [Online].
Available: https://openreview.net/forum?id=BJJsrmfCZ

[33] M. Fey and J. E. Lenssen, “Fast graph representation learning
with pytorch geometric,” CoRR, vol. abs/1903.02428, 2019. [Online].
Available: http://arxiv.org/abs/1903.02428

[34] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection across
architectures and compiling configurations,” in 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC), 2017, pp.
88–98.


