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Abstract—Data-as-a-Service (DaaS) mashup enables data
providers to dynamically integrate their data on demand
depending on consumers’ requests. Utilizing DaaS mashup,
however, involves some challenges. Mashing up data from
multiple sources to answer a consumer’s request might reveal
sensitive information and thereby compromise the privacy
of individuals. Moreover, data integration of arbitrary DaaS
providers might not always be sufficient to answer incoming
requests. In this paper, we provide a cloud-based framework for
privacy-preserving DaaS mashup that enables secure collabo-
ration between DaaS providers for the purpose of generating
an anonymous dataset to support data mining. Experiments on
real-life data demonstrate that our DaaS mashup framework
is scalable and can efficiently and effectively satisfy the data
privacy and data mining requirements specified by the DaaS
providers and the data consumers.

Keywords-data mashup; data privacy; anonymization; data
mining; web services

I. INTRODUCTION

Data-as-a-Service (DaaS) is an emerging cloud comput-

ing service that provides data on demand to consumers

across various cloud platforms via different protocols over

the Internet. Utilizing DaaS not only supports data access

from anywhere at anytime but also reduces the cost of data

management. We foresee that a new class of integration tech-

nologies will emerge to serve data integration on demand

using DaaS providers through web services, and we call it

DaaS Mashup.

In this paper, we propose a privacy-preserving DaaS

mashup framework that allows DaaS providers to securely

integrate and trade their collected person-specific survey data

to support analytical data mining tasks such as classification

analysis. In the market, DaaS providers can register and

advertise their available data, and data consumers can submit

their classification analysis requests with a minimum accu-

racy requirement. Then a mashup coordinator in the frame-

work dynamically determines the group of DaaS providers

whose data can fulfill the request, with consideration of data

availability, bid price, and data quality, such as classification

accuracy. Figure 1 presents an example of a DaaS mashup

market for secure integration of patient records.

The challenges of modeling a data-sharing market are

summarized as follows. The first challenge is the privacy
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Figure 1. Mashup of patient records in DaaS environment

concern. DaaS providers are often reluctant to share the

person-specific data of their survey respondents because

of data privacy. Two types of privacy concerns have to

be addressed in our proposed DaaS mashup framework.

First, the final mashup data has to be anonymized in order

to disable any potential linkage attacks. Second, during

the mashup process, no DaaS provider should learn more

information from the other DaaS providers other than what is

revealed in the final mashup data [1]. The second challenge

is the data quality of the anonymized data. It is important

to ensure that the final mashup data contributed by multiple

DaaS providers is useful for a given consumer’s data request.

The third challenge is how to satisfy a given data request.

Data coming from a single DaaS provider may not be

sufficient to fulfill a data request; subsequently, selecting the

appropriate combination of DaaS providers is a non-trivial

task. The selection process has to consider the consumer’s

data attribute requirement, data quality requirement, and bid

price as well as the DaaS providers’ privacy requirements.

The contributions of this paper can be summarized as

follows:

Contribution #1. To the best of our knowledge, this is

the first work that proposes a cloud-based DaaS framework

to integrate private data from multiple DaaS providers with
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the goal of preserving both data privacy and the data

mining quality of the underlying data. Section II provides

a formal description of the objectives and behaviour of the

participants in the proposed framework.

Contribution #2. Vaculin et al. [2] presented a web

service framework to answer a request coming from a

consumer with the assumption that a single provider can

fulfill the request. In contrast, we remove such an assumption

and dynamically identify the combination of DaaS providers

whose data can best satisfy the data privacy, data quality,

and price requirements. Section III presents the proposed

framework and algorithms.

Contribution #3. We performed experimental evalua-

tion on real-life data to measure the impact of the DaaS

providers’ revenue and the efficiency of our proposed market

framework with respect to different privacy levels. Extensive

experimental results suggest that our framework is efficient

in terms of processing various sizes of queries with regard

to data quality and bid price. Section IV shows the experi-

mental results.

II. THE PARTICIPANTS

This paper introduces a privacy-preserving framework for

trading person-specific survey data. The framework assumes

three types of participants: DaaS providers, data consumers,

and mashup coordinator. We assume that the data being

shared is in the form of a relational table that is vertically

partitioned into sub-tables, each of which is hosted by one

DaaS provider. We also assume that the data mining task the

data consumer is interested in performing is classification

analysis. The data consumer submits a sequence of data

queries to a mashup coordinator in the platform, where

each query consists of the requested attributes, the required

data quality (classification accuracy), and the maximum bid

price. Since a single DaaS provider might not be able to

provide all requested attributes, the mashup coordinator is

responsible for determining the group of DaaS providers

that can cover all the attributes while meeting the requested

data quality and price. Finally, the mashup coordinator has

to return an anonymized data table that satisfies a given

privacy requirement that is agreed on by all the contribut-

ing DaaS providers. The rest of this section describes the

goals, requirements, and behaviour of these three types of

participants in our proposed framework.

A. DaaS Providers

Let DP = {P1, . . . , Pn} be the group of registered

DaaS providers in our framework. Each provider Pi

owns an attribute table in the form of TA
i =

(UID,EIDi, QIDi, Seni, Class), where UID is a

system-generated unique identifier of a survey respondent,

EIDi is a set of explicit identifiers, QIDi is a set of

quasi-identifiers, Seni is a set of sensitive attributes, and

Class is a target class attribute for classification analysis.

Explicit identifiers contain information, such as name and

SSN, that can explicitly identify an individual. They should

be removed before the data publishing. QID is a set of

attributes, such as job, sex, and age, that may identify a

respondent if some combinations of QID values are specific

enough. They cannot be removed because they are useful for

the data mining task. Any attribute in QID can be shared

by two or more DaaS providers. The sensitive attribute

Seni contains some sensitive information about the survey

respondents, such as diseases they might have. The target

class attribute will be explained later in this section.

The DaaS providers want to sell the survey data in their

attribute table for profit, but releasing the raw data may

compromise the privacy of their survey respondents. In a

common privacy attack called record linkage an adversary

attempts to utilize his background knowledge, represented

by a combination of QID values denoted by qid, of a

target victim V , with the goal of identifying V ’s record

in the released data table T . Many privacy models [3][4]

have been proposed in the last decade to thwart these

linkage attacks. In our proposed framework, we choose

to impose LKC-privacy [5] on the final mashup data for

two reasons. First, LKC-privacy was specifically designed

for preventing linkage attacks on high-dimensional data.

This is important because a classification analysis request

might require many attributes from different DaaS providers,

often resulting in a high-dimensional mashup table. Second,

LKC-privacy is a generalized privacy model that covers

K-anonymity [3] and �-diversity [6]. Therefore, the DaaS

providers, if necessary, have the flexibility to employ these

traditional privacy models. Due to limited space, we do not

present a full definition of LKC-Privacy here. Please refer

to our technical report [1] for more details.

LKC-privacy guarantees the probability of a successful

record linkage to be ≤ 1/K and the probability of a

successful attribute linkage to be ≤ C. L, K, and C are

DaaS provider-specified privacy thresholds. Increasing K,

increasing L, or decreasing C imposes a higher level of

privacy protection, and vice versa. In general, imposing a

higher level of privacy would result in lower data qual-

ity, and, therefore, it would lower the data mining value

of the anonymized data. Thus, the DaaS providers would

anonymize their attribute table TA
i with different combina-

tions of L, K, and C and advertise their prices in a price
table TP

i = (L,K,C,Quality, Price) containing different

combinations of privacy levels in terms of L, K, and C,

with the corresponding data quality and price. The data

quality is an objective measure depending on the supported

data mining task. For example, the quality measure can be

classification accuracy for classification analysis, and the

quality measure can be F-measure for cluster analysis. Our

proposed platform is applicable to any data mining task,

provided there is a quality measure. In the implementation

illustrated in the rest of this paper, we assume that the DaaS
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providers support classification analysis, and the quality

measure is classification accuracy on the target attribute

Class. Without loss of generality, we assume that there

is only one Class attribute shared among {TA
1 , . . . , TA

n }.
Though LKC-privacy is chosen to be the privacy model

in our implementation, our platform can adapt any privacy

model provided there is a privacy parameter(s) to adjust the

privacy level.

To construct the price table we introduce procedure

buildPT . This procedure takes as input a set of LKC-

privacy requirements. For each LKC-privacy requirement,

procedure buildPT utilizes an algorithm called Privacy
Aware Information Sharing (PAIS) [5] to anonymize the

attribute table TA
i . PAIS is a top-down specialization method

for achieving LKC-privacy with the goal of maximizing the

classification accuracy on the Class attribute. The resulting

anonymized table is denoted by TA′
i . Then, the procedure

employs the C4.5 decision tree classifier [7] to determine

the classification accuracy Acc of TA′
i . The advertised price

is determined by the price per attribute of provider Pi,

discounted by the accuracy. A new record with values L, K,

C, Acc, and Price is then inserted into the price table TP
i .

We assume that DaaS providers follow the non-colluding
semi-honest model [8].

B. Data Consumers

Data consumers are participants who want to perform

some specific data analysis and would like to purchase

some survey data from the market by submitting a data

request. This can be as simple as a count query or as

complex as a data mining operation, such as a classi-

fication analysis or a cluster analysis. In our proposed

framework, a data request is represented in the form of

req = {Areq, Accreq, BPricereq}, where Areq is the set

of requested attributes such that Areq ⊆ (
n⋃

i=1

QIDi) ∪

(
n⋃

i=1

Seni) ∪ Class, Accreq is the required minimum clas-

sification accuracy, and BPricereq is the bid price for the

requested data. Our model assumes that any data consumer

can be an adversary whose goal is to launch record and

attribute linkage attacks on the received data. Therefore,

the final mashup data must satisfy a given LKC-privacy

requirement that is agreed upon by all contributing DaaS

providers.

C. Mashup Coordinator

A mashup coordinator is a mediator between data con-

sumers and DaaS providers. Given a data request req =
{Areq, Accreq, BPricereq}, the objective of a mashup co-

ordinator is to coordinate one or multiple DaaS providers to

generate a mashup table TM such that TM contains all the

requested attributes Areq , the total price of the mashup table

TPrice(TM ) ≤ BPricereq , and the classification accuracy

on the final mashup table Acc(TM ) ≥ Accreq . Finally,

the mashup coordinator is responsible for sending the final

mashup table TM to data consumers and distributing the

revenue to the contributing DaaS providers.

In case a mashup table TM satisfies Areq and Accreq
but fails to satisfy TPrice(TM ) ≤ BPricereq , a mashup

coordinator should have the capability to make alternative

recommendations to the data consumers, such as increasing

the bid price BPricereq or decreasing the minimum accu-

racy Accreq .

III. D-MASH FRAMEWORK SOLUTION

A. Solution Overview

The objective of our solution is to provide a market

mashup framework with a Service-oriented architecture
(SOA) that enables DaaS providers to securely integrate their

survey data and generate an anonymized mashup table TM

such that the privacy of the data is preserved, while the

request coming from the data consumer is satisfied.

The framework for answering a data consumer’s request

consists of four steps:

Step 1 - Identify Contributing DaaS Providers. We

introduce a greedy algorithm DaaS Providers Selector (se-
lectDaaSPs) that determines the group of DaaS providers

whose data satisfy all requested attributes such that the total

cost is minimal.

Step 2 - Compute Total Price. The mashup coordina-

tor executes a procedure called Total Price Computation
(compTPrice) to compute the total price of the mashup table

TM .

Step 3 - Construct Mashup Table. To construct the

final mashup table TM and determine its final accuracy,

the mashup coordinator executes a procedure called Mashup
Table Construction (buildTM). The latter uses the privacy-

preserving PHDMashup algorithm [9] to securely integrate

and anonymize the attribute tables of contributing DaaS

providers. It also utilizes classifier C4.5 to compute the final

classification accuracy of TM .

B. The Architecture

Service-oriented architecture (SOA) is a pattern for busi-

ness processes maintenance that contains large distributed

systems. SOA has several properties including services,

interoperability, and loose coupling. A service is a discrete

software module utilized for different simple or complex

functionalities. An enterprise service bus (ESB) enables the

interoperability for services among distributed systems and

eases the distribution of processes over multiple systems.

Loose coupling minimizes the dependencies of system com-

ponents and improves scalability and fault tolerance of the

system [10]. The implemented architecture of our framework

is illustrated in Figure 2.

The proxy component contains a proxy manager that

generates a proxy class based on the WSDL description
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Figure 2. D-Mash framework for privacy-preserving Data-as-a-Service mashups: architecture

and exposes a programmatic interface based on the methods

published by the web service of the mashup coordinator.

When the data consumer sends a request, the coordinator

invokes a method from the interface, where the method

call is automatically converted (serialized) to a SOAP re-

quest SRequest by the proxy using XmlSerializer class. The

SRequest is then XML-formatted and transferred through the

network. Since SOAP web services utilize simple object
access protocol to transmit data between SOAP clients and

SOAP APIs, our proxy manager uses the SOAP client to

send SRequest to the SOAP API of the mashup coordinator.

The mashup coordinator component contains three enti-

ties: SOAP API, mashup manager, and SOAP client. The

serialized request is automatically deserialized by XmlSe-
rializer class in order to extract the data when it reaches

the SOAP API. The mashup manager uses the extracted

data to compute the contributing DaaS providers, calculate

the total price, construct the anonymized mashup table

TM , and compute the final accuracy of TM . The mashup

manager is also responsible for ensuring that the consumer’s

request is fulfilled. In case the request cannot be fulfilled, it

recommends alternative solutions. The SOAP client entity of

the mashup coordinator component is used to communicate

with the DaaS provider components.

Each DaaS provider component consists of two entities:

data manager and SOAP API. The data manager receives

requests from a mashup coordinator through the SOAP

API, and then deserializes the request and queries the data

accordingly. Once the final anonymized mashup table TM

has been constructed, the mashup manager serializes the TM

data, along with its accuracy and price values, and sends that

as a SOAP response back to the proxy via its SOAP API. The

proxy component receives the SOAP response SResponse

through its SOAP client, then the proxy manager deserializes

the data and sends it back to the data consumer.

C. Identify Contributing DaaS Providers

When the mashup coordinator receives a consumer’s data

request req, the first task is to identify one or more registered

DaaS providers that can collectively fulfill all requested

attributes Areq such that the price of each attribute is the

lowest possible price. We call such a group contributing
DaaS providers. The following is the formal definition:

Definition 3.1 (Contributing DaaS Providers.): Given a
set of registered DaaS providers DP and a set of requested
attributes Areq , the contributing DaaS providers are the set
of providers D ⊆ DP such that:

1) ∀A ∈ Areq , ∃Pi ∈ D, where TA
i contains A, and

2) �Pj ∈ DP such that TA
j contains A and the price

per attribute PAj < PAi, where PAj and PAi

are the price per attribute for providers Pj and Pi,
respectively.

Algorithm 1 selectDaaSPs: DaaS Providers Selector
Input: requested attributes Areq

Input: registered DaaS providers DP
Output: contributing DaaS providers D

1: initially R = Areq and D = ∅ and D̂ = DP
2: while R 
= ∅ do
3: select Pi ∈ D̂ with the least price per attribute PAi

4: Mi ← {TA
i ∩R}

5: if Mi 
= ∅ then
6: D← (Pi,Mi)
7: R← R \Mi

8: end if
9: D̂ ← D̂ \Pi

10: end while
11: return D;

In Algorithm 1, we introduce a greedy procedure DaaS
Providers Selector (selectDaaSPs) that enables the mashup

coordinator to compute the contributing DaaS providers for

request req. This algorithm examines the set of attributes

Areq and the price per attribute PAi provided by each DaaS

provider, and then identifies for each requested attribute the

DaaS provider with the lowest price. The resulting D denotes

a set of contributing DaaS providers. Because there might

be more than one set of contributing DaaS providers that

can satisfy req, selectDaaSPs is designed to find only one
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set of contributing DaaS providers and terminates once the

set has been identified. SelectDaaSPs is a variation of the

weighted set cover problem [11]. Initially, R is equal to the

requested attributes Areq , and D̂ is the set of all registered

DaaS providers (Line 1). In each iteration, the algorithm

selects a provider Pi ∈ D̂ whose price per attribute PAi

is the least among all providers in D̂ (Line 3). If TA
i , the

attribute table of Pi, contains some requested attributes Mi

(Line 4), then the pair of DaaS provider Pi along with Mi

is added to D (Line 6), and Mi is then removed from R
(Line 7). Pi is also removed from D̂ (Line 9), and a new

iteration commences until R is empty.

Proposition 3.1: The cost of satisfying all requested at-
tributes Areq in procedure selectDaaSPs is

∑
PAi × CAi,

where PAi is the price per attribute of provider Pi, and
CAi is the number of covered attributes by provider Pi.

Proposition 3.2: The runtime complexity of the greedy
procedure selectDaaSPs is O(n log m), where n is the
number of requested attributes |Areq| and m is the number
of DaaS providers |DP |.

Due to limited space, we omitted the complexity proof.

Please refer to our technical report [1] for the details.

D. Compute Total Price

The total price of the mashup table TPrice(TM ) is

computed using procedure compTPrice. Given a mini-

mum requested accuracy Accreq and the set of contributing

DaaS providers D determined in Section III-C, procedure

compTPrice presented in Algorithm 2 randomly selects a

provider Pi from the set of contributing DaaS providers

and removes it from D (Lines 1-2). Algorithm findAcc
is utilized to examine the price table TP

i and find the

smallest accuracy Acc that is greater or equal to Accreq
(Line 3). If such accuracy cannot be found, then findAcc
selects the highest accuracy available in TP

i . Next, algorithm

selectLKCP selects from TP
i (Line 4) the values L,K,C,

and Pricei corresponding to Acc. Pricei is the price of

one attribute from DaaS provider Pi with regard to L,K,C
values, whereas CAi = |Mi| is the number of covered

attributes by provider Pi (Line 5), where Mi is the set

of intersecting attributes between attribute table TA
i and

requested attributes Areq .

Because the LKC-privacy model requires one set of

L,K,C values for anonymization, for each remaining con-

tributing DaaS provider Pj procedure compTPrice checks

price table TP
j to find the L,K,C values. If a TP

j does

not contain the specified L,K,C values, then procedure

buildPT is invoked to generate a new row in the TP
j table

by utilizing given specified L,K,C values (Lines 7-9). Then

for each TP
j , selectPrice identifies the corresponding price

value, multiplies it by CAj , and then adds it to the total price

(Line 10). The resulting TPrice(TM ) is the total price of

mashup table TM . This procedure outputs the total price

TPrice(TM ) and the set of L,K,C values (Line 12).

Algorithm 2 compTPrice: Total Price Computation
Input: requested min. classification accuracy Accreq
Input: contributing DaaS providers D
Output: total price TPrice(TM )
Output: privacy requirements L,K,C

1: Pi ← select a provider from D
2: D← D \Pi

3: Acc← findAcc(TP
i , Accreq)

4: (L,K,C, Pricei)← selectLKCP (TP
i , Acc)

5: TPrice(TM )← Pricei × CAi

6: for each Pj ∈ D : 1 ≤ j ≤ |D| do
7: if (L,K,C) � TP

j then
8: TP

j ← TP
j ∪ buildPT (TA

j , {L,K,C}, PAj)
9: end if

10: TPrice(TM )←TPrice(TM )+selectPrice(L,K,C, TP
j )

×CAj

11: end for
12: return TPrice(TM ), L,K,C;

E. Construct Mashup table TM

To compute the mashup table TM , we introduce proce-

dure buildTM presented in Algorithm 3 that utilizes a se-

cure algorithm called Privacy-Preserving High-Dimensional
Data Mashup (PHDMashup) [9]. We would like to empha-

size that Fung et al. [9] did not present a DaaS framework

on how to identify the appropriate combination of DaaS

providers with consideration of price and data quality re-

quirements, which is a main contribution of this paper.

Algorithm 3 buildTM: Mashup Table Construction
Input: contributing DaaS providers D
Input: privacy requirements L,K,C
Output: mashup table TM

Output: accuracy of mashup table Acc(TM )

1: TM ← PHDMashup(D, L,K,C)
2: Acc(TM )← 100− C4.5(D, L,K,C)
3: return TM , Acc(TM );

Procedure buildTM is executed by the mashup coordinator

for the purpose of computing mashup table TM and deter-

mining its accuracy Acc(TM ). Given a set of contributing

DaaS providers D and privacy requirements L,K,C, the

mashup coordinator runs the PHDMashup algorithm (Line

1) in order to integrate and anonymize the raw data of

contributing DaaS providers D and generates a mashup table

TM that satisfies the given privacy requirements L,K,C.

The PHDMashup algorithm preserves the privacy of every

data provider by guaranteeing the mashup coordinator does

not gain more information than the final mashup TM gives.

The classifier C4.5 computes the classification error for the

anonymized mashup table TM and privacy requirements

L,K,C (Line 2), where the resulting value Acc(TM ) is the

classification accuracy of the mashup table TM . Procedure
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Figure 3. Impacts of LKC-privacy requirements on DaaS provider’s revenue.

buildTM returns both the mashup table TM and its accuracy

Acc(TM ) (Line 3).

IV. EXPERIMENTAL EVALUATION

We implemented our proposed architecture in Microsoft
Windows Azure1, a cloud-based computing platform. DaaS

providers are distributed in a cloud environment, each of

which is implemented on a Windows Server 2008 R2 run-

ning on AMD OpteronTM Processor 4171 HE@2.09 GHz

with 1.75 GB RAM, and each hosts an SQL Azure database.

The mashup coordinator is implemented as a web service,

whereas the data consumer is implemented as a web client

that interacts with the mashup coordinator via http protocol.

We utilize a real-life adult data set [12] in our experiments

to illustrate the performance of our proposed framework. The

adult data set contains 45,222 census records consisting of

eight categorical attributes, six numerical attributes, and a

class attribute revenue with two levels, ≤ 50K or > 50K.

The objective of our experiments is to evaluate the per-

formance of the proposed market framework for privacy-

preserving DaaS mashup. We first study the impact on the

revenue of each data provider that results from enforcing var-

ious LKC-privacy requirements by varying the thresholds

of maximum adversary’s knowledge L, minimum anonymity

K, and maximum confidence C. Next, we evaluate the

efficiency of our solution and show that it is efficient

with regard to the number of requested attributes |Areq|,
classification analysis Accreq , and bid price BPricereq .

A. Impact of Privacy Requirements on Revenue

Assuming that the attributes are randomly distributed over

three DaaS providers, we evaluate the impact of LKC-

privacy requirements on the revenue of each DaaS provider.

After anonymizing the data set, we run C4.5 classifier on

2/3 of the anonymized records as the training set, measure

the classification error on 1/3 of the anonymized records

as the testing set, determine the final classification accuracy

1http://www.microsoft.com/azure/

FAcc, and then compute the revenue of each DaaS provider

Pi with respect to its price per attribute PAi.

Figure 3 illustrates the impact of L,K,C thresholds

on the revenue of each DaaS provider. Figure 3.a depicts

the effect of threshold L. We observe that the revenue of

each DaaS provider is insensitive to threshold L when

L >= 2. Figure 3.b depicts the effect of threshold K. The

revenue of P1 and P3 is mainly unaffected by the change

of value of K. However, an increase of the value of K
might negatively impact the revenue, as is the case with

DaaS provider P2, whose revenue dropped by 5% (from

$892 to $844) when K increased from 200 to 300. The

reason for this drop is that when the specialization level

K is increased to 300, the number of “good” attributes

that can lead to useful discrimination between the classes

is reduced. Figure 3.c depicts that revenue is insensitive

to the increase in the value of confidence threshold C.

Consequently, we conclude that the primary privacy

parameter that has a major impact on the revenue of a DaaS

provider in our framework is the specialization parameter K.

B. Efficiency

One major contribution of our work is the development

of an efficient market framework for privacy-preserving

DaaS mashup. The runtime complexity of our approach is

dominated by the number of requested attributes |Areq| in

the consumer’s data request req, the classification accuracy

Accreq , and the bid price BPricereq . Therefore, we study

the runtime under different numbers of requested attributes

Areq and different values of the pair (Accreq, BPricereq).
We split the total runtime of our approach into three major

phases: Data Pre-Processing, corresponding to procedure

buildPT; Contributing DaaS Providers, corresponding to

procedure selectDaaSPs; and Final Mashup TM , corre-

sponding to procedures compTPrice and buildTM. Figure 4

depicts the runtime of each phase when the number of

requested attributes Areq ranges between 4 and 13 attributes,

with two different values of the pair (Accreq, BPricereq).

503503



12.5 12.6

46.3

95.4

0

30

60

90

120

4 7 10 13

RU
N

TI
M

E 
(S

EC
)

# OF REQUESTED ATTRIBUTES |AREQ|

DaaS Providers Data Pre-Processing
Final Mashup Table Total

Accreq = 80 
BPricereq = 9000

(a)

6.9
8.4

10.3
12.0

0

3

6

9

12

15

4 7 10 13

RU
N

TI
M

E 
(S

EC
)

# OF REQUESTED ATTRIBUTES |AREQ|

Data Pre-Processing DaaS Providers
Final Mashup Table Total

Accreq = 90 
BPricereq = 15000

(b)

Figure 4. Efficiency w.r.t. the number of requested attributes |Areq |.

Figures 4.a and 4.b depict the runtime of each phase

when the classification accuracy and bid price pair (Accreq,
BPricereq) is equal to (80%, $9,000) and (90%, $15,000),

respectively. We observe that the runtime of the Data Pre-
Processing phase and the Contributing DaaS Providers
phase is almost constant with regard to |Areq|, Accreq ,

and BPricereq . On the other hand, when |Areq| ≥ 7, the

runtime of the Final Mashup TM phase grows linearly as

the number of requested attributes |Areq| increases. We also

observe that the runtime of the Final Mashup TM phase

dominates the total runtime of our approach. Note that in

Figure 4.b, the total runtime when |Areq| = 13 is 12

sec, in contrast to 95 sec in Figure 4.a. This is because

both Accreq = 90% and Preq = $15, 000 are beyond

the threshold of accuracy and price in the DaaS providers’

price tables. In this case, the highest accuracy from the data

providers’ price tables is selected, and the corresponding

total cost is computed while avoiding the need to find higher

or lower accuracies.

C. Scalability
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Figure 5. Scalability w.r.t. the number of records in the data set.

We evaluate the scalability of our algorithm with respect

to the number of records in the data set when the number

of requested attributes |Areq| is equal to 5, 9, and 13.

Figure 5.a and Figure 5.b depict the total runtime of

our algorithm when the number of records in the data set

increases from 200,000 to 1 million. Figure 5.a depicts the

total runtime when Accreq = 80 and BPricereq = 9000.

The total runtime of answering a consumer’s request with

consideration to the consumer’s data attribute requirement

for 1 million records is 163s when the number of requested

attributes |Areq| = 5, 267s when the number of requested

attributes |Areq| = 9, and 365s when the number of

requested attributes |Areq| = 13. Figure 5.b depicts the

total runtime when Accreq = 90 and BPricereq = 15000.

The total runtime of answering a consumer’s request with

consideration to the consumer’s data attribute requirement

for 1 million records is 134s when the number of requested

attributes |Areq| = 5, 190s when the number of requested

attributes |Areq| = 9, and 227s when the number of

requested attributes |Areq| = 13. Note that the total runtime

in Figure 5.b is less than the total runtime in Figure 5.a

because Accreq and BPricereq in Figure 5.b go beyond

the accuracy threshold and prices specified in the providers’

price tables. We also observe that regardless of the value of

Accreq and BPricereq , our algorithm scales linearly with

regard to the linear increase in the number of records in the

data set.

V. RELATED WORK

In this section, we review the literature examining several

areas related to our work.

First, we start with the area of web services discovery
for data integration. Klusch et al. [13] and Vaculin et al. [2]

respectively propose an OWL-S hybrid approach and a RDF-

based framework for approximate matchmaking of requests

and web services and discovering data providing services.

Unlike their model, our proposed framework assumes that a

consumer’s data request could be best satisfied by multiple

DaaS providers, and, therefore, our framework enables in-

teractions between DaaS providers for securely integrating

their data in order to answer the data request.

Another related area is information integration. Agrawal

et al. [14] introduce the concept of minimal information

sharing for only sharing metadata between data owners. On

the other hand, secure multiparty computation (SMC) [15]

allows the sharing of the computed result (e.g., a classifier)

while prohibiting private data from being shared.

Privacy-preserving data publishing is another area related

to our work. The privacy protection model, K-anonymity,

was proposed in [16]. Sweeney [3] uses generalization and

suppression to achieve K-anonymity for a datafly system.

Preserving classification information in K-anonymous data

is studied in [17]. Mohammed et al. [18] propose a top-down

specialization algorithm to securely integrate two vertically

partitioned distributed data tables into a K-anonymous table.

Friedman and Schuster [19] propose an interactive algorithm

for building a decision tree that satisfies ε-differential pri-

vacy. Trojer et al. [20] present a service-oriented architecture

for achieving K-anonymity in the privacy-preserving data

mashup scenario. Our work has a combination of single

data source and integrated data source privacy levels. To

preserve the privacy of the data of each DaaS provider, we

utilize [5], which proposes an LKC-privacy model with an

anonymization algorithm to address the problem of high-

dimensional anonymization. Barhamgi et al. [21] propose
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a privacy-preserving approach for mashing-up DaaS web

services. They arrange services in the mashup by defining a

dependency graph, and then insert privacy filters to generate

the mashup data. In contrast, we use PHDMashup as a

secure protocol in order to integrate the data tables of DaaS

providers while preserving privacy of mashup data using the

LKC-privacy model.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we address the problem of secure collab-

oration between most suitable DaaS providers to answer

data mining queries, while achieving LKC-privacy on the

mashup data without revealing more detailed information

in the process. Our proposed solution is different from the

classical secure multiparty computation due to the fact that

we allow data sharing instead of data mining result sharing.

Data sharing provides the data recipient greater flexibility

to perform different data analysis tasks. For future work,

we plan to address the privacy-preserving DaaS mashup

problem in a publicly verifiable malicious adversarial model.
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