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Abstract: Patch verification is critical in military systems to ensure that known vulnerabilities are 
effectively addressed, preventing them from being exploited. Without proper verification, unpatched 
software could allow adversaries to exploit vulnerabilities, leading to unauthorized access, 
compromised operations, or even mission failure. In high-stakes environments such as military 
operations, patch verification is essential for maintaining the security, integrity, and readiness of both 
software and firmware, particularly in systems that manage sensitive information or control mission-
critical equipment.  

Traditional methods that rely on version strings to verify vulnerability patching are often insufficient. 
For example, the Heartbleed vulnerability (CVE-2014-0160) affected OpenSSL versions 1.0.1 through 
1.0.1f. A system running OpenSSL 1.0.1f might still be flagged as vulnerable, even if a custom patch 
was applied, in the event that the version string was not updated by the software maintainer fixing 
the vulnerability. This will lead to false positives in the vulnerability detection process. Conversely, a 
system may appear secure based on the version string, but if the patch was not correctly 
implemented, the vulnerability will remain, resulting in false negatives. To address these limitations, 
this paper presents a new scalable, artificial intelligence-based code-level verification system. By 
leveraging large language models to generate rules that analyze the actual executable code, this 
approach verifies whether vulnerabilities have been properly fixed, regardless of version metadata. 
Additionally, it can pinpoint the exact location of exploitable code as a more accurate and reliable 
method for detecting and confirming patches. Our experiment, involving 1,466 vulnerable software 
records with over 4,000 instances, demonstrates that the rule generation system is both accurate 
and robust.  
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1.  INTRODUCTION 

Vulnerability patch verification is a critical process in maintaining the security and reliability 

of software systems, particularly in high-stakes environments such as military operations. It 

ensures that known vulnerabilities, such as newly disclosed common vulnerabilities and 

exposures (CVEs) or any in-house new vulnerability records, have been effectively addressed 

or evaluated to mitigate potential risks. For example, when a new vulnerability is publicly 

announced through a CVE or found by internal threat teams, organizations must rapidly 

assess the associated risks and confirm that their systems are not vulnerable. This process is 

important for preventing unauthorized access, data breaches, and operational disruptions 

that could compromise mission-critical systems. An example of this urgency was seen with 

the Shellshock vulnerability (CVE-2014-6271), where exploits targeting this Bash flaw 

appeared within hours of its disclosure, affecting millions of devices reliant on Bash for 

system-level operations [1]. Even after almost 10 years, it remains one of the most exploited 

vulnerabilities, despite a patch being available [2]. This underscores the importance of swift 

response and thorough verification of newly discovered vulnerabilities.  

Traditional methods of vulnerability verification often rely on information provided by 

software vendors. This approach is fraught with challenges. The complexity of modern 

software supply chains, combined with the increasing prevalence of supply chain attacks—

such as the SolarWinds attack [3], which exploited software updates to introduce malicious 

code into thousands of organizations, or the attack on Kaseya VSA [4], where a compromised 

IT management tool led to widespread ransomware infections—undermine the reliability of 

vendor-provided data. A one-day or multi-day delay in vendors validating and addressing 

newly disclosed CVEs can leave systems exposed. Additionally, open-source software (OSS) 

further complicates this landscape [5], as its decentralized nature can lead to inconsistencies 

in patch deployment and versioning. An example would be the Log4j vulnerability (CVE-2021-

44228), which impacted millions of devices globally [6]. This flaw in the widely used Log4j 

library, part of the Apache Logging Services, exposed systems to remote code execution 

attacks, highlighting how a single OSS vulnerability can have widespread consequences. 

Vendors may customize OSS libraries or fail to update version strings, making it difficult to 

determine whether a vulnerability has been patched. Vendor information cannot always be 

trusted. 

To address these shortcomings, a zero-trust approach has gained traction, involving three key 

steps: generating a software bill of materials (SBOM) [1], monitoring new CVEs that match 

the SBOM catalog, and analyzing systems for unpatched vulnerabilities. An SBOM provides a 

detailed inventory of software components, including their origins, versions, and 

dependencies, enabling organizations to map CVEs to their systems. For example, consider a 

system running OpenSSL with the version string “OpenSSL 1.0.1f.” This version string can be 

linked to product details, allowing tools to identify known vulnerabilities such as the 

Heartbleed vulnerability (CVE-2014-0160), which affects OpenSSL versions 1.0.1 through 



 

 

1.0.1f [2]. FACT [7], EMBA [8], CVE Binary Tool [9], and ERS0 [10] follow such an approach. 

However, reliance on version string matching introduces significant risks. Vendors may adopt 

OSS or software from sub-vendors with altered version string patterns, complicating the 

identification process. Additionally, vendors may implement in-house patches for CVEs 

without updating the version string, especially when other parts of the code remain 

unchanged. A patched version of OpenSSL, for instance, might still appear vulnerable if the 

version string remains unmodified. Conversely, systems might seem secure based on 

metadata, while still harboring unpatched vulnerabilities due to incomplete fixes or custom 

versions. These limitations highlight the need for a more robust and precise method. 

Figure 1: The process begins with information gathering, which serves as the input for a 

language model. The generated prompts lead to the creation of YARA rules, which are 

subsequently utilized for scanning binary files, culminating in the generation of scan results 

 
 

A novel approach bypasses these metadata-based limitations by directly verifying the 

presence of unpatched CVEs in software binaries (see Figure 1). Using publicly available CVE 

patch information, such as source code commit logs, pattern-matching rules can be 



 

 

generated to identify instances of unpatched vulnerabilities in executable code. YARA rules 

[11], a flexible and performance-optimized pattern-matching framework, have been selected 

for this purpose. Commonly used in malware detection and triage, YARA rules enable efficient 

scanning of binaries, making them well-suited for large-scale vulnerability analysis. 

While YARA rules are traditionally crafted manually, this process is time-consuming and does 

not scale to the volume of newly released CVEs. To address this, we propose a novel approach 

leveraging language models to automate the generation of YARA rules for unpatched CVEs. 

By taking CVE information, including proof-of-concept (PoC) exploits and patch commit logs 

as the input, the system generates YARA rules to detect the corresponding vulnerabilities in 

binary executables. This automated method not only accelerates the process but also 

enhances explainability, as the generated rules clearly delineate where vulnerabilities exist 

and why they remain unpatched. Preliminary investigations reveal that existing language 

models struggle to produce high-quality YARA rules. To overcome this limitation, we 

introduce a two-phase training methodology designed to improve the quality of the 

generated rules. The contributions of this paper are as follows: 

• We propose a fast and reliable method for vulnerability patch verification and risk 

assessment, adopting a zero-trust approach that does not depend on vendor-

provided information. 

• We present a two-phase training framework for language models to generate high-

quality vulnerability detection rules conforming to YARA specifications. 

• We benchmark various language models for their effectiveness in generating 

vulnerability-matching rules, demonstrating the efficacy of our proposed approach. 

This paper is structured as follows: Section 2 reviews related works. Section 3 formally defines 

the research problem. Section 4 outlines our methodology for model training. Section 5 

details the experimental results. Finally, Section 6 provides the conclusion. 

2.  RELATED WORKS 

Vulnerability detection involves identifying software flaws that can be exploited by attackers. 

It can be broadly categorized into static and dynamic approaches. Static vulnerability 

detection analyzes the source code, binaries, or intermediate representations without 

executing the program. Model-based approaches, such as taint analysis [12], track the flow 

of potentially malicious inputs through the program to identify insecure patterns. Data-driven 

methods leverage deep learning models trained on large datasets of vulnerable and non-

vulnerable code to predict flaws [13]. While static methods provide comprehensive coverage, 

they may produce false positives due to the lack of runtime context. 

Dynamic vulnerability detection, on the other hand, analyzes the software during execution 

to identify vulnerabilities that arise only under specific runtime conditions. Widely used 



 

 

techniques include fuzz testing [14], which provides random or malformed inputs to the 

program, and symbolic execution [15], which systematically explores execution paths. While 

these methods are effective in finding runtime-specific vulnerabilities, they can be resource-

intensive and may miss issues that are not triggered during testing. 

Vulnerability scanning, the paradigm under which this work falls, focuses on identifying 

known vulnerabilities within software systems. This approach often utilizes an SBOM to map 

vulnerabilities to specific components within a system [7–10]. Another common method 

involves assembly code clone detection, which identifies code similarities to known 

vulnerable software [16, 17]. While assembly code clone approaches provide fuzzy matching 

results, typically in the form of a matching score between 0 and 1, they face challenges such 

as determining appropriate thresholds and requiring manual verification to finally confirm 

vulnerabilities. Despite these challenges, code clone techniques have advantages in 

identifying vulnerabilities at the binary level, but require disassembly, which can increase 

complexity. 

Figure 2: Example YARA rule for detecting unpatched CVE-2017-9049 

 
 

Our work diverges by emphasizing fast triage through explainable matching patterns. Unlike 

binary code clone approaches, which prioritize detailed matching at the cost of performance, 

our method focuses on generating transparent and actionable vulnerability rules. This 

approach balances precision and efficiency, providing a scalable method for rapid 

vulnerability scanning and verification as a standalone solution, or a complement to existing 



 

 

clone search-based methods. We are among the first to adopt this strategy, combining 

explainability and speed to address the challenges of vulnerability verification in a novel and 

effective way. 

3.  PROBLEM DEFINITION 

The problem involves transforming vulnerability record information into actionable detection 

rules for binary files. The input consists of a released CVE’s details, including its description 

and all related data available under the references section formatted as plain text and 

denoted as 𝑥. For example, on the National Institute of Standards and Technology national 

vulnerability database, there is a “References to Advisories, Solutions, and Tools” section for 

each CVE record. 

This information is collected using automated crawlers that retrieve relevant details such as 

threat advisories, descriptions, source code commits of patches, PoC exploits, and blog posts 

analyzing the vulnerability. Leveraging this diverse data source ensures a comprehensive 

understanding of the vulnerability and its exploitation patterns for rule generation. 

In this paper, we focus on public records to build the required input dataset. These records 

include advisories from official CVE databases, Git repositories documenting patch 

implementations, security researchers’ PoC codes (optional), and technical blogs discussing 

Figure 3: System prompt design 

 
 



 

 

the vulnerability’s scope and impact. While our approach is based on public data, the same 

methodology can be applied to in-house vulnerability records, where organizations can 

gather similar information internally through proprietary systems and sources. 

The goal is to generate a YARA rule, denoted as 𝑦, capable of identifying unpatched instances 

of the vulnerability in binary executables (see Figure 2). YARA rules provide explainable and 

precise matching patterns that facilitate rapid detection and verification of vulnerabilities 

across diverse systems. By automating this process, we aim to enhance scalability, while 

maintaining high levels of accuracy and interpretability for vulnerability detection.  

4.  METHODOLOGY 

A. Prompt Engineering for YARA Rule Generation 

The initial step starts with designing effective prompts to guide the language model in 

generating YARA rules (see Figure 4). Prompts typically consist of two parts: the system 

prompt and the user query [18]. The system prompt provides a detailed set of instructions 

and context for the model, such as “Generate a YARA rule for detecting a vulnerability based 

on the provided CVE details. Ensure the rule adheres to YARA specifications and includes 

meaningful identifiers and conditions.” This part sets the task’s scope and quality 

expectations. The user query, by contrast, supplies the specific input data for the task. For 

example, a query might state: “Based on CVE-2021-44228, generate a YARA rule. The CVE 

details are as follows: ### start of CVE details .... ### end of CVE details.”  

We first draft a base system prompt that incorporates key elements such as YARA rule 

structure, syntax requirements, and general considerations about rule quality. This base 

prompt is then iteratively refined using outputs from a separate language model. Manual 

feedback is employed to evaluate the generated rules for alignment with predefined 

standards, such as syntactic validity and contextual accuracy. This iterative refinement 

involves adjusting the phrasing, e.g., inclusion, and input-output formats of the prompts to 

Figure 4 The overall training workflow and reward score calculation 

 
 



 

 

optimize the model’s ability to produce high-quality and consistent YARA rules. Figure 3 

shows our example system prompt. Contextual information about the vulnerabilities will be 

used as the user query prompt.  

B. Language Model Initial Setup 

To enhance the efficiency and scalability of rule generation, we employ low-rank adaptation 

(LoRA) and 4-bit quantization (see Figure 4). These optimization methods enable the effective 

adaptation of pre-trained language models to the specialized tasks, in our case YARA rule 

generation, while minimizing computational and resource overhead. Especially for model 

fine-tuning, the reduced overhead enables us to train the model in faster iterations.  

LoRA is a fine-tuning method that optimizes pre-trained models by injecting additional 

learnable parameters into low-rank matrices within specific layers of the model [19]. This 

approach focuses on training only the newly introduced parameters, while leaving the pre-

trained weights untouched. By reducing the number of trainable parameters, LoRA 

significantly decreases memory and computational requirements compared to traditional 

fine-tuning. This makes LoRA particularly useful for tasks requiring domain-specific 

adaptation, such as cybersecurity applications, where the model can efficiently specialize in 

YARA rule generation without losing its general-purpose capabilities. 

In 4-bit quantization, a model is compressed by representing its weights with 4 bits instead 

of the typical 16 or 32 bits, reducing the model size drastically [20]. This compression allows 

for faster inference times and enables deployment on hardware with limited computational 

power, such as edge devices or low-resource servers. Despite the reduction in precision, 

modern quantization techniques use algorithms to maintain the model’s accuracy, ensuring 

that it performs well even under these constraints. For YARA rule generation, 4-bit 

quantization ensures that the model is efficient enough for real-time and large-scale 

applications in varying application scenarios. 

C. Iterative Sampling for YARA Rule Syntax Correction 

The language model may fail to generate syntactically correct YARA rules due to issues such 

as: 

• Including extraneous explanation text or code snippets outside the designated 

response area, leading to extraction errors. 

• Producing YARA rules that are not syntactically valid. 

To address these challenges, we consider two methods for training the existing language 

model: direct preference optimization (DPO) and proximal policy optimization (PPO). DPO is 

a stable and efficient approach to reward-based fine-tuning, while PPO uses reinforcement 

learning to iteratively improve outputs based on reward signals. 



 

 

PPO [21] optimizes the model by iteratively interacting with a reward function. It evaluates 

outputs based on defined metrics, such as accuracy or syntax validity, and adjusts the model 

to maximize expected rewards. A clipping mechanism in PPO prevents overly large updates 

to the model parameters, ensuring training stability. However, PPO requires well-defined 

reward functions, extensive hyperparameter tuning, and significant computational resources, 

making it complex and resource-intensive for this application. 

DPO [22], in contrast, simplifies the process by focusing directly on sampled preferences 

without requiring explicit reinforcement signals. DPO trains the model to rank outputs based 

on their quality, as determined by a reward function. This method avoids complex policy 

adjustments and uses a more straightforward sampling-based approach to refine outputs. 

DPO requires less computational overhead and delivers more stable results, making it well-

suited for tasks such as generating syntactically correct YARA rules. Typically, the training 

dataset consists of a pair of different text responses given the same query: the chosen 

response and the rejected one. The chosen response has a higher award score than the 

rejected response.  

In our case, we use DPO due to its simplicity, stability, and reduced resource requirements 

(see Figure 4). DPO provides a straightforward and interpretable optimization process, 

making it especially effective in scenarios with limited labeled data and tasks requiring high 

precision. We define the reward function as: 

𝑅(𝑦) = α ⋅ 𝑃(𝑦) + β ⋅ 𝑆(𝑦) 

where: 

• 𝑅(𝑦): The reward score for the generated response 𝑦. 

• 𝑃(𝑦):  A response format validity score (1 if the YARA rule 𝑦  can be successfully 

extracted from the response template, 0 otherwise). 

• 𝑆(𝑦): A binary validity score (1 if the YARA rule 𝑦 is syntactically valid, 0 otherwise). 

• (𝛼, 𝛽): Weighting factors to balance the importance of syntax validity and semantic 

alignment. 

We propose an iterative sampling and training algorithm for our YARA rule generation task: 

• Step 1: Initialize the model temperature (τ) to encourage diverse responses. 

• Step 2: For each CVE in the training set, gather the query data in plain text format. 

• Step 3: Use the system prompt and query to generate a response. 

• Step 4: Parse the response, extract the YARA rule, and assign a score for the response 

based on the reward function. 



 

 

• Step 5: Repeat Steps 3 and 4 five times, leveraging non-zero temperature to explore 

diverse responses. Retain only the response that has the largest difference in score 

compared to the response in Step 4.  

• Step 6: Form 𝑚 training pairs using valid and invalid responses by repeating Step 5. 

Record the number of syntactically incorrect trials in Step 4 as 𝑛. 

• Step 7: Train the model with these 𝑚  training pairs, reducing the temperature 

exponentially based on 𝑛. 

• Step 8: Repeat the process until 𝜏 is zero, with updated 𝜏 to refine the model’s ability 

to consistently generate valid YARA rules. 

The temperature adjustment in Step 7 follows an exponential decay formula, expressed as: 

τ𝑖+1 = τ𝑖 ⋅ 𝑒
−λ𝑛 

where (τ𝑖) is the current temperature at iteration (𝑖), (λ) is the decay rate constant, and (𝑛) 

is the number of trials. This ensures that the model progressively focuses on generating more 

precise outputs as training progresses, making bigger adjustments at the beginning and 

smaller ones when converging.  

D. Iterative Sampling for Rule Matching Quality Improvement 

Building upon the syntax correction framework, this step focuses on optimizing the matching 

quality of YARA rules. Instead of validating syntax alone, the reward mechanism evaluates the 

effectiveness of the rules in identifying vulnerabilities. The training set includes binaries 

categorized as containing known CVEs, patched known CVEs, and irrelevant binaries. The 

reward function for matching quality is defined as: 

𝑅𝑀(𝑦) = γ ⋅ 𝑅(𝑦) + δ ⋅ 𝐹1(𝑦) 

𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

where: 

• 𝑅𝑀(𝑦): Reward score for the generated response 𝑦. 

• 𝑅(𝑦): The syntax and parsing score from the previous step. 

• 𝐹1(𝑦): F1 score evaluating the balance between precision and recall when tested on 

the labeled binary dataset. 

• (𝛾, 𝛿): Weighting factors to balance the importance of target matching and overall F1 

score. 

The iterative sampling and training algorithm involves: 



 

 

• Step 1: Initialize the model temperature (τ) to encourage diverse responses. 

• Step 2: For each CVE in the training set, gather the query data in plain text format and 

gather all the testing binaries. 

• Step 3: Use the system prompt and query to generate a response. 

• Step 4: Parse the response, extract the YARA rule 𝑦, and assign the matching score for 

the response based on the above reward function, by matching the rule 𝑦 against the 

known binaries with labels.  

• Step 5: Repeat Steps 3 and 4 five times, leveraging non-zero temperature to retrieve 

different responses. Keep only the response that has the smallest non-zero difference 

in score compared to the response in Step 4.  

• Step 6: Form 𝑚 training pairs using valid and invalid responses by repeating Step 5. 

Record the number of syntactically incorrect trials in Step 4 as 𝑛. 

• Step 7: Train the model with these 𝑚  training pairs, reducing the temperature (𝜏 ) 

exponentially based on 𝑛. 

• Step 8: Repeat the process until 𝜏 is zero, with updated 𝜏 to refine the model’s ability 

to consistently generate valid YARA rules. 

This sampling algorithm is similar to the one above for syntax correction, except that the 

reward score is estimated based on the F1 score, which evaluates the effectiveness of 

matching the training binaries. Additionally, instead of selecting the pair with the largest 

score difference as the chosen and rejected responses, we choose the pair with the smallest 

non-zero difference. This strategy is justified because smaller non-zero differences indicate 

borderline cases where the model struggles to differentiate quality. Optimizing for such cases 

helps refine the decision boundary and improves the model’s sensitivity to subtle distinctions, 

ultimately leading to better performance across diverse scenarios.  

5.  EXPERIMENT EVALUATION 

A. Sample Set Building 

We start by constructing a CVE vulnerability instance repository containing labeled binaries 

extracted from well-established firmware images, which serves as a robust testbed for 

evaluating the system’s performance. Our dataset consists of two components: The first 

comprises popular open-source utility libraries, while the second includes Android OS built-

in library vulnerabilities derived from the AOSP dataset [23]. 

Utility libraries play a significant role in software development, binary analysis, and 

multimedia processing, but they often exhibit a range of security vulnerabilities. Tools such 

as addr2line, as, and elfedit, which are respectively used for debugging, assembly, and 



 

 

executable and linkable format (ELF) file manipulation, demonstrate critical flaws across 

various versions. For instance, addr2line includes vulnerabilities such as CVE-2018-18605, 

allowing buffer overflows, and CVE-2018-12697, leading to out-of-bounds reads. Similarly, 

the GNU assembler (as) has been affected by vulnerabilities such as CVE-2017-7230, an 

integer overflow issue, and CVE-2018-1000019, a stack overflow vulnerability, both of which 

could enable arbitrary code execution. Multimedia libraries such as ffmpeg, freetype, and 

libpng also show significant risks, with vulnerabilities such as heap buffer overflows (CVE-

2017-7862 in ffmpeg) and use-after-free issues (CVE-2015-8126 in libpng), potentially leading 

to crashes or remote code execution. These vulnerabilities, arising from issues such as 

improper input validation and poor memory management, emphasize the need for rigorous 

security assessments of utility libraries. Table I presents the number of identified 

vulnerabilities, corresponding library versions, and confirmed CVEs for the open-source utility 

libraries. 

Networking and file-sharing libraries are similarly impacted by security flaws. Tools such as 

objdump and objcopy contain vulnerabilities such as improper file handling (CVE-2018-6543), 

which can lead to denial-of-service conditions. Cryptographic libraries, like OpenSSL, suffer 

Table I: Aggregated summary of utility libraries, versions, and confirmed CVEs 

Library Versions CVEs Example CVEs 

addr2line 7 72 CVE-2017-14129, CVE-2014-8738, ... 

as 2 2 CVE-2017-72.30, ... 

elfedit 3 4 CVE-2018-20623, CVE-2017-15996, ... 

exif 3 10 CVE-2012-2814, CVE-2012-2840, ... 

expat 3 3 CVE-2015-1283, CVE-2012-6702, ... 

ffmpeg 45 54 CVE-2017-14059, CVE-2016-7562, ... 

freetype 7 63 CVE-2014-9656, CVE-2010-2807, ... 

objcopy 2 5 CVE-2018-12699, CVE-2018-12700, ... 

objdump 5 16 CVE-2017-8421, CVE-2017-14934, ... 

openssl 18 75 CVE-2016-6306, CVE-2015-0289, ... 

png 4 6 CVE-2015-8126, CVE-2015-7981, ... 

qemu 10 30 CVE-2024-9594, CVE-2024-8612, … 

readelf 2 7 CVE-2017-7209, CVE-2017-9042, ... 

sftp 3 3 CVE-2010-4755, CVE-2017-15906, ... 

ssh 4 8 CVE-2014-2653, CVE-2011-0539, ... 

sshd 7 10 CVE-2016-3115, CVE-2013-4548, ... 

tcpdump 3 90 CVE-2017-12902, CVE-2017-13035, ... 

xml2 8 38 CVE-2015-8035, CVE-2017-9048, ... 
 

 



 

 

from vulnerabilities such as CVE-2016-6306, where improper handling of certificates may 

result in man-in-the-middle attacks. XML parsing libraries, such as expat and xml2, are also 

prone to vulnerabilities, including buffer overflows (CVE-2017-9233) and out-of-bounds reads 

(CVE-2015-8241), which compromise application security. Furthermore, FTP and SSH tools 

are affected by input handling flaws and directory traversal vulnerabilities, enabling 

unauthorized access, denial of service, and remote code execution. These widespread 

vulnerabilities across utility libraries highlight the importance of implementing robust 

security measures to mitigate evolving threats. 

The AOSP dataset [23], hosted on GitHub by Quarkslab, provides a detailed collection of CVEs 

tailored to the Android operating system. Given Android’s extensive integration into various 

devices, including Internet of Things (IoT) platforms, its security plays a critical role in ensuring 

device protection. This dataset focuses on vulnerable binary executables, omitting Java-

related issues, and allows for an in-depth comparison of pre-patch and post-patch binaries 

based on source code commit data. With coverage of more than 50 Android system 

components, such as Media Framework, System, Bluetooth, and SurfaceFlinger, the dataset 

captures a range of vulnerabilities and their potential effects on device operations. Table II 

presents the number of vulnerabilities identified in the top 15 built-in libraries of Android 

system components. 

Among the 1,000 CVEs, vulnerabilities are categorized by severity and type, including 

Elevation of Privilege and Remote Code Execution. Key components, such as Media 

Table II: Top 15 components by Android OS built-in library vulnerability count 

Component CVEs High Severity Critical Severity Example CVEs 

System 202 146 53 CVE-2019-2115 

Media Framework 201 106 80 CVE-2019-2176 

Mediaserver 136 64 44 CVE-2015-3864 

Framework 40 32 5 CVE-2019-2123 

libstagefright 21 6 14 CVE-2015-1538 

Audioserver 11 9 0 CVE-2017-0418 

Libraries 10 6 0 CVE-2016-1839 

Bluetooth 8 4 0 CVE-2016-0850 

Framework APIs 5 5 0 CVE-2016-3750 

system UI 5 5 0 CVE-2017-0638 

Binder 4 4 0 CVE-2015-1528 

Debuggerd 4 0 2 CVE-2016-2420 

Expat 4 1 0 CVE-2012-6702 

LibUtils 4 0 4 CVE-2016-3861 

OpenSSL & BoringSSL 4 0 2 CVE-2016-0705 
 

 



 

 

Framework and System account, form a significant portion of the dataset, each containing 

over 200 vulnerabilities, many of which are high severity. Examples include CVE-2019-2115 

in System, a privilege escalation issue, CVE-2019-2176 in Media Framework, a remote 

execution risk, and CVE-2015-3864 in MediaServer, which impacts media rendering. Other 

components, such as libstagefright, highlight the risks associated with multimedia processing. 

This dataset serves as a foundation for understanding vulnerabilities within Android’s binaries, 

aiding efforts to improve the security of IoT devices relying on this architecture. In total, our 

experiment covers 1,466 vulnerable software records, resulting in 4,218 instances of binary 

executables for analysis. Additionally, we included 10,000 irrelevant binaries in our 

experiment to evaluate the false positive rates of the methods. 

B. Language Models 

This experiment evaluates the performance of five state-of-the-art language models: LLaMA 

3.3, Qwen 2, Gemma 2, and Mistral 0.3. These models represent advanced approaches in 

natural language processing and machine learning, demonstrating varying capabilities in 

understanding and generating complex patterns from data. 

• LLaMA 3.3 [24]: A cutting-edge large language model designed for general-purpose 

natural language tasks. It focuses on efficiency and scalability, making it suitable for 

applications requiring high accuracy and rapid inference. 

• Qwen 2 [25]: Known for its optimization in handling domain-specific language tasks, 

Qwen 2 leverages fine-tuned datasets to enhance contextual understanding and 

generate precise outputs, particularly in technical and specialized areas. 

• Gemma 2 [26]: This model excels in multilingual and cross-lingual tasks, offering 

robust performance across diverse languages. It employs advanced transformer 

architectures to ensure consistency and coherence in its results. 

• Mistral 0.3 [27]: A lightweight yet highly efficient model optimized for resource-

constrained environments. Despite its smaller size, Mistral 0.3 delivers competitive 

performance, making it a practical choice for scalable applications. 

The experiment was conducted on a server equipped with a 56-core Xeon Gold 2.3/3.9GHz 

processor, 100GB of RAM, and two NVIDIA GeForce RTX 6000 cards with (24 GB x 2) of VRAM. 

The training system was implemented using the HuggingFace Transformer Reinforcement 

Learning (TRL) library. To assess the performance of the methods, the following evaluation 

metrics were utilized: 

• Precision: This metric measures the accuracy of positive predictions, indicating the 

proportion of true positives among all instances predicted as positive. It reflects the 

system’s ability to avoid false alarms. 



 

 

• Recall: Also known as sensitivity, recall evaluates the system’s ability to identify actual 

positive instances, highlighting how well true positives are detected. 

• F1 Score: The F1 score combines precision and recall into a single metric, providing a 

balanced measure of the system’s accuracy, particularly when dealing with 

imbalanced datasets. 

These metrics provide a detailed assessment of the system’s performance. We conduct 

evaluations for each setup, including the original language model, the language model 

enhanced with syntax correction, and the language model further improved with syntax 

correction and quality improvement. This layered evaluation helps identify the impact of each 

enhancement on the model’s accuracy and reliability. 

C. Experimental Results 

Table III shows the experimental results. The evaluation of the language models in their 

original configurations highlights their limited ability to handle the task effectively. Metrics 

for recall, precision, and F1 score remain low across all models. For example, LLaMA 3.3 

achieves a recall of 0.541 but a precision of only 0.019, resulting in an F1 score of 0.037. Qwen 

2, Gemma 2, and Mistral 0.3 show similar patterns, with F1 scores ranging from 0.024 to 0.069. 

These outcomes suggest that the models, in their initial states, struggle to balance the 

identification of true positives with the minimization of false positives. 

When syntax correction is applied, significant improvements are observed in all models. 

LLaMA 3.3, for instance, achieves an F1 score of 0.522, a marked improvement from its 

original performance. Qwen 2, Gemma 2, and Mistral 0.3 also show improved metrics, with 

Table III: Performance benchmark 

Model (Solution) Recall Precision F1 

LLaMA 3.3 0.541 0.019 0.037 

Qwen 2 0.622 0.012 0.024 

Gemma 2 0.263 0.040 0.069 

Mistral 0.3 0.342 0.024 0.045 

LLaMA 3.3 (syntax correction) 0.620 0.451 0.522 

Qwen 2 (syntax correction) 0.774 0.672 0.719 

Gemma 2 (syntax correction) 0.561 0.836 0.671 

Mistral 0.3 (syntax correction) 0.832 0.681 0.749 

LLaMA 3.3 (syntax correction + quality improvement) 0.992 0.781 0.874 

Qwen 2 (syntax correction + quality improvement) 0.986 0.893 0.937 

Gemma 2 (syntax correction + quality improvement) 0.912 0.866 0.888 

Mistral 0.3 (syntax correction + quality improvement) 0.956 0.901 0.928 
 

 



 

 

F1 scores increasing to 0.719, 0.671, and 0.749, respectively. Syntax correction addresses 

structural inconsistencies, enabling the models to better interpret and process data. This 

adjustment results in higher recall and precision, demonstrating its impact on performance. 

The combination of syntax correction and quality improvement delivers the best results 

across all models. For example, LLaMA 3.3 reaches a recall of 0.992 and an F1 score of 0.874, 

while Qwen 2 achieves a recall of 0.986 and an F1 score of 0.937. Mistral 0.3 and Gemma 2 

show similar improvements, with F1 scores of 0.928 and 0.888, respectively. These 

enhancements refine both the input and the underlying understanding of the models, leading 

to improved predictions and reduced errors. This approach highlights the benefits of 

combining structural corrections with quality refinements to achieve optimal performance. 

6.  CONCLUSION 

The proposed method significantly improves vulnerability patch verification by combining 

large language models, syntax correction, and quality enhancement techniques. 

Experimental findings demonstrate the limitations of initial models, and the performance 

gains achieved through structured refinement. By automating the generation of YARA rules 

and focusing on syntax and matching precision, the system overcomes challenges faced by 

traditional version-based detection methods. This approach offers a scalable and accurate 

solution for verifying software vulnerabilities, addressing the demands of environments 

requiring high security and reliability. 

7.  FUTURE WORK 

While our experiments show promising results in model training across a subset of tasks and 

datasets, new avenues of research remain open for further exploration and improvement. 

We plan to benchmark our model’s performance on each dataset separately and address 

emerging common weakness enumerations (CWEs) While our study focuses on the existing 

architecture, many new transformer-based and other neural network variants are emerging. 

Further research could involve fine-tuning these novel architectures under similar conditions 

to benchmark performance, parameter efficiency, and speed. By pursuing these directions, 

we hope to deepen our understanding of model fine-tuning, leading to improved 

vulnerability patch verification. 
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