

Vulnerability Patch Verification for Military
Software Systems Through AI-Driven Code-

Level Rule Generation

Siam Shibly Antar
Research Assistant
School of Computing
Queen’s University
Kingston, ON, Canada
siamshibly.antar@queensu.ca

Steven H. H. Ding
Assistant Professor
School of Information Studies
McGill University
Montreal, QC, Canada
steven.h.ding@mcgill.ca

Philippe Charland
Defence Scientist
Mission Critical Cyber Security Section
Defence Research and Development Canada
Quebec, QC, Canada
philippe.charland@drdc-rddc.gc.ca

Benjamin C. M. Fung
Professor
School of Information Studies
McGill University
Montreal, QC, Canada
ben.fung@mcgill.ca

Abstract: Patch verification is critical in military systems to ensure that known vulnerabilities are
effectively addressed, preventing them from being exploited. Without proper verification, unpatched
software could allow adversaries to exploit vulnerabilities, leading to unauthorized access,
compromised operations, or even mission failure. In high-stakes environments such as military
operations, patch verification is essential for maintaining the security, integrity, and readiness of both
software and firmware, particularly in systems that manage sensitive information or control mission-
critical equipment.

Traditional methods that rely on version strings to verify vulnerability patching are often insufficient.
For example, the Heartbleed vulnerability (CVE-2014-0160) affected OpenSSL versions 1.0.1 through
1.0.1f. A system running OpenSSL 1.0.1f might still be flagged as vulnerable, even if a custom patch
was applied, in the event that the version string was not updated by the software maintainer fixing
the vulnerability. This will lead to false positives in the vulnerability detection process. Conversely, a
system may appear secure based on the version string, but if the patch was not correctly
implemented, the vulnerability will remain, resulting in false negatives. To address these limitations,
this paper presents a new scalable, artificial intelligence-based code-level verification system. By
leveraging large language models to generate rules that analyze the actual executable code, this
approach verifies whether vulnerabilities have been properly fixed, regardless of version metadata.
Additionally, it can pinpoint the exact location of exploitable code as a more accurate and reliable
method for detecting and confirming patches. Our experiment, involving 1,466 vulnerable software
records with over 4,000 instances, demonstrates that the rule generation system is both accurate
and robust.

Keywords: patch verification, vulnerability detection, firmware analysis, artificial intelligence, large
language models

mailto:siamshibly.antar@queensu.ca
mailto:steven.h.ding@mcgill.ca
mailto:philippe.charland@drdc-rddc.gc.ca
mailto:ben.fung@mcgill.ca

1. INTRODUCTION

Vulnerability patch verification is a critical process in maintaining the security and reliability

of software systems, particularly in high-stakes environments such as military operations. It

ensures that known vulnerabilities, such as newly disclosed common vulnerabilities and

exposures (CVEs) or any in-house new vulnerability records, have been effectively addressed

or evaluated to mitigate potential risks. For example, when a new vulnerability is publicly

announced through a CVE or found by internal threat teams, organizations must rapidly

assess the associated risks and confirm that their systems are not vulnerable. This process is

important for preventing unauthorized access, data breaches, and operational disruptions

that could compromise mission-critical systems. An example of this urgency was seen with

the Shellshock vulnerability (CVE-2014-6271), where exploits targeting this Bash flaw

appeared within hours of its disclosure, affecting millions of devices reliant on Bash for

system-level operations [1]. Even after almost 10 years, it remains one of the most exploited

vulnerabilities, despite a patch being available [2]. This underscores the importance of swift

response and thorough verification of newly discovered vulnerabilities.

Traditional methods of vulnerability verification often rely on information provided by

software vendors. This approach is fraught with challenges. The complexity of modern

software supply chains, combined with the increasing prevalence of supply chain attacks—

such as the SolarWinds attack [3], which exploited software updates to introduce malicious

code into thousands of organizations, or the attack on Kaseya VSA [4], where a compromised

IT management tool led to widespread ransomware infections—undermine the reliability of

vendor-provided data. A one-day or multi-day delay in vendors validating and addressing

newly disclosed CVEs can leave systems exposed. Additionally, open-source software (OSS)

further complicates this landscape [5], as its decentralized nature can lead to inconsistencies

in patch deployment and versioning. An example would be the Log4j vulnerability (CVE-2021-

44228), which impacted millions of devices globally [6]. This flaw in the widely used Log4j

library, part of the Apache Logging Services, exposed systems to remote code execution

attacks, highlighting how a single OSS vulnerability can have widespread consequences.

Vendors may customize OSS libraries or fail to update version strings, making it difficult to

determine whether a vulnerability has been patched. Vendor information cannot always be

trusted.

To address these shortcomings, a zero-trust approach has gained traction, involving three key

steps: generating a software bill of materials (SBOM) [1], monitoring new CVEs that match

the SBOM catalog, and analyzing systems for unpatched vulnerabilities. An SBOM provides a

detailed inventory of software components, including their origins, versions, and

dependencies, enabling organizations to map CVEs to their systems. For example, consider a

system running OpenSSL with the version string “OpenSSL 1.0.1f.” This version string can be

linked to product details, allowing tools to identify known vulnerabilities such as the

Heartbleed vulnerability (CVE-2014-0160), which affects OpenSSL versions 1.0.1 through

1.0.1f [2]. FACT [7], EMBA [8], CVE Binary Tool [9], and ERS0 [10] follow such an approach.

However, reliance on version string matching introduces significant risks. Vendors may adopt

OSS or software from sub-vendors with altered version string patterns, complicating the

identification process. Additionally, vendors may implement in-house patches for CVEs

without updating the version string, especially when other parts of the code remain

unchanged. A patched version of OpenSSL, for instance, might still appear vulnerable if the

version string remains unmodified. Conversely, systems might seem secure based on

metadata, while still harboring unpatched vulnerabilities due to incomplete fixes or custom

versions. These limitations highlight the need for a more robust and precise method.

Figure 1: The process begins with information gathering, which serves as the input for a

language model. The generated prompts lead to the creation of YARA rules, which are

subsequently utilized for scanning binary files, culminating in the generation of scan results

A novel approach bypasses these metadata-based limitations by directly verifying the

presence of unpatched CVEs in software binaries (see Figure 1). Using publicly available CVE

patch information, such as source code commit logs, pattern-matching rules can be

generated to identify instances of unpatched vulnerabilities in executable code. YARA rules

[11], a flexible and performance-optimized pattern-matching framework, have been selected

for this purpose. Commonly used in malware detection and triage, YARA rules enable efficient

scanning of binaries, making them well-suited for large-scale vulnerability analysis.

While YARA rules are traditionally crafted manually, this process is time-consuming and does

not scale to the volume of newly released CVEs. To address this, we propose a novel approach

leveraging language models to automate the generation of YARA rules for unpatched CVEs.

By taking CVE information, including proof-of-concept (PoC) exploits and patch commit logs

as the input, the system generates YARA rules to detect the corresponding vulnerabilities in

binary executables. This automated method not only accelerates the process but also

enhances explainability, as the generated rules clearly delineate where vulnerabilities exist

and why they remain unpatched. Preliminary investigations reveal that existing language

models struggle to produce high-quality YARA rules. To overcome this limitation, we

introduce a two-phase training methodology designed to improve the quality of the

generated rules. The contributions of this paper are as follows:

• We propose a fast and reliable method for vulnerability patch verification and risk

assessment, adopting a zero-trust approach that does not depend on vendor-

provided information.

• We present a two-phase training framework for language models to generate high-

quality vulnerability detection rules conforming to YARA specifications.

• We benchmark various language models for their effectiveness in generating

vulnerability-matching rules, demonstrating the efficacy of our proposed approach.

This paper is structured as follows: Section 2 reviews related works. Section 3 formally defines

the research problem. Section 4 outlines our methodology for model training. Section 5

details the experimental results. Finally, Section 6 provides the conclusion.

2. RELATED WORKS

Vulnerability detection involves identifying software flaws that can be exploited by attackers.

It can be broadly categorized into static and dynamic approaches. Static vulnerability

detection analyzes the source code, binaries, or intermediate representations without

executing the program. Model-based approaches, such as taint analysis [12], track the flow

of potentially malicious inputs through the program to identify insecure patterns. Data-driven

methods leverage deep learning models trained on large datasets of vulnerable and non-

vulnerable code to predict flaws [13]. While static methods provide comprehensive coverage,

they may produce false positives due to the lack of runtime context.

Dynamic vulnerability detection, on the other hand, analyzes the software during execution

to identify vulnerabilities that arise only under specific runtime conditions. Widely used

techniques include fuzz testing [14], which provides random or malformed inputs to the

program, and symbolic execution [15], which systematically explores execution paths. While

these methods are effective in finding runtime-specific vulnerabilities, they can be resource-

intensive and may miss issues that are not triggered during testing.

Vulnerability scanning, the paradigm under which this work falls, focuses on identifying

known vulnerabilities within software systems. This approach often utilizes an SBOM to map

vulnerabilities to specific components within a system [7–10]. Another common method

involves assembly code clone detection, which identifies code similarities to known

vulnerable software [16, 17]. While assembly code clone approaches provide fuzzy matching

results, typically in the form of a matching score between 0 and 1, they face challenges such

as determining appropriate thresholds and requiring manual verification to finally confirm

vulnerabilities. Despite these challenges, code clone techniques have advantages in

identifying vulnerabilities at the binary level, but require disassembly, which can increase

complexity.

Figure 2: Example YARA rule for detecting unpatched CVE-2017-9049

Our work diverges by emphasizing fast triage through explainable matching patterns. Unlike

binary code clone approaches, which prioritize detailed matching at the cost of performance,

our method focuses on generating transparent and actionable vulnerability rules. This

approach balances precision and efficiency, providing a scalable method for rapid

vulnerability scanning and verification as a standalone solution, or a complement to existing

clone search-based methods. We are among the first to adopt this strategy, combining

explainability and speed to address the challenges of vulnerability verification in a novel and

effective way.

3. PROBLEM DEFINITION

The problem involves transforming vulnerability record information into actionable detection

rules for binary files. The input consists of a released CVE’s details, including its description

and all related data available under the references section formatted as plain text and

denoted as 𝑥. For example, on the National Institute of Standards and Technology national

vulnerability database, there is a “References to Advisories, Solutions, and Tools” section for

each CVE record.

This information is collected using automated crawlers that retrieve relevant details such as

threat advisories, descriptions, source code commits of patches, PoC exploits, and blog posts

analyzing the vulnerability. Leveraging this diverse data source ensures a comprehensive

understanding of the vulnerability and its exploitation patterns for rule generation.

In this paper, we focus on public records to build the required input dataset. These records

include advisories from official CVE databases, Git repositories documenting patch

implementations, security researchers’ PoC codes (optional), and technical blogs discussing

Figure 3: System prompt design

the vulnerability’s scope and impact. While our approach is based on public data, the same

methodology can be applied to in-house vulnerability records, where organizations can

gather similar information internally through proprietary systems and sources.

The goal is to generate a YARA rule, denoted as 𝑦, capable of identifying unpatched instances

of the vulnerability in binary executables (see Figure 2). YARA rules provide explainable and

precise matching patterns that facilitate rapid detection and verification of vulnerabilities

across diverse systems. By automating this process, we aim to enhance scalability, while

maintaining high levels of accuracy and interpretability for vulnerability detection.

4. METHODOLOGY

A. Prompt Engineering for YARA Rule Generation

The initial step starts with designing effective prompts to guide the language model in

generating YARA rules (see Figure 4). Prompts typically consist of two parts: the system

prompt and the user query [18]. The system prompt provides a detailed set of instructions

and context for the model, such as “Generate a YARA rule for detecting a vulnerability based

on the provided CVE details. Ensure the rule adheres to YARA specifications and includes

meaningful identifiers and conditions.” This part sets the task’s scope and quality

expectations. The user query, by contrast, supplies the specific input data for the task. For

example, a query might state: “Based on CVE-2021-44228, generate a YARA rule. The CVE

details are as follows: ### start of CVE details ### end of CVE details.”

We first draft a base system prompt that incorporates key elements such as YARA rule

structure, syntax requirements, and general considerations about rule quality. This base

prompt is then iteratively refined using outputs from a separate language model. Manual

feedback is employed to evaluate the generated rules for alignment with predefined

standards, such as syntactic validity and contextual accuracy. This iterative refinement

involves adjusting the phrasing, e.g., inclusion, and input-output formats of the prompts to

Figure 4 The overall training workflow and reward score calculation

optimize the model’s ability to produce high-quality and consistent YARA rules. Figure 3

shows our example system prompt. Contextual information about the vulnerabilities will be

used as the user query prompt.

B. Language Model Initial Setup

To enhance the efficiency and scalability of rule generation, we employ low-rank adaptation

(LoRA) and 4-bit quantization (see Figure 4). These optimization methods enable the effective

adaptation of pre-trained language models to the specialized tasks, in our case YARA rule

generation, while minimizing computational and resource overhead. Especially for model

fine-tuning, the reduced overhead enables us to train the model in faster iterations.

LoRA is a fine-tuning method that optimizes pre-trained models by injecting additional

learnable parameters into low-rank matrices within specific layers of the model [19]. This

approach focuses on training only the newly introduced parameters, while leaving the pre-

trained weights untouched. By reducing the number of trainable parameters, LoRA

significantly decreases memory and computational requirements compared to traditional

fine-tuning. This makes LoRA particularly useful for tasks requiring domain-specific

adaptation, such as cybersecurity applications, where the model can efficiently specialize in

YARA rule generation without losing its general-purpose capabilities.

In 4-bit quantization, a model is compressed by representing its weights with 4 bits instead

of the typical 16 or 32 bits, reducing the model size drastically [20]. This compression allows

for faster inference times and enables deployment on hardware with limited computational

power, such as edge devices or low-resource servers. Despite the reduction in precision,

modern quantization techniques use algorithms to maintain the model’s accuracy, ensuring

that it performs well even under these constraints. For YARA rule generation, 4-bit

quantization ensures that the model is efficient enough for real-time and large-scale

applications in varying application scenarios.

C. Iterative Sampling for YARA Rule Syntax Correction

The language model may fail to generate syntactically correct YARA rules due to issues such

as:

• Including extraneous explanation text or code snippets outside the designated

response area, leading to extraction errors.

• Producing YARA rules that are not syntactically valid.

To address these challenges, we consider two methods for training the existing language

model: direct preference optimization (DPO) and proximal policy optimization (PPO). DPO is

a stable and efficient approach to reward-based fine-tuning, while PPO uses reinforcement

learning to iteratively improve outputs based on reward signals.

PPO [21] optimizes the model by iteratively interacting with a reward function. It evaluates

outputs based on defined metrics, such as accuracy or syntax validity, and adjusts the model

to maximize expected rewards. A clipping mechanism in PPO prevents overly large updates

to the model parameters, ensuring training stability. However, PPO requires well-defined

reward functions, extensive hyperparameter tuning, and significant computational resources,

making it complex and resource-intensive for this application.

DPO [22], in contrast, simplifies the process by focusing directly on sampled preferences

without requiring explicit reinforcement signals. DPO trains the model to rank outputs based

on their quality, as determined by a reward function. This method avoids complex policy

adjustments and uses a more straightforward sampling-based approach to refine outputs.

DPO requires less computational overhead and delivers more stable results, making it well-

suited for tasks such as generating syntactically correct YARA rules. Typically, the training

dataset consists of a pair of different text responses given the same query: the chosen

response and the rejected one. The chosen response has a higher award score than the

rejected response.

In our case, we use DPO due to its simplicity, stability, and reduced resource requirements

(see Figure 4). DPO provides a straightforward and interpretable optimization process,

making it especially effective in scenarios with limited labeled data and tasks requiring high

precision. We define the reward function as:

𝑅(𝑦) = α ⋅ 𝑃(𝑦) + β ⋅ 𝑆(𝑦)

where:

• 𝑅(𝑦): The reward score for the generated response 𝑦.

• 𝑃(𝑦): A response format validity score (1 if the YARA rule 𝑦 can be successfully

extracted from the response template, 0 otherwise).

• 𝑆(𝑦): A binary validity score (1 if the YARA rule 𝑦 is syntactically valid, 0 otherwise).

• (𝛼, 𝛽): Weighting factors to balance the importance of syntax validity and semantic

alignment.

We propose an iterative sampling and training algorithm for our YARA rule generation task:

• Step 1: Initialize the model temperature (τ) to encourage diverse responses.

• Step 2: For each CVE in the training set, gather the query data in plain text format.

• Step 3: Use the system prompt and query to generate a response.

• Step 4: Parse the response, extract the YARA rule, and assign a score for the response

based on the reward function.

• Step 5: Repeat Steps 3 and 4 five times, leveraging non-zero temperature to explore

diverse responses. Retain only the response that has the largest difference in score

compared to the response in Step 4.

• Step 6: Form 𝑚 training pairs using valid and invalid responses by repeating Step 5.

Record the number of syntactically incorrect trials in Step 4 as 𝑛.

• Step 7: Train the model with these 𝑚 training pairs, reducing the temperature

exponentially based on 𝑛.

• Step 8: Repeat the process until 𝜏 is zero, with updated 𝜏 to refine the model’s ability

to consistently generate valid YARA rules.

The temperature adjustment in Step 7 follows an exponential decay formula, expressed as:

τ𝑖+1 = τ𝑖 ⋅ 𝑒
−λ𝑛

where (τ𝑖) is the current temperature at iteration (𝑖), (λ) is the decay rate constant, and (𝑛)

is the number of trials. This ensures that the model progressively focuses on generating more

precise outputs as training progresses, making bigger adjustments at the beginning and

smaller ones when converging.

D. Iterative Sampling for Rule Matching Quality Improvement

Building upon the syntax correction framework, this step focuses on optimizing the matching

quality of YARA rules. Instead of validating syntax alone, the reward mechanism evaluates the

effectiveness of the rules in identifying vulnerabilities. The training set includes binaries

categorized as containing known CVEs, patched known CVEs, and irrelevant binaries. The

reward function for matching quality is defined as:

𝑅𝑀(𝑦) = γ ⋅ 𝑅(𝑦) + δ ⋅ 𝐹1(𝑦)

𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where:

• 𝑅𝑀(𝑦): Reward score for the generated response 𝑦.

• 𝑅(𝑦): The syntax and parsing score from the previous step.

• 𝐹1(𝑦): F1 score evaluating the balance between precision and recall when tested on

the labeled binary dataset.

• (𝛾, 𝛿): Weighting factors to balance the importance of target matching and overall F1

score.

The iterative sampling and training algorithm involves:

• Step 1: Initialize the model temperature (τ) to encourage diverse responses.

• Step 2: For each CVE in the training set, gather the query data in plain text format and

gather all the testing binaries.

• Step 3: Use the system prompt and query to generate a response.

• Step 4: Parse the response, extract the YARA rule 𝑦, and assign the matching score for

the response based on the above reward function, by matching the rule 𝑦 against the

known binaries with labels.

• Step 5: Repeat Steps 3 and 4 five times, leveraging non-zero temperature to retrieve

different responses. Keep only the response that has the smallest non-zero difference

in score compared to the response in Step 4.

• Step 6: Form 𝑚 training pairs using valid and invalid responses by repeating Step 5.

Record the number of syntactically incorrect trials in Step 4 as 𝑛.

• Step 7: Train the model with these 𝑚 training pairs, reducing the temperature (𝜏)

exponentially based on 𝑛.

• Step 8: Repeat the process until 𝜏 is zero, with updated 𝜏 to refine the model’s ability

to consistently generate valid YARA rules.

This sampling algorithm is similar to the one above for syntax correction, except that the

reward score is estimated based on the F1 score, which evaluates the effectiveness of

matching the training binaries. Additionally, instead of selecting the pair with the largest

score difference as the chosen and rejected responses, we choose the pair with the smallest

non-zero difference. This strategy is justified because smaller non-zero differences indicate

borderline cases where the model struggles to differentiate quality. Optimizing for such cases

helps refine the decision boundary and improves the model’s sensitivity to subtle distinctions,

ultimately leading to better performance across diverse scenarios.

5. EXPERIMENT EVALUATION

A. Sample Set Building

We start by constructing a CVE vulnerability instance repository containing labeled binaries

extracted from well-established firmware images, which serves as a robust testbed for

evaluating the system’s performance. Our dataset consists of two components: The first

comprises popular open-source utility libraries, while the second includes Android OS built-

in library vulnerabilities derived from the AOSP dataset [23].

Utility libraries play a significant role in software development, binary analysis, and

multimedia processing, but they often exhibit a range of security vulnerabilities. Tools such

as addr2line, as, and elfedit, which are respectively used for debugging, assembly, and

executable and linkable format (ELF) file manipulation, demonstrate critical flaws across

various versions. For instance, addr2line includes vulnerabilities such as CVE-2018-18605,

allowing buffer overflows, and CVE-2018-12697, leading to out-of-bounds reads. Similarly,

the GNU assembler (as) has been affected by vulnerabilities such as CVE-2017-7230, an

integer overflow issue, and CVE-2018-1000019, a stack overflow vulnerability, both of which

could enable arbitrary code execution. Multimedia libraries such as ffmpeg, freetype, and

libpng also show significant risks, with vulnerabilities such as heap buffer overflows (CVE-

2017-7862 in ffmpeg) and use-after-free issues (CVE-2015-8126 in libpng), potentially leading

to crashes or remote code execution. These vulnerabilities, arising from issues such as

improper input validation and poor memory management, emphasize the need for rigorous

security assessments of utility libraries. Table I presents the number of identified

vulnerabilities, corresponding library versions, and confirmed CVEs for the open-source utility

libraries.

Networking and file-sharing libraries are similarly impacted by security flaws. Tools such as

objdump and objcopy contain vulnerabilities such as improper file handling (CVE-2018-6543),

which can lead to denial-of-service conditions. Cryptographic libraries, like OpenSSL, suffer

Table I: Aggregated summary of utility libraries, versions, and confirmed CVEs

Library Versions CVEs Example CVEs

addr2line 7 72 CVE-2017-14129, CVE-2014-8738, ...

as 2 2 CVE-2017-72.30, ...

elfedit 3 4 CVE-2018-20623, CVE-2017-15996, ...

exif 3 10 CVE-2012-2814, CVE-2012-2840, ...

expat 3 3 CVE-2015-1283, CVE-2012-6702, ...

ffmpeg 45 54 CVE-2017-14059, CVE-2016-7562, ...

freetype 7 63 CVE-2014-9656, CVE-2010-2807, ...

objcopy 2 5 CVE-2018-12699, CVE-2018-12700, ...

objdump 5 16 CVE-2017-8421, CVE-2017-14934, ...

openssl 18 75 CVE-2016-6306, CVE-2015-0289, ...

png 4 6 CVE-2015-8126, CVE-2015-7981, ...

qemu 10 30 CVE-2024-9594, CVE-2024-8612, …

readelf 2 7 CVE-2017-7209, CVE-2017-9042, ...

sftp 3 3 CVE-2010-4755, CVE-2017-15906, ...

ssh 4 8 CVE-2014-2653, CVE-2011-0539, ...

sshd 7 10 CVE-2016-3115, CVE-2013-4548, ...

tcpdump 3 90 CVE-2017-12902, CVE-2017-13035, ...

xml2 8 38 CVE-2015-8035, CVE-2017-9048, ...

from vulnerabilities such as CVE-2016-6306, where improper handling of certificates may

result in man-in-the-middle attacks. XML parsing libraries, such as expat and xml2, are also

prone to vulnerabilities, including buffer overflows (CVE-2017-9233) and out-of-bounds reads

(CVE-2015-8241), which compromise application security. Furthermore, FTP and SSH tools

are affected by input handling flaws and directory traversal vulnerabilities, enabling

unauthorized access, denial of service, and remote code execution. These widespread

vulnerabilities across utility libraries highlight the importance of implementing robust

security measures to mitigate evolving threats.

The AOSP dataset [23], hosted on GitHub by Quarkslab, provides a detailed collection of CVEs

tailored to the Android operating system. Given Android’s extensive integration into various

devices, including Internet of Things (IoT) platforms, its security plays a critical role in ensuring

device protection. This dataset focuses on vulnerable binary executables, omitting Java-

related issues, and allows for an in-depth comparison of pre-patch and post-patch binaries

based on source code commit data. With coverage of more than 50 Android system

components, such as Media Framework, System, Bluetooth, and SurfaceFlinger, the dataset

captures a range of vulnerabilities and their potential effects on device operations. Table II

presents the number of vulnerabilities identified in the top 15 built-in libraries of Android

system components.

Among the 1,000 CVEs, vulnerabilities are categorized by severity and type, including

Elevation of Privilege and Remote Code Execution. Key components, such as Media

Table II: Top 15 components by Android OS built-in library vulnerability count

Component CVEs High Severity Critical Severity Example CVEs

System 202 146 53 CVE-2019-2115

Media Framework 201 106 80 CVE-2019-2176

Mediaserver 136 64 44 CVE-2015-3864

Framework 40 32 5 CVE-2019-2123

libstagefright 21 6 14 CVE-2015-1538

Audioserver 11 9 0 CVE-2017-0418

Libraries 10 6 0 CVE-2016-1839

Bluetooth 8 4 0 CVE-2016-0850

Framework APIs 5 5 0 CVE-2016-3750

system UI 5 5 0 CVE-2017-0638

Binder 4 4 0 CVE-2015-1528

Debuggerd 4 0 2 CVE-2016-2420

Expat 4 1 0 CVE-2012-6702

LibUtils 4 0 4 CVE-2016-3861

OpenSSL & BoringSSL 4 0 2 CVE-2016-0705

Framework and System account, form a significant portion of the dataset, each containing

over 200 vulnerabilities, many of which are high severity. Examples include CVE-2019-2115

in System, a privilege escalation issue, CVE-2019-2176 in Media Framework, a remote

execution risk, and CVE-2015-3864 in MediaServer, which impacts media rendering. Other

components, such as libstagefright, highlight the risks associated with multimedia processing.

This dataset serves as a foundation for understanding vulnerabilities within Android’s binaries,

aiding efforts to improve the security of IoT devices relying on this architecture. In total, our

experiment covers 1,466 vulnerable software records, resulting in 4,218 instances of binary

executables for analysis. Additionally, we included 10,000 irrelevant binaries in our

experiment to evaluate the false positive rates of the methods.

B. Language Models

This experiment evaluates the performance of five state-of-the-art language models: LLaMA

3.3, Qwen 2, Gemma 2, and Mistral 0.3. These models represent advanced approaches in

natural language processing and machine learning, demonstrating varying capabilities in

understanding and generating complex patterns from data.

• LLaMA 3.3 [24]: A cutting-edge large language model designed for general-purpose

natural language tasks. It focuses on efficiency and scalability, making it suitable for

applications requiring high accuracy and rapid inference.

• Qwen 2 [25]: Known for its optimization in handling domain-specific language tasks,

Qwen 2 leverages fine-tuned datasets to enhance contextual understanding and

generate precise outputs, particularly in technical and specialized areas.

• Gemma 2 [26]: This model excels in multilingual and cross-lingual tasks, offering

robust performance across diverse languages. It employs advanced transformer

architectures to ensure consistency and coherence in its results.

• Mistral 0.3 [27]: A lightweight yet highly efficient model optimized for resource-

constrained environments. Despite its smaller size, Mistral 0.3 delivers competitive

performance, making it a practical choice for scalable applications.

The experiment was conducted on a server equipped with a 56-core Xeon Gold 2.3/3.9GHz

processor, 100GB of RAM, and two NVIDIA GeForce RTX 6000 cards with (24 GB x 2) of VRAM.

The training system was implemented using the HuggingFace Transformer Reinforcement

Learning (TRL) library. To assess the performance of the methods, the following evaluation

metrics were utilized:

• Precision: This metric measures the accuracy of positive predictions, indicating the

proportion of true positives among all instances predicted as positive. It reflects the

system’s ability to avoid false alarms.

• Recall: Also known as sensitivity, recall evaluates the system’s ability to identify actual

positive instances, highlighting how well true positives are detected.

• F1 Score: The F1 score combines precision and recall into a single metric, providing a

balanced measure of the system’s accuracy, particularly when dealing with

imbalanced datasets.

These metrics provide a detailed assessment of the system’s performance. We conduct

evaluations for each setup, including the original language model, the language model

enhanced with syntax correction, and the language model further improved with syntax

correction and quality improvement. This layered evaluation helps identify the impact of each

enhancement on the model’s accuracy and reliability.

C. Experimental Results

Table III shows the experimental results. The evaluation of the language models in their

original configurations highlights their limited ability to handle the task effectively. Metrics

for recall, precision, and F1 score remain low across all models. For example, LLaMA 3.3

achieves a recall of 0.541 but a precision of only 0.019, resulting in an F1 score of 0.037. Qwen

2, Gemma 2, and Mistral 0.3 show similar patterns, with F1 scores ranging from 0.024 to 0.069.

These outcomes suggest that the models, in their initial states, struggle to balance the

identification of true positives with the minimization of false positives.

When syntax correction is applied, significant improvements are observed in all models.

LLaMA 3.3, for instance, achieves an F1 score of 0.522, a marked improvement from its

original performance. Qwen 2, Gemma 2, and Mistral 0.3 also show improved metrics, with

Table III: Performance benchmark

Model (Solution) Recall Precision F1

LLaMA 3.3 0.541 0.019 0.037

Qwen 2 0.622 0.012 0.024

Gemma 2 0.263 0.040 0.069

Mistral 0.3 0.342 0.024 0.045

LLaMA 3.3 (syntax correction) 0.620 0.451 0.522

Qwen 2 (syntax correction) 0.774 0.672 0.719

Gemma 2 (syntax correction) 0.561 0.836 0.671

Mistral 0.3 (syntax correction) 0.832 0.681 0.749

LLaMA 3.3 (syntax correction + quality improvement) 0.992 0.781 0.874

Qwen 2 (syntax correction + quality improvement) 0.986 0.893 0.937

Gemma 2 (syntax correction + quality improvement) 0.912 0.866 0.888

Mistral 0.3 (syntax correction + quality improvement) 0.956 0.901 0.928

F1 scores increasing to 0.719, 0.671, and 0.749, respectively. Syntax correction addresses

structural inconsistencies, enabling the models to better interpret and process data. This

adjustment results in higher recall and precision, demonstrating its impact on performance.

The combination of syntax correction and quality improvement delivers the best results

across all models. For example, LLaMA 3.3 reaches a recall of 0.992 and an F1 score of 0.874,

while Qwen 2 achieves a recall of 0.986 and an F1 score of 0.937. Mistral 0.3 and Gemma 2

show similar improvements, with F1 scores of 0.928 and 0.888, respectively. These

enhancements refine both the input and the underlying understanding of the models, leading

to improved predictions and reduced errors. This approach highlights the benefits of

combining structural corrections with quality refinements to achieve optimal performance.

6. CONCLUSION

The proposed method significantly improves vulnerability patch verification by combining

large language models, syntax correction, and quality enhancement techniques.

Experimental findings demonstrate the limitations of initial models, and the performance

gains achieved through structured refinement. By automating the generation of YARA rules

and focusing on syntax and matching precision, the system overcomes challenges faced by

traditional version-based detection methods. This approach offers a scalable and accurate

solution for verifying software vulnerabilities, addressing the demands of environments

requiring high security and reliability.

7. FUTURE WORK

While our experiments show promising results in model training across a subset of tasks and

datasets, new avenues of research remain open for further exploration and improvement.

We plan to benchmark our model’s performance on each dataset separately and address

emerging common weakness enumerations (CWEs) While our study focuses on the existing

architecture, many new transformer-based and other neural network variants are emerging.

Further research could involve fine-tuning these novel architectures under similar conditions

to benchmark performance, parameter efficiency, and speed. By pursuing these directions,

we hope to deepen our understanding of model fine-tuning, leading to improved

vulnerability patch verification.

REFERENCES

[1] L. J. Camp and V. Andalibi, “SBoM vulnerability assessment & corresponding requirements,”

(response to Notice and Request for Comments on Software Bill of Materials Elements

and Considerations), National Telecommunications and Information Administration,

2021.

[2] R. Ramachandran. “Qualys Top 20 Most Exploited Vulnerabilities.” 2003. Accessed: Jan. 8,

2025. [Online]. Available: https://blog.qualys.com/vulnerabilities-

threatresearch/2023/09/04/qualys-top-20-exploited-vulnerabilities

[3] E. D. Wolff, K. M. Growley, M. O. Lerner, M. B. Welling, M. G. Gruden, and J. Canter,

“Navigating the SolarWinds supply chain attack,” The Procurement Lawyer, vol. 56, no. 2,

2021.

[4] H. Ghanbari, K. Koskinen, and Y. Wei, “From SolarWinds to Kaseya: The rise of supply chain

attacks in a digital world,” J. Inf. Technol. Teach. Cases, Nov. 2024, doi:

10.1177/20438869241299823.

[5] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “SoK: Taxonomy of attacks on open-source

software supply chains,” in Proc. IEEE Symp. Secur. Priv. (SP), San Francisco, CA, USA, May

2023, pp. 1509–1526.

[6] Y. Shen, X. Gao, H. Sun, and Y. Guo, “Understanding vulnerabilities in software supply

chains,” Empir. Softw. Eng., vol. 30, no. 20, Nov. 2024.

[7] Fraunhofer FKIE. “GitHub—fkie-cad/FACT_core: Firmware analysis and comparison tool.”

Accessed: Jan. 8, 2025. [Online]. Available: https://github.com/fkie-cad/FACT_core

[8] E-M-B-A. “GitHub—e-m-b-a/embark: EMBArk—The firmware security scanning

environment.” Accessed: Jan. 8, 2025. [Online]. Available: https://github.com/e-m-b-

a/embark

[9] Intel. “GitHub—intel/cve-bin-tool: The CVE binary tool helps you determine if your system

includes known vulnerabilities.” Accessed: Jan. 8, 2025. [Online]. Available:

https://github.com/intel/cve-bin-tool

[10] M. Beninger, P. Charland, S. H. H. Ding, and B. C. M. Fung, “ERS0: Enhancing military

cybersecurity with AI-driven SBOM for firmware vulnerability detection and asset

management,” in Proc. 16th Int. Conf. Cyber Conflict: Over the Horizon (CyCon), Tallinn,

Estonia, May 2024, pp. 141–160.

[11] VirusTotal. “GitHub—VirusTotal/yara: The pattern matching Swiss knife.” Accessed: Jan.

8, 2025. [Online]. Available: https://github.com/VirusTotal/yara

[12] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis framework,” in Proc.

Int. Symp. Softw. Test. Anal. (ISSTA), London, U.K., July 2007, pp. 196–206.

[13] L. Li, S. H. H. Ding, Y. Tian, B. C. M. Fung, P. Charland, W. Ou, L. Song, and C. Chen,

“VulANalyzeR: Explainable binary vulnerability detection with multi-task learning and

attentional graph convolution,” ACM Trans. Privacy Secur., vol. 26, no. 3, art. no. 28, pp.

1–25, Apr. 2023.

[14] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining incremental steps of

fuzzing research,” in Proc. 14th USENIX Workshop on Offensive Technologies (WOOT),

Aug. 2020.

[15] F. Wang and Y. Shoshitaishvili, “Angr—The next generation of binary analysis,” in Proc.

IEEE Cybersecur. Dev. (SecDev), Cambridge, MA, USA, Sept. 2017, pp. 8–9.

[16] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2Vec: Boosting static representation

robustness for binary clone search against code obfuscation and compiler optimization,”

in Proc. IEEE Symp. Secur. Priv. (SP), San Francisco, CA, USA, May 2019, pp. 472–489.

[17] Z. Fu, S. H. H. Ding, F. Alaca, B. C. M. Fung, and P. Charland, “Pluvio: Assembly clone

search for out-of-domain architectures and libraries through transfer learning and

conditional variational information bottleneck,” 2023, arXiv:2307.10631.

[18] L. Giray, “Prompt engineering with ChatGPT: A guide for academic writers,” Ann. Biomed.

Eng., vol. 51, no. 12, pp. 2629–2633, Dec. 2023.

[19] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “LoRA: Low-

rank adaptation of large language models,” 2021, arXiv:2106.09685.

[20] Z. Yao, C. Li, X. Wu, S. Youn, and Y. He, “A comprehensive study on post-training

quantization for large language models,” 2023, arXiv:2303.08302.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” 2017, arXiv:1707.06347.

[22] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn, “Direct

preference optimization: Your language model is secretly a reward model,” in Proc. 37th

Int. Conf. Neural Inf. Process. Syst. (NeurIPS), New Orleans, LA, USA, Dec. 2023, pp.

53728–53741.

[23] A. Challande, R. David, and G. Renault, “Building a commit-level dataset of real-world

vulnerabilities,” in Proc. 12th ACM Conf. Data Appl. Secur. Privacy (CODASPY), Baltimore,

MD, USA, Apr. 2022, pp. 101–106.

[24] A. Grattafiori et al., “The Llama 3 herd of models,” 2024, arXiv:2407.21783.

[25] J. Bai et al., “Qwen technical report,” 2023, arXiv:2309.16609.

[26] M. Riviere et al., “Gemma 2: Improving open language models at a practical size,” 2024,

arXiv:2408.00118.

[27] A. Q. Jiang et al., “Mistral 7B,” 2023, arXiv:2310.06825.

