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Abstract: Patch verification is critical in military systems to ensure that known vulnerabilities are
effectively addressed, preventing them from being exploited. Without proper verification, unpatched
software could allow adversaries to exploit vulnerabilities, leading to unauthorized access,
compromised operations, or even mission failure. In high-stakes environments such as military
operations, patch verification is essential for maintaining the security, integrity, and readiness of both
software and firmware, particularly in systems that manage sensitive information or control mission-
critical equipment.

Traditional methods that rely on version strings to verify vulnerability patching are often insufficient.
For example, the Heartbleed vulnerability (CVE-2014-0160) affected OpenSSL versions 1.0.1 through
1.0.1f. A system running OpenSSL 1.0.1f might still be flagged as vulnerable, even if a custom patch
was applied, in the event that the version string was not updated by the software maintainer fixing
the vulnerability. This will lead to false positives in the vulnerability detection process. Conversely, a
system may appear secure based on the version string, but if the patch was not correctly
implemented, the vulnerability will remain, resulting in false negatives. To address these limitations,
this paper presents a new scalable, artificial intelligence-based code-level verification system. By
leveraging large language models to generate rules that analyze the actual executable code, this
approach verifies whether vulnerabilities have been properly fixed, regardless of version metadata.
Additionally, it can pinpoint the exact location of exploitable code as a more accurate and reliable
method for detecting and confirming patches. Our experiment, involving 1,466 vulnerable software
records with over 4,000 instances, demonstrates that the rule generation system is both accurate
and robust.
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1. INTRODUCTION

Vulnerability patch verification is a critical process in maintaining the security and reliability
of software systems, particularly in high-stakes environments such as military operations. It
ensures that known vulnerabilities, such as newly disclosed common vulnerabilities and
exposures (CVEs) or any in-house new vulnerability records, have been effectively addressed
or evaluated to mitigate potential risks. For example, when a new vulnerability is publicly
announced through a CVE or found by internal threat teams, organizations must rapidly
assess the associated risks and confirm that their systems are not vulnerable. This process is
important for preventing unauthorized access, data breaches, and operational disruptions
that could compromise mission-critical systems. An example of this urgency was seen with
the Shellshock vulnerability (CVE-2014-6271), where exploits targeting this Bash flaw
appeared within hours of its disclosure, affecting millions of devices reliant on Bash for
system-level operations [1]. Even after almost 10 years, it remains one of the most exploited
vulnerabilities, despite a patch being available [2]. This underscores the importance of swift
response and thorough verification of newly discovered vulnerabilities.

Traditional methods of vulnerability verification often rely on information provided by
software vendors. This approach is fraught with challenges. The complexity of modern
software supply chains, combined with the increasing prevalence of supply chain attacks—
such as the SolarWinds attack [3], which exploited software updates to introduce malicious
code into thousands of organizations, or the attack on Kaseya VSA [4], where a compromised
IT management tool led to widespread ransomware infections—undermine the reliability of
vendor-provided data. A one-day or multi-day delay in vendors validating and addressing
newly disclosed CVEs can leave systems exposed. Additionally, open-source software (OSS)
further complicates this landscape [5], as its decentralized nature can lead to inconsistencies
in patch deployment and versioning. An example would be the Log4j vulnerability (CVE-2021-
44228), which impacted millions of devices globally [6]. This flaw in the widely used Log4j
library, part of the Apache Logging Services, exposed systems to remote code execution
attacks, highlighting how a single OSS vulnerability can have widespread consequences.
Vendors may customize OSS libraries or fail to update version strings, making it difficult to
determine whether a vulnerability has been patched. Vendor information cannot always be
trusted.

To address these shortcomings, a zero-trust approach has gained traction, involving three key
steps: generating a software bill of materials (SBOM) [1], monitoring new CVEs that match
the SBOM catalog, and analyzing systems for unpatched vulnerabilities. An SBOM provides a
detailed inventory of software components, including their origins, versions, and
dependencies, enabling organizations to map CVEs to their systems. For example, consider a
system running OpenSSL with the version string “OpenSSL 1.0.1f” This version string can be
linked to product details, allowing tools to identify known vulnerabilities such as the
Heartbleed vulnerability (CVE-2014-0160), which affects OpenSSL versions 1.0.1 through



1.0.1f [2]. FACT [7], EMBA [8], CVE Binary Tool [9], and ERSO [10] follow such an approach.
However, reliance on version string matching introduces significant risks. Vendors may adopt
0SS or software from sub-vendors with altered version string patterns, complicating the
identification process. Additionally, vendors may implement in-house patches for CVEs
without updating the version string, especially when other parts of the code remain
unchanged. A patched version of OpenSSL, for instance, might still appear vulnerable if the
version string remains unmodified. Conversely, systems might seem secure based on
metadata, while still harboring unpatched vulnerabilities due to incomplete fixes or custom
versions. These limitations highlight the need for a more robust and precise method.

Figure 1: The process begins with information gathering, which serves as the input for a
language model. The generated prompts lead to the creation of YARA rules, which are
subsequently utilized for scanning binary files, culminating in the generation of scan results
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A novel approach bypasses these metadata-based limitations by directly verifying the
presence of unpatched CVEs in software binaries (see Figure 1). Using publicly available CVE
patch information, such as source code commit logs, pattern-matching rules can be



generated to identify instances of unpatched vulnerabilities in executable code. YARA rules
[11], a flexible and performance-optimized pattern-matching framework, have been selected
for this purpose. Commonly used in malware detection and triage, YARA rules enable efficient
scanning of binaries, making them well-suited for large-scale vulnerability analysis.

While YARA rules are traditionally crafted manually, this process is time-consuming and does
not scale to the volume of newly released CVEs. To address this, we propose a novel approach
leveraging language models to automate the generation of YARA rules for unpatched CVEs.
By taking CVE information, including proof-of-concept (PoC) exploits and patch commit logs
as the input, the system generates YARA rules to detect the corresponding vulnerabilities in
binary executables. This automated method not only accelerates the process but also
enhances explainability, as the generated rules clearly delineate where vulnerabilities exist
and why they remain unpatched. Preliminary investigations reveal that existing language
models struggle to produce high-quality YARA rules. To overcome this limitation, we
introduce a two-phase training methodology designed to improve the quality of the
generated rules. The contributions of this paper are as follows:

e We propose a fast and reliable method for vulnerability patch verification and risk
assessment, adopting a zero-trust approach that does not depend on vendor-
provided information.

e We present a two-phase training framework for language models to generate high-
quality vulnerability detection rules conforming to YARA specifications.

e We benchmark various language models for their effectiveness in generating
vulnerability-matching rules, demonstrating the efficacy of our proposed approach.

This paper is structured as follows: Section 2 reviews related works. Section 3 formally defines
the research problem. Section 4 outlines our methodology for model training. Section 5
details the experimental results. Finally, Section 6 provides the conclusion.

2. RELATED WORKS

Vulnerability detection involves identifying software flaws that can be exploited by attackers.
It can be broadly categorized into static and dynamic approaches. Static vulnerability
detection analyzes the source code, binaries, or intermediate representations without
executing the program. Model-based approaches, such as taint analysis [12], track the flow
of potentially malicious inputs through the program to identify insecure patterns. Data-driven
methods leverage deep learning models trained on large datasets of vulnerable and non-
vulnerable code to predict flaws [13]. While static methods provide comprehensive coverage,
they may produce false positives due to the lack of runtime context.

Dynamic vulnerability detection, on the other hand, analyzes the software during execution
to identify vulnerabilities that arise only under specific runtime conditions. Widely used



techniques include fuzz testing [14], which provides random or malformed inputs to the
program, and symbolic execution [15], which systematically explores execution paths. While
these methods are effective in finding runtime-specific vulnerabilities, they can be resource-
intensive and may miss issues that are not triggered during testing.

Vulnerability scanning, the paradigm under which this work falls, focuses on identifying
known vulnerabilities within software systems. This approach often utilizes an SBOM to map
vulnerabilities to specific components within a system [7-10]. Another common method
involves assembly code clone detection, which identifies code similarities to known
vulnerable software [16, 17]. While assembly code clone approaches provide fuzzy matching
results, typically in the form of a matching score between 0 and 1, they face challenges such
as determining appropriate thresholds and requiring manual verification to finally confirm
vulnerabilities. Despite these challenges, code clone techniques have advantages in
identifying vulnerabilities at the binary level, but require disassembly, which can increase
complexity.

Figure 2: Example YARA rule for detecting unpatched CVE-2017-9049

1 rule Detect_Unpatched_Vulnerability

2 {

3 meta:

4 description = "Detects presence of unpatched vulnerability in raw x86 binary executables"
5 date = "2025-01-03"

6 reference = "Based on provided CVE information"

7

8 strings:

9 // Look for patterns removed in the patch

10 $vulnerable_code_1 = { E8 ?7 7?7 7?7 7?7 83 C4 @4 85 C0 75 OF }

11 // Removed function call

12 $vulnerable_code_2 = { 8B 45 FC 89 45 F8 83 7D F8 @@ 75 }

13 // Pattern near vulnerable logic

14 $missing_buffer_check = { 3B ?? 7?7 7C 7?7 E8 ?7 2?7 772 77 }

15 // Missing check for input buffer
16
17 // string indicating lack of a new error message
18 $no_error_message = "unexpected change of input buffer" ascii wide
19
20 // ASCII strings commonly found in libxml binaries
21 $1libxml2_stringl = "xmlParseDoc" ascii
22 $1libxml12_string2 = "xmlReadMemory" ascii
23
24 condition:
25 // Match conditions for unpatched code presence
26 ($1ibxml2_stringl or $libxml2_string2) and
27 (two of ($vulnerable_code_1, $vulnerable_code_2, $missing_buffer_check)) and
28 not $no_error_message
29 }

Our work diverges by emphasizing fast triage through explainable matching patterns. Unlike
binary code clone approaches, which prioritize detailed matching at the cost of performance,
our method focuses on generating transparent and actionable vulnerability rules. This
approach balances precision and efficiency, providing a scalable method for rapid
vulnerability scanning and verification as a standalone solution, or a complement to existing



clone search-based methods. We are among the first to adopt this strategy, combining
explainability and speed to address the challenges of vulnerability verification in a novel and
effective way.

3. PROBLEM DEFINITION

The problem involves transforming vulnerability record information into actionable detection
rules for binary files. The input consists of a released CVE’s details, including its description
and all related data available under the references section formatted as plain text and
denoted as x. For example, on the National Institute of Standards and Technology national
vulnerability database, there is a “References to Advisories, Solutions, and Tools” section for
each CVE record.

This information is collected using automated crawlers that retrieve relevant details such as
threat advisories, descriptions, source code commits of patches, PoC exploits, and blog posts
analyzing the vulnerability. Leveraging this diverse data source ensures a comprehensive
understanding of the vulnerability and its exploitation patterns for rule generation.

Figure 3: System prompt design

1 You are a cybersecurity expert specializing in Yara rule creation. Given detailed information about a CVE, generate a
Yara rule that can accurately detect the unpatched vulnerability in binary files. Ensure the rule adheres to Yara
syntax specifications and includes:

2

3 - A meta section describing the rule purpose, CVE reference, and author details.

4

5 - A strings section with carefully chosen patterns that reflect patch code content, ensuring inclusion of:

6

7 - Byte or text strings confirming the target library or functionality (e.g., JSON processing or XML processing,
etc.) to reduce false positives.

8

9 - Byte or text strings reflecting changes introduced in the patch, such as new function call instructions, new
constants, or updated error messages, etc.

10

11 - Byte or text strings directly related to the specific patch or fix implementation.

12

13 - A condition section combining the patterns logically, with checks to:

14

15 - Confirm the library or functionality targeted.

16

17 - Verify the location of the patch within the binary.

18

19 - Ensure the patch is not present, distinguishing unpatched instances.

20

21 Following is an example Yara Rule:

22

23

24 Write down your thinking and reflection process here:
25 ### begining of the thinking process

26

27 ### end of the thinking process

28

29 Write down your final rule here:

30 ### begining of the yara rule

In this paper, we focus on public records to build the required input dataset. These records
include advisories from official CVE databases, Git repositories documenting patch
implementations, security researchers’ PoC codes (optional), and technical blogs discussing



the vulnerability’s scope and impact. While our approach is based on public data, the same
methodology can be applied to in-house vulnerability records, where organizations can
gather similar information internally through proprietary systems and sources.

The goal is to generate a YARA rule, denoted as y, capable of identifying unpatched instances
of the vulnerability in binary executables (see Figure 2). YARA rules provide explainable and
precise matching patterns that facilitate rapid detection and verification of vulnerabilities
across diverse systems. By automating this process, we aim to enhance scalability, while
maintaining high levels of accuracy and interpretability for vulnerability detection.

4. METHODOLOGY

A. Prompt Engineering for YARA Rule Generation

The initial step starts with designing effective prompts to guide the language model in
generating YARA rules (see Figure 4). Prompts typically consist of two parts: the system
prompt and the user query [18]. The system prompt provides a detailed set of instructions
and context for the model, such as “Generate a YARA rule for detecting a vulnerability based
on the provided CVE details. Ensure the rule adheres to YARA specifications and includes
meaningful identifiers and conditions.” This part sets the task’s scope and quality
expectations. The user query, by contrast, supplies the specific input data for the task. For
example, a query might state: “Based on CVE-2021-44228, generate a YARA rule. The CVE
details are as follows: ### start of CVE details .... ### end of CVE details.”

Figure 4 The overall training workflow and reward score calculation
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We first draft a base system prompt that incorporates key elements such as YARA rule
structure, syntax requirements, and general considerations about rule quality. This base
prompt is then iteratively refined using outputs from a separate language model. Manual
feedback is employed to evaluate the generated rules for alignment with predefined
standards, such as syntactic validity and contextual accuracy. This iterative refinement
involves adjusting the phrasing, e.g., inclusion, and input-output formats of the prompts to



optimize the model’s ability to produce high-quality and consistent YARA rules. Figure 3
shows our example system prompt. Contextual information about the vulnerabilities will be
used as the user query prompt.

B. Language Model Initial Setup

To enhance the efficiency and scalability of rule generation, we employ low-rank adaptation
(LoRA) and 4-bit quantization (see Figure 4). These optimization methods enable the effective
adaptation of pre-trained language models to the specialized tasks, in our case YARA rule
generation, while minimizing computational and resource overhead. Especially for model
fine-tuning, the reduced overhead enables us to train the model in faster iterations.

LoRA is a fine-tuning method that optimizes pre-trained models by injecting additional
learnable parameters into low-rank matrices within specific layers of the model [19]. This
approach focuses on training only the newly introduced parameters, while leaving the pre-
trained weights untouched. By reducing the number of trainable parameters, LoRA
significantly decreases memory and computational requirements compared to traditional
fine-tuning. This makes LoRA particularly useful for tasks requiring domain-specific
adaptation, such as cybersecurity applications, where the model can efficiently specialize in
YARA rule generation without losing its general-purpose capabilities.

In 4-bit quantization, a model is compressed by representing its weights with 4 bits instead
of the typical 16 or 32 bits, reducing the model size drastically [20]. This compression allows
for faster inference times and enables deployment on hardware with limited computational
power, such as edge devices or low-resource servers. Despite the reduction in precision,
modern quantization techniques use algorithms to maintain the model’s accuracy, ensuring
that it performs well even under these constraints. For YARA rule generation, 4-bit
guantization ensures that the model is efficient enough for real-time and large-scale
applications in varying application scenarios.

C. lIterative Sampling for YARA Rule Syntax Correction
The language model may fail to generate syntactically correct YARA rules due to issues such
as:

e Including extraneous explanation text or code snippets outside the designated
response area, leading to extraction errors.

e Producing YARA rules that are not syntactically valid.

To address these challenges, we consider two methods for training the existing language
model: direct preference optimization (DPO) and proximal policy optimization (PPO). DPO is
a stable and efficient approach to reward-based fine-tuning, while PPO uses reinforcement
learning to iteratively improve outputs based on reward signals.



PPO [21] optimizes the model by iteratively interacting with a reward function. It evaluates
outputs based on defined metrics, such as accuracy or syntax validity, and adjusts the model
to maximize expected rewards. A clipping mechanism in PPO prevents overly large updates
to the model parameters, ensuring training stability. However, PPO requires well-defined
reward functions, extensive hyperparameter tuning, and significant computational resources,
making it complex and resource-intensive for this application.

DPO [22], in contrast, simplifies the process by focusing directly on sampled preferences
without requiring explicit reinforcement signals. DPO trains the model to rank outputs based
on their quality, as determined by a reward function. This method avoids complex policy
adjustments and uses a more straightforward sampling-based approach to refine outputs.
DPO requires less computational overhead and delivers more stable results, making it well-
suited for tasks such as generating syntactically correct YARA rules. Typically, the training
dataset consists of a pair of different text responses given the same query: the chosen
response and the rejected one. The chosen response has a higher award score than the
rejected response.

In our case, we use DPO due to its simplicity, stability, and reduced resource requirements
(see Figure 4). DPO provides a straightforward and interpretable optimization process,
making it especially effective in scenarios with limited labeled data and tasks requiring high
precision. We define the reward function as:

Ry)=a-P(y)+B-S(¥)
where:
e R(y): The reward score for the generated response y.

e P(y): A response format validity score (1 if the YARA rule y can be successfully
extracted from the response template, 0 otherwise).

e S(¥): Abinary validity score (1 if the YARA rule y is syntactically valid, 0 otherwise).

e (a,B): Weighting factors to balance the importance of syntax validity and semantic
alignment.

We propose an iterative sampling and training algorithm for our YARA rule generation task:
e Step 1: Initialize the model temperature (1) to encourage diverse responses.
e Step 2: For each CVE in the training set, gather the query data in plain text format.
e Step 3: Use the system prompt and query to generate a response.

e Step 4: Parse the response, extract the YARA rule, and assign a score for the response
based on the reward function.



e Step 5: Repeat Steps 3 and 4 five times, leveraging non-zero temperature to explore
diverse responses. Retain only the response that has the largest difference in score
compared to the response in Step 4.

e Step 6: Form m training pairs using valid and invalid responses by repeating Step 5.
Record the number of syntactically incorrect trials in Step 4 as n.

e Step 7: Train the model with these m training pairs, reducing the temperature
exponentially based on n.

e Step 8: Repeat the process until T is zero, with updated 7 to refine the model’s ability
to consistently generate valid YARA rules.

The temperature adjustment in Step 7 follows an exponential decay formula, expressed as:

— -An
Tit1 =T €

where (T;) is the current temperature at iteration (i), (A) is the decay rate constant, and (n)
is the number of trials. This ensures that the model progressively focuses on generating more
precise outputs as training progresses, making bigger adjustments at the beginning and
smaller ones when converging.

D. Iterative Sampling for Rule Matching Quality Improvement

Building upon the syntax correction framework, this step focuses on optimizing the matching
quality of YARA rules. Instead of validating syntax alone, the reward mechanism evaluates the
effectiveness of the rules in identifying vulnerabilities. The training set includes binaries
categorized as containing known CVEs, patched known CVEs, and irrelevant binaries. The
reward function for matching quality is defined as:

RM(y) =y -R(y) +6-F1(y)

Precision - Recall
F1=2

" Precision + Recall

where:
e RM(y): Reward score for the generated response y.
e R(y): The syntax and parsing score from the previous step.

e F1(y): F1 score evaluating the balance between precision and recall when tested on
the labeled binary dataset.

e (y,0): Weighting factors to balance the importance of target matching and overall F1
score.

The iterative sampling and training algorithm involves:



e Step 1: Initialize the model temperature (t) to encourage diverse responses.

e Step 2: For each CVE in the training set, gather the query data in plain text format and
gather all the testing binaries.

e Step 3: Use the system prompt and query to generate a response.

e Step 4: Parse the response, extract the YARA rule y, and assign the matching score for
the response based on the above reward function, by matching the rule y against the
known binaries with labels.

e Step 5: Repeat Steps 3 and 4 five times, leveraging non-zero temperature to retrieve
different responses. Keep only the response that has the smallest non-zero difference
in score compared to the response in Step 4.

e Step 6: Form m training pairs using valid and invalid responses by repeating Step 5.
Record the number of syntactically incorrect trials in Step 4 as n.

e Step 7: Train the model with these m training pairs, reducing the temperature (7)
exponentially based on n.

e Step 8: Repeat the process until T is zero, with updated 7 to refine the model’s ability
to consistently generate valid YARA rules.

This sampling algorithm is similar to the one above for syntax correction, except that the
reward score is estimated based on the F1 score, which evaluates the effectiveness of
matching the training binaries. Additionally, instead of selecting the pair with the largest
score difference as the chosen and rejected responses, we choose the pair with the smallest
non-zero difference. This strategy is justified because smaller non-zero differences indicate
borderline cases where the model struggles to differentiate quality. Optimizing for such cases
helps refine the decision boundary and improves the model’s sensitivity to subtle distinctions,
ultimately leading to better performance across diverse scenarios.

5. EXPERIMENT EVALUATION

A. Sample Set Building

We start by constructing a CVE vulnerability instance repository containing labeled binaries
extracted from well-established firmware images, which serves as a robust testbed for
evaluating the system’s performance. Our dataset consists of two components: The first
comprises popular open-source utility libraries, while the second includes Android OS built-
in library vulnerabilities derived from the AOSP dataset [23].

Utility libraries play a significant role in software development, binary analysis, and
multimedia processing, but they often exhibit a range of security vulnerabilities. Tools such
as addr2line, as, and elfedit, which are respectively used for debugging, assembly, and



executable and linkable format (ELF) file manipulation, demonstrate critical flaws across
various versions. For instance, addr2line includes vulnerabilities such as CVE-2018-18605,
allowing buffer overflows, and CVE-2018-12697, leading to out-of-bounds reads. Similarly,
the GNU assembler (as) has been affected by vulnerabilities such as CVE-2017-7230, an
integer overflow issue, and CVE-2018-1000019, a stack overflow vulnerability, both of which
could enable arbitrary code execution. Multimedia libraries such as ffmpeg, freetype, and
libpng also show significant risks, with vulnerabilities such as heap buffer overflows (CVE-
2017-7862 in ffmpeg) and use-after-free issues (CVE-2015-8126 in libpng), potentially leading
to crashes or remote code execution. These vulnerabilities, arising from issues such as
improper input validation and poor memory management, emphasize the need for rigorous
security assessments of utility libraries. Table | presents the number of identified
vulnerabilities, corresponding library versions, and confirmed CVEs for the open-source utility
libraries.

Table I: Aggregated summary of utility libraries, versions, and confirmed CVEs

Library Versions CVEs Example CVEs

addr2line 7 72 CVE-2017-14129, CVE-2014-8738, ...
as 2 2 CVE-2017-72.30, ...

elfedit 3 CVE-2018-20623, CVE-2017-15996, ...
exif 3 10 CVE-2012-2814, CVE-2012-2840, ...
expat 3 3 CVE-2015-1283, CVE-2012-6702, ...
ffmpeg 45 54 CVE-2017-14059, CVE-2016-7562, ...
freetype 7 63 CVE-2014-9656, CVE-2010-2807, ...
objcopy 2 5 CVE-2018-12699, CVE-2018-12700, ...
objdump 5 16 CVE-2017-8421, CVE-2017-14934, ...
openss| 18 75 CVE-2016-6306, CVE-2015-0289, ...
png 4 6 CVE-2015-8126, CVE-2015-7981, ...
gemu 10 30 CVE-2024-9594, CVE-2024-8612, ...
readelf 2 CVE-2017-7209, CVE-2017-9042, ...
sftp 3 CVE-2010-4755, CVE-2017-15906, ...
ssh 4 CVE-2014-2653, CVE-2011-0539, ...
sshd 7 10 CVE-2016-3115, CVE-2013-4548, ...
tcpdump 3 90 CVE-2017-12902, CVE-2017-13035, ...
xml2 8 38 CVE-2015-8035, CVE-2017-9048, ...

Networking and file-sharing libraries are similarly impacted by security flaws. Tools such as
objdump and objcopy contain vulnerabilities such as improper file handling (CVE-2018-6543),
which can lead to denial-of-service conditions. Cryptographic libraries, like OpenSSL, suffer



from vulnerabilities such as CVE-2016-6306, where improper handling of certificates may
result in man-in-the-middle attacks. XML parsing libraries, such as expat and xml2, are also
prone to vulnerabilities, including buffer overflows (CVE-2017-9233) and out-of-bounds reads
(CVE-2015-8241), which compromise application security. Furthermore, FTP and SSH tools
are affected by input handling flaws and directory traversal vulnerabilities, enabling
unauthorized access, denial of service, and remote code execution. These widespread
vulnerabilities across utility libraries highlight the importance of implementing robust
security measures to mitigate evolving threats.

The AOSP dataset [23], hosted on GitHub by Quarkslab, provides a detailed collection of CVEs
tailored to the Android operating system. Given Android’s extensive integration into various
devices, including Internet of Things (IoT) platformes, its security plays a critical role in ensuring
device protection. This dataset focuses on vulnerable binary executables, omitting Java-
related issues, and allows for an in-depth comparison of pre-patch and post-patch binaries
based on source code commit data. With coverage of more than 50 Android system
components, such as Media Framework, System, Bluetooth, and SurfaceFlinger, the dataset
captures a range of vulnerabilities and their potential effects on device operations. Table Il
presents the number of vulnerabilities identified in the top 15 built-in libraries of Android
system components.

Table Il: Top 15 components by Android OS built-in library vulnerability count

Component CVEs High Severity  Critical Severity =~ Example CVEs
System 202 146 53 CVE-2019-2115
Media Framework 201 106 80 CVE-2019-2176
Mediaserver 136 64 44 CVE-2015-3864
Framework 40 32 5 CVE-2019-2123
libstagefright 21 6 14 CVE-2015-1538
Audioserver 11 9 0 CVE-2017-0418
Libraries 10 6 0 CVE-2016-1839
Bluetooth 8 4 0 CVE-2016-0850
Framework APIs 5 5 0 CVE-2016-3750
system Ul 5 5 0 CVE-2017-0638
Binder 4 4 0 CVE-2015-1528
Debuggerd 4 0 2 CVE-2016-2420
Expat 4 1 0 CVE-2012-6702
LibUtils 4 0 4 CVE-2016-3861
OpenSSL & BoringSSL 4 0 2 CVE-2016-0705

Among the 1,000 CVEs, vulnerabilities are categorized by severity and type, including
Elevation of Privilege and Remote Code Execution. Key components, such as Media



Framework and System account, form a significant portion of the dataset, each containing
over 200 vulnerabilities, many of which are high severity. Examples include CVE-2019-2115
in System, a privilege escalation issue, CVE-2019-2176 in Media Framework, a remote
execution risk, and CVE-2015-3864 in MediaServer, which impacts media rendering. Other
components, such as libstagefright, highlight the risks associated with multimedia processing.
This dataset serves as a foundation for understanding vulnerabilities within Android’s binaries,
aiding efforts to improve the security of 10T devices relying on this architecture. In total, our
experiment covers 1,466 vulnerable software records, resulting in 4,218 instances of binary
executables for analysis. Additionally, we included 10,000 irrelevant binaries in our
experiment to evaluate the false positive rates of the methods.

B. Language Models

This experiment evaluates the performance of five state-of-the-art language models: LLaMA
3.3, Qwen 2, Gemma 2, and Mistral 0.3. These models represent advanced approaches in
natural language processing and machine learning, demonstrating varying capabilities in
understanding and generating complex patterns from data.

e LLaMA 3.3 [24]: A cutting-edge large language model designed for general-purpose
natural language tasks. It focuses on efficiency and scalability, making it suitable for
applications requiring high accuracy and rapid inference.

e Qwen 2 [25]: Known for its optimization in handling domain-specific language tasks,
Qwen 2 leverages fine-tuned datasets to enhance contextual understanding and
generate precise outputs, particularly in technical and specialized areas.

e Gemma 2 [26]: This model excels in multilingual and cross-lingual tasks, offering
robust performance across diverse languages. It employs advanced transformer
architectures to ensure consistency and coherence in its results.

e Mistral 0.3 [27]: A lightweight yet highly efficient model optimized for resource-
constrained environments. Despite its smaller size, Mistral 0.3 delivers competitive
performance, making it a practical choice for scalable applications.

The experiment was conducted on a server equipped with a 56-core Xeon Gold 2.3/3.9GHz
processor, 100GB of RAM, and two NVIDIA GeForce RTX 6000 cards with (24 GB x 2) of VRAM.
The training system was implemented using the HuggingFace Transformer Reinforcement
Learning (TRL) library. To assess the performance of the methods, the following evaluation
metrics were utilized:

e Precision: This metric measures the accuracy of positive predictions, indicating the
proportion of true positives among all instances predicted as positive. It reflects the
system’s ability to avoid false alarms.



e Recall: Also known as sensitivity, recall evaluates the system’s ability to identify actual
positive instances, highlighting how well true positives are detected.

e F1 Score: The F1 score combines precision and recall into a single metric, providing a
balanced measure of the system’s accuracy, particularly when dealing with
imbalanced datasets.

These metrics provide a detailed assessment of the system’s performance. We conduct
evaluations for each setup, including the original language model, the language model
enhanced with syntax correction, and the language model further improved with syntax
correction and quality improvement. This layered evaluation helps identify the impact of each
enhancement on the model’s accuracy and reliability.

Table Ill: Performance benchmark

Model (Solution) Recall Precision F1

LLaMA 3.3 0.541 0.019 0.037
Qwen 2 0.622 0.012 0.024
Gemma 2 0.263 0.040 0.069
Mistral 0.3 0.342 0.024 0.045
LLaMA 3.3 (syntax correction) 0.620 0.451 0.522
Qwen 2 (syntax correction) 0.774 0.672 0.719
Gemma 2 (syntax correction) 0.561 0.836 0.671
Mistral 0.3 (syntax correction) 0.832 0.681 0.749
LLaMA 3.3 (syntax correction + quality improvement) 0.992 0.781 0.874
Qwen 2 (syntax correction + quality improvement) 0.986 0.893 0.937
Gemma 2 (syntax correction + quality improvement) 0.912 0.866 0.888
Mistral 0.3 (syntax correction + quality improvement) 0956 0.901 0.928

C. Experimental Results

Table Il shows the experimental results. The evaluation of the language models in their
original configurations highlights their limited ability to handle the task effectively. Metrics
for recall, precision, and F1 score remain low across all models. For example, LLaMA 3.3
achieves a recall of 0.541 but a precision of only 0.019, resulting in an F1 score of 0.037. Qwen
2, Gemma 2, and Mistral 0.3 show similar patterns, with F1 scores ranging from 0.024 to 0.069.
These outcomes suggest that the models, in their initial states, struggle to balance the
identification of true positives with the minimization of false positives.

When syntax correction is applied, significant improvements are observed in all models.
LLaMA 3.3, for instance, achieves an F1 score of 0.522, a marked improvement from its
original performance. Qwen 2, Gemma 2, and Mistral 0.3 also show improved metrics, with



F1 scores increasing to 0.719, 0.671, and 0.749, respectively. Syntax correction addresses
structural inconsistencies, enabling the models to better interpret and process data. This
adjustment results in higher recall and precision, demonstrating its impact on performance.

The combination of syntax correction and quality improvement delivers the best results
across all models. For example, LLaMA 3.3 reaches a recall of 0.992 and an F1 score of 0.874,
while Qwen 2 achieves a recall of 0.986 and an F1 score of 0.937. Mistral 0.3 and Gemma 2
show similar improvements, with F1 scores of 0.928 and 0.888, respectively. These
enhancements refine both the input and the underlying understanding of the models, leading
to improved predictions and reduced errors. This approach highlights the benefits of
combining structural corrections with quality refinements to achieve optimal performance.

6. CONCLUSION

The proposed method significantly improves vulnerability patch verification by combining
large language models, syntax correction, and quality enhancement techniques.
Experimental findings demonstrate the limitations of initial models, and the performance
gains achieved through structured refinement. By automating the generation of YARA rules
and focusing on syntax and matching precision, the system overcomes challenges faced by
traditional version-based detection methods. This approach offers a scalable and accurate
solution for verifying software vulnerabilities, addressing the demands of environments
requiring high security and reliability.

7. FUTURE WORK

While our experiments show promising results in model training across a subset of tasks and
datasets, new avenues of research remain open for further exploration and improvement.
We plan to benchmark our model’s performance on each dataset separately and address
emerging common weakness enumerations (CWEs) While our study focuses on the existing
architecture, many new transformer-based and other neural network variants are emerging.
Further research could involve fine-tuning these novel architectures under similar conditions
to benchmark performance, parameter efficiency, and speed. By pursuing these directions,
we hope to deepen our understanding of model fine-tuning, leading to improved
vulnerability patch verification.
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