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This paper reports the development of a building energy demand predictive model based on the decision
tree method. This method is able to classify and predict categorical variables: its competitive advan-
tage over other widely used modeling techniques, such as regression method and ANN method, lies in
the ability to generate accurate predictive models with interpretable flowchart-like tree structures that
enable users to quickly extract useful information. To demonstrate its applicability, the method is applied
to estimate residential building energy performance indexes by modeling building energy use intensity
(EUI) levels. The results demonstrate that the use of decision tree method can classify and predict building
lassification analysis energy demand levels accurately (93% for training data and 92% for test data), identify and rank signifi-
cant factors of building EUI automatically. The method can provide the combination of significant factors
as well as the threshold values that will lead to high building energy performance. Moreover, the aver-
age EUI value of data records in each classified data subsets can be used for reference when performing
prediction. One crucial benefit is improving building energy performance and reducing energy consump-
tion. Another advantage of this methodology is that it can be utilized by users without requiring much

computation knowledge.

. Introduction

There has been a growing concern about the total building
nergy consumption which is a substantial user of energy world-
ide. Further, with rising living standards, building energy con-

umption throughout the world has been significantly increased
ver the past few decades. For example, from 1994 to 2004, building
nergy consumption in Europe and North America has increased
t a rate of 1.5% and 1.9% per annum, respectively [1]. Chinese
uilding energy consumption has increased at more than 10% per
nnum for the past 20 years [2]. The high level of building energy
onsumption and the steady increase in building energy demand
ecessitate designing energy efficient buildings and improving its
nergy performance.

In the practice of energy efficient building design, architects
nd building designers often need to identify which parameters

ill influence future building energy demand significantly. Fur-

hermore, based on different combinations of these parameters
s well as their values, architects and building designers usually
xpect to find a simple and reliable method to estimate build-
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anada H3G 1M8.
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ing energy performance rapidly so that they can optimize their
building design plans. Building energy simulation tools have been
utilized to forecast and analyze building energy consumption and
describe building energy use patterns, in order to benefit the design
and operation of energy efficient buildings. In recent years, there
have been many studies on building energy demand modeling and
several methods were employed, such as traditional regression
methods [3,4], artificial neural networks (ANN) methods [5–7], and
building simulation methods [8,9], etc. Through statistical meth-
ods and regression equations, regression models correlate building
energy demand with relevant climatic variables and/or building
physical variables in order to predict energy demand. The main
advantage of regression models is that they are comparatively sim-
ple and efficient. The ANN model is also able to predict the thermal
performance of building and its foundation is based on mimick-
ing the structure and properties of biological neural networks. The
greatest strength of ANN models in comparison with other models
lies in their ability to model complex relationships between inputs
and outputs. These two methods have been successfully applied to
predict building energy demand. However, considering the regres-
sion models are normally complicated equations and ANN models

operate like a “black box”; therefore, the models developed using
these methods are not understandable and interpretable especially
for common users without advanced mathematical knowledge.
This makes it difficult to be a common predictive tool. Moreover,
in these studies, the focuses have been mainly on the energy use
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Fig. 1. Schematic illustration o

rediction of existing buildings (e.g. predict hourly heating/cooling
oad for a certain type of building), whereas the energy use predic-
ion of newly designed buildings, which is also very important for
rchitects and building designers to make rational decisions at the
arly stage of design and operation, are seldom carried out.

Building simulation allows the prediction of building energy
erformance under various conditions. However, this method does
ot perform well in predicting the energy use for occupied buildings
s compare to non-occupied buildings due to the lack of sufficient
nowledge about occupants’ behavior. Additionally, the application
f building simulation programs is normally complicated and the
earning process of these programs tends to be time-consuming.

In the past two decades, decision tree method, a novel computa-
ional modeling technique that uses flowchart-like tree structure,
as been widely used for classification and prediction in many
cientific and medical fields [10–12]. The popularity of decision
ree method mainly attributes to its ease of use, and abilities
o generate accurate predictive models with understandable and
nterpretable structures, which, accordingly, provide clear and use-
ul information on corresponding domains. Moreover, the decision
ree method is able to process both numerical and categorical
ariables, and perform classification and prediction tasks rapidly
ithout requiring much computation efforts. However, it should

e mentioned that decision tree method is more appropriate for
redicting categorical variables than for predicting numerical vari-
bles. The application of decision tree method in building related
tudies is still very sparse. Tso and Yau [13] compared the accuracy
f regression method, ANN method, and decision tree method in
redicting average weekly electricity consumption for both sum-
er and winter in Hong Kong. It was found that decision tree model

nd ANN model have a slightly higher accuracy than other models.
herefore, it is highly desirable to utilize decision tree method to
rocess measured data, which has already included the influences
f occupant activities, for building energy demand modeling.

The paper reports the development of a procedure to accurately
stimate building energy performance indexes. The procedure is
ased on the decision tree method. The applicability of the proce-
ure is then demonstrated for residential buildings sectors.

. Methodology

.1. Overview of decision tree
The decision tree methodology is one of the most commonly
sed data mining methods [14,15]. It uses a flowchart-like tree
tructure to segregate a set of data into various predefined classes,
hereby providing the description, categorization, and generaliza-
ion of given datasets. As a logical model, decision tree shows how
ple hypothetical decision tree.

the value of a target variable can be predicted by using the values
of a set of predictor variables. Fig. 1 gives a decision tree indicat-
ing whether residents turn room air conditioners (RAC) on or off
in their rooms in the cooling season. Assume 100 data records are
used to build this decision tree and each record has three attributes:
outdoor air temperature, room occupancy, and the operating state
of RAC.

The target variable for the above decision tree is RAC operating
states, with potential states being classified as either turning on or
off. The predictor variables are outdoor air temperature (≤26 ◦C or
>26 ◦C) and room occupancy (empty or not). As shown in Fig. 1, the
decision tree consists of three kinds of nodes: root node, internal
node, and leaf node. Root node and internal node denote a binary
split test on an attribute while leaf node represents an outcome of
the classification and thus holding a categorical target label. More-
over, the numbers in the parentheses at the end of each leaf node
depict the number of data records in this leaf. If some leaves are
impure (i.e. some records are misclassified into this node), the num-
ber of misclassified records will be given after a slash. For example,
(60/5) in the left most leaf in Fig. 1 means that, among the 60
records having outdoor temperature is lower than or equal to 26 ◦C
that have been classified to turned off, 5 of them actually have the
value turned on. By using this decision tree, whether RAC operating
states should be classified as being ‘turned on’ or ‘turned off’ can
be predicted. For example, if the outdoor air temperature is higher
than 26 ◦C and the room is not empty, occupants will turn RAC on;
otherwise they will turn it off.

2.2. Decision tree generation

Decision tree generation is in general a two-step process,
namely learning and classification, as shown in Fig. 2. In the learn-
ing process, the collected data are split into two subsets, training
set and testing set. Creation of training set and testing set is an
important part of evaluating data mining models. Usually, most of
the data records in the database are arbitrarily selected for train-
ing and the remained data records are used for testing. Note that
training set and testing set should come from the same population
but should be disjoint. Then, a decision tree generation algorithm
takes the training data as input and outputs a decision tree. Com-
monly used decision tree generation algorithms include ID3 [14],
classification and regression trees (CART) [16], and C4.5 [17]. In
this study, we employ C4.5, along with an open-source data min-

ing software WEKA, to build decision tree due to its flexibility and
wide applicability to different types of data. In the classification
process, the accuracy of obtained decision tree is first evaluated by
making predictions against the test data. The accuracy of a decision
tree is measured by comparing the predicted target values and the
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Fig. 2. Procedure of

rue target values of the testing data. If the accuracy is considered
cceptable, the decision tree can be applied to new dataset for clas-
ification and prediction; otherwise, the reason should be identified
nd corresponding solutions should be adopted to tackle problems.

The procedure of generating a decision tree from the training
ata is explained as follows. Initially, all records in the training data
re grouped together into a single partition. At each iteration, the
lgorithm chooses a predictor attribute that can “best” separate
he target class values in the partition. The ability that a predictor
ttribute can separate the target class values is measured based on
n attribute selection criterion, which will be discussed in Section
.3. After a predictor attribute is chosen, the algorithm splits the
artition into child partitions such that each child partition contains
he same value of the chosen selected attribute. The decision tree
lgorithm iteratively splits a partition and stops when any one of
he following terminating conditions is met:

. All records in a partition share the same target class value. Thus,
the class label of the leaf node is the target class value;

. There are no remaining predictor attributes that can be used to
further split a partition. In this case, the majority target class
values become the label of the leaf node; and

. There are no more records for a particular value of a predictor
variable. In this case, a lead node is created with the majority
class value in the parent partition.

.3. Attribute selection criterion

The decision tree generation algorithm is a greedy algorithm. It

teratively splits a partition by choosing a split attribute that can
est separate the target class values. The choice of split attribute
etermines the quality of the decision tree model and, therefore,
he classification accuracy on the future data. The concept of entropy
16] in information theory is a widely criterion measure for decision
ion tree generation.

tree to characterize the purity of a partition in decision tree nodes.
Given a decision tree containing only binary target variables such
as HIGH EUI and LOW EUI, the entropy of the data subset, Di, of the
ith tree node is defined as

Entropy (Di) = −
( nHIGH

T N
log2

nHIGH
T N

+
nLOW

T N
log2

nLOW
T N

)
(1)

where nHIGH: the number of HIGH EUI records in Di; nLOW: the
number of LOW EUI records in Di; T N: the total number of records
in Di and T N = nHIGH + nLOW.

The entropy varies between 0 and 1. Notice that the entropy
equals to 0 if Di is pure and it is 1 when nHIGH equals to nLOW. At
each node of a decision tree, candidate splitting test will be used to
evaluate all available attributes to select the most suitable attribute
to split data. Suppose the jth attribute has been selected as node
attribute. A candidate split test, ST, at the ith tree node is defined
as

ST : Valj (r) ≤ T h (if the jth attribute is numerical) (2)

ST : Valj (r) ∈ {v1, v2}
(if the jth attribute is categorical and has two values) (3)

where Valj(r): the value of the jth attribute of record r; T h: thresh-
old value; v1, v2: two values of the jth attribute.

Next, the algorithm applies ST to Di and partitions Di into two
subsets, DS1 and DS2. Let r be a record in Di. If the jth attribute is a
numerical attribute, then

DS1 = {r ∈ Di|valj(r) ≤ T h} and DS2 = {r ∈ Di|valj(r) > T h}. (4)
If the jth attribute is a categorical attribute, then

DS1 = {r ∈ Di|valj(r) = v1} and DS2 = {r ∈ Di|valj(r) = v2}. (5)

Let m and n be the number of records in DS1 and DS2, respec-
tively. The entropy after the split test can then be calculated as
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Fig. 3. Boxplot for monthly average outdoor air temperature in the six regions in
2003.

water supply, and kitchen. Each end use data with interval of
5 min was aggregated so as to compute hourly, daily, monthly,
and annual total amounts. And thus total energy use can also be
calculated as the sum of the energy content of all the fuel used

Table 1
Conversion coefficients of different fuels.

Fuel Conversion coefficient Unit
640 Z. Yu et al. / Energy and B

he weighted sum of the entropies for the individual subsets

ntropy (DS1 and DS2)= m

m+n
Entropy (DS1)+ n

m+n
Entropy (DS2)

(6)

here Entropy (DS1) and Entropy (DS2) can be calculated by using
ormula (1).

The selection of node attribute used to split data is very impor-
ant and a rational selection can improve the purity of tree nodes.
widely used attribute selection measure is information gain [18],
hich is defined as the entropy reduction before and after a can-
idate splitting test. Therefore, information gain can be calculated
s

nfoGain = Entropy (Di) − Entropy (DS1 and DS2) (7)

or each tree node, the attribute with the maximum information
ain will be chosen as the splitting attribute at this node. The infor-
ation gain measure, however, has a bias to attributes with larger

umber of domain values. One way to avoid such bias is to nor-
alize the information gain by a split information value defined

nalogously with information gain. C4.5 employs this improved
easure, gain ratio [15]:

ainRatio = InfoGain
SplitInfo

(8)

here

plitInfo = −
(

m

m + n
log2

m

m + n
+ n

m + n
log2

n

m + n

)
(9)

The attribute with the highest gain ratio is selected as the split-
ing attribute.

Additionally, in order to detect whether a node should be a
eaf, a minimum threshold value of entropy (ENmin) will be pre-
efined and compared with node classification entropy (Entropy
Di)), if Entropy (Di) is lower than ENmin, then this node is a leaf
nd will be labeled LEAF. Otherwise a further splitting test should
e performed. However, if no significant effects can be observed on

nformation gain or gain ratio in further candidate splitting tests,
he test will be also stopped and the node will be labeled STOP.

. Data source and basic analysis

.1. Data collection and pre-processing

To evaluate and improve residential building energy perfor-
ance in Japan, a project was performed by Research Committee

n Investigation on Energy Consumption of Residential Buildings
2001–2003) and Committee on Energy Consumption of Residen-
ial and Countermeasures for Global Warming (2004–2005) of the
rchitectural Institute of Japan. This analysis used the data base
f Cd-Rom titled “Energy Consumption for residential buildings in
apan” [19]. In this project, field surveys on energy related data
nd other relevant information were carried out in 80 residential
uildings located in six different districts in Japan.

Energy end use of all kinds of fuel used by the building at different
time intervals;
Indoor environment parameters every 15 min;
Household characteristics; and
Other issues such as occupant behaviors and energy saving mea-
sures;
Fig. 3 shows the boxplot for monthly average outdoor air tem-
erature in each district in 2003 using Japanese meteorological
ata. The mean value of monthly average temperature, i.e. annual
verage temperature, is also given. Clearly the monthly average
Fig. 4. Percentage breakdown.

temperature has a more or less symmetric distribution. The annual
average temperature is higher than 8 ◦C in all the six districts and
the temperature in Hokkaido and Tohoku is comparatively lower
than other districts.

Scrutinizing the data from the 80 buildings it was found that
only 67 sets were complete while the other 13 had missing values of
energy consumption data. Fig. 4 shows the percentage breakdown
of available residential buildings in each district. It can be seen that
the distribution is roughly uniform.

Data reduction and aggregation was also performed as a pre-
processing step of preparing the data for a database. For example,
the primary energy sources in the investigated families include
electricity, natural gas, and kerosene. All these energy sources are
converted into an equivalent energy value based on conversion
coefficients in Table 1.

Moreover, energy end use is classified into eight categories and
the three major categories include the space heating/cooling, hot
Electricity 3.6 MJ/kWh
City gas (4A–7C) 20.4 MJ/Nm3

City gas (12A–13C) 45.9 MJ/Nm3

Liquefied petroleum gas (LPG) 50.2 MJ/Nm3

Kerosene 36.7 MJ/L
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Table 2
Summary of model inputs.

Number Variable Type Value Variable label (unit)

1 TEMP Categorical High/low Annual average air temperature
2 HOUS Categorical Detached/apartment House type
3 CONS Categorical Wood/non-wood Construction type
4 AREA Numerical [70, 240] Floor area (m2)
5 HLCa* Numerical [1.01, 4.35] Heat loss coefficient (W/m2K)
6 ELAb* Numerical [0.35, 13.30] Equivalent leakage area (cm2/m2)
7 NUM Numerical [2, 6] Number of occupants
8 HEAT Categorical Electric/non-electric Space heating
9 HWS Categorical Electric/non-electric Hot water supply

10 KITC Categorical Electric/gas Kitchen
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of three kinds of nodes, namely root node, internal node, and leaf
node in this decision tree is shown in Fig. 7. Note that entropy is
also calculated and given in each node to characterize the purity
of the sub dataset in that node. Moreover, the average EUI value of
data records in each class is given and used for reference when per-
a* Calculated based on building design plans.
b* Measured by the fan pressurization method.

y the building in a year. Based on above work, a database was
reated.

.2. Model target variable

In order to demonstrate building energy performance, model
arget variable is expressed in energy use intensity (EUI), defined
s the ratio of annual total energy use to total floor area (the annual
otal energy use is calculated as the sum of the energy content of
ll fuel used by the building in 2003). As mentioned previously,
ecision tree method is more appropriate for predicting categorical
ariables. Therefore, a concept hierarchy for building EUI is formed
efore classification and prediction are carried out. Due to the small
atabase size, a two-grade descending scale, i.e. high level and low

evel, corresponding to low energy performance and high energy
erformance, are considered applicable and understandable. Build-

ng EUI ranges from 176 MJ/m2 to 707 MJ/m2 in the database and
hus data ranged from the average of the maximum and minimum
o the maximum value, i.e. [441.5, 707], is considered ‘HIGH’. And
ata from the minimum value to the average of the maximum and
inimum, i.e. [176, 441.5] is considered ‘LOW’.
It should be mentioned that, decision tree can also be used to

lassify and predict multiple EUI levels rather than just two. For
xample, instead of ‘HIGH’ and ‘LOW’, a concept hierarchy of EUI
ay map real EUI values into four conceptual levels such as EXCEL-

ENT, GOOD, FAIR, and COMMON, thereby resulting in a smaller data
ange of each level and providing a more detailed description. How-
ver, more conceptual levels require a larger database and may
e prone to higher misclassification rate of data records and thus
educe the accuracy of decision tree models.

.3. Model input variables

Ten parameters (or attributes) are selected from the database to
e model input variables and the summary of these parameters is
iven in Table 2.

These ten parameters are grouped into four categories that are
mportant determinants of household energy demand.

1) Climatic conditions (TEMP). The range of annual average out-
door air temperature in the six districts is discretized into two
intervals based on the same concept hierarchy as the EUI men-
tioned earlier: the high interval (8.8 ◦C, 13.1 ◦C), and the low
interval (14.3 ◦C, 17.4 ◦C). According to this discretization cri-

terion, the low temperature districts include Hokkaido and
Tohoku while the other four districts belong to high temper-
ature districts;

2) Building characteristics (HOUS, CONS, AREA, HLC, ELA). For
building construction type, the non-wood type includes steel
reinforced concrete (SRC), reinforced concrete (RC), and steel
structure (S);

(3) Household characteristics (NUM); and
(4) Household appliance energy sources (HEAT, HWS, KITC).

Energy sources are divided into energy generated from electric-
ity consumption and energy generated from other fuels such as
kerosene and natural gas.

Fig. 5 shows the distribution of all the categorical parameters.
It can be observed that all the percentages range from 30% to 70%,
indicating a fairly uniform distribution.

4. Results and discussion

C4.5 algorithm was used for training data set (55 records were
arbitrarily selected from the database) and test data set (i.e. the
remained12 records that are independent of training set) by using
WEKA to build a decision tree for predicting whether the EUI
of residential buildings should be classified as being ‘HIGH’ or
‘LOW’.

4.1. Generation of decision tree

Fig. 6 shows the decision tree for the classification of building
EUI levels. This decision tree is built on the basis of the training
data set of 55 data records with the ten attributes list of Table 2. It
can be seen that this tree includes a total of 21nodes among which
11 are leaf nodes, including 8 LEAFs and 3 STOPs: this represents
11 classes (either EUI = HIGH or EUI = LOW). The explanatory note
Fig. 5. Categorical distribution of the six categorical parameters.
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Fig. 6. Decision tree for the
orming prediction. Specifically, this reference value can be viewed
s predictive numerical EUI value of the new data records that fall
nto that class.

The WEKA analysis report also provides the information on the
lassification accuracy of the decision tree. The report indicates that

Fig. 7. Explanatory note of
iction of building EUI level.
51 records which accounts for 93% of all the training records are
correctly classified: this indicates a good accuracy. Also, confusion
matrix reports how many data records are correctly classified and
misclassified in the class of HIGH EUI and LOW EUI separately, as
below:

decision tree nodes.
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Table 3
Decision rules derived from the obtained decision tree.

Node Decision rules

1 5 If TEMP is high and HLC > 3.89 then EUI is HIGH
2 6 If TEMP is low and HEAT is electric then EUI is HIGH
3 9 If TEMP is high and HLC ≤ 3.89 and ELA > 4.41 then EUI is LOW
4 10 If TEMP is low and HEAT is non-electric and NUM ≤ 2 then EUI is LOW
5 12 If TEMP is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is electric then EUI is LOW
6 15 If TEMP is low and HEAT is non-electric and NUM > 2 and HOUS is apartment then EUI is HIGH
7 16 If TEMP is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is non-electric and KITC is electric then EUI is LOW

d Nu
d Nu
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8 18 If TEMP is low and Heat is non-electric an
9 19 If TEMP is low and Heat is non-electric an

10 20 If TEMP is high and HLC ≤ 3.89 and ELA ≤
11 21 If TEMP is high and HLC ≤ 3.89 and ELA ≤

In this matrix, the number of correctly classified records is given
n the main diagonal, i.e. upper-left to lower-right diagonal; the
thers are incorrectly classified. Clearly, class “LOW EUI” was mis-
lassified as “HIGH EUI” only one time and class “HIGH EUI” was
isclassified as “LOW EUI” three times. Such information indicates

hat high EUI is more prone to be misclassified than low EUI. This
ay have occurred due to the fact that most of the data records are

n LOW EUI so the tree is made more sensitive to this class. An even
istribution between HIGH EUI class and LOW EUI class in database
ould possibly help obtain sufficient accuracy and sensitivity in the
esired classes.

The major strength of decision tree lies in its interpretability and
ase of use, particularly when decision rules are created. Based on
decision tree, decision rules can be easily generated by traversing
path from the root node to a leaf node. For example, a decision

ule can be generated from node 1 to node 5 in above decision
ree as follows: If TEMP is high and HLC ≤ 3.89 and ELA ≤ 4.41 and
WS is electric then EUI is LOW. Since each leaf node produces a
ecision rule, the complete set of decision rules, which is equivalent
o the decision tree, can be derived after all the leaf nodes have been
ncluded. Accordingly, above decision tree is converted to a set of
ecision rules, as show in Table 3.

.2. Evaluation of the decision tree

As mentioned previously, the decision tree accuracy should be
valuated to estimate how accurately it can predict building EUI
evels before applying it to new residential buildings. Accordingly,

he obtained decision tree was applied to the test dataset and the
esults are given in Table 4.

Table 5 shows that among 12 data records included in the test-
ng set eleven records, accounting for 92%, are correctly classified.
iven that the size of testing set is relatively small and only one

able 4
esults of decision tree accuracy evaluation.

Actual level Predicted level Correct or incorrect

1 HIGH HIGH Correct
2 LOW HIGH Incorrect
3 HIGH HIGH Correct
4 LOW LOW Correct
5 HIGH HIGH Correct
6 LOW LOW Correct
7 LOW LOW Correct
8 LOW LOW Correct
9 HIGH HIGH Correct

10 HIGH HIGH Correct
11 LOW LOW Correct
12 HIGH HIGH Correct
m > 2 and HOUS is detached and HLC ≤ 1.70 then EUI is LOW
m > 2 and HOUS is detached and HLC > 1.70 then EUI is HIGH
nd HWS is non-electric and KITC is non-electric and HLC ≤ 2.93 then EUI is LOW
nd HWS is non-electric and KITC is non-electric and HLC > 2.93 then EUI is HIGH

record is misclassified, this accuracy is basically acceptable. At the
same time, WEKA analysis report also provides confidence level for
the classification of each data record. The confidence level deter-
mines how likely the test data record falls into that class and, it is
equal to the ratio of the number of correctly classified data records
to total record number in that class in the training set. It can be
seen from Table 5 that generally the confidence level for the classi-
fication is higher than 80%, indicating that most of the prediction is
reliable. Further, by using a pre-specified threshold, e.g. 80%, con-
fidence level could improve estimated accuracy of classification.
In particular, if the confidence level of a data record classifica-
tion exceeds the threshold, this classification will be accepted;
otherwise it will be refused. For example, if the threshold in this
evaluation is set to be 80%, then all the records, except the record
2 that is misclassified, will be accepted. Similarly, the threshold is
very useful when applying decision rules to the prediction of new
data sets. In addition, the error rate between the actual EUI value
and the reference EUI value are also given in this table for the relia-
bility test of reference value. It can be seen that, among 11 correctly
classified data records, 5 have an error rate lower than 5% while
the other 6 have an error rate between 20% and 35%, which indi-
cates that a higher concept hierarchy for building EUI need to be
formed to improve the prediction performance of reference value.
However, this is limited by the size of database in this study.

4.3. Utilization of decision tree

4.3.1. Using decision tree for prediction
Based on predictor variables, decision tree and decision rules

can be utilized to predict target Variables Assume the EUI level of
a new residential building in Japan must be predicted by using the
decision tree in Fig. 6. The threshold of confidence level is set to be

85%. The typical building parameters are shown in Table 5.

Specifically, the building EUI level is predicted as follows:

Step 1: The root node, i.e. node 1 in this decision tree, is the starting
point of prediction. From node 1, it can be seen the value of TEMP

Confidence level Actual EUI Reference EUI Error

100% 449 450 0.2%
75% 258 624 141.9%

100% 581 584 0.5%
100% 327 322 1.5%
100% 707 552 22.0%

81.80% 303 316 4.3%
81.80% 238 316 32.8%
88.90% 258 315 22.1%

100% 507 488 3.7%
100% 495 601 21.4%

81.80% 427 316 26.0%
100% 458 601 31.2%
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Table 5
Building parameters for the prediction of building EUI levels.

Number Variable Attribute value Unit

1 TEMP High
2 HOUS Detached house
3 CONS Wood
4 NUM 4
5 AREA 100 m2

6 HLC 2 W/m2K
7 ELA 3 cm2/m2
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Table 6
Summary of significant factors.

Potential factors High temperature
districts

Low temperature
districts

Significant
factors

Rank Significant
factors

Rank

House type
√

3
Number of occupants

√
2

Floor area
Heat loss coefficient

√
1

√
4

Equivalent leakage area
√

2
Construction type √
8 HEAT Electricity
9 HWS Non-electricity

10 KITC Gas

should be first examined. Since TEMP is high, the node 1 test TEMP
is high is satisfied, then go to node 2;
Step 2: examine the value of HLC. Since HLC = 2, the node 2 test
HLC ≤ 3.89 is satisfied, then go to node 4;
Step 3: examine the value of ELA. Since ELA = 3, the node 4 test
ELA ≤ 4.41 is satisfied, then go to node 8;
Step 4: examine the value of HWS. Since HWS is non-electric, the
node 8 test HWS is electric is not satisfied, then go to node 13;
Step 5: examine the value of KITC. Since KITC is gas, the node 13
test KITC is electric is not satisfied, then go to node 17;
Step 6: examine the value of HLC. Since HLC = 2, the node 17 test
HLC ≤ 2.93 is satisfied, then go to node 20;
Step 7: node 20 is a leaf node. As a result, the decision tree in Fig. 6
predicts that the EUI level of the residential building is LOW. In this
node, the correctly classified data records account for 89% and thus
the confidence level of prediction is 89% that is larger than the pre-
determined threshold (85%). Therefore, the prediction is accepted.
Furthermore, the value of correctly classified records in this node
ranges from 242 MJ/m2 to 389 MJ/m2 and the average value is cal-
culated at 315 MJ/m2. These values can be used as reference values
for the prediction, as mentioned previously.

.3.2. Model interpretation and useful information extraction
Useful information can be extracted from the decision tree based

odel so as to help understand energy consumption patterns and
ptimize a building design plan. For example, various parameters
re automatically selected as predictor variables by the decision
ree algorithm for the classification of EUI levels. These parameters
re used to split the nodes of the decision tree and their degrees of
loseness to the root node indicate the strength of the influence and
he number of records impacted. Therefore, by examining the deci-
ion tree nodes, the significant factors, as well as their ranks, that
etermine the building energy demand profiles can be identified.

n particular, the variable importance of this decision tree model
an be analyzed as follows: first, the root node, i.e. TEMP, indicates
hat outside air temperature is the most important determinant of
nergy demand among all these factors. Then, for clarity, the signifi-
ant factors for the high temperature districts (i.e. Hokuriku, Kanto,
ansai and Kyusyu) and low temperature districts (i.e. Hokkaido
nd Tohoku) are identified separately and summarized in Table 6.

Clearly, four significant factors are identified for each district
nd the only parameter found to be significant for the both dis-
ricts is heat loss coefficient. This implies that the significance of
hese factors, except building heat loss coefficient, is dependent
n outside air temperature. Moreover, among the three household
ppliance energy source parameters, space heating plays a role in

ow temperature districts while hot water supply and kitchen are
ignificant in high temperature districts. Note that floor area and
onstruction types do not appear in the decision tree. This is reason-
ble since the target variable, i.e. EUI level, is a measure of annual
otal energy normalized for floor area and building heat loss coef-
Space heating mode 1
Hot water supply mode

√
3

Kitchen energy mode
√

4

ficient embodies the effect of construction type. At the same time,
these significant factors are ranked in terms of the degree of close-
ness to the root node. It can be found that heat loss coefficient and
space heating mode rank the first in the two districts respectively,
and thus deserve extra attention when designing energy efficient
buildings.

The decision tree can provide the combination of significant
factors as well as the threshold values that will lead to high build-
ing energy performance. Based on such combination and threshold
values, some hidden yet useful information can also be extracted
to help understand building energy consumption patterns. For
example, it can be seen that, in high temperature districts, a
higher building heat loss coefficient than 3.89 W/m2K will nor-
mally cause a high EUI. Meanwhile, for a residential building with
heat loss coefficient lower than 3.89 W/m2K, a high equivalent
leakage area (>4.41 cm2/m2) will benefit energy conservation. This
seems perhaps unreasonable and one possible explanation is that
the high temperature districts locate in moderate climate and
have a moderate outside air temperature range. Accordingly, in
summer infiltration can serve as cooling source to remove the
excess heat generated indoor, thereby reducing overall energy con-
sumption. This indicates that a rational combination of heat loss
coefficient and equivalent leakage area of residential buildings in
high temperature districts is important to improve building energy
performance. Also, a further study on the range selection of equiv-
alent leakage area may provide deeper insights into its impact on
building energy demand. Additionally, from the nodes 8 and 13 in
Fig. 6, it can be observed that the change of the energy source of
hot water supply and kitchen will bring about a substantial increase
or decrease in EUI. Clearly electrical water heaters, instead of non-
electric water heaters such as natural gas heaters, should be used to
save energy. Moreover, electrical water heaters can take full advan-
tage of cheap nighttime electricity and thus help users save money
spent on energy.

The EUI values in the node 8 are plotted in Fig. 8 in order to make
a comparison between buildings with electric HWS and buildings
with non-electric HWS. The two significant factors with higher
ranks than HWS, i.e. HLC and ELA, are also taken into considera-
tion (HLC at abscissa, ELA at ordinate). The abscissa–ordinate plane
is divided into various grids so that EUI values can be compared
based on similar HLC and ELA values, thereby removing the impact
of these two factors. It is apparent from Fig. 8 that, in a same grid
or adjacent grids, red points, which denote EUI values with non-
electric HWS, are generally higher than blue points, which denote
EUI values with electric HWS. This is in accordance with the above
conclusion drawn from the decision tree.
With regard to kitchen energy source, electrical appliances,
however, tend to consume more energy than the appliances using
natural gas. This may have occurred since the power of many
kitchen electrical appliances, such as rice cooker, is comparatively
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Fig. 8. Comparison of EUI between electric HWS and non-electric HWS.

igh and the use of these appliances is routine. Further, compared
o hot water supply energy source, kitchen energy source has a
maller contribution to building energy demand and even though
on-electric appliances is adopted in kitchen, an extra requirement
n heat loss coefficient (≤2.93 W/m2K) still need to be met in order
o achieve low EUI levels.

In low temperature districts, from an energy saving point of
iew, building owners and designers should give a prior consid-
ration to space heating energy source that plays a significant role
n influencing EUI. The node 3 in Fig. 6 shows that non-electric fuel,
articularly kerosene and natural gas, should be used as primary
ource of residential space heating since the use of electric space
eating tends to bring about a high EUI. This may be partly ascribed
o the high efficiency of non-electric space heating devices such as
erosene space heaters. Moreover, non-electric heating devices are
ore applicable than electric space heaters, such as air condition-

rs, in real life due to the high electricity rate in Japan. Similar to
ig. 8, EUI values in the node 3, together with EUI values in low

emperature districts in the test dataset, are plotted in Fig. 9. HLC
nd NUM are used as abscissa and ordinate. The red and blue points
epresent EUI values with electric and non-electric space heating
espectively. It can be observed that red points are generally higher
han blue points, which is in accordance with above conclusion.

Fig. 9. Comparison of EUI between electric HEAT and non-electric HEAT.
gs 42 (2010) 1637–1646 1645

Family size, i.e. the number of occupants, is another impor-
tant determinant of EUI in low temperature districts. As can be
seen, families with more than two occupants will have significantly
higher EUI than those with two occupants. This may have occurred
since a larger family size will cause more complicated occupant
behavior patterns thereby resulting in an increase in EUI. With
regard to house type, it can be seen that detached houses with low
heat loss coefficients (≤1.70 W/m2K) tend to have a better energy
performance than apartments, which can occur for at least two
reasons. First, a small HLC contributes greatly to reduce energy con-
sumption on space heating and cooling; second, detached houses
normally have larger areas than apartments while both of them
have approximately same family size, which also lowers EUI values.

Such information can help building designers and owners make
intelligent decisions to improve building energy performance and
reduce building energy consumption. For example, based on above
information, architects and building designers can identify the
parameter that deserves more attention as well as its value range
at the early design stage. Also, they can perform a fast performance
estimation of newly constructed residential buildings. Moreover,
building owners will easily determine which energy source should
be used for space heating, hot water supply, and kitchen to save
energy. It should be mentioned that heat loss coefficient and equiv-
alent leakage area cannot be determined directly by architects and
building designers. However, their value can be adjusted through
some indirect measures such as improving construction material
and building air tightness.

5. Conclusions

In this paper, a decision tree method is proposed for building
energy demand modeling. This method is applied to Japanese res-
idential buildings for predicting and classifying building EUI levels
and its basic steps, such as the generation of decision tree based on
training data and the evaluation of decision tree based on test data
are presented. The results have demonstrated that the use of deci-
sion tree method can classify and predict building energy demand
levels accurately (93% for training data and 92% for test data), iden-
tify and rank significant factors of building EUI levels automatically,
and provide the combination of significant factors as well as the
threshold values that will lead to high building energy performance.
Such method along with derived information could benefit building
owners and designers greatly and one crucial benefit is improving
building energy performance and reducing energy consumption
and the money spent on energy. Although the decision tree method
is mainly employed to predict categorical variables (the number of
the predetermined target intervals depends on the size of database
while too many intervals may result in errors in classification) and
reference value (i.e. average value of EUI in each class in this study)
instead of the precise value of target variables, as a modeling tech-
nique, the utilization of decision tree method is very simple and
its result can be interpreted more easily compared to other widely
used modeling techniques, such as regression method and ANN
method.

The application of decision tree method to Japanese residential
buildings in this paper has clearly demonstrated that this method is
feasible, having many advantages over other modeling techniques.
However, further study still need to be carried out to provide deeper
insights into the utilization of this method to modeling building
energy demand. The main focus of future research should be placed
on selecting appropriate interval number and reference value of

target variables without reducing estimation accuracy, since these
measures will provide more precise and valuable information to
users. In addition, more case studies in different sectors, such as
commercial buildings and office buildings, should be conducted to
further benefit energy conservation and policy formulation.
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