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a b s t r a c t

This paper reports the development of a methodology for identifying and improving occupant behavior
in existing residential buildings. In this study, end-use loads were divided into two levels (i.e. main and
sub-category), and they were used to deduce corresponding two-level user activities (i.e. general and
specific occupant behavior) indirectly. The proposed method is based on three basic data mining tech-
niques: cluster analysis, classification analysis, and association rules mining. Cluster analysis and clas-
sification analysis are combined to analyze the main end-use loads, so as to identify energy-inefficient
general occupant behavior. Then, association rules are mined to examine end-use loads at both levels, so
as to identify energy-inefficient specific occupant behavior. In order to demonstrate its applicability, this
methodology was applied to a group of residential buildings in Japan, and one building with the most
comprehensive household appliances was selected as the case building. The results show that, for the case
building, the method was able to identify the behavior which needs to be modified, and provide occu-
pants with feasible recommendations so that they can make required decisions. Also, a reference building
can be identified for the case building to evaluate its energy-saving potential due to occupant behavior
modification. The results obtained could help building occupants to modify their behavior, thereby
significantly reducing building energy consumption. Moreover, given that the proposed method is partly
based on the comparison with similar buildings, it could motivate building occupants to modify their
behavior.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, residential sector building energy consumption forms
a large part of the total national energy consumption (TNEC) in both
developed and developing countries. For example, in the US and
Japan, residential building energy consumption accounts for 25%
and 26% of TNEC, respectively [1]. In China and Thailand, the
proportion of residential building energy consumption to TNEC is
11.3% and 15.4%, respectively [2,3]. Furthermore, with the rapid
growth of the economy and rising living standards, there is a rapid
increase in energy consumption in the residential sector worldwide
[4e6]. The high energy demand in residential buildings, which is
also growing rapidly, necessitates a better understanding of its
major influence factors. At the same time, it is necessary to develop
2; fax: þ1 514 848 7965.
ighat).

All rights reserved.
a methodology for reducing energy consumption. For instance, to
combat this rapid increase in energy use, some utility companies
and government organizations provide building owners with
a “booklet”; this documentation gives tips on reducing the building
energy consumption. These tips are general in nature and are not
specific.

Among various factors influencing residential building energy
consumption, occupant behavior plays an essential role and is
difficult to investigate analytically due to its complicated charac-
teristics [7]. Note that here occupant behavior refers to activities
that have a direct or indirect impact upon building energy
consumption. For example, occupants turn on/off lights, TV sets,
computers, microwave ovens, and so on. Commonly such behavior
is associated with various household appliances and thus can be
deduced indirectly from corresponding end-use loads. For example,
the total daily (or monthly, annual) lighting energy consumption in
a residential building qualitatively indicates the duration of lighting
usage in this day (ormonth, year). Accordingly, any improvement in

mailto:haghi@bcee.concordia.ca
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
http://dx.doi.org/10.1016/j.energy.2011.09.002
http://dx.doi.org/10.1016/j.energy.2011.09.002
http://dx.doi.org/10.1016/j.energy.2011.09.002
Ben
Text Box
This is the preprint version. See Elsevier for the final official version.



Nomenclature

SHW supply hot water load
LIGHT lighting load
KITCH kitchen load
REFRI refrigeration load
E&I entertainment & information load
H&S housework & sanitary load
OTHER other loads
T outdoor temperature (annual average) (�C)
RH outdoor relative humidity (annual average)
V outdoor air velocity (annual average) (m/s)
RA outdoor solar radiation (annual average) (MJ/m2)
NO number of occupants
FA floor area (m2)
HLC heat loss coefficient (W/m2 K)
ELA equivalent leakage area (cm2/m2)
CO construction
SH space heating
WH water heating
KIT kitchen
HT house type
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the occupant behavior leads to the reduction of the residential
building energy consumption.

Recently, there has been increasing interest in studying occu-
pant behavior and developing a methodology for identifying the
corresponding energy-saving potential. Ouyang and Hokao [8]
investigated the energy-saving potential by improving user
behavior in 124 households in China. In this study, these houses
were divided into two groups: one group received an energy-saving
education and was encouraged to put energy-conscious behavior
into effect, while the other group was required to keep behavior
intact. Comparisons were made between monthly household
electricity uses in July 2007 and July 2008 for both groups. It was
found that, on average, effective promotion of energy-conscious
behavior could reduce household electricity consumption by
more than 10%. Al-Mumin et al. [9] simulated occupant behavior
improvement (i.e. simulation of occupant behavior before and after
modification) and corresponding annual electricity consumption
reduction by using the energy simulation program ENERWIN. They
first collected data and information on occupancy patterns and
operation schedules of electrical appliances in 30 selected resi-
dences in Kuwait. This data and information were then used in
ENERWIN to replace the default value. A house thenwas selected as
a case study and the simulation results showed that the annual
electricity consumption in this house was increased by 21%. The
results also indicated that the ENERWIN’s default parameters (i.e.
parameters taken from the software manual) are probably more
appropriate for the Western living lifestyle. Moreover, it was found
that a reduction of energy consumption by 39% can be achieved by
improving occupant behavior such as turning off the lights when
rooms were empty and setting the air conditioner thermostat to
a higher temperature (but still within the comfort level).

Basically, two approaches (i.e. energy-saving education and
building simulation), were used to improve building occupant
behavior and identify the corresponding energy-saving potential.
These two approaches can help to modify occupant behavior and
have an immediate effect on building energy-consumption reduc-
tion. However, both of the approaches have certain limitations.
With regard to the energy-saving education approach, commonly
detailed energy-saving measures and tips on efficient use of
various household appliances should be provided for occupants.
Considering that a family normally has a number of appliances and
that each appliance may have various tips (e.g. for the usage of
refrigerators, various tips can be given: reduce door open times,
keep its coils and filters clean, keep it far from other heat sources,
etc), there could be a large number of energy-saving measures and
tips for an individual family. For example, one family may have 30
household appliances, with each appliance having an average of 8
energy-saving tips. Accordingly, the occupants need to understand
and remember 240 tips, which may be quite impractical. Although
a booklet of these tips can be prepared for building occupants, it is
very difficult for occupants to remember distinctly all these tips and
implement them for a long time in practice. Furthermore, occu-
pants may not fully understand and have confidence in these tips’
effects as they only provide qualitative information. In addition,
some energy-saving opportunities can only be initiated by building
occupants. For example, when occupants realize they have
consumed too much energy on both computers and TVs, they can
avoid using both devices simultaneously when they can only focus
on one of them, or make a conscious effort to reduce usage time.
Therefore, instead of simply providing occupants with a number of
general energy-saving recommendations, it is more rational and
efficient to help them modify the behavior in two steps. First, it is
necessary to identify the behavior that needs to be modified. This
can be achieved by analyzing measured data. Second, feasible
recommendations to improve the identified behavior can be pre-
sented with the goal of reducing energy consumption in the home.
With regard to the building simulation approach, current simula-
tion tools can only imitate some typical activities such as the
control of sun-shading devices in a rigid way, while realistic
building occupant behavior patterns are more complicated.

This paper reports the development of a rational methodology
for identifying and improving occupant behavior in existing resi-
dential buildings, based on an analysis of collected data and
information. In particular, feasible recommendations are made for
assisting occupants to modify their behavior so as to reduce energy
consumption.

2. Methodology

A new methodology is proposed for efficiently improving
occupant behavior in existing residential buildings, and evaluating
the energy-saving potential resulting from these modifications. As
mentioned previously, end-use loads are used to deduce user
activities indirectly. Specifically, these loads are used to map onto
occupant behavior at two levels, as shown in Fig. 1.

Level 1 loads are divided into seven main end-use loads, each of
which can be further divided into various end-users in level 2. The
seven end-use loads in level 1 are assumed to be non-weather-
dependent [10], due to the fact that the usage of these appliances
(i.e. lighting, refrigerators, etc.) is mainly determined by occupants’
presence and their behavior. It should be mentioned that, level 2
end-users are not fixed in different residential buildings since
commonly different families have different household appliances.
Level 1 and level 2 loads are mapped onto general occupant
behavior, such as activities associating with lighting and hot water
supply, and specific occupant behavior, such as the use of
computers and washing machines.

For demonstration purposes, a group of buildings is used to
show the practical application of this methodology. Recommen-
dations for improving occupant behavior are provided for
a selected building (case building) within this group.

The methodology is briefly described as follows.

(1) Identify energy-inefficient general occupant behavior in the
case building.



Fig. 1. Two-level end-use loads.
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(2) Identify a reference building for the case building to evaluate its
energy-saving potential, and further determine its energy-
inefficient general occupant behavior by comparison with the
reference building.

(3) Identify energy-inefficient specific occupant behavior in the
case building.

The proposed methodology can be demonstrated in a five-step
process, as shown in Fig. 2.

Each step in this methodology is briefly explained as follows:

(1) First, a database should be developed based on the collection
of measured data for the case building and other related
buildings (e.g. buildings selected in the same city or country).
The daily (or hourly) level 2 end-use loads should bemeasured,
and level 1 end-use loads can be accumulated based on level 2
data. The database should also contain information about
Fig. 2. Methodology of evaluating and efficiently improving occupant behavior in the
case building.
building-related parameters, such as floor area and number of
occupants.

(2) Through clustering analysis, all the related buildings in the
database are clustered into different groups in terms of level 1
loads (for each main end-use load, the annual per capita end-
use loads is used for comparison). Accordingly, general occu-
pant behavior in different buildings in the same group has
a high similarity, but is quite different from that in other
groups. Specifically, comparing with occupants in other clus-
ters, on average each occupant in the same cluster consumes
similar amounts of energy each year in terms of the seven level
1 end-use loads. Note that these seven loads are taken into
consideration separately but simultaneously. Consequently, by
comparing with other clusters, the characteristics of occupant
behavior in each cluster can be identified. Such information
can help building occupants to evaluate their own behavior
among all the building owners in the database, thereby iden-
tifying general occupant behavior which results in inefficient
use of energy. Then, data classification based on the generated
clusters is performed, and specifically, a decision tree [11] is
developed. By using the generated decision tree, a building
can be assigned to a specific cluster, provided its level 1 loads
are available. In particular, once the case building has been
assigned to a cluster, its general energy-inefficient occupant
behavior can be determined. It should be mentioned that, the
decision treewas selected and used in this study due to the fact
it can provide useful informationwhich can help to understand
the role of building occupant behavior in improving energy
saving [12].

(3) Among the related buildings in the database, a reference
building (RB) is identified for the case building to evaluate its
energy-saving potential due to the occupant behavior modifi-
cation. The RB is selected from the same cluster as the case
building so that both of them have similar holistic occupant
behavior patterns. The comparison with the RB also shows the
case building occupants which general occupant behavior still
needs to be modified.

(4) After identifying the energy-inefficient general occupant
behavior through clustering analysis and RB identification, it
is necessary for the case building owner to know which
specific activities and corresponding appliances deserve extra
attention. Therefore, association rules are mined to identify
the associations and correlations between various user activ-
ities in the case building, in order to highlight energy-saving
opportunities.

(5) Recommendations for energy-efficient activities are provided
for the case building occupants, so that they can modify their
behavior.

In the following section, various data mining techniques
employed in this methodology are first introduced. Then the steps
in identifying an RB for the case building are explained.

2.1. Clustering-then-classification

2.1.1. Cluster analysis
Cluster analysis is the process of grouping data objects into

clusters so that objects in the same cluster have high similarity,
while objects in different clusters have low similarity. Fig. 3 shows
a clustering schema based on a hypothetical residential building
data table. It contains various end-use loads such as supply hot
water and lighting.

This table consists ofm attributes and n instances. Each attribute
represents a variable and each instance denotes a building. All the
instances are grouped intow clusters. Accordingly, these w clusters



Fig. 4. Schematic illustration of a simple hypothetical decision tree.

Fig. 3. Clustering schema.
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are homogeneous internally and heterogeneous between different
clusters [11]. Such internal cohesion and external separation are
based upon the various end-use loads, which can be mapped onto
corresponding building occupant behavior. It implies that buildings
in the same cluster have similar holistic occupant behavior
patterns; while the patterns are significantly distinct for the build-
ings in different clusters.

The dissimilarity between data objects in the database is
calculated using the distance between them in the cluster analysis.
In this study, the most popular distance measure, Euclidean
distance, was used [11]:

dðk; lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk1 � xl1Þ2þðxk2 � xl2Þ2þ/þ ðxkn � xlnÞ2

q
where k¼ (xk1, xk2, ., xkn) and l¼ (xl1, xl2, ., xln) are buildings. xk1,
., xkn are n parameters of k and xl1, ., xln are n parameters of l.

Commonly used clustering algorithms include K-means, K-
medoids, and CLARANS [11]. In this study, we employ the K-means,
along with the open-source data mining program RapidMiner [13],
to perform cluster analysis due to its efficiency and wide
applicability.

The K-means algorithm is one of the simplest partition methods
to solve clustering problems. Given a dataset (D) containing w
objects, the K-means algorithm aims to partition these w objects
into k clusters with two restraints: 1) the center of each cluster is
the mean position of all objects in that cluster, 2) each object is
assigned to the cluster with the closest center. The algorithm
consists of five steps: 1) Randomly select k observations from D as
the initial cluster centers, 2) Calculate the distance between each
remaining observations and each initially chosen center, 3) Assign
each remaining observation to the cluster with the closest center, 4)
Recalculate the mean values, i.e., the cluster centers, of the new
clusters, and 5) Repeat Steps 2e4 until the algorithm converges,
meaning that the cluster centers do not change.

In RapidMiner, the performance of clustering algorithms is
evaluated by using the Davies Bouldin index (DBI) [14]. This index is
defined as the ratio of the sum of average distance inside clusters to
distance between clusters.

DBI ¼ 1
n

Xn
i¼1

max
isj

"
Ri þ Rj
Mi;j

#

where n: number of clusters, Ri; Rj: average distance inside cluster i
and cluster j by averaging the distance between each cluster object
and the cluster center; Mi,j: distance between cluster centers.

DBI is small if each cluster is comparatively dense; while
different clusters are far from each other. Consequently, a smaller
DBI indicates better performance of the clustering algorithm. It
should be mentioned that the K-means is quite sensitive to initial
cluster centers. Therefore, different values should be tried so as to
obtain the minimum DBI. At the same time, the number of clusters
should be specified in advance.
2.1.2. Classification analysis
Among various classification algorithms, decision tree was

selected and used in this study. The decision tree methodology is
one of the most commonly used data mining methods [11,15]. It
uses a flowchart-like tree structure to segregate a set of data into
various predefined classes, thereby providing the description,
categorization, and generalization of given datasets. As a logical
model, decision tree shows how the value of a target variable can be
predicted by using the values of a set of predictor variables.

Fig. 4 gives a simple decision tree indicating whether the supply
hot water load (SHW) in a residential building is high or low in
winter. For this example, assume 100 data records are used to build
this decision tree, and that each record has three attributes:
outdoor air temperature, occupant presence, and the level of SHW.

The target variable for the above decision tree is the level of
SHW, with potential states being classified as either HIGH or LOW.
The predictor variables are outdoor air temperature (��6 �C or
>�6 �C) and occupant presence (empty or occupied). As shown in
Fig. 4, the decision tree consists of three kinds of nodes: root node,
internal node, and leaf node. Root nodes and internal nodes denote
a binary split test on an attribute while leaf nodes represent an
outcome of the classification (i.e. a categorical target label). By
using this decision tree, the SHW level classification (i.e. HIGH or
LOW) can be predicted. For example, if the outdoor air temperature
is higher than �6 �C and the room is empty, SHW is LOW; other-
wise it is HIGH.

Decision tree generation is a two-step process, namely learning
and classification, as shown in Fig. 5. In the learning process, the
collected data is split into two subsets: a training set and a testing
set. Creation of training sets and testing sets is an important part of
evaluating data mining models. Usually, most of the data records in
the database are arbitrarily selected for training and the remaining
data records are used for testing. Note that training sets and testing
sets should come from the same population but should be disjoint.
Then, a decision tree generation algorithm takes the training data
as an input, with the corresponding output being a decision tree.
Commonly used decision tree generation algorithms include ID3
[15], classification and regression trees (CART) [16], and C4.5 [17]. In
this study, we employ C4.5, along with the open-source data
mining software RapidMiner [13], to build a decision tree. This
software is selected due to its flexibility and wide applicability to
different types of data. In the classification process, the accuracy of
the obtained decision tree is first evaluated by making predictions
against test data. The accuracy of a decision tree is measured by
comparing the predicted target values with the true target values of
the test data. If the accuracy is considered acceptable, the decision
tree can be applied to new datasets for classification and predic-
tion; otherwise, the reason for any inaccuracies should be identified
and corresponding solutions should be adopted to address these
problems.

The procedure of generating a decision tree from the training
data is as follows. Initially, all records in the training data are
grouped together into a single partition. At each iteration, the



Fig. 5. Procedure of decision tree generation.
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algorithm chooses a predictor attribute that can “best” separate the
target class values in the partition. The ability of a predictor attri-
bute to separate the target class values is measured based on an
attribute selection criterion, which was introduced in [12]. After
a predictor attribute is chosen, the algorithm splits the partition
into child partitions such that each child partition contains the
same value of the chosen selected attribute. The decision tree
algorithm iteratively splits a partition and stops when any one of
the following terminating conditions is met:

� All records in a partition share the same target class value.
Thus, the class label of the leaf node is the target class value.

� There are no remaining predictor attributes that can be used to
further split a partition. In this case, the majority target class
values become the label of the leaf node.

� There are no more records for a particular value of a predictor
variable. In this case, a leaf node is created with the majority
class value in the parent partition.
2.1.3. Reference building (RB) identification
RB is normally utilized as a benchmark for comparison and the

method of defining an RB depends on the purpose of study. In this
study, the RB was defined to evaluate the energy-saving potential
due to occupant behavior modification in the case building, and
identify occupant behavior needing to be improved. Therefore, the
definition of RB for the case building should comply with the
following two rules:

Rule 1: The holistic occupant behavior patterns in RB and
the case building should be as similar as possible. Different resi-
dential building occupants normally have different lifestyles and
behavior patterns. In general, it is very difficult for building occu-
pants to make dramatic lifestyle changes in order to reduce energy
consumption. Hence, among the related buildings in the database,
buildings with more similar occupant behavior patterns should be
consideredwhen evaluating the energy-saving potential for the case
building. This implies that potential RB candidates should be chosen
from buildings in the same cluster as the case building, since occu-
pant behavior in the same cluster has a high similarity in compar-
ison to one another, but is quite dissimilar to that in the other
clusters.

Rule 2: Among all the potential RB candidates, the selected RB
should have the highest similarity to the case building in terms of
building-related parameters, such as outdoor temperature and
floor area. This can also improve the reliability of comparative
results between the two buildings. Euclidean distance can be used
to define the similarity.

With consideration of the two rules, RB identification for the
case building consists of the following steps:

Step 1: Assign the ‘case building’ to a cluster according to level 1
loads and the generated decision tree;
Step 2: calculate the total energy consumption (i.e. the sum of
the seven main end-use loads) in the case building and other
buildings in the same cluster. Rank the total energy consump-
tion in all these buildings;
Step 3: Identify the RB. Buildings in the same cluster with lower
total energy consumption than the case building are used as
potential RB candidates. Then, based on building-related
parameters and Euclidean distance, the most similar building
to the case building among the candidates can be found. This
building is identified as RB for the case building.
2.1.4. Association rule mining
In data mining, association rules are often used to represent

patterns of parameters that are frequently associated together. An
example is given to illustrate the concept of association rules.
Assume that 100 occupants live in 100 different rooms in the same
building and each room has both a window and a door. Moreover,
40 occupants open the windows and 20 occupants open the doors.
If 10 occupants open both the windows and doors simultaneously,
it can be calculated that these 10 occupants account for 10% of all
the building occupants (10/100¼10%), and 25% of the occupants
who open windows (10/40¼ 25%). Then, the information that
occupants who open windows also tend to open doors at the same
time can be represented in the following association rule:

open windows/open doors½support ¼ 10%; confidence

¼ 25%�
In this statement, support and confidence are employed to indi-

cate the validity and certainty of this association rule. Different
users or domain experts can set different thresholds for support and
confidence according to their own requirements, in order to
discover useful knowledge eventually. Accordingly, the association
rule mining (ARM) can be defined as finding out association rules
that satisfy the predefined minimum support and confidence from
a given database.

Mathematically, support and confidence can be calculated by
probability, P(XWY), and conditional probability, P(YjX), respec-
tively (X denotes the premise and Y denotes the consequence in the
sequence). That is,

supportðX/YÞ ¼ PðXWYÞ

confidenceðX/YÞ ¼ PðYjXÞ
Another concept, lift, which is similar to confidence, is commonly

used to demonstrate the correlation between the occurrence of X
and Y when conducting the ARM. Mathematically,

liftðX/YÞ ¼ PðXWYÞ
PðXÞPðYÞ ¼ PðY jXÞ

PðYÞ
Particularly, a lift value greater than 1 represents a positive

correlation (the higher this value is, the more likely that X coexists
with Y, and there is a certain relationship between X and Y [18])
while a lift value less than 1 represents a negative correlation. If the
value is equal to 1, i.e. P(XWY)¼ P(X)P(Y), the occurrence of X is
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independent of the occurrence of Y, and there is no correlation
between X and Y.

Commonly used ARM algorithms include the Apriori algorithm
and the frequent-pattern growth (FP-growth) algorithm [11]. In this
study, we employ the FP-growth algorithm, along with the open-
source data mining software RapidMiner [13], to mine association
rules due to its high efficiency and wide applicability. For the
specific algorithm of FP-growth the reader can refer to [11].

Additionally, in order to perform the ARM, the value of quanti-
tative attributes generally needs to be classified into categorical
values. Considering that most attributes used in the ARM in this
study are end-use electricity loads, a two-interval scale (i.e. HIGH
and LOW) was applied to represent high and low energy
consumption. Such high and low energy consumption can then be
qualitatively mapped onto energy-inefficient and energy-efficient
occupant behavior. It should be mentioned that HIGH and LOW
quite possibly, but do not necessarily, correspond to energy-ineffi-
cient and energy-efficient occupant behavior in practice. For example,
less energy-efficient appliances will also cause higher energy
consumption. However, given that energy-inefficient behavior will
waste energy and normally cause high energy consumption, such
mapping was still used in this study. Consequently, the results need
to be carefully analyzed and energy-inefficient behavior should be
eventually identified based on practical occupant behavior patterns.
Specifically, for each quantitative attribute, data ranged from the
average of the maximum and minimum to the maximum value is
‘HIGH’, and data ranged from the minimum value to the average of
the maximum and minimum is ‘LOW’.

3. Data collection and pre-processing

3.1. Data collection

To evaluate and improve the energy performance of residential
buildings, a project entitled “Investigation on Energy Consumption
of Residents All over Japan” was carried out by the Architecture
Institute of Japan from December 2002 to November 2004 [19]. For
this project, field surveys on energy-related data and other relevant
information were carried out in 80 residential buildings located in
six different districts in Japan: Hokkaido, Tohoku, Hokuriku, Kanto,
Kansai, and Kyushu. Table 1 shows the survey items and corre-
sponding investigation methods. Fig. 6 shows the measuring
instruments which were used to monitor temperature and
consumptions of electricity, gas, and/or kerosene. As mentioned
previously, the collected data can be divided into two levels.
However, for level 2 data, currently only daily data is available
(instead of data at 1 or 5 min time steps).

3.2. Data pre-processing

3.2.1. Data integration and reduction
Scrutinizing the data from the 80 buildings, it was found that

only 67 sets were complete, while 13 sets had missing values of
energy-consumption data. Data integration was carried out for the
Table 1
Investigation items and methods.

Method Survey items

Field measurement
Different end-use loads of all kinds of fuel

Indoor air temperature (1.1 m above floor

Questionnaire survey Lifestyle, Utilization of equipment, Annual
Inquiring survey Other issues, such as basic building inform
detection and resolution of data value conflicts. For example,
diverse energy units of different kinds of primary energy sources
used by the various buildings (including electricity, natural gas, and
kerosene) were converted to MJ based on conversion coefficients in
Table 2. After conversion, they could be added directly. Then, data
reduction was performed to obtain a smaller representation of the
original data. For example, readings of each main end-use load at
different intervals (e.g.1 or 5 min) were averaged over one year. The
resulting data was stored in a database.

3.2.2. Case building selection
As mentioned earlier, for demonstration purposes, one building

with the most comprehensive household appliances should be
selected as the case building, and the remaining 66 buildings are
used for both clustering-then-classification and RB identification.
Data inspection indicates that a building located in Hokkaido has
the most appliances, as shown in Table 3. Table 3 also shows some
measured environmental parameters of this building such as
indoor air temperature and humidity. These parameters will also be
used in the ARM to analyze the associations between them and
occupant behavior.

Table 4 shows the statistical data of level 1 loads for the
remaining 66 buildings. Clearly, it can be seen that each main end-
use load is spread over a wide range, which implies a fairly large
energy-saving potential by improving occupant behavior.

3.2.3. Data transformation for cluster analysis
Before performing the cluster analysis on level 1 data, it should

be noted that the loads, which were mapped onto various corre-
sponding user activities, have different ranges. Moreover, the
activities were considered to be of equal importance in this study.
In order to prevent the loads with large ranges from outweighing
those with comparatively smaller ranges, minemax normalization
was applied before clustering the buildings in terms of the seven
main end-use loads. Specifically, the minemax normalization [11]
can scale the values so that they fall within a predetermined
range. Themain advantage of theminemax normalization lies in its
ability to reserve the relationships between the initial data, since it
carries out a linear normalization. Assume that xmax and xmin are
the original maximum and minimum values of a numerical attri-
bute (i.e. the level_1 end-use loads in this study). By using the
minemax normalization, a value of this attribute (e.g. x) can be
transformed to x0 in the new specified range [xmin

0, xmax
0] by

calculating

x0 ¼ x� xmin
xmax � xmin

�
x0max � x0min

�þ x0min

In this study, the new range is defined as [0,1]. Table 5 shows the
statistical data of level 1 loads for the remaining 66 buildings after
the minemax normalization.

3.2.4. Removal of outliers for conducting ARM in the case building
Outliers are data objects whose values are grossly different (i.e.

much higher or lower) from others in the database. Outliers
Measuring time

Electricity Measured every minute
Gas Measured every 5 min
Kerosene Measured every 5 min

) Measured every 15 min

income, etc. Once only
ation Once only



Fig. 6. Measuring instruments (from left to right: electricity, gas, kerosene and air temperature).

Table 2
Conversion coefficients of different fuels.

Fuel Conversion coefficient Unit

Electricity 3.6 MJ/kWh
City gas (4Ae7C) 20.4 MJ/Nm3

City gas (12Ae13C) 45.9 MJ/Nm3

Liquefied petroleum gas (LPG) 50.2 MJ/Nm3

Kerosene 36.7 MJ/L
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regularly occur in building energy-consumption measurement.
They are often indicative of measurement errors, and thus must be
removed. Removal of outliers plays a crucial role in preparing for
the ARM, since outliers produce a large measure of skewness and
have a significant influence on the partition of attribute values into
different intervals. For example, suppose an attribute ranges from
0 to 10, and can be discretized into two intervals, [0, 5) and [5, 10]
(or LOWand HIGH), by using the methods mentioned previously. If
there exists an outlier (e.g. 30), then the two intervals are [0,15) and
[15, 30] (or LOWandHIGH) by using the samemethod. Accordingly,
all the data are defined as LOW except the outlier, which is not
actually true.

Various methods can be used for effective detection and
removal of outliers. In this study, a method based on the lower
quartile (Q1) and the upper quartile (Q3) of the standard boxplot
was used due to its simplicity [20]. Specifically, outlying values can
be distinguished using the following two rules:

Rule 1: data values that are less than Q1�1.5� (Q3�Q1) are
defined as outliers
Rule 2: data values that are larger than Q3þ1.5� (Q3�Q1) are
defined as outliers

With consideration of the seasonality of occupant behavior, the
ARM was performed based on seasonal data instead of annual data
Table 3
Appliances in the case building and environmental parameters used in ARM.

No. Appliances/indoor parameters No. Appliances/

1 Heating boiler 16 TV (other ro
2 Hot water boiler 17 TV (standby
3 Kerosene heater 18 Video
4 Ventilator 19 Phone
5 Air cleaner 20 Telephone h
6 Lamp (1Fa) 21 Iron
7 Lamp (2Fb) 22 Vacuum cle
8 Table lamp 23 Washing m
9 IH heater 24 Washing m
10 Dishwashers 25 Living room
11 Microwave, toaster, coffee 26 Rest room o
12 Bidet 27 Rest room o
13 Boom box 28 Outdoor air
14 TV (Dining room) 29 Outdoor rel
15 TV (master bedroom 2F) 30 Outdoor air

a First floor.
b Second floor.
in this study for demonstration purposes. Given that the case
building is located in Hokkaido, the coldest area in Japan, thewinter
data in 2003 was mined to generate association rules. Fig. 7 shows
the distribution of two intervals of all the ARM attributes after the
removal of outliers. Note that the numbers in the abscissa represent
the ARM attributes, and correspond to the number in Table 3.
Clearly, it can be observed that most of the percentages range from
30% to 70%, indicating a roughly uniform distribution.
4. Results and discussion

4.1. Clustering-then-classification

4.1.1. Clustering results
After data pre-processing, the cluster analysis was conducted for

the 66 buildings using the RapidMiner. With consideration of the
size of the database, four clusters were determined by the K-means
algorithm and the performance vector (Davies Bouldin index, DBI).
The results of the cluster analysis are given in Table 6. Cluster
centroids, which represent the mean value for each dimension,
were used to characterize building occupant behavior in the four
clusters. For example, in comparison with building occupant
behavior in the other clusters, user activities in cluster_2 caused
medium energy consumption in supply hot water (the cluster
centroid of SHW in this cluster is 0.440, which is of medium value
among the four clusters), high energy consumption in lighting,
medium energy consumption in kitchen, etc. Moreover, cluster_2
has significantly higher energy consumption for lighting; this
indicates that, in general, building owners in cluster_2 should give
primary consideration to the activities related to lighting in order to
save energy. Similarly, other clusters can be explained. It should be
noted that nearly half of the data records (44%) were grouped into
cluster_1, which represents low energy consumption in most of the
main end-use loads. A possible explanation for this is that a good
indoor parameters No. Appliances/indoor parameters

oms) 31 Living room temperature
power) 32 Living room humidity

33 Bedroom (1F) temperature
34 Master bedroom (2F) temperature

andset 35 Total energy consumption
36 SHW

aner 37 LIGHT
achine (1F) 38 KITCH
achine (2F) 39 REFRI
outlet 40 E&I
utlet (1F) 41 H&S
utlet (2F) 42 OTHER
temperature
ative humidity
velocity



Table 4
Statistical data of the seven main end-use loads for the 66 buildings (unit: MJ per
capita per year).

End-use load Min Max Average Standard deviation

SHW 994.945 11,649.175 4695.497 2616.451
LIGHT 130.372 2938.521 1311.695 846.283
KITCH 110.761 5321.785 971.773 786.056
REFRI 390.136 2667.98 883.033 439.375
E&I 106.254 2301.679 727.136 480.946
H&S 64.137 2102.968 400.303 385.46
OTHER 55.259 2374.798 738.422 564.375

Table 5
Statistical data after normalization.

End-use load Min Max Average Standard deviation

SHW 0 1 0.347 0.246
LIGHT 0 1 0.421 0.301
KITCH 0 1 0.165 0.151
REFRI 0 1 0.216 0.193
E&I 0 1 0.283 0.219
H&S 0 1 0.165 0.189
OTHER 0 1 0.295 0.243
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portion of Japanese families have a high degree of awareness
regarding energy savings. In addition, among the seven attributes
and four clusters, H&S has the largest maximum/minimum ratio
(0.509/0.088¼ 6.5), while KITCH has the lowest maximum/
minimum ratio (0.268/0.144¼1.91). This indicates that occupant
behavior related to H&S differs significantly between the four
clusters; and deserves extra attention in occupant behavior
improvement; on the contrary, the total energy consumption
caused by KITCH-related user activities has a narrow gap between
different clusters, which implies relatively small energy-saving
potential for modifying such kind of activities.

Table 7 shows the number of buildings in various districts in
each cluster. Clearly, the distribution of buildings in various districts
is roughly even, especially in cluster_1 and cluster_4. Such
a distribution indicates that the attributes in the cluster analysis are
not dependent on weather (otherwise buildings in the same
districts would tend to be grouped together), which is consistent
with the assumption that the seven main end-use loads in clus-
tering analysis are non-weather-dependent components.

4.1.2. Classification by decision tree
4.1.2.1. Generation of decision tree. After the four clusters were
generated, a decision tree was constructed to assign buildings to
a specific cluster provided their main end-use loads are available, as
shown in Fig. 8. C4.5 algorithmwas used in RapidMiner to build the
decision tree.

The decision tree includes a total of 19 nodes among which 10
are leaf nodes. The colors in the leaf nodes indicate the purity of
classification in the nodes. A pure color in a node implies that all the
records in this node are correctly classified. Clearly, all the data
records in the training dataset are correctly classified in this deci-
sion tree.

4.1.2.2. Evaluation of the decision tree. In order to evaluate the
accuracy of the generated decision trees, the RapidMiner analysis
report also provides a confusion matrix for data analysts. In this
Fig. 7. Distribution of two intervals of all ARM attributes after the removal of outliers.
study, a four-dimensional confusion matrix was built since the
decision tree has four target variables, as shown in Table 8.

In this table, the rows indicate the number of actual data
records used for testing in each cluster; and the columns
represent the number of predicted data records generated by
applying the decision tree to the actual data records. For
example, the first column shows that 7 records in cluster_1 were
correctly classified; while one record in cluster_2, one record in
cluster_3, and two records in cluster_4 were misclassified into
cluster_1. Therefore, the accuracy of this decision tree, which is
also called ‘recall’ in the data mining domain, can be calculated
as (7þ4þ1þ4)O (7þ4þ1þ4þ1þ1þ2)¼ 80%, which is still
acceptable despite the fact that it is relatively low. This may be
partly ascribed to the small size of database. Moreover, data
records in cluster_2, cluster_3, and cluster_4 are misclassified
into cluster_1 (at least one record in each cluster and four
records totally), while data records in cluster_1 are not mis-
classified into the other clusters. Such information indicates that
cluster_1 is more prone to be misclassified than the other clus-
ters. This may have occurred since nearly half of the data records
in the database are in cluster_1, which makes the decision tree
more sensitive to this cluster. An even distribution among the
four clusters in the database would possibly improve the accu-
racy. In addition, the sum of values in the matrix corresponds to
the number of data records used for model testing. Clearly 20
records in the database were randomly selected by RapidMiner
for testing, which also implies that 46 data records were used to
establish the decision tree.

4.1.2.3. Utilization of the decision tree. The decision tree can be
utilized to predict the cluster attribution of new buildings accord-
ing to the main end-use loads. Such predictions can be easily made
by traversing a path from the root node to a leaf node. Take the
node in the lower left corner in Fig. 8 as an example. The prediction
can be made as follows: for a building, if LIGHT� 2115.837 and
SHW� 8504.939 and H&S� 1040.429 and OTHER> 903.886 and
OTHER> 1591.781 and SHW> 2568.384, then this building
belongs to cluster_2.
Table 6
Centroid of each cluster and statistics on the number and percentage of instances
assigned to different clusters.

Attribute Cluster_1 Cluster_2 Cluster_3 Cluster_4

SHW 0.266 0.440 0.738 0.215
LIGHT 0.262 0.881 0.291 0.288
KITCH 0.144 0.181 0.268 0.140
REFRI 0.119 0.255 0.372 0.296
E&I 0.218 0.169 0.572 0.403
H&S 0.088 0.167 0.509 0.150
OTHER 0.136 0.430 0.231 0.500
Clustered buildings

and proportion
29 (44%) 16 (24%) 7 (11%) 14 (21%)



Table 7
The number of buildings in various districts in each cluster.

Cluster Hokkaido Tohoku Hokuriku Kanto Kansai Kyusyu

Cluster_1 6 3 7 3 5 5
Cluster_2 0 4 0 8 2 2
Cluster_3 1 2 4 0 0 0
Cluster_4 3 2 1 1 5 2

Table 8
Confusion matrix.

Predicted data records

Cluster_1 Cluster_2 Cluster_3 Cluster_4

Actual data records Cluster_1 7 0 0 0
Cluster_2 1 4 0 0
Cluster_3 1 0 1 0
Cluster_4 2 0 0 4
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Besides the prediction of cluster attribution, useful information
can also be extracted from the decision tree so as to help under-
stand building occupant behavior improvement. For example,
various attributes are selected by the decision tree algorithm to
split the nodes; and their degrees of closeness to the root node
determine the number of records impacted. Therefore, the closer an
attribute is to the root node, the more significant it affects the
cluster attribution. Clearly the attribute significance in the decision
tree can be ranked as: LIGHT> SHW>H&S>OTHER> E&I> REFRI.
Such information indicates a general descending order of occupant
behavior deserving attention when modifying user activities in
Japanese residential buildings. Moreover, among the seven end-use
loads, KITCH does not appear in the decision tree. This may have
occurred due to the narrow gap between energy consumption
caused by KITCH-related occupant behavior among the four clus-
ters (see Section 4.1.1), and thus KITCH has the weakest influence
on the cluster attribution.
4.2. RB identification

In order to demonstrate the methodology, a case building with
the most comprehensive household appliances was selected for
case study. Table 9 shows level 1 loads in this case building.

Based on the decision tree, the cluster attribution of the case
building can be predicted as follows:
Fig. 8. Decision tree for the pred
Step 1: Examine the value of LIGHT, i.e. the attribute in the root
node. Since LIGHT¼ 582.052, the node test in the right branch
LIGHT� 2115.837 is satisfied, then go to the right-side child
node;
Step 2: Examine the value of SHW. Since SHW¼ 3882.699, the
node test in the right branch SHW� 8504.939 is satisfied, then
go to the right-side child node;
Step 3: Examine the value of H&S. Since H&S¼ 621.743, the
node test in the right branchH&S� 1040.429 is satisfied, then go
to the right-side child node;
Step 4: Examine the value of OTHER. Since OTHER¼ 336.592,
the node test in the right branch OTHER� 903.886 is satisfied,
then go to the right-side child node;
Step 5: Examine the value of E&I. Since E&I¼ 1799.530, the node
test in the left branch E&I� 1589.182 is satisfied, then go to the
left-side child node, which is a leaf node. As a result, the decision
tree in Fig. 8 predicts that the case building belongs to cluster_4.

Comparing with the other three clusters, cluster_4, as shown in
Table 6, can be characterized as the building group with high
energy consumption in OTHER, medium high energy consumption
in REFRI and E&I. Therefore, the case building occupants should
manage to improve their behavior related to OTHER, REFRI, and E&I.

After the prediction of cluster attribution, the sum of the seven
main end-use loads in the buildings in cluster_4 was calculated and
iction of cluster attribution.



Table 9
End-use data in the case building (unit: MJ per capita per year).

SHW LIGHT KITCH REFRI E&I H&S OTHER Sum

3882.699 582.052 250.600 1541.394 1799.530 621.743 336.592 9014.610

Table 10
The main end-use loads in the 14 buildings in cluster_4 (Unit: MJ per capita per year).

No. SHW LIGHT KITCH REFRI E&I H&S OTHER Sum

1 1691.656 744.428 1141.730 898.208 468.707 83.617 1670.297 6698.644
2 2757.408 981.880 662.657 645.977 388.737 317.828 1100.376 6854.487
3 1464.821 287.523 936.880 924.793 1958.911 504.171 845.352 6922.450
4 2471.123 865.524 1065.978 879.398 608.810 162.782 942.645 6996.259
5 1782.779 1099.852 322.597 1773.017 2092.484 142.018 556.186 7768.933
6 3337.796 558.252 411.807 1013.407 1060.430 360.339 1253.659 7995.690
7 3123.892 1094.065 1418.592 1055.741 803.612 160.549 1288.371 8944.821
8 2694.449 1758.554 621.970 1170.580 1109.116 503.125 1220.652 9078.446
9 3348.343 1407.656 1474.419 1046.065 768.032 550.396 739.591 9334.501
10 5224.677 617.440 724.771 565.889 498.162 186.758 1530.789 9348.487
11 4801.992 1080.952 994.315 909.184 870.845 202.665 818.539 9678.492
12 5192.053 982.723 768.211 777.985 363.490 923.699 1129.407 10,137.568
13 5685.900 598.837 752.744 660.163 1007.248 269.102 1526.953 10,500.947
14 2366.639 1089.153 451.300 2585.726 1878.995 817.197 2374.798 11,563.808
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ranked. Table 10 shows these loads and their sum in the 14 build-
ings in cluster_4 in ascending order.

An RB needs to be identified for the case building for the eval-
uation of energy-saving potential and the improvement of occu-
pant behavior. The buildings with less total energy consumption
(i.e. the sum of the sevenmain end-use loads) than the case building
in cluster_4 were considered to be RB candidates. In order to
provide reliable information for the case building occupants, the RB
was defined as the most similar building to the case building in
terms of building-related parameters. The Euclidean distance was
used to determine the similarity. Various building-related param-
eters were captured from the database to calculate the Euclidean
distance, and among them, five are categorical parameters and are
transformed into [0, 1], as shown in Table 11.

Table 12 shows the building-related parameters of the RB
candidate buildings and the case building.

Again, the minemax normalizationwas applied in order to help
prevent attributes with large ranges from outweighing those with
comparatively smaller ranges. After normalization, the Euclidean
distance between each candidate building and the case buildingwas
calculated; and the building with the smallest distance, i.e. No. 3
building in Tables 12 and 10, was identified as the RB. For
comparison, Table 13 shows the main end-use loads in the case
building and the RB.

Table 13 shows that the sum of energy consumption in the case
building is evidently higher than that in the RB. Further, user
activities in the case building caused significantly higher energy
consumption in SHW, LIGHT, REFRI, and H&S than that of the RB.
This indicates that, in comparison with buildings with similar
occupant behavior and building-related parameters, energy-saving
potential still exists for the case building. That means energy
consumption may be considerably reduced through modifying
occupant behavior related to SHW, LIGHT, REFRI, and H&S. It should
Table 11
Transformation of categorical parameters.

Categorical parameters CO HT

Value Wood Non-wood Apartment

Transformation value 0 1 0
be noted that energy consumption in REFRI in cluster_4 is also
medium high when comparing with the other three clusters. This
implies the energy-saving potential of REFRI-related behavior is
comparatively higher than the potential of the others, and thus
deserves extra attention.

Additionally, energy-saving potential in the case building can be
identified as the energy consumption difference between the two
buildings, i.e. 9014.610� 6922.450¼ 2092.161 MJ per capita per
year.

4.3. Association rule mining (ARM) in the case building

Based on the information obtained from cluster-then-
classification and RB identification, the ARM was then performed
to find all the associations among the end-use loads at both levels.
Accordingly, energy-inefficient specific occupant behavior will be
determined and then energy-saving recommendations for modi-
fying activities can be provided for the case building occupants.

After experimenting with various combinations of support and
confidence values, a support of 50% and a confidence of 80% were set
as minimum thresholds. Such thresholds mean that, for each
generated association rule, at least 50% of all the data records under
analysis contain both premise and conclusion; and the probability
that a premise’s emergence leads to a conclusion’s occurrence is
80% or more. In addition, the minimum threshold of lift value was
set 1 to find positive correlations. Such mining generated 756 rules,
many of which are obvious and uninteresting; and truly interesting
rules need to be further identified based on domain knowledge.
Fifteen association rules between household appliances were
selected for demonstration purposes, as shown in Table 14. It
should be mentioned that most obtained associations are between
attributes in the LOW range (i.e. low energy consumption), while
clearly the associations in the HIGH range (i.e. high energy
Energy sources by usage (SH, WH, KIT)

Detached house Electric Non-electric

1 0 1



Table 12
Building-related parameters of RB candidate buildings and the case building.

No. NO FA HLC ELA CO HT Energy sources by usage T V RH RA

SH WH KIT

1 4 112 2.04 4.385 1 1 1 0 0 15.1 2.1 73 12.3
2 4 141.6 1.79 0.77 0 1 0 0 0 12.8 4.3 74 11.7
3 2 185.9 1.87 0.35 1 1 1 1 1 8.8 3.6 68 12.6
4 4 115 2.61 6.365 0 1 0 1 1 16.9 2.5 66 12.6
5 2 87.05 0.83 1.06 1 0 1 1 1 8.8 3.6 68 12.6
6 2 135 1.7 3.9 1 1 0 0 0 17.2 2.8 66 13.1
7 4 160.6 1.84 2.20 0 1 1 1 1 11.8 4.2 72 11.8
8a 2 128.3 1.69 0.6 0 1 0 1 1 8.8 3.6 68 12.6

a The case building.

Table 13
Comparison of end-use data between the case building and RB (Unit: MJ per capita per year).

Building SHW LIGHT KITCH REFRI E&I H&S OTHER Sum

Case building 3882.699 582.052 250.6 1541.394 1799.53 621.743 336.592 9014.61
RB 1464.821 287.523 936.88 924.793 1958.911 504.171 845.352 6922.45

1 In this building, both the kitchen and the living room are in the first floor, and
there are no partitions between them. Hence, they have the same indoor air
temperature and the living room air temperature was used in this figure.
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consumption) may provide more useful information on energy
conservation. This also indicates that the attributes involved in the
obtained rules have a skewed distribution toward the LOW range,
and may be ascribed to the high degree of building occupants’
energy-saving consciousness. Moreover, due to the availability of
the data source, daily datawas used for ARM instead of hourly data;
and thus the obtained rules do not necessarily indicate that user
activities in the premises and conclusions occur simultaneously.
Therefore, the actual occupant behavior patterns should also be
taken into consideration when using these rules in practice.

The results of the cluster analysis show that the case building
was grouped into cluster_4, which was characterized as the
building group with high energy consumption in OTHER, medium
high energy consumption in REFRI and E&I. Hence, association rules
involving OTHER, REFRI and E&I are the most important and
deservemore attention. Accordingly, two rules, i.e. Rule 1 and Rule 2
in Table 14, were found among all the obtained rules and discussed
as follows:

Rule 1 shows that living room outlet and OTHER have a strong
positive association with a confidence of 98% and a lift of 1.49. From
this rule, it can be inferred that, in this building, the electricity load
increase in living room outlet would quite possibly lead to the
increase in OTHER. This indicates that, among all the unclear items
included in OTHER, removable electrically operated devices con-
necting to the living room power plugs deserve more attention
than other devices. Therefore, building owners could easily identify
these devices and then manage to modify their usage to reduce
energy consumption.

Rule 2 shows that heating boiler has a strong positive association
with REFRI with a confidence of 94% and a lift of 1.12. Given that the
daily energy consumption of the heating boiler is mainly impacted
by occupant presence and outdoor air temperature, this rule
implies that, two factors (i.e. both a longer stay time of occupants
and a lower outdoor air temperature) possibly cause a higher
energy consumption of refrigerators. With regard to the first factor,
it sounds reasonable since a longer stay time of occupants tends to
increase the refrigerator usage, thereby increasing the energy
consumption. With regard to the second factor, it seems unrea-
sonable since a low outdoor air temperature normally causes
a relatively low indoor air temperature in a detached housewithout
central HVAC systems, thereby decreasing the energy consumption
of refrigerators. A possible explanation for this is that the building
occupants had high thermal comfort requirements in cold days;
and preferred to a high indoor air temperature by increasing the
boiler thermostat setting or using kerosene space-heaters. In order
to justify the assumption, the pattern relating mean daily kitchen
air temperature1 to mean daily outdoor air temperature was
plotted, as shown in Fig. 9. A trend line was then drawn to find out
whether the kitchen air temperature increased or decreased in
relation to outdoor air temperature. Clearly, a downward trend in
mean daily kitchen air temperature following the increase of mean
daily outdoor air temperature can be observed, which is in accor-
dance with the assumption.

Therefore, a trade-off between human thermal comfort and
building energy consumption is necessary for the owners, since an
appropriate decrease of indoor thermostat settings for cold days
results in an energy-consumption reduction in both space heating
and refrigerators.

Further, the comparison between the RB and the case building
shows that user activities in the case building caused significantly
higher energy consumption in SHW, LIGHT, REFRI, and H&S than
those in the RB. Hence, rules associating with these four attributes
also deserve extra attention. At the same time, in order to provide
more comprehensive recommendations for energy-efficient
behavior, rules associating with other end-use loads were also
analyzed in this study. Eventually, thirteen interesting rules (i.e.
Rules 3e15 in Table 14) were selected and discussed as follows.

Similar to Rule 1, Rules 3e5 show that lamp 1F, washing machine
2F and dishwasher have a strong positive association with LIGHT,
H&S, and KITCH, respectively. Rules 6 and 7 show that vacuum
cleaner, and microwave, toaster, coffee have a positive association
with H&S and KITCH, respectively. Therefore, comparing with other
appliances associating with LIGHT, H&S, and KITCH, the building
occupants should paymore attention to the use of lamps in the first
floor, washing machines in the second floor, and dishwashers, since
activities related to these appliances could have a major influence
on the correspondingmain end-use loads. At the same time, the use
of vacuum cleaners, microwave ovens, toasters, and coffee
machines also deserve some attention, though their associations
with H&S and KITCH are weaker than washing machine 2F and
dishwasher.



Table 14
Selected association rules (min_supa¼ 50%, min_confb¼ 80%, min_liftc¼ 1).

No. Premise Conclusion Sup. Conf. Lift

Rule 1 Living room outlet [LOW] OTHER [LOW] 54% 98% 1.49
Rule 2 Heating boiler [HIGH] REFRI [HIGH] 51% 94% 1.12
Rule 3 Lamp 1F [LOW] LIGHT [LOW] 59% 96% 1.33
Rule 4 Washing machine 2F [LOW] H&S [LOW] 76% 97% 1.25
Rule 5 Dishwasher [LOW] KITCH [LOW] 74% 99% 1.26
Rule 6 Vacuum cleaner [LOW] H&S [LOW] 67% 84% 1.07
Rule 7 Microwave, toaster,

coffee [LOW]
KITCH [LOW] 66% 81% 1.04

Rule 8 TV (master bedroom 2F)
[LOW]

Lamp 2F [LOW] 66% 87% 1.10

Rule 9 TV (other rooms) [LOW] LIGHT [LOW] 51% 81% 1.11
Rule 10 Video [LOW] Table lamp [LOW] 52% 84% 1.02
Rule 11 Lamp 1F [LOW] Table lamp [LOW] 52% 84% 1.02
Rule 12 TV (Standby Power) [HIGH] Ventilator [HIGH] 55% 100% 1.82
Rule 13 Phone [LOW] Boom box [LOW] 57% 90% 1.06
Rule 14 TV (dining room) [LOW] Boom box [LOW] 51% 85% 1.01
Rule 15 TV (other rooms) [LOW] Boom box [LOW] 54% 86% 1.02

a Minimum support.
b Minimum confidence.
c Minimum lift.

Fig. 9. Mean daily air temperature in kitchen vs. mean daily outdoor air temperature
(winter, 2003).
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Rule 8 shows that TV (master bedroom 2F) has a positive asso-
ciation with lamp 2Fwith a confidence of 87% and a lift of 1.10. From
this rule, it can be inferred that the usage of TV (master bedroom 2F)
would quite possibly lead to the usage of lamp 2F. This may have
occurred since the building occupants always turned the lights on
when they were watching TV. An effective way of reducing energy
consumption in this building is to watch TV with dim light.

Rules 9e11 can be explained in the same way as Rule 8 and
similar recommendations can be provided.

An unexpected result was that TV (Standby Power) and Ventilator
have a strong positive association with a confidence of 100% and
a lift of 1.82, as shown in Rule 12. Clearly the standby power of TVs
and ventilators has the same trend of variation. This may have
Table 15
Selected association rules between indoor/outdoor parameters and household appliance

No. Premise Conclusio

Rule 1 Master bedroom (2F) temperature [HIGH] Microwa
Rule 2 Living room humidity [LOW] Microwa
Rule 3 Outdoor relative humidity [LOW] Microwa
Rule 4 Outdoor air temperature [LOW] H&S [LOW
Rule 5 Outdoor air velocity [LOW] H&S [LOW
Rule 6 Living room humidity [LOW] H&S [LOW
occurred since the building occupants would turn off the TVs and
switch off the ventilators when the building was empty. However,
standby power is commonly unnecessary and still accounts for
energy cost. Therefore, TVs should be completely turned off or
unplugged when they are not used. Furthermore, the wasted
standby power of TVs is very small, but the sum of standby use
consumed by all house appliances, such as microwave ovens, air
conditioners, power adapters for laptop computers and other
electronic devices, becomes significant. Standby power accounts
for around 5e10% of residential electrical energy use in most
developed countries; and continues to increase in developing
countries [21]. Hence, it is meaningful to help building owners to
realize the importance of reducing standby power consumption,
and feasible recommendations should also be provided for them.
For example, a switchable power strip can be used for multiple
devices, such as VCRs, DVD players, TVs, and computers, so that
these appliances can be unplugged conveniently with one action.

Rules 13e15 show that phone, TV (dining room) and TV (other
rooms) have a positive association with boom box. This indicates
that, among all the appliances included in E&I, boom boxes were
used in comparatively high frequency and deserve extra attention.

Moreover, indoor and outdoor parameters were also included in
this ARM model. Associations between indoor/outdoor parameters
and household appliances can assist in understanding the factors
influencing occupant behavior. In order to demonstrate such
associations, six rules were selected and shown in Table 15.

Rules 1e3 show that master bedroom (2F) temperature (HIGH),
living room humidity, and outdoor relative humidity have a positive
association with microwave, toaster and coffee. This indicates that
a highmaster bedroom temperature, as well as a low living room or
outdoor relative humidity, tends to decrease the usage of micro-
wave ovens, toasters, and coffee machines. A possible explanation
for this is that the increase in indoor air temperature, or the
decrease in indoor/outdoor relative humidity, causes the occupants
to lose their appetite to some extent.

Rules 4e6 show that outdoor air temperature, outdoor air
velocity, and living room humidity have a positive association with
H&S. This indicates that the decrease in outdoor air temperature/
velocity, and living room humidity tends to reduce the likelihood
that occupants do housework such as cleaning and washing. It can
be inferred that both local climatic conditions and indoor micro-
climate may have an impact on occupant behavior relating to
housework. For example, the increase of outdoor air velocity may
deteriorate indoor sanitary conditions (dust accumulation), thereby
increasing the usage of vacuum cleaners and other sanitary
appliances.

In addition, based on all the generated rules, it was found that
six attributes, as shown in Table 16, have no association with the
remaining attributes.

The fact that these attributes have no association with the other
attributes implies that, in this building, they are independent. There
are two possible reasons for these attributes’ independence: for
total energy consumption and I&E, they may be decided by the
holistic effects of various user activities, instead of associating with
some certain activity. For the other four attributes, their values may
s (min_sup¼ 50%, min_conf¼ 80%, min_lift¼ 1).

n Sup. Conf. Lift.

ve, toaster, coffee [LOW] 58% 83% 1.02
ve, toaster, coffee [LOW] 55% 86% 1.06
ve, toaster, coffee [LOW] 57% 87% 1.07
] 54% 88% 1.12
] 59% 82% 1.05
] 57% 90% 1.15



Table 16
Attributes without associations with the remaining attributes.

No. Appliances Indoor parameters

1 Total energy consumption Living room temperature
2 I&E Bedroom (1F) temperature
3 Bidet
4 IH heater
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be purely random or remain relatively stable in the whole winter
and thus no association with other attributes can be found. Such
information can help building owners to make intelligent decisions
when modifying their behavior.

5. Conclusions

Amethodology for identifying and improving occupant behavior
in existing residential buildings is developed. End-use loads of
various household appliances were mapped onto corresponding
occupant behavior, and were used to deduce user activities indi-
rectly in this study. Specifically, these end-use loads were divided
into two levels (main and sub-category), and thus correspond to
two-level activities, i.e. general and specific occupant behavior.

In order to demonstrate its applicability, this methodology was
applied to a group of residential buildings located in six different
districts of Japan. Field surveys on energy-related data and other
relevant information were carried out, and then a database was
developed. A building with the most comprehensive household
appliances was selected as the case building and the remaining
buildings were used as related buildings. Data pre-processing was
performed for the related buildings and they were grouped into
four clusters by using K-means algorithm. The characteristic of
occupant behavior in each cluster was analyzed. Based on these
clusters, a decision tree was generated and its accuracy was eval-
uated as 80%. In terms of the decision tree, the case building was
predicted to belong to cluster_4. A reference building was identified
in the same cluster as the case building. Consequently, the case
building was compared with buildings in the other clusters and the
reference building to determine energy-inefficient general behavior.
Also, its energy-saving potential was identified as 2092.161 MJ per
capita per year. Moreover, association rules were mined based on
the data of the case building inwinter in 2003, given the seasonality
of occupant behavior. A number of interesting rules were found,
and associations and correlations between different user activities
were discovered. According to these rules, specific recommenda-
tions for highlighting energy-saving opportunities were provided
for the building occupants.

Considering the diversity of specific occupant behavior, the
determination of energy-inefficient general occupant behavior can
narrowdownthe scopeof identificationof energy-inefficient specific
occupant behavior, and thus can help occupants to quickly find the
generated association rules, as well as specific behavior, which
deservemore attention. Also, such information is extracted from the
real measured data and covers almost all energy-related behavior.
With such information, building occupants can then clearly under-
stand their actual behavior patterns, and easily focus on the energy-
inefficient behavior needing to be modified. Therefore, the main
advantage of the proposed methodology lies in its high efficiency of
occupant behavior improvement. Moreover, the identification of
energy-inefficient general behavior in this study is mainly based on
the comparison with other similar buildings; this can help building
owners to be aware of avoidable energy waste caused by their
behavior, and motivate them to modify their activities accordingly.

The application of this proposed methodology to Japanese
residential buildings in this paper has clearly proved that this
methodology is more efficient and rational than the traditional
methods, i.e. energy-saving education method and building simu-
lation method. However, further study is still necessary and the
main focus of future research should be placed on identifying
appropriate database sizes and the number of clusters, improving
the accuracy of generated decision tree. These measures have
a strong influence on characterizing the occupant behavior in all
the investigated buildings and cluster attribution of the case
building. In addition, it is noted that using daily end-use loads in the
case building to mine association rules and provide recommenda-
tions for occupants is not sufficient. This is because user activities in
the premises and conclusions of association rules may not occur
simultaneously. In order to overcome this limitation, hourly (or less
than one hour, such as 15 min) end-use loads of various household
appliances should be measured and used in association rule
mining.
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